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Applied Differential Privacy in the Smart Grid
HEDVIG JONSSON
BOEL NELSON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Privacy is an important guarantee to give to users in order for them to agree to
release their, possibly sensitive, data for scientific or commercial purposes. However,
guaranteeing privacy is not a trivial task. Previously there have been several cases
where released data was believed to have been anonymized, where it later proved not
to be anonymous at all [28, 38]. One methodology to be able to release anonymized
calculations is differential privacy, where controlled noise is added to the calculation
before it is release. However, there exists a trade-off between the privacy and the
accuracy of the results when differential privacy is used. Previous work has mostly
focused on differential privacy in theory, but there also exists work that applies
differential privacy to a use case [32]. However, the utility of the differentially
private results have not previously been evaluated when using only counting queries.
In this thesis differential privacy is applied to one use case found in the smart
grid, an evolved version of the electricity grid, to show that differential privacy
is applicable in practice and not only in theory. The particular use case in this
thesis compares a differentially private sum to the true sum, to estimate the error
introduced by applying differential privacy. The results demonstrate that differential
privacy shows promise also for realistic usage, providing privacy while still producing
accurate results compared to the true results without differential privacy applied.
For a setup with 1,000 simulated households, the best results for the mean error is
between 0.42% and 0.59%, and the spread of the error ranged from 0% to 2.07%.
All of these results have a confidence interval of 95%.
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Advanced Metering Infrastructure (AMI) A network of communicating de-
vices that measures some attribute.

Adversary Model A model of an attacker. This includes what knowledge the
attacker possesses, and can be used in order to test the security of a system.

Counting Query A query that counts the number of rows that matches some given
condition.

Equivalence Class A set of records whose quasi identifiers are indistinguishable
from each other. The sensitive attributes do not have to have the same value
however.

k-anonymity A syntactic privacy model that ensures the indistinguishably of an
individual in a set of k − 1 others.

Language Integrated Query (LINQ) A query language which is similar to SQL.

l-diversity A syntactic privacy model where each value for a sensitive attribute
must be well-represented, that is, each value must appear l times in an equiv-
alence class.

NumPy A library for Python that includes for example arrays and matrices.

Pandas A library for Python that provides data structures for data analysis.

Privacy-Preserving Data Mining (PPDM) An approach for anonymizing data.
It is applied dynamically to data that is being requested from a data set.

Privacy-Preserving Data Publishing (PPDP) An approach for anonymizing
data. It is applied statically to data, so that all of it may be published without
further modification.

SciPy A scientific library for Python that includes for example mathematical op-
erations.

Smart Grid The upgraded version of the electricity grid where smart devices aid
in distributing energy in a more efficient manner.

Syntactic Privacy Model A set of privacy models that uses PPDP. These include
k-anonymity, l-diversity and t-closeness.
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t-closeness A syntactic privacy model where the distance between the distribution
of a sensitive attribute in every equivalence class is less than some threshold
t.

True answer Unmodified answer to a query, without differential privacy applied.

Quasi Identifier A set of non-sensitive attributes that by itself is not a unique
identifier.

Response Answer to a query with noise added to it, is differentially private.
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1
Introduction

Data can be a powerful tool of reference when developing new software services or
improving existing ones, as it can be used for statistical purposes. Today, more data
than ever is gathered, which results in collections of big data that can be used for
developing and improving services. While these sets of data generate new opportu-
nities, it is also important to take into consideration that measures must be taken
to protect the anonymity of each data point in the set.

One area where the volume of data is growing is the smart grid. The smart grid
is an evolved electricity grid that makes energy distribution more efficient and the
grid more resilient to failures. In order to do this, households are equipped with
smart metering devices, that measure and communicate the energy consumption to
the distributor’s servers, in order to bill the consumers accordingly. Data gathered
by the smart meters could, apart from being used for billing, also be used in many
ways to improve the smart grid. Examples of such improvements include distributing
energy using the shortest path to minimize energy loss during transition, detecting
energy fraud and predicting energy usage in order to meet the consumption demand.

While releasing energy consumption data without anonymizing it first may seem
harmless, there has been research studies that show that sensitive information can
be deduced from observing patterns in energy consumption [19, 26, 30]. Note that
in order to deduce information from energy consumption, one needs access to high
frequency data. Information that can be learned include if the residents of a house-
hold eat their breakfast hot or cold, if they got a good night’s sleep and if they
were home during their sick leave. As Molina-Markham et al. [26] point out, these
seemingly harmless facts could actually be of value to third-parties, as they could
help regulate insurance rates, resolve legal conflicts, be used for targeted advertising
or even be used by criminals to plan burglaries.

Because of the potentially sensitive nature of data gathered, it is important to be
able to provide privacy guarantees for individuals. Previous work shows that releas-
ing truly anonymized data, where no data can be traced back to a single individual,
is not a trivial task. In the past, anonymizing data has failed several times [28, 38],
as what was believed to be anonymized data at the time of release could be traced
back to individuals.

In order to release anonymized data, several different approaches have been pro-
posed. Among these are k-anonymity [38], l-diversity [22], t-closeness [21] and dif-

1



1. Introduction

ferential privacy [12]. The approach used in this thesis is the concept of differential
privacy, which adds controlled noise to data statistics that are to be released rather
than adding it to the existing data set.

Since differential privacy guarantees anonymity of data points when they are used
for statistical purposes, it could potentially work as an incentive for individuals
to agree to releasing data. Differential privacy has been theoretically established
[10, 12, 13, 14, 15], and there also exists some practical implementations [17, 24, 31,
32, 41]. However, none of the practical implementations evaluate the utility of the
results when using counting queries in a real setting.

This thesis will apply differently privacy to smart grid data by using a simulated
smart grid data set to investigate how differential privacy can be used in practice.
In order to test how well applying differential privacy works, a realistic use case will
be developed and implemented, to show a real application of differential privacy.
The utility of the differentially private result will be investigated by calculating how
much noise is added to the true result, which is the result calculated without differ-
ential privacy. The amount of noise added depends both on the query type, and on
the amount of queries asked. Therefore, querying the data set is not always trivial
due to the fact that the added noise can affect the utility of the query result.

The contributions of this thesis are the following.

• Formulate a use case in the setting of the smart grid where differential privacy
can be applied.

• Provide a way to query the data set with queries that generate low noise, by
creating partitioning strategies for how this should be done.

• Investigate the correlation between the number of queries and the noise added.

• Investigate the correlation between the number of households used and the
noise added.

• Give an evaluation of the utility of the differentially private result in the setting
of the smart grid.

This thesis is structured as follows. In Section 2, a background of the different ap-
proaches used to achieve anonymity is summarized as well as a brief discussion of
their flaws. Differential privacy will also be introduced in Section 2. In Section 3,
related work will be outlined. Then the use case will be presented in Section 4.
Thereafter the method for this thesis will be described in Section 5. The implemen-
tation of the use case will be shown in Section 6. In Section 7, the simulation of
the smart grid data used in the implementation will be presented. In Section 8, the
results will be shown. Then, in Section 9, a discussion of the results and the method
used will be held and lastly in Section 10 the thesis will be concluded.

2



2
Background

To understand what type of privacy model is suitable for this thesis a short intro-
duction of different privacy models is given. After that the concept of the smart
grid will be introduced, to provide an overview of the basic layout.

2.1 Privacy
Previously, work has been done to preserve privacy and to expose leaks when query-
ing databases [6, 7, 8]. These days there exist several different privacy models
that can be applied to sets of data in order to achieve certain privacy guarantees.
One group of privacy models is the syntactic privacy model where k-anonymity,
l-diversity and t-closeness are included [3]. Differential privacy [13], on the other
hand, does not belong to this group because it handles data in a fundamentally dif-
ferent way. It is important to choose a privacy model that can protect against the
adversary model that is assumed in order to provide adequate privacy guarantees.
Furthermore, it is interesting to explore the fundamental difference in handling data,
and to get to know the different privacy models’ strengths and weaknesses, since it
aids in making an educated choice of privacy model. The choice of privacy model
for this thesis will be motivated in Section 5.2.

2.1.1 Syntactic Privacy Models
The syntactic privacy models [3] use privacy-preserving data publishing, also known
as PPDP. This type of models aim to publish already anonymized data. Because
the published data is anonymized, it can be analyzed in any way possible without
impact on privacy. PPDP does not assume anything about the queries used, or
what kind of analysis that can performed on the data [3]. This means that the
anonymization performed on the data set is independent of the query types used.

All models in this section originates from k-anonymity [34]. k-anonymity was pre-
sented by Samarati and Sweeney [34] as a technique to protect data. For example,
Sweeney noticed that it was possible to re-identify individuals by linking attributes
from one data set to another, even when data had supposedly been anonomyized
[38]. The data sets Sweeney linked were medical data gathered and released by
the Group Insurance Commission (GIC) and a voter registration list for Cambridge
Massachusetts. With these two data sets, Sweeney could pinpoint the governor of
Massachusetts at the time when data was gathered, by linking his ZIP code, birth

3



2. Background

date and gender between the two sets of data. Later, syntactic privacy models
providing stronger privacy guarantees than k-anonymity were invented [21, 22].

2.1.1.1 k-Anonymity

k-anonymity is a formal protection model for releasing anonymized data introduced
by Samarati and Sweeney [34]. The model states that if an individual in a set of k
individuals cannot be distinguished from at least k − 1 others in a set of data, the
data set has k-anonymity.

A central concept in k-anonymity is quasi-identifiers. These are the sets of attributes
that identifies an individual in a data set, like the example in 2.1.1 [38]. However, a
quasi-identifier does not have to uniquely identify an individual. A quasi-identifier
is formally defined as follows [38].

Definition 1. Given a population of entities U , an entity-specific table
T (A1, ..., An), fc : U → T and fg : T → U ′, where U ⊆ U ′. A quasi-
identifier of T , written QT , is a set of attributes Ai, ..., Aj ⊆ A1, ..., An

where: ∃pi ∈ U such that fg(fc(pi)[QT ]) = pi.

To prevent re-identification by linking, Sweeney [38] defined k-anonymity as follows.

Definition 2. Let RT (A1, .., An) be a table and QIRT be the quasi-
identifier associated with it. RT is said to satisfy k-anonymity if and
only if each sequence of values in RT [QIRT ] appears with at least k oc-
currences in RT [QIRT ].

That is, a data set satisfies k-anonymity if and only if each quasi-identifier appears at
least k times in the set. Table 2.1 shows an example of a data set where 3-anonymity
is achieved.

Zip Code Birth Date Gender Medical Condition
1 a b c x
2 a b c y
3 a b c z
4 d e f y
5 d e f y
6 d e f z

Table 2.1: A table with 3-anonymity, where zip code, birth date and gender are
considered non-sensitive attributes and medical condition is a sensitive attribute.
Thus at least 3 entries in the table share the same quasi-identifier. In this table,
row 1-3 and 4-6 share the same quasi-identifiers.
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2.1.1.2 Attacks Against k-Anonymity

Machanavajjhala et al. [22] used two attacks to show that k-anonymity has se-
vere privacy problems. The first attack, the homogeneity attack, showed that sets
with little diversity in sensitive attributes allowed an adversary to figure out the
value of the attributes. With the second attack, the background knowledge attack,
Machanavajjhala et al. showed that k-anonymity does not guarantee privacy when
the adversary has background knowledge.

The homogeneity attack arises due to the fact that a data set can contain groups of
individuals with the same quasi-identifiers that have the same value for their sensi-
tive attributes. For example, consider medical condition as a sensitive attribute. If a
group of k individuals has the same quasi-identifiers, but also share the same medi-
cal condition, the medical condition is leaked even when k-anonymity applies to this
group. An example of a situation in which this problem would arise is displayed in
Table 2.2. This scenario might seem uncommon, but according to Machanavajjhala
et al. it is in fact not.

Zip Code Age Nationality Medical Condition
1 a b c x
2 a b c x
3 a b c x
4 a b c x
5 d e f x
6 d e f y
7 d e f z
8 d e f x

Table 2.2: A table with 4-anonymity, where zip code, age and nationality are
considered non-sensitive attributes and medical condition is a sensitive attribute.
However, if the adversary knows that the zip code, age and nationality of some
individual X, is a, b and c, X must be on either row 1, 2, 3 or 4. Since all entries
within the tables with this quasi-identifier have the same condition, the adversary
can conclude that X have the condition x.

For the second attack to be successful the adversary must have access to some
background knowledge, hence the name background knowledge attack. While an
individual will share its quasi-identifies with k others individuals in the data set, by
having access to other statistics the adversary can figure out the value of a sensi-
tive attribute with near certainty. For example, if the adversary discovers that an
individual, X, has either medical condition x or y, he or she can take advantage
of background knowledge. Perhaps the adversary knows the nationality of X, and
also knows that y is a more common medical condition in the country from which
X comes from. Then the adversary is able to conclude that it is more likely that X
has condition y than x. An example of this scenario is shown in Table 2.3, where
X’s data is either on the first or second row.

5



2. Background

Zip Code Age Nationality Medical Condition
1 a b c x
2 a b c y
3 d e f x
4 d e f y

Table 2.3: A table with 2-anonymity, where zip code, age and nationality are
considered non-sensitive attributes and medical condition is a sensitive attribute.
However, if the adversary knows that the zip code, age and nationality of some
individual X, is a, b and c, X must be either row 1 or 2. If the adversary also knows
that y is a more common condition than x in the country from which X is from,
then the adversary can conclude both that X has x or y, but also that it is more
likely that X has medical condition y than x.

Another background knowledge attack was conducted in 2008 by Narayanan and
Shmatikov [28]. They showed, by using real data, that k-anonymity does not provide
any meaningful privacy guarantees when the adversary has only a little background
knowledge. Furthermore, k-anonymity fails on high-dimensional data [1]. This is
due to the fact that the number of possible quasi-identifiers increases when large
data sets are anonymized, which leads to a removal of data points that result in
a loss of information that is too high. The attack was conducted by linking users
from a data set released by Netflix, an online movie rental service, to users from
the Internet Movie Database (IMDb), which acted as their background knowledge.
This made it possible to identify if a certain individual’s entry was in the data set,
or at least pinpoint it to being within a subset of entries.

Another interesting finding by Narayanan et al. was that the presence of non-null
columns can release data. The authors point out that in most cases, as much infor-
mation is released from knowing which columns are non-null as knowing the value of
a column. For example, simply having rated a movie would make the corresponding
column non-null, and thus reveal that the user has, with high certainty, seen the
movie.

2.1.1.3 l-Diversity

Succeeding k-anonymity, l-diversity was introduced by Machanavajjhala et al. [22]
as a stronger notion of privacy. It protects against identity disclosure, as well as
attribute disclosure in its stated adversary model. In order to define l-diversity,
Machanavajjhala et al. first defined a q∗-block as follows.

Definition 3. A q∗-block is the set of tuples in a table, T ∗, whose values of the
nonsensitive attributes generalize to q∗.
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In other words, each q* -block is a block of data points that have the same values for
their quasi-identifiers. Machanavajjhala et al. then proceeds to define the l-diversity
principle as follows [22].

Definition 4. A q∗-block is l-diverse if it contains at least l well-represented
values for the sensitive attribute S. A table is l-diverse if every q∗-block
is l-diverse.

Where well-represented values are values that have roughly the same frequency. An
example of a 3-diverse table is shown in Table 2.4.

Zip Code Age Nationality Medical Condition
1 a b c x
2 a b c y
3 a b c z
4 d e f x
5 d e f y
6 d e f z
7 g h i x
8 g h i y
9 g h i z

Table 2.4: A 3-diverse table, where zip code, age and nationality are considered
non-sensitive attributes and medical condition is a sensitive attribute. Note that
each medical condition appears the same amount of times in each q∗-block, and
thus is well-represented.

2.1.1.4 Attacks Against l-Diversity

Even though l-diversity is an attempt to go beyond k-anonymity it has some issues
in itself. Li et al. discuss some of these in their paper t-Closeness: Privacy Beyond
k-Anonymity and l-Diversity [21]. It has been discovered that l-diversity does not
prevent attribute disclosure in a sufficient way. Li et al. demonstrate this by de-
scribing two types of attacks; the skewness attack and the similarity attack.

The authors point out that if the distribution is skewed then l-diversity can not
prevent attribute disclosure. The reason for why attribute disclosure cannot be pre-
vented, is that the distribution for the data set in that case is distinctively different
from that of the distribution for the real population. Consider a scenario where the
overall population has a 1% chance of some sensitive attribute being positive, while
any individual in the equivalence class has a 50% chance of the sensitive attribute
being positive. In this scenario a privacy risk arises due to the skewed distribution,
and thus l-diversity does not prevent the disclosure of attributes.

The second attack, the similarity attack is similar to the homogeneity attack de-
scribed in Section 2.1.1.2. In the similarity attack, unlike the homogeneity attack,
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the adversary guesses one sensitive attribute in order to discover a second sensi-
tive attribute. Ponder the scenario where the adversary knows that the value for
a sensitive attribute, x must be in a specific range for a targeted individual. Then
consider all individuals with values for x that are within this range a group. If the
individuals in this group have similar values for another sensitive attribute, y, the
adversary can conclude that the targeted individual has a certain y value too.

Lastly, Li et al. [21] also mention that it might be difficult to achieve l-diversity and
in some cases even unnecessary. Consider the case where there is only one attribute
that is sensitive, and only having a positive value for the attribute is considered
sensitive information. Li et al. states that for such a case 2-diversity is completely
unnecessary for an equivalence class containing only negative entries. Furthermore,
if the amount of entries is large, for example 10 000 records, where only 1% of all
entries are positive, there can be at most 100 equivalence classes in order to achieve
2-diversity. This would result in an information loss, which is another reason for
why applying l-diversity is both difficult and sometimes unnecessary.

2.1.1.5 t-Closeness

t-closeness is a privacy notion proposed by Li et al. [21]. To define t-closeness,
equivalence classes must first be explained. These are sets of records that are indis-
tinguishable from each other, in other words, an equivalence class is a set of data
that have the same values for their quasi-identifiers. This means that an equivalence
class is the same as a q* -block that was introduced in 2.1.1.3. Table 2.5 provides
an example of an equivalence class.

Zip Code Birth Date Gender Medical Condition
1 a b c x
2 a b c y
3 a b c z

Table 2.5: In this table zip code, birth date and gender is a quasi-identifier. All
entries are within the same equivalence class, since they have the same values for
their attributes that make up the quasi-identifier.

In t-closeness, the distribution of a sensitive attribute in any equivalence class must
not have a greater distance than t to the distribution of the attribute in the overall
table. This means that the distribution of the sensitive attribute in an equivalence
class is similar to that of the entire table. The formal definition of t-closeness given
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by Li et al. is given next.

Definition 5. An equivalence class is said to have t-closeness if the dis-
tance between the distribution of a sensitive attribute in this class and
the distribution of the attribute in the whole table is no more than a
threshold t. A table is said to have t-closeness if all equivalence classes
have t-closeness.

2.1.1.6 Weakness of Syntactic Privacy Models

As discussed in the previous section, k-anonymity and l-diversity both have issues.
t-closeness is an attempt to fix these. However, t-closeness share the same basic
issues as both k-anonymity and l-diversity due to it also being a syntactic privacy
model. The syntactic privacy model’s greatest issue is that it assumes what kind
of background knowledge the adversary has [9]. Therefore they are all defenseless
against and adversary that knows more than was assumed by the privacy model.
The syntactic privacy models have also shown to have utility issues for large data
sets [1, 9].

2.1.2 Differential Privacy
Differential privacy differs from the syntactic privacy models because it uses privacy-
preserving data mining (PPDM) instead of PPDP. In differential privacy the entire
data set will not be published directly as in PPDP; data will instead be anonymized
as it is requested. Answers to such requests, or queries, will not disclosure any sen-
sitive information about individual data points, thus guaranteeing privacy. This is
done by adding noise to data statistics before it is released, rather than directly to
the data set as in PPDP.

More formally, differential privacy is a privacy guarantee that ensures that the result
of an analysis does not change notably if one single item is added or removed from
the data set [13]. In simpler terms, differential privacy is a concept that ensures that
the output distribution does not alter much based on one data point. Therefore it
imposes no risk for an individual to join a data set, since it will not notably affect
the outcome of any calculations performed on the data set.

The formal definition of ε-differential privacy given by Dwork [12] is as follows.

Definition 6. A randomized function K gives ε-differential privacy if
for all data sets D1 and D2 differing on at most one element, and all
S ⊆ Range(K),

P r[K(D1) ∈ S] ≤ exp() × Pr[K(D2) ∈ S]
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2.1.2.1 Privacy Mechanism

A key aspect in differential privacy is that no changes are made to the data set.
Instead, controlled noise is added to queries as data is released. This release of data
is referred to as the privacy mechanism. The privacy mechanism adds random noise
to the result of every query, f(X), where f is the query function and X is the data
set. Dwork [13] writes that the privacy mechanism K for a function f that consists
of k components, produces an answer using the following definition.

Definition 7.
f(X) + (Lap(∆f/ε))k

That is, each query will have added noise with Lap(∆f/ε) distribution.

One important thing to note is that the privacy mechanism is independent of the
size of the data set, unlike all PPDP models. This is because it only depends on
ε and the sensitivity of the function. Because of this, differential privacy can be
applied to big data, seeing as the noise introduced by the privacy mechanism only
causes relatively small errors according to Dwork [13]. Note however, that since
the noise introduced is based on the sensitivity of the query, it is still important to
choose a query with low sensitivity in order for the noise to be small.

2.1.2.2 Sensitivity Function

The amount of noise added by the privacy mechanism is chosen as a function of the
largest change a data point could have on the output of the query function. This is
the L1-sensitivity of the function. It is also defined by Dwork [12] as.

Definition 8. For f : D → Rd, the L1-sensitivity of f is

∆f = max
D1,D2

||f(D1) − f(D2)||1

for all D1, D2 differing in at most one element.

2.1.2.3 Known Challenges with Differential Privacy

There are some known challenges with differential privacy. One is to choose a suit-
able value for the privacy parameter ε, which is not a trivial task. Lee and Clifton
[20] point out that ε has to be chosen carefully depending both on the domain differ-
ential privacy is applied to, and the type of query that should be supported. They,
Lee and Clifton, write that if a low value for ε is chosen, the privacy risk is low.
Furthermore, Lee and Clifton point out that a low value for ε leads to a low utility
of the result, since pure random noise is added to the result. Therefore choosing a
suitable value for ε poses a trade-off between privacy and utility [20].

Another known challenge, which was noted by Clifton and Tassa [3], is how to
calculate the global sensitivity. The reason for why calculating the global sensitivity
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is hard, is because it requires one to know the maximum difference of any two
possible values within the domain. If these values are not chosen to be realistic they
will generate excessive noise, which lowers the utility of the result.

2.2 The Smart Grid
In recent years the traditional electricity grid has evolved into an interactive and
dynamic grid, known as the smart grid. Among the causes for this evolution is the
need to support real time measurement of electricity consumption in order to make
the grid more resilient as well as making it possible to forecast energy usage [27].
Therefore the smart grid provides a more efficient way to distribute electricity.

Part of the smart grid is the Advanced Metering Infrastructure, or AMI for short,
which is a composition of networks of communicating devices. The AMI consists of
several parts. The first component is a metering device, called a smart meter. It
is an electronic device placed at the consumer end points in the AMI, that among
other information sends consumption data, in the form of tuples, at certain intervals.
These tuples normally contain at least the current electricity consumption reading,
a timestamp and the id of the smart meter. Due to EU recommendations [4], each
smart meter should send consumption data at least every 15 minutes. However, it
is possible to send consumption data at more frequent intervals.

The second part is a communication network to send the data over. Like any net-
work, the network in the smart grid is unreliable. This means that messages can
be lost before they reach the receiver, or arrive out of order. Because of this there
exists a need to validate tuples sent.

Lastly, there exists a service provider that provides the electricity. In order for the
service provider to distribute the electricity a utility is used that is connected to
several smart meters. The service provider also keeps track of the billing and ac-
counts for the distribution of electricity.
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3
Related Work

Several authors have conducted research concerning privacy that is relevant to this
thesis. In Section 2.1 the problem of privacy in general was discussed, and differential
privacy was compared to syntactic privacy models. In this chapter, the focus will
be on more closely related work. Other authors have previously identified and
addressed the privacy concerns in the smart grid. These studies are presented in
Section 3.1. There have also been studies that apply differential privacy to specific
settings, similar to this thesis, which are presented in Section 3.2. Furthermore,
Section 3.3 presents work that focuses on the challenges with applying differential
privacy in software, and presents some notable examples of where this has been
attempted.

3.1 Privacy Concerns in the Smart Grid
The smart grid has privacy issues that are not newly discovered. However, there is
still no general solution as to how these issues should be addressed properly, and
what techniques should be used. Therefore several researchers have made efforts to
identify the privacy issues, and in some cases also suggests solutions to these.

Much can be learnt about an individual’s living patterns by just observing their
energy consumption. This has been shown by, for example, Patel et al. [30]. Fur-
thermore, Lam et al. [19] constructed a taxonomy for mapping load signatures to
electrical appliances. Due to the fact that detailed information about what an in-
dividual is doing can be deduced by observing the energy consumption alone, this
information would be a clear privacy violation.

Molina-Markham et al. [26] proposed a way to preserve the consumers’ privacy in
the smart grid, by limiting the information sent by the smart meters. However,
since the producers still need to verify how much each household has consumed in
order to bill the consumer accordingly, data still has to be sent. Molina-Markham
et al. suggested a zero-knowledge proof in order for the producer to verify the con-
sumption by a consumer, without revealing when and how this energy was consumed.

In a paper from 2012, Siddiqui et al. [36] discuss known privacy issues in the smart
grid. Siddiqui et al. mention that smart meters may reveal information about con-
sumer activities, and that roaming smart grid devices would possibly generate even
more personal information. Another issue is that there are several different standards
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and privacy policies involved in collecting information in the smart grid. Further-
more, the definitions of what is considered personal identifiable information are not
consistent in the industry. Lastly, Siddiqui et al. write that the industry does not
really have a clear picture of what the privacy issues are in the smart grid, which is
worrisome as that makes the problems hard to address. A similar remark was made
by McDaniel and McLaughlin [23] in 2009, when they wrote that the privacy issues
in the smart grid needs to be further investigated.

All of the related work presented in this section point out potential privacy problems,
and in some cases solutions to these. The work in this thesis is not trying to find
more potential privacy problems, but rather provide a new solution to guaranteeing
privacy for released data from the smart grid.

3.2 Differential Privacy in Specific Settings
In this thesis differential privacy is applied in a specific setting. However, there exists
previous work that also apply differential privacy to specific settings, but they do
not adapt the query type used in order to lower the error introduced by differential
privacy.

Ács and Castelluccia [42] applied differential privacy to smart meters in a way that is
similar to this thesis. They calculate the sum of energy consumption by letting each
smart meter apply differential privacy to their consumption before it is encrypted
and sent to an aggregator. However, their work differs in the sense that they do
not use counting queries in order to approximate the total energy consumption of
all the smart meters. Furthermore, they are concerned with the security and safety
of the smart meters, and their communication in the network, which is not in the
scope of this thesis.

Danezis et al. [5] propose a way to apply differential privacy to billing systems, in
order to anonymize money transactions. Their work differs from this thesis since
they apply differential privacy to already existing queries, rather than constructing
a way to adapt counting queries to the use case, as is done in this thesis.

3.3 Other Applications of Differential Privacy
Prior to this thesis other efforts to apply differential privacy to practical applications
have been made. These will be presented briefly in this section, as they provide
insights to what the potential challenges when applying differential privacy might be.
Previous work also give a perspective on applying differential privacy in software.
The works presented differ from the work conducted in this thesis in the sense
that none of them actually show how the accuracy of the results is affected by the
number of queries asked and the amount of data points in the data set when their
implementations are applied to a real use case, as is done in this thesis.
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3.3.1 Privacy Integrated Queries (PINQ)
Privacy Integrated Queries [24], or (PINQ), is a platform for privacy-preserving data
analysis. PINQ does not execute any queries itself, but merely applies differential
privacy to the result of a query written in language integrated query (LINQ) which
is similar to SQL. Hence, PINQ acts as a protective layer for data sources rather
than a query language.

However, Lee and Clifton [20] remark that the users have to choose ε themselves in
PINQ. This means that while PINQ provides a way to apply differential privacy to
queries, it requires expert knowledge from the user, since choosing an appropriate
value for ε is not trivial. In this thesis, however, ε will be set to a static value,
therefore this issue does not apply in the case of this thesis.

3.3.2 Provenance for Personalised Differential Privacy
(ProPer)

Provenance for Personalised Differential Privacy, or ProPer [17], is a system similar
to PINQ. Just like PINQ, ProPer is based on LINQ. The main difference is that
ProPer, unlike PINQ, has personalized privacy budgets instead of one global budget.
Due to the personalized budgets, the system also accounts for databases that expand
dynamically.

3.3.3 Streaming PINQ
Streaming PINQ is an extension to PINQ introduced by Waye [41]. Unlike PINQ
this framework focuses on applying differential privacy to data streams. It has an
extendable interface that makes it possible to provide access to any kind of data
stream. The framework also lets the user decide on the trade-off between privacy
and utility of the results.

The work done by Waye stands out is in the sense that the data set is dynamic.
While Waye provides a general framework intended to work for any case, the work
in this thesis focuses on applying differential privacy to one real use case.

3.3.4 Airavat
Another system that provides security guarantees by applying differential privacy is
Airavat which was developed by Roy et al. [32]. Airavat is based on MapReduce and
combines mandatory access control and differential privacy to achieve both strong
privacy and security guarantees. The prototype developed by Roy et al. uses Hadoop
in its implementation in order to support distributed computations.

As observed by Lee and Clifton [20], Airavat does not pick a suitable value for ε,
but rather leaves the choice up to the user. Because of this, Airavat just like PINQ,
requires that the user possess expert knowledge in order to use the system properly.
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This thesis chooses a static value for ε, and thus the impact of this decision will not
be the focus of this thesis.

3.3.5 Fuzz
A different approach to implementing differential privacy was taken by Reed and
Pierce. They constructed a functional programming language, called Fuzz, with a
type system that guarantees differential privacy [31]. Because of this, any program
written in Fuzz will also be differentially private. The language manages to capture
the sensitivity of functions by also using a distance-aware type system.
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In order to implement differential privacy it needs to be applied to a use case.
Therefore, a couple of use cases is introduced in the setting of the smart grid in
this section. The scenario that is described in detail in Section 4.1 is the main use
case in this thesis. Furthermore, the implementation of this use case is explained in
detail in Section 6. Two other use cases will also be introduced, but these will not
be implemented. However, they will be discussed since it is interesting to identify
several uses for differential privacy in the smart grid.

4.1 Scheduling Use Case
Imagine a block of houses. All of these consume a certain amount of energy that
the producer wants to supply in an efficient manner; that is without overproducing
or delivering too little energy. In order to have an efficient supply the producer
can thus gather and process information on previous consumption to predict future
energy consumption.

The problem with gathering data for these statistics is the privacy concerns that
arises. While the consumers might agree to release this data, the consumers proba-
bly do not want to say when they need the energy, as was discussed in Section 3.1.
Under these circumstances differential privacy is a solution that provides the neces-
sary privacy guarantees, even when fine-grained consumption data is gathered.

In this scenario the producer wants to calculate what the sum of the energy con-
sumption is for a block of houses, in order to create statistics that can be used to
predict future consumption. To be able to see differences in the consumption, the
consumption needs to be fine-grained. It is not enough to be able to predict how
much a household consumes on a monthly basis, since that does not give any useful
information about when the energy should be delivered. Therefore, the data has to
be gathered at shorter intervals. These intervals must be able to capture peaks in
energy consumption, to make sure enough energy is provided at all times. The chal-
lenge however, is that the predicted energy consumption cannot be too optimistic
or else consumers will experience blackouts, but it cannot be too pessimistic either,
since this would result in requiring higher capacity equipment than needed. Because
of this the intervals have to be carefully chosen to be close to the true consumption.
To choose such intervals precisely, in-depth knowledge about energy consumption
and power grids is required.
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4.2 Fraud Detection
Another use case is a fraud detection scenario. Imagine that a consumer tries to
convince the producer that he or she has consumed less energy than in reality by
sending faulty data to the producer. This would lead to the consumer getting an
incorrect bill. Even worse, the consumer could send faulty data claiming to have
consumed a negative amount of energy, in other words having produced energy,
which would mean that the consumer should get paid rather than pay for the energy.
While applying differential privacy to this use case does not remove the need to
further investigate a suspect, it can potentially preserve the privacy of innocent
consumers.

4.3 Detecting Illegal Activity
The last use case suitable for differential privacy and energy consumption readings
is detecting illegal activity. This is use case arises when a customer consumes a
suspicious amount of energy. Suspicious amounts can be detected by noticing spe-
cific patterns, such as an abnormally high energy consumption over a certain time
span. This might indicate that the consumer is conducting illegal activities, such as
growing marijuana or hosting illegal file servers. Such information could be of use
for authorities, for example the police.

As for the previous use case, concerning fraud detection, suspicious activity would
have to be investigated further without differential privacy applied, but normal activ-
ity would be anonymized. This means that consumers that does not have suspicious
patterns in their energy consumption would still get their privacy preserved.
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Method

In order to apply differential privacy to smart grid data, decisions about how this
should be done must first be motivated. This section will present those decisions,
as well as argue for why these decisions were made.

5.1 Adversary Model

In this thesis, the adversary is assumed to be strong. This means that the adver-
sary may have access to arbitrary background knowledge. Still, the privacy model
must be able to protect against such an adversary. The model must even be able to
protect when the adversary has a complete overview of all except one individual, X,
in the smart grid. It must then be improbable for the adversary to learn anything
new about X from just having access to a result, otherwise it is considered a privacy
breach.

An example of how the adversary could use this knowledge is if the adversary receives
a sum of everyone’s energy consumption. By knowing everyone elses consumption,
it would then be possible for the adversary to deduce X’s energy consumption. This
is the most extreme case, but it should still be prevented.

5.2 Choice of Privacy Model

Since the adversary model is assumed to be strong the syntactic privacy models do
not provide sufficient privacy due to the potential auxiliary knowledge the adversary
possesses. Attacks against the syntactic privacy models have previously been ex-
plained in Section 2. Because these models only protect against an adversary with
limited knowledge, they will not be used in this thesis.

Differential privacy, however, does not have the same limitations, but is challenging
to implement correctly. It also requires the implementer to maintain an adequate
trade-off between utility and privacy of the result, but it can handle a very strong
adversary model. Therefore differential privacy is chosen as the privacy model in
this thesis.
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5.3 Local versus Global Sensitivity
Since ε-differential privacy depends on the L1-sensitivity of the function used, it
is important to decide whether to use local or global sensitivity before applying
ε-differential privacy. Local sensitivity is a derivative-based approach, and therefore
has a very efficient computation time. This is due to the fact that the local sensi-
tivity is the maximum difference between any two data points in a data set, which
means that it is always possible to find the answer. However, the local sensitivity
is only useful for linear systems, since it fails to explore the rest of the space except
for the base point [33]. This is due to the fact that the approach is derivative-based,
and thus it does not work well when the input and the linearity of the system is
unknown [33].

Because the energy consumption of a household is not considered to be a linear
system, this thesis will use global sensitivity. However, global sensitivity can suffer
from large values. Large sensitivity will cause problems since the noise added from
the privacy mechanism in ε-differential privacy depends on the L1-sensitivity. If the
sensitivity is too large, it will ultimately give a result that cannot be used since it
will have introduced too much noise.

The sensitivity of, for example, the energy consumption in kWh per day for a house-
hold is too large if the data should be used to predict the future energy consumption.
This is because the sensitivity of such a query would be the maximum amount of
energy that a household could consume within a day, which is only constrained by
the actual physical limit of the fuse.

In order to prevent the sensitivity of the function from being too large the authors
propose the opposite approach. Rather than controlling the sensitivity of a function,
a function with low sensitivity will be adapted to fit the use case. A function that
is a natural choice, since it has a low sensitivity, is the counting query as explained
in Section 5.4.

5.4 Constructing Queries
An important aspect of ε-differential privacy is the L1-sensitivity of a function. To
avoid adding too much noise to a query using the privacy mechanism, the query
should have low L1-sensitivity. If the sensitivity is too large, the added noise will
make the utility of the result lower, since it will no longer be accurate enough given
the scenario where it is to be used. Therefore it is important to choose a query that
does not add too much noise, in order to have adequate accuracy.

The second aspect to be aware of is the amount of queries asked. If the same query
is repeated several times, the same amount of noise can be added to each query,
thus always yielding the same result [15]. However, if new, overlapping, queries
are used, the amount of noise added has to increase in order to preserve privacy.
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This means that the more different queries that are asked, the more noise is added
to the true answer. Also note that asking several non-overlapping queries does not
add more noise than asking these queries on completely disjoint data sets would [16].

As more noise is added to the true answer, the utility of the response decreases.
Eventually the response will be indistinguishable from pure random noise, which
means the result will have low utility. Therefore it is important to query the data
set in an intelligent way, to make sure as little noise as possible is added to the
response, thus resulting in high accuracy. Depending on the scenario differential
privacy is applied to, different approaches for constructing queries are possible.

5.4.1 Counting Queries
A counting query asks how many times a specific data point occurs in a certain
data set; for example “How many occurrences of data type y is there in data set x”.
Counting queries have low sensitivity, which means they produce small noise when
differential privacy is added. This is because the sensitivity of a counting query is
always 1. Dwork [11] states that such queries are very powerful when it comes to
privacy-preservation. Therefore this is a suitable query to use when applying dif-
ferential privacy, seeing as the privacy mechanism depends on the sensitivity of the
query.

5.4.2 Translating the Use Case into Queries
In order to implement the scheduling use case presented in Section 4 the query type
that should be used has to be chosen first. A naive solution would be to use the
query “How many kWh has been consumed?”, but such a query would have very
high sensitivity. Therefore the answer to the query, “How many kWh has been con-
sumed?”, has to be found by using other queries with lower sensitivity.

To translate the query “How many kWh has been consumed?”, several counting
queries will be used, since they have low sensitivity. Each counting query will ask
how many households consumed energy within a certain interval, rather than how
much they consumed. Such a counting query will be on the form “How many data
points have a consumption between y and z kWh?”. Since this approach requires
several counting queries to be asked once per interval, the entire range of possible
consumptions must first be divided into those intervals. These intervals can be con-
structed in different ways, in this thesis those ways are referred to as partitioning
strategies, and examples of them are presented in Section 6.2.2. Since there are
several ways to query the distribution, a number of partitioning strategies are con-
structed to see how the result differs.

The whole distribution range is partitioned into different amount of intervals, where
each interval is queried on the form “How many data points have a consumption
between y and z kWh?”. These queries will be referred to as bins for simplicity from
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now on. An example of such a bin is illustrated in Figure 5.1, where a bin that
covers the interval from y to z is shown with its corresponding counting query.

Figure 5.1: An illustration of a bin, which represents one counting query. This
particular bin covers the interval y to z and has its corresponding counting query
written next to it.

Each query will return how many data points is within a given interval. The answer
is then multiplied with the middle value of the bin. This is illustrated in Figure 5.2.

Figure 5.2: The line in the middle of the bin represents the middle value for
the interval y to z. This middle value is then multiplied with the answer to the
query, f(x), which represents the query “How many data points have a consumption
between y and z kWh?”. The value that is achieved by doing this is the amount of
energy consumed by all households in the interval y to z.

Lastly all the answers, from each counting query, are summed up to give the answer
to the original query “How many kWh has been consumed?”. An illustration of this
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is shown in Figure 5.3.

Figure 5.3: Several counting queries, each represented by a bin, are multiplied
with the middle value of their interval before they are summed up. Note that this
sum corresponds to the query “How many kWh has been consumed?”.

5.5 Method Evaluation
The general method for processing data used in this thesis is the following; first raw
data, that is simulated, is used as input for the use case explained in Section 4. From
this use case, a simulation will be run to produce both a differentially private and a
true result, this is the implementation phase which is further presented in Section 6.
The differentially private result produced by the use case will then be compared to
the true result to determine how much they differ. This means that the final result
produced by the method corresponds to the error between using the true sum and
the differentially private sum. An illustration of the general process can be seen in
Figure 5.4.

Smart Grid Use Case

ResultDifference

data

output

true answer

response

Figure 5.4: How data flows from the smart grid until it is compiled into a result
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5.6 Programming Language
The language needed to implement the method presented in this chapter has to
have support for mathematical operations and it also has to be able to simulate a
normal distribution. Since there will be a lot of data produced, the language has to
be able to handle large volumes of data. Furthermore, since the range of possible
energy consumptions should be divided into bins, it would be helpful if the language
provided enough programmable strength to implement this.

Because of these requirements, the partitioning strategies will be implemented us-
ing IPython Notebook [18] which is an interactive environment for Python. To
simulate a normal distribution as well as perform mathematical computations the
libraries NumPy [29] and SciPy [35] will be used. Furthermore, to handle the vol-
umes of data, data structures from the Pandas [39] library will be used. The reason
for why Python was chosen for the realization is because it supports mathematical
computations, is able to simulate different distributions and it also provides the
programmable strength needed to implement the different partitioning strategies.
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Implementation

Four main topics will be explored in this section. The first area, Section 6.1, concerns
setting up a correct environment for development. This will be followed by a detailed
explanation of the general design, which includes presenting three different querying
strategies in Section 6.2.2. Lastly, the implementation of the use case from Section 4
is given in Section 6.2.3.

6.1 Assumptions
To implement differential privacy in this specific setting some assumptions has to be
made. First, the range of possible values must be known. In this thesis, a trimmed
normal distribution, shown in Section 7.1, will be used for this purpose. The reason
for trimming the distribution is to only allow positive values for the energy con-
sumptions. Since choosing intervals at when energy consumptions should be sent is
not the main topic of this thesis, for simplicity, energy consumptions will also be
assumed to be sent once per hour.

Another assumption in this thesis is that the network used is both secure and reliable.
Furthermore, for the scheduling scenario, the energy consumption sent on the net-
work is assumed to have been verified in some way to assure that the data is correct,
and does not contain negative values. However, in real life, one should never assume
that the network is secure and reliable by default, this must be guaranteed by some
other measures. Examples for achieving security are message authentication codes
(MAC) and encryption, while examples for reliability are message acknowledgements
and re-transmissions of lost messages. Additionally, the verification process for each
consumption sent must be added in real life, but since this is not in the scope of
this thesis it will be overlooked.

6.2 Design
One of the main contributions of this thesis is to create different partitioning strate-
gies. First the information flow from smart meters to when the data processing
happens is explained. Then a detailed introduction of four different partitioning
strategies is given.
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6.2.1 Model

The implementation in this thesis consists of two components; a smart meter and a
server. This design is illustrated in Figure 6.1. Note, however, that there are several
smart meters connected to each server.

SM

SM

SM

Server

Figure 6.1: Each smart meter, denoted SM, is connected to a server which processes
the data sent by the SM

Each smart meter is connected to a trusted server that reads its data. Every hour
the smart meters sends data containing its energy consumption for the last hour
which is then read by the server. An illustration of this implementation can be seen
in Figure 6.2.

SM Server
<consumption>

Figure 6.2: Each smart meter, denoted SM, sends data to the server once per hour

The server gathers data for the past hour, one reading per connected smart meter
and performs some calculation. For the case without differential privacy applied the
server just sums all data to get the true answer, but further actions needs to be
taken when differential privacy should be applied.

Since differential privacy must be possible to apply to the use case, the server has
to construct suitable queries, before applying the privacy mechanism. For the case
of differential privacy, counting queries are suitable because they assure that the
privacy mechanism adds only a small amount of noise to the true answer, since such
queries have low sensitivity.

In order to find out how much energy each group of smart meters consumed several
counting queries have to be constructed, as was explained in Section 5.4. These
counting queries therefore count how many smart meters consumed energy within
a certain interval. The queries are on the form “How many times was a kWh per
hour consumed within the last hour?”, where a is a range. An illustration of this is
provided in Table 6.1.
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Question Answer
How many times was 0 kWh per hour consumed within the last hour? Number
How many times was 0 + z kWh per hour consumed within the last hour? Number
... ...
How many times was y − z kWh per hour consumed within the last hour? Number
How many times was y kWh per hour consumed within the last hour? Number

Table 6.1: Queries constructed by the server, representing the energy consumption
for the last hour. This represents the partitioning strategies translated to queries.

6.2.2 Partitioning Strategies
In this thesis, four different types of partitioning strategies are used to construct
queries. All of the strategies were designed with the probability density function of
the normal distribution, displayed in Figure 6.3 in mind. The normal distribution is
used since real data is not used, but the normal distribution is a good approximation
until the work can be further extended to include real data.

The strategies are tested with simulated smart grid data, presented in Section 7, and
the results are then shown in Section 8, where the different strategies are compared.

µ − 3σ µ + 3σµ − 2σ µ + 2σµ − σ µ + σµ

2.35% 2.35%

13.5% 13.5%

34% 34%

0.1% 0.1%

Figure 6.3: The probability densitiy function of the normal distribution with labels
representing how many percentages of all values fall into each interval. µ is the mean
and σ is the standard deviation of the distribution. Note that 95% of all values fall
within the range µ − 2σ to µ + 2σ.

6.2.2.1 Fine-Grained Partitioning

The first partitioning strategy that was constructed was the fine-grained partitioning
strategy. This type of partitioning divides the whole range into smaller bins, where
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each bin is equally big. The smallest case in this implementation is represented in
Figure 6.4 (d). Different amount of bins using the fine-grained partitioning strategy
are shown in Figure 6.4 (a), (b), (c) and lastly (d). Since the normal distribution is
used when generating values, this is also shown as reference in each of the figures.

The first case of this partitioning strategy is where only one bin covering the entire
range is used. This is illustrated in Figure 6.4 (a). The second case in fine-grained
partitioning contains two evenly divided intervals, as shown in Figure 6.4 (b). After
dividing the range into two bins, each bin is divided again to create four evenly di-
vided bins. This is illustrated in Figure 6.4 (c). This division of each bin continues
until a given value for how small the step between each bin has been reached.

ba

consumers

kWh/hour

(a) 1 bin

ba µ

consumers

kWh/hour

(b) 2 bins

ba µ

consumers

kWh/hour

(c) 4 bins

ba µ

consumers

kWh/hour

(d) Maximum amount of bins
used

Figure 6.4: Different bin sizes for the fine-grained partitioning strategy. Note that
every bin has the same size for each of the different partitionings.

If the maximum value is unknown, it becomes hard to properly apply fine-grained
partitioning. Therefore some tweaks have to be made to make it more flexible. To
make it more dynamic, bins that act as sinks, containing every value greater than
the assumed maximum or smaller than the minimum, can be added. Note, however,
that in order to benefit from the fine-grained partitioning it is important to choose
a maximum value that is realistic, so most values end up in a small bin rather than
in the sink bins.
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6.2.2.2 Fine-Grained Mean Partitioning

The fine-grained mean partitioning strategy is similar to the fine-grained partition-
ing strategy. However, the fine-grained mean partitioning differs in the way that it
only does the fine-grained partitioning around the mean, and then at each edge sink
bins are added. The middle area is calculated based on the mean plus 1 standard
deviation in both sides of the mean. As seen in Figure 6.3, 68 % of all values lies in
this middle area.

The different steps for the fine-grained mean partitioning strategy can be seen in
Figure 6.5. In Figure 6.5 (a) one bin is used for the middle, then in (b) the middle
bin has been divided into two equal bins. This process of dividing the middle into
equally large bins continues in (c) and finishes in (d). Note that there always exists
two additional bins for each edge of the distribution.

ba µ

consumers

kWh/hour

(a) 1 middle bin

ba µ

consumers

kWh/hour

(b) 2 middle bins

ba µ

consumers

kWh/hour

(c) 4 middle bins

ba µ

consumers

kWh/hour

(d) Maximum amount of bins
used

Figure 6.5: Different bin sizes for the fine-grained partitioning strategy. Note that
only the middle bin continues to get divided, and that each of those bins are equally
large.

6.2.2.3 Fine-Grained Edges Partitioning

The third partitioning strategy is called fine-grained edges partitioning strategy.
This partitioning strategy divides the edges of the distribution into smaller bins,
while the middle area is considered one bin. Each edge represents the area outside
the mean which is 16% of the population, for a total of 32% of the population ac-
cording to the probability density function of the normal distribution.
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Figure 6.6 shows the different bin sizes used. Figure 6.6 (a) shows how each edge of
the distribution has one bin each, then in (b) each edge has been divided into two
bins for a total of five bins. In (c) the edges have been divided into the maximum
amount of bins.

ba µ

consumers

kWh/hour

(a) 1 edge bin

ba µ

consumers

kWh/hour

(b) 2 edge bins

ba µ

consumers

kWh/hour

(c) Maximum amount of bins
used

Figure 6.6: Different bin sizes for fine-grained edges partitioning strategy. Note
that both edges are divided into more bins, while the middle is always one bin. Also
note that the bin sizes for the edges are equally large for each partitioning.

6.2.2.4 Percentage Partitioning

The previously presented partitioning strategies focus on creating bins that all cover
an equally large interval of the range. However, due to the values being normally
distributed this can lead to bins that are very unevenly filled since most of the gen-
erated values will be close to the mean. This could even lead to some bins being
completely empty, which means that once they are queried in a differentially private
manner they will just return noise.

In order to deal with this potential problem another partitioning strategy which
focuses on creating bins that covers a certain percentage of the entire range. This
percentage partitioning strategy divides the entire range into n bins with x percent
in each bin. A visualization of this partitioning scheme is provided in Figure 6.9,
where each bin covers 1% of the entire interval.
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Figure 6.7 show some of the bin sizes used for the percentage partitioning strategy.
The first step has one bin (a) which is 100% of the range, the second (b) two bins
with 50% in each, and the third (c) has four bins with 25% of the population in each
bin. Picture (d) shows 25 bins, where each bin holds 4% of the population. Note
that the bins cover an equal percentage range of the population each.

ba

consumers

kWh/hour

(a) 1 bin
ba µ

consumers

kWh/hour

(b) 2 bins

ba µ

consumers

kWh/hour

(c) 4 bins
ba

consumers

kWh/hour

(d) 25 bins

Figure 6.7: The different bin sizes for the percentage partitioning strategy. Note
that all bin sizes cover an equal number of percentages of the range.

Figure 6.8 has 50 bins. Note that the two edge bins are not equally large, since
every bin covers 2% of the entire range.

ba µ

consumers

kWh/hour

Figure 6.8: Percentage partitioning, where each bin covers 2% of the entire range.
Note that 0.03% of the values will be below point a and 0.02% will be above point
b.
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The last step for the percentage partitioning strategy is shown in Figure 6.9. Here
each bin covers 1% of the entire range.

ba µ

consumers

kWh/hour

Figure 6.9: Percentage partitioning, where each bin covers only 1% of the entire
range. Note that 0.03% of the values will be below point a and 0.02% will be above
point b.

All of the points for the x-coordinates in the previously shown Figures have been
taken from Introduction to Probability and Statistics: Principles and Applications
for Engineering and the Computing Sciences [25]. Since the exact values for the
x-coordinates in most cases do not exist, the closes rounded up value is used instead.

6.2.3 Scheduling Scenario Design
In the implementation of the use case the server will calculate both a true answer
and a response. This corresponds to the mean and the differentially private mean for
the energy consumption for a group of smart meters. After calculating both means,
the difference between these will be calculated, which is the final result. This process
is illustrated in Figure 6.10.

SM Server Differencedata

true answer

response

result

Figure 6.10: Each smart meter, denoted SM, sends data to the server once per
hour. The server then calculates the true mean and the differentially private mean
before the result is calculated. Note that the comparison between the true answer
and the response is a way to evaluate the result; in a real implementation the server
would only release the response.

In order to calculate the true answer, the server gathers data, holding one reading
per connected smart meter, and then calculates the mean. This is illustrated in
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Figure 6.11.

Gather data

Calculate mean

Release data

Figure 6.11: The processing of data done by the server before it can be released.
Notice that the server holds one consumption reading per smart meter.

In order to apply differential privacy, some changes have to be made to the chain
of events. Instead of directly releasing the true answer, the server now has to apply
first the counting queries to the data set, then apply the privacy mechanism to each
query. An illustration of how data flows can be seen in Figure 6.12.

SM Server PMdata true answer response

Figure 6.12: Each smart meter, denoted SM, sends data to the server once per
hour. For the case with differential privacy applied, noise has to be added to the
true answer for every query. This is done by the privacy mechanism, PM, which
resides in the server.

The server will gather data for the last hour, and partition the entire range using
the strategies from Section 6.2.2. For each bin, one query is run. After this has
been done the queries are applied in the third step. In the fourth step the privacy
mechanism will be applied to each query answer, before it is released to the analyst.
This process is illustrated in Figure 6.13.
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Gather data

Partition range

Run queries

Apply privacy mechanism to each query

Release data

Figure 6.13: The processing of data done by the server before it can be released.
Note that more steps are added to the process when differential privacy should be
applied.
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Data Simulation

In order to apply differential privacy to the use case, data must be generated. This
data is generated according to a normal distribution explained in Section 7.1. Then
the percentage difference between the true sum and the differential private sum can
be compared. To make it possible to draw an arithmetic mean, each calculation
should be run at least n times to get a certain confidence interval. The calculation
of how many samples will be run is made in Section 7.2

7.1 Statistics
To choose a plausible range for the electricity consumption for the experiments,
statistics from the Swedish government agency Statistics Sweden [37] have been
used. Statistics concerning electricity consumption for household purposes, without
including heating, in Sweden is hard to come by. Therefore statistics where heating
using solely electricity is included as well as electricity for household purposes is
used in this thesis, as it best fits the requirements. The statistics retrieved from
Statistics Sweden, shown in Table 7.1, concern electricity consumption per square
meter for one and two dwelling buildings.

aaaaaaaa
Type

m2
–85 86–100 101–120 121–140 141–160 161–200 201–

Electricity (d) 188 165 147 131 129 136 125
Electricity (w) 198 182 177 136 129 132 133

Heat pump 172 165 127 110 112 104 112

Table 7.1: The table shows the electricity consumption, in kWh per year, per
square meter for one and two dwelling buildings. Note that the statistics are for
2008 which was a leap year. The abbreviation d corresponds to direct electricity
and w is water-borne electricity.

Since the proportion of houses that are heated with the different methods is not
known, this thesis will assume the worst case heating type, which in the case of
Table 7.1 is water-borne electricity. This will not significantly change the method or
validation of the thesis. In order to use these statistics, however, it is also necessary
to know more about the size of a house. To estimate the average house size statistics
from Brosenius [2] is used. Borsenius states that the average size of a one and two
dwelling building in 1967 was 110 square meters.
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By combining the statistics from Table 7.1 with the average size of a one and two
dwelling building it is possible to calculate the mean electricity consumption per
hour.

µ = 177 × 110
24 × 366 ≈ 2.217

Compared to the average consumption for an American household in 2013, which
is 1.263 kWh per hour according to the U.S. Energy Information Administration
(EIA) [40], this number is a bit higher. However, due to the fact that Sweden has
different climate from the US and that the statistics in this thesis uses electricity
as the main source of heating, this is to be expected. Another reason for why this
comparison is made is to make sure the assumed consumption is not too low, since
the worst case is to be assumed.

When the mean has been found, it is then possible to generate values from this
mean by applying a normal distribution. However, since all the individual data
points used to calculate the mean size of a one and two dwelling building are not
given by Borsenius, it is not possible to calculate the standard deviation, σ. Because
of this a value for σ has to be assumed.

Since σ is unknown, the worst possible value for it will be assumed. In this scenario
the worst case is when the standard deviation allows energy consumptions to be
zero, due to the fact that consumptions in this model cannot be negative. To find a
value for σ where the probability density function ranges from zero, one can solve
the following equation for zero.

z × σ + µ = 0 ⇔

σ = µ

z

By inserting the lowest value for z, representing the point at 0.03% of the popula-
tion, from Milton and Arnold’s book [25] it is possible to solve for σ.

σ = 2.217
−3.4 ≈ 0.625

An important thing to note is that the normal distribution used has been trimmed.
This is because it is not realistic to have values ranging from minus to plus infinity
when dealing with energy consumptions. Values are therefore generated according
to a normal distribution, but all values below the 0.03% mark and above the point
for 99.98% of the population are converted to the minimum or the maximum value
respectively. This is illustrated in Figure 7.1. As can be seen, only the white area
of the graph contains allowed values, that is; all values between a and b will be
included.
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ba

consumers

kWh/hour

Figure 7.1: The trimmed normal distribution, where the shaded areas represent
values that will be converted to the minimum value, a, or the maximum value, b,
depending on on which side of the curve they end up. Note that the white area
represents 99.95% of the entire population, which means 0.05% will be trimmed
away.

7.2 Samples

In order to get the confidence interval 95% the number of calculation samples needed
is according to Milton and Arnold [25] the following.

zα/2
2 × σ × (1 − σ)

margin of error2

To get a result within 0.05 with 95% confidence interval this becomes the following.

1.962 × σ × (1 − σ)
0.052 ≈ 350

Because of this, each calculation has to be run 350 times in order to achieve a
confidence interval of 95%. All of the settings used for the calculations are shown in
Table 7.2. Each calculation will be run for a different amount of households, ranging
from 100 to 1,000 with a step size of 100. For each calculation, different amount of
bins will also be used, to see the correlation between noise and amount of queries.

37



7. Data Simulation

Settings
Parameter Value
Number of Smart Meters [100,1000] with step 100
Input Range (kWh) Trimmed normal distribution: µ=2.217 σ=0.652
Number of Bins [1,2,4,5,10,20,25,50,100]
ε 1
Sample Size 350

Table 7.2: Setup for the modifiable variables for the different partitioning strate-
gies. Note, however, that not all partitioning strategies can handle all number of
bins due to their nature.

Note that the bin sizes used are numbers that 100 are divisible by. This is to make
sure that all bin sizes work for the percentage partitioning strategy, since all bins
should contain an even number of percentages of the population.
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Result

In the implementation presented in Section 6 the difference between the true sum
and the differentially private sum is calculated in percentages. To show a correlation
between the number of queries asked and the error rate, each computation of the
sum has been run with different amount of queries. Furthermore, to show a corre-
lation between the number of households and the error added the implementation
has also been run with different amount of households.

8.1 Comparison of the Partitioning Strategies

To compare the different partitioning strategies, each was tested by changing the
number of households from 100 to 1,000 using 100 as the step size. First the box
plots of the confidence interval will be compared in Section 8.1.1, which show the
spread of possible values for the error. Then, the arithmetic mean of the error will
be compared in Section 8.1.2.

8.1.1 Box Plots

To visualize the spread of the 350 samples, box plots are used. Since the worst result
and the best result is when 100 and 1,000 households respectively are used, the box
plots show these two scenarios. The other results when 200 to 900 households are
used are shown in Appendix A. In Figure 8.1 the spread of the calculations when
100 households are used is shown and in Figure 8.2 the spread of the calculations
when 1,000 households are shown.
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Figure 8.1: Readings from 100 simulated households. Note that the spread in-
creases as the number of queries increases. Also note that the scale differs for the
graphs. The x-axis represents the number of bins used, and the y-axis is the error
induced on the result.

The worst spread is received when 100 households are used. As can be seen in
Figure 8.1 the spread of the data is tighter when the bin sizes are bigger. That is
when fewer queries are asked. When the number of bins increases the spread gets
less tight. This is because more noise is added when more queries are asked. Fig-
ure 8.1 (a) shows the fine-grained partitioning strategy and as can be seen here the
worst case is when 100 bins are used. This will yield an error of 0.01% to 52.71%.
However, all the partitioning strategies yield a lower error when 1 to 10 bins are
used. Then the percentage difference is between 0% to 22.38%.

The tightest spread is received when 1,000 households are used. Figure 8.2 illus-
trates the spread from all the partitioning strategies and as can be seen the error is
remarkably lower than when using 100 households. For all the partitioning strategies
the error is at most 6.08%. The worst result is from the fine-grained partitioning
strategy when using 100 bins. The best results are between 0% to 2.07%, where the
fine-grained partitioning strategy yields the lowest result, between 0% to 1.74%, for
4 bins.
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(b) Fine-grained mean partitioning
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Figure 8.2: Readings from 1,000 simulated households. Note that the spread
increases as the number of queries increases, but also that the spread is large when
using 1 query. Also note that the scale differs for the graphs. The x-axis represents
the number of bins used, and the y-axis is the error induced on the result.

8.1.2 Arithmetic Mean
The results shown in this section are the arithmetic mean difference between the true
sum and the differentially private sum, in percentages and the median difference in
percentages. Using 1,000 households, again, gave the best results. These results are
shown in Figure 8.6 and Figure 8.7.

For relatively few values, 100 simulated households, all strategies have several cases
where the results are worse than using 1 bin. As can be seen in Figure 8.3 (a), all
of the results get increasingly worse as more bins are added. When 200 simulated
households are used, the results are better than when using only 100. However,
none of the partitioning strategies improves as more bins are added. These results
can be seen in Figure 8.3 (b).

In the case of using 300 simulated households, the curve for all partitioning strate-
gies are smoother. Still, none of them manage to achieve much difference in their
results as more bins are added. This can be seen in Figure 8.3 (c). For 400 simulated
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households, the results continue to improve for all partitioning strategies, compared
to using fewer simulated households. Nonetheless, there are still bin sizes, such as
50 and 100, that still yield worse result than using only 1 bin. Some of the results,
for example when using between 4 and 20 bins are better than using 1 bin. This is
illustrated in Figure 8.3 (d).
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(a) Readings from 100 simulated households
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(b) Readings from 200 simulated households
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(c) Readings from 300 simulated households
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(d) Readings from 400 simulated households

Figure 8.3: The results for the fine-grained partitioning strategy is represented by
the red line, the fine-grained mean by the brown and fine-grained edges by the black
line. Lastly, the blue line shows the results for the percentage partitioning strategy.

When using 500 simulated households the worst result for all partitioning strategies
is almost the same as when using only 1 bin, as can be seen in Figure 8.4 (a). Some
of the bin sizes, between 4 and 20, still continue to get lower error. The same goes
for Figure 8.4 (b), where 600 simulated households are used. Moving on to 700 and
800 simulated households, Figure 8.4 (c) and (d) respectively, the curve continues
to get smoother. An interesting note is that almost all bin sizes now are better than
when only 1 bin is used.
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(a) Readings from 500 simulated households
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(b) Readings from 600 simulated households
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(c) Readings from 700 simulated households

0 10 20 30 40 50 60 70 80 90 1000

2

4

6

8

10

12

14

Number of Bins

D
iff

er
en

ce
Difference between the True Sum and the Differentially Private Sum in % for ε = 1

(d) Readings from 800 simulated households

Figure 8.4: The results for the fine-grained partitioning strategy is represented by
the red line, the fine-grained mean by the brown and fine-grained edges by the black
line. Lastly, the blue line shows the results for the percentage partitioning strategy.

As even more simulated households are used, all strategies continue to improve.
This can be further seen in Figure 8.5 (a) and (b).

Figure 8.6 shows an evident trend where all the partitioning strategies yield good
result, especially when 4 to 20 bins are used. However, as the number of bins in-
creases the results get worse. It is interesting to note that all partitioning strategies
shows the same trend and none of the partitioning strategies difference is above 1%,
except for the case when using 1 bin.

The best mean result when comparing the different partitioning strategies is given
when 10 bins are used for the fine-grained partitioning strategy; then the error is
0.42%. All partitioning strategies yield a result in the range of 0.42% - 0.67% error
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(a) Readings from 900 simulated households
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(b) Readings from 1,000 simulated house-
holds

Figure 8.5: The results for the fine-grained partitioning strategy is represented by
the red line, the fine-grained mean by the brown and fine-grained edges by the black
line. Lastly, the blue line shows the results for the percentage partitioning strategy.

when using 10 bins. Note that not all strategies had their best result when 10 bins
were used. The percentage partitioning strategy got its lowest result at 0.59% using
20 bins, the fine-grained mean partitioning strategy got 0.45% error using 5 bins and
the fine-grained edges also got 0.45% error using 5 bins. Therefore, the lowest error
is between 0.42% and 0.59% if all partitioning strategies are compared, however,
these results were not all produced using the same amount of bins.

Furthermore, from observing the median results for 1,000 simulated households,
shown in Figure 8.7, it can be seen that the results are very similar to those from
the mean difference. However, almost all values are a bit lower when the medians
are compared. For example, the lowest value for the error for the fine-grained
partitioning strategy is 0.34% for 10 bins, compared to 0.42% when the mean values
were compared.
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Figure 8.6: The results for the fine-grained partitioning strategy is represented by
the red line, the fine-grained mean by the brown and fine-grained edges by the black
line. Lastly, the blue line shows the results for the percentage partitioning strategy.
This experiment used readings from 1,000 simulated households.

0 10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Bins

D
iff

er
en

ce

Median Difference between the True Sum and the Differentially Private Sum in % for ε = 1

Figure 8.7: The results for the fine-grained partitioning strategy is represented by
the red line, the fine-grained mean by the brown and fine-grained edges by the black
line. Lastly, the blue line shows the results for the percentage partitioning strategy.
This experiment used readings from 1,000 simulated households.
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9
Discussion

In this section we critically discuss the results, and reflect on why they are obtained.
The different partitioning strategies are compared, since this provides an important
reflection on how the different strategies compare to one another. Then we discuss
the utility of our results. We also discuss the use of statistics, and the assumptions
that are made in this thesis since this is an important aspect that affects the results.
Thereafter we discuss the use of different use cases, before we discuss the sustainabil-
ity and ethics aspects of our work. Lastly, we give a recommendation for future work.

9.1 General Discussion of the Results
The partitioning strategies in this thesis show a clear trend when investigating the
results. All strategies show potential when around 4 to 20 bins are used. However,
the results get worse when an increasing number of bins are used. This is due to
the fact that each bin represent one added query, which in turn adds more noise.
Also when 1 bin is used the result will be affected negatively, since this is the same
as calculating the average of the entire range and adding noise to it. This speaks in
favour for our partitioning strategies, as they can improve the accuracy of the result.

We also see a correlation between using more households and the error added to
the result. When more households are used, we get a better result. This can be
explained partly by the fact that there are less empty bins. The other part of the
explanation is that the relative size of the noise decreases in comparison to the true
answer when the size of the true answer increases. This is because the noise stays
the same no matter how big the query answer gets, since the noise only depends on
the sensitivity of the query and not on the size of the data set.

9.2 Comparison of the Partitioning Strategies
We get the lowest error from using the fine-grained partitioning strategy, however,
it does not always provide the best results as the amount of bins continue to grow.
The reason for why it is not always the best strategy is that the bins on the edges
will capture a too small part of the entire population. If a bin is empty, or only
holds a small part of the population, it will be more affected by the noise, since the
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answer will not conceal it.

If we want to make sure that no bins are empty, the percentage partitioning strategy
is a good choice. This is because the percentage partitioning strategy, statistically,
will have no empty bins. As the results for the fine-grained partitioning strategy and
the percentage partitioning strategy are similar they can be used interchangeably.
Therefore it should not differ much which one is used. However, the percentage par-
titioning strategy is easier do adapt to different distributions, so it is more flexible.

9.3 Utility of Results

Privacy has a price. In this case a certain error is the price that has to be paid. We
have shown in this thesis how error rates correspond to the number of households
used and the amount of queries asked. If a company wants to apply our results, they
would first have to decide upon the error rate they are willing to introduce in order
to achieve privacy. From our results they can then find out how many households
they would have to include, and how many queries they need to ask in order to fall
within the specified error rate.

9.4 Data and Statistics

A normal distribution has been assumed in order to verify the usefulness of our
strategies. However, this does not mean that our strategies only work for a normal
distribution. Due to the fact that our strategies place their bins on points that
represent a certain percentage of the entire population, this could be applied to any
other distribution. This is especially true for the percentage partitioning strategy,
since all bins are chosen to represent n percentages of the entire population.

In this thesis we have used statistics to assume the average consumption by calcu-
lating a mean value and then applying a normal distribution. However, if one has
access to real data this mean could be more accurately calculated. In this case,
though, we only use this data to verify that our partitioning strategies work.

The normal distribution used for generating values in this thesis has been trimmed.
This is because we cannot simulate values that are in the range minus to plus infinity.
Besides, values below zero would not be realistic values for electricity consumption
in our model, since we do not consider smart meters that introduce new energy into
the system. Therefore we have chosen to not include values below the point where
0.03% of the population would fall, and not the values above where 99.98% of the
population belongs to. This means that we do not account for 0.05% of the entire
population.
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In this thesis we had to estimate σ for the statistics concerning energy consump-
tion, since the statistics lacked this information. Due to the fact that we used the
absolute worst case for our model, knowing σ should only improve the results.

If companies were to apply our strategies they would probably be able to choose
better minimum and maximum values, as it is likely that they would already have
detailed knowledge about the data distribution. Note, however, that in order for
them not to leak information about the distribution, they cannot analyze the data
they will apply differential privacy to before they apply it. This means that they
would have to base their choice of distribution either on old or already public data
in order to prevent leaks.

Also, if an electricity company wanted to apply our strategies to their data, they
would probably validate it by removing erroneous energy consumptions. Note that
our trimming of the normal distribution is similar to this validation, as it also re-
moves values that are not realistic for their setting. The use of validation also means
that there is a potential to get better results than the ones we got, since the trim-
ming done by a company might be tighter than ours, and thus no extreme values
would be included in the calculation. Because results could improve if companies
apply our partitioning strategies, it would be interesting to carry out more research
supported by more data.

9.5 Use Cases
In this thesis we have put our main focus on a scheduling scenario. However, we
have also introduced a couple of other use cases that can be of interest in the setting
of the smart grid. We acknowledge that there exist other uses cases that we have
not implemented, but can be just as valid. Even though these use cases have not
been implemented in this thesis they bring an interesting discussion.

The first other use case is the detection of fraud. In order to preserve the privacy
of other consumers, who are not conducting fraud, differential privacy could be ap-
plied. It would then be possible to query per block, for example one could ask “How
many consumed a negative amount of kWh in block x?”, and if the answer is pos-
itive this could help pinpoint where there is possible fraud. This would mean that
all innocent consumers do not have to be investigated further, while blocks where
potential fraud is discovered require further inspection.

A similar approach could be used for the detection of suspicious activity. In this
case it would be possible to ask “How many consumed more than y kWh in block
z?”. A positive answer in this case would mean that the block have to be further
investigated, but a small enough answer would mean that everyone in the block is
probably innocent.

It is important to note that even if an answer in the two last use cases come back
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positive, it is not certain that there is illegal activity. This is because the noise
added by differential privacy, which means that even when the true answer is zero,
the differentially private answer will not be zero. Because of this a threshold needs
to be established, which represents how much noise added still corresponds to the
value zero.

9.6 Ethics and Sustainability
The work carried out in this thesis aims to enhance the integrity of data points in
a data set. In this case those data points are energy consumptions, which can be
used to deduce information about individuals living patterns, as we brought up in
Section 3.1. Therefore our application of differential privacy can be used to enhance
the privacy of individuals, which we think makes our work highly ethical.

When it comes to sustainability our work can be used to make the smart grid more
efficient. This is because our scheduling use case, previously explained in Section 4,
provides a way to predict how much energy should be distributed to a block of houses
in advance. Because it would be possible to predict the amount of energy needed, it
would no longer be necessary to produce excessive energy, which means there would
be no need to have equipment for a larger capacity than what is actually required.

The smart grid is the way forward to a more sustainable energy distribution and
sustainability will become an even more pressing issue in the future. Since our
work provides much needed privacy in the smart grid, it could potentially make
consumers more compliant to let service providers use their data to improve their
services. Also, we predict that users will get more involved in the way their data
is used and privacy concerns will be a much larger issue in the future. Our work
will help service providers tackle some of the privacy issues and work to evolve the
smart grid even further.

9.7 Future Work
There are several interesting directions for future work in this thesis. One interesting
direction for future work would be to investigate more partitioning strategies. We
believe there are even more ways to query the data set, which might even be better
to study. Another interesting direction is to use our partitioning strategies when
using a real time stream processing engine. By using a stream processing engine,
an even more realistic environment could be simulated where data can be collected
hour by hour. It would be interesting to see the results when using the partitioning
strategies in this environment. Lastly, we would like to test our partitioning strate-
gies on real smart meter data in the future to see if this will yield as good a result
as with the simulated data.
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Conclusion

In this thesis differential privacy has been applied to a real use case in the smart
grid, showing that differential privacy can be used in this setting. Furthermore, four
different partitioning strategies have been designed to query a generated data set
by using counting queries only. These partitioning strategies have then been inves-
tigated by comparing them to each other, to show how using a different number of
queries affects the accuracy of the results. The fine-grained partitioning strategy
yielded the best mean results, with a 0.42% error when using 10 bins. This thesis
also shows that the best case, when comparing the entire error spread, is when using
4 bins with the fine-grained partitioning strategy. The error is then between 0% to
1.74%. However, the error for all strategies range from 0% to 2.07%, which means
the difference between the best and the worst is 0.33 percentage units.

The comparisons have also been made for different number of households. In this
case using 1,000 simulated households results in the highest accuracy for all parti-
tioning strategies. Due to the low error induced by differential privacy, a company
could decide how much they are willing to pay for privacy, and investigate what
setup they should use to achieve this.
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A
Box Plots

In this Appendix the detailed results that were left out of Section 8 are presented.
The following figures show the results when 200 to 900 simulated households are
used. Note for every figure that the x-axis represents the number of bins used, and
the y-axis is the error in percentages introduced by applying differential privacy.
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Figure A.1: Readings from 200 simulated households. The x-axis represents the
number of bins used, and the y-axis is the error induced on the result.
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Figure A.2: Readings from 300 simulated households. The x-axis represents the
number of bins used, and the y-axis is the error induced on the result.
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Figure A.3: Readings from 400 simulated households. The x-axis represents the
number of bins used, and the y-axis is the error induced on the result.
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Figure A.4: Readings from 500 simulated households. The x-axis represents the
number of bins used, and the y-axis is the error induced on the result.
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Figure A.5: Readings from 600 simulated households. The x-axis represents the
number of bins used, and the y-axis is the error induced on the result.
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Figure A.6: Readings from 700 simulated households. The x-axis represents the
number of bins used, and the y-axis is the error induced on the result.
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Figure A.7: Readings from 800 simulated households. The x-axis represents the
number of bins used, and the y-axis is the error induced on the result.
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Figure A.8: Readings from 900 simulated households. The x-axis represents the
number of bins used, and the y-axis is the error induced on the result.
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