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Abstract 
 

 

The project was focused on designing a system that can build protein-like decoy 

structures using a dynamic programming algorithm. The system first builds three-

residue-long polymer fragments, which are then used to build longer fragments, finally 

leading to large polymer chains of the same length as a given sequence. The decoys 

formed by the systems are free of any steric clashes. 
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1 Introduction 
 

Proteins are essential molecules in living organisms as they are involved in carrying out 

the vital functions of the cells. Proteins occur as enzymes that are necessary to catalyze 

the different reactions involved in metabolism. Proteins are also involved in mechanical 

activities within the cell, including the transfer of other molecules. They are important 

for providing support to maintain the shapes of the cells. 

 

 

An extremely important problem in computational biology, which is still to be solved, is 

prediction of protein structure given its sequence. Many different algorithms exploring 

the possibilities of solving this problem have been tried out. Given a sequence of 

protein, most of these methods generate protein like structures called decoys which are 

considered as candidate structures of the natural form. These candidate structures are 

then evaluated with some scoring function which evaluates a score for the decoy 

structure. This evaluated score indicates strength of such a decoy in nature. These 

scoring functions in some cases are based on the energy state of the structure. It can be 

simultaneously or independently based on many other factors. One such factor is the 

positions of different non-polar (hydrophobic) and polar (hydrophilic) residues and the 

distance among such residues. In some cases, the scoring is simply done by preferring 

structures which do not have residues which are too close to others in the chain. That is 

chains without any steric clashes are preferred because during folding, naturally protein 

molecules avoid steric clashes between the constituent residues. In some cases the 

scoring function is based on how compact a formed decoy is, that is on the size. 

 

 

Sometimes, assembling the decoys efficiently using suitable data structures becomes a 

challenge. This challenge was explored in this thesis, and the resulting decoys were 

checked for presence of steric clashes.  

 

 

Figure 1.1 shows the structure of a protein drawn using, RASMOL, a program used for 

viewing the structures of proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The image of a protein 

structure  drawn using RASMOL 
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1.1 Motivation 

 

Protein carry out many important functions in the cells and their functions can be 

carried out only if they are folded in a particular three dimensional structure (Pietzsch, 

2003).  

 

Right after a ribosome decodes a genetic instruction found in the DNA of a cell, and 

forms an amino acid chain, that chain readily folds or coils into a comfortable 

conformation in order to reduce the amount of free energy. Although there are a large 

number of possible conformations, a protein folds into its unique stable structure much 

faster than it would take to go through all these possible conformation just by trial and 

error. Scientists have always been fascinated to understand why these proteins fold into 

their stable structure so rapidly (Lobanov, et al., 2008). They have tried to learn or 

develop methods that can predict the possible structures of a certain sequence of 

residues that would instantly produce in the nature. If a sequence of a protein is newly 

found and its natural structure is still not known, then the structure predicted by an 

automatic method can help researchers predict the function of the protein. It can help in 

comparison of functions of proteins with similar structures, and can ultimately help in 

genome annotation (Hamelryck, et al.,2006).  

 

 

Drugs work by combining with or by deactivating certain proteins in the cells. Thus, 

knowing the structure of proteins involved in a certain disease can help drug designers 

to design certain drugs. By learning how the proteins fold rapidly in their native 

structure, scientists also learn to engineer new proteins, which can have many varied 

applications in medical field (Lobanov, et al., 2008). 

 

 

Inability of a protein to fold in the right form can lead to its malfunction and can thus 

lead to diseases. So, understanding of the structures of proteins can also put some light 

on the causes of certain diseases. The causes of deformation of protein in the nature can 

also be understood better, if methods of predicting correct proteins structures can be 

designed. 

 

 

1.2 Aims and Scope 

 

The focus of my project was to build a system that can take a known protein sequence 

and the information about naturally occurring geometries of that protein, to assemble a 

number of protein-like structures or decoys, which do not have any steric clashes. The 

system that I have built uses dynamic programming techniques of breaking down the 

large problem of building a long decoy into smaller problems of building small 

fragments, keeping the solutions of these small problems in a matrix structure, and 

assembling some randomly picked solutions to get to the final solution. 

 

 

The system builds up the decoys by first breaking up the sequence into fragments of 

three residues, and then assembling different three-residue-long fragments to form four-

residue-long ones, then so on an so fourth until a few structures of the entire length are 

assembled. At every stage of building the structures, a certain number of fragment 
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solutions are assembled and saved. The constituent of these fragments are smaller 

fragments which are randomly picked. Each of these fragments has a different structure, 

as the angles subtended by the consecutive residues in the structures are different. Once 

each such fragment is formed, it is checked for presence of any steric clash, i.e. the 

presence of residues that are placed too close together.   In case of positive result of this 

checking, that structure is discarded, and another structure is predicted in its place again 

by picking the composing fragments randomly. The details of all these fragments being 

built are saved in a very convenient data structure. The data structure is a triangular 

array built on a one-dimensional array which will be described later.  

 

The main goal of the project was to end up with a system which can generate some 

candidate decoy structures that would have geometries similar to naturally found 

proteins. The system builds decoy structures by using the geometries from known 

protein structures. 

  

 

 

1.3 Thesis Overview 

 

This report first explains some background information of some important concepts that 

are explored and used in this project work. Discussions on some of these important 

terms are placed in Chapter 2. 

 

 

Then in Chapter 3, the discussion moves on to how others have tried to develop systems 

to build protein-like structures. The chapter explains how the systems built by others 

work, what are the purposes of those systems, and what algorithms have been used in 

developing these systems. The chapter also discusses how certain important concepts 

were learnt from some related works. 

 

 

In Chapter 4 of the report, I explain how the system that I have built works and what is 

its purpose.  There I discuss the algorithm in detail, and simultaneously try to give a 

clear view of the data structures that are used.  

 

 

Discussion on similarities and differences of my work and related works is the main 

focus of Chapter 5.  

 

 

I follow with an explanation of the results in Chapter 6.The outputs and the results are 

explained with figures illustrating the decoys that the system produces. 

 

 

In Chapter 7, I conclude the report by discussing my achievements through the project. I 

also briefly describe any expected impact the project might have in future works. I also 

provide some suggestions about how someone can extend what is done in this project, 

and briefly touch on what results can later be achieved from possible extensions. 
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2 Background: Some important terms and concepts 

 
Understanding the aims and approaches of the project required the knowledge of some 

important concepts and terms. These term and ideas are briefly discussed below. 

 

 
2.1 Protein Structures 

 

Proteins are compounds that are composed of chains of a combination of 20 different 

amino acid residues. The peptide bonds between the residues hold them in the chains. 

The sequence of the residues in the protein is determined by the genetic code in the 

genes which have given rise to their formation. The amino acid sequence of the protein 

is termed as its primary structure.   

 

 

The protein chains naturally fold into characteristic secondary and tertiary structures 

soon after they are formed by ribosomes in the cells. This natural folded structure is 

called the protein’s native structure. Secondary structures are regular sub-structures 

alpha helix (cylinders), and beta sheets or strands (ribbons) which can be found at many 

different locations in the whole protein structure. In a simplified model structure of 

protein, it can be thought of as a series of these cylinders and ribbons connected 

together in a defined way (Phillips, et al., 2009). Figure 2.1 shows cartoon 

representation of a protein with of alpha helices and beta sheets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Cartoon representations of 

secondary structures of protein, with 

alpha helix and beta sheets.  

(from Phillips, et al., 2009,  

© Garland Science) 



11 

 

The protein chain folds readily in nature and gives rise to a completely folded globular 

and compact structure termed as its tertiary structure (Phillips, et al., 2009). These 

globular structures, which any protein typically has, form automatically in nature by 

ensuring minimization of free energy in the chain.  The globular structure in the protein 

is very important for it to remain stable in the most comfortable position, and is also 

very important for its function and activities.  

 

 

2.2 Ab initio protein structure prediction and decoy building 

 

In ab initio protein structure prediction, the native structure of a protein is predicted 

once its amino acid sequence is given (Bonneau and Baker, 2001). Ab initio protein 

structure prediction involves two step (1) predicting some candidate structures also 

known as decoys and (2) formulating an energy potential or scoring function that helps 

to evaluate the candidate structures’ closeness to the native or near native structures 

(Kolodny and Levitt, 2002).  

 

 

A decoy is a model chain of alpha carbons i.e. the central carbons of the amino acids of 

a particular sequence. In other words, decoys are candidate structure of the alpha carbon 

backbone of a protein structure. Decoys can thus be a close representation of the native 

structure of the protein or its fragments but is not necessarily the actual native structure 

of the protein (Hamerlyck, et al., 2006). 

 

 

It is possible to predict numerous structures from a given sequence, but only one which 

has the minimum free energy is possible in the nature, and that is the native one for the 

protein of that particular structure. In order to find this native structure computationally, 

an exhaustive search among all the possible structures may be necessary, which can 

sometimes be quite time consuming to carry out. In order to avoid considering of all the 

numerous possible structure, a relatively smaller number of candidate structures, or 

decoys are considered in computational protein prediction methods, just to make the 

work a little easier (Keasar and Levitt, 2003). Building decoys can be done by 

exhaustively searching all the possible structures and by randomly picking up some 

from there. Another way is by randomly choosing from only the ones that qualify on the 

basis of some scoring function. 

 

 

2.3 The usage of Protein Data Bank (PDB) files 

 

Ab initio protein structure prediction requires the usage of protein sequence information. 

Most such protein structure prediction methods use the sequence information available 

in the Protein Data Bank (PDB) (Berman, et al., 2003). PDB is an electronic archival 

data bank for structures of macromolecules like protein.  The sequence and structural 

information of these macromolecules, which are derived from crystallographic studies 

are stored in the data bank in uniform format (Bernstein, et al., 1977) known as the PDB 

format. The entries of this data bank are freely available via the PDB website. 
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2.4 Dynamic programming and its usage in protein structure prediction 

 

A dynamic programming algorithm breaks down a complex problem into smaller sub-

problems, the solutions to which are found first. The solutions to the smaller problems 

are then joined together to get to the solution of the larger problems. Dynamic 

programming was first formalized by mathematician Richard Bellman, in the 1950’s 

(Eddy, 2004). Usually dynamic programming approaches or algorithm consists of these 

steps—(1) Recursively define a complex problem, i.e. define it in terms of smaller sub 

problems. (2) From a matrix for storing the solutions of the smaller sub problems, (3) a 

bottom-up approach of filling out the matrix with solutions of the smaller sub problems 

and (4) solving the complex problem and linking up the smaller solutions which lead to 

this final solution (Eddy, 2004).  Computational biology heavily uses systems built on 

dynamic programming algorithms. Many programs used for sequence alignment, gene 

finding and folding uses dynamic programming approaches (Eddy, 2004). The zipping 

and assembly approach for ab initio protein structure prediction software is also based 

on dynamic programming (Dill, et al., 2007; Hockenmaier, et al., 2006) 

 

 

2.5 Lattice, random walk and HP models usage in protein structure 

representation 

 

There are many useful models that are used to represent complex protein folding in a 

simpler way. One such model is the lattice model where the amino acids of a protein are 

only allowed to occupy regularly arranged slots in the three dimensional space (Phillips, 

et al., 2009). Lattice models are combined with the random-walk model representation 

of macromolecules, where a macromolecule is imagined as being composed of 

cylindrical segments of equal length arranged randomly in a pattern in the three 

dimensional space such that segments do not overlap each other. But keeping the fact in 

mind that proteins take up a compact structure in its native form, the lattice model is 

incorporated with the random walk model to ensure compactness (Phillips, et al., 2009). 

This model thus says that, these amino acids composing a protein chain are the random 

walkers which are arranged in the different slots of the lattice space. And a compact 

random walking, which ensures that all the slots of the lattice are occupied, ensures the 

compactness of the structure (Phillips, et al., 2009). Figure 2.2 shows a compact lattice 

model of protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Compact 

lattice model for 

representing protein 

structure. The balls 

represent the amino 

acids (from Phillips, et 

al., 2009,  

© Garland Science). 
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Another model which is very popularly used for the representation of protein structure 

is the HP model. When a protein folds to its native form, the hydrophobic or non-polar 

domains hide themselves in the inside parts, and the hydrophilic or polar domains 

occupy the parts that are exposed. As this force of hydrophobicity plays an important 

role in the folding of protein, this HP model is developed where each of the 20 naturally 

occurring amino acids are categorized as either being hydrophobic (H) or polar (P) 

(Phillips, et al., 2009). HP model, incorporated with lattice model, is often used in the 

ab initio protein prediction to help explain the relationship between amino acid 

sequence space and the three-dimensional structure space. The two-letter representation 

of amino-acids makes the problem predicting the structure of a protein chain much 

easier to solve (Phillips, et al., 2009). Compact random walking in lattice space makes it 

much easier to keep track of the possible structures. If two hydrophobic amino acids in 

the lattice space come close together they form non-covalent bonds that help in folding 

and minimize the free energy (Hockenmaier, et al., 2006). Thus the energy level of the 

different configurations of the chains that can be formed in the lattice space can be 

calculated and scored to be used in protein structure prediction algorithms. 

  

 

2.6 Similarities to Natural Language Processing (NLP)  

 

Using computational methods to understand the meaning of a sequence of natural 

language words is known as natural language processing or computational linguistics 

(Bates, 1995). Natural languages are composed of sequence or strings of words, and 

similarly protein chains are composed of strings of protein monomers or residues. In 

natural language processing, the meaning of a given sequence of words is being 

predicted, and in ab initio  protein structure prediction, the structure of a given sequence 

of protein residues is being predicted. These problems aim towards predicting a 

structure (semantic structure in the former case, and physical structure in the latter case) 

based on a given sequence. Because of these similar goals, variants of methods and 

algorithms used in natural language processing can often be used to solve the problem 

of protein structure prediction (Dill, et al., 2007). 
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3 Related Works  

 
There had been a lot of work on ab initio prediction of protein structures. Besides other 

approaches, many use dynamic programming approaches and algorithms that are used 

in natural language processing field. There have been many different ways of 

representing the structures also. Some works which were studied closely to get ideas 

about these different approaches are discussed below. 

 

 

3.1   Usage of dynamic programming with natural language processing algorithms 

 

Computational linguistics is the field where computational tools are used in parsing and 

understanding natural languages.  As a biopolymer chain or protein chain is just a string 

of monomers or protein residues, it resembles natural language sentences, which are 

also strings, but of words. Depending on a grammar rule, every sentence of a natural 

language has its meaning encoded in it. And similarly, the 3-dimensional structure of a 

protein is also encoded in its one dimensional sequence information, depending on what 

gives the minimum global free energy.  

 

 

3.1.1 Parsing and the CKY algorithm 

 

When the meaning of a natural language sentence is to be determined, it has to be 

parsed. Parsing is the computational job of finding the correct syntactical structure of a 

string of words in a natural language sentence according to a grammar that defines the 

all possible syntactic structures. Parse trees or phrase structure trees generated using the 

given context-free grammars represent the different possible parsing structures of the 

given natural language sentence. Figure 3.1 shows the phrase structure trees showing 

the syntax of the two sentences ‘I eat sushi with tuna’ and ‘I eat sushi with chopsticks’ 

(Hockenmaier, et al., 2006). 

 

 

 

 

Each node represents the words in the sentence, and the labels represent the syntactic 

categories. For example S means sentence, NP means noun phrase, VP means verb 

phrase or PP means propositional phrase. Small parse trees represent the meaning of 

smaller parts of the possible fragments that can be assembled together to give the 

meaning of the full sentence.  CKY algorithm is a dynamic programming algorithm that 

efficiently and systematically searches for all possible trees for a given string of words. 

In CKY algorithm, all the different possible parse trees are determined, and they are 

searched efficiently to give the final possible assembly of such fragment trees, to give 

the possible meaning of a sentence (Dill, et al., 2007). 

 

 

 

 

 

Hockenmaier, et al. (2006) have also said that just the way trees can be used to represent 

grammatical structures of natural language sentences, they can be used to represent 

Figure 3.1 Parse trees showing grammatical structures of sentences (from Hockenmaier, et al., 2006).    
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protein folding also, because protein folding is also hierarchical and folding routes have 

a tree-like structure.  In the mentioned paper, the authors described in detail how Cocke 

Kasami Younger (CKY) algorithm, a chart parsing dynamic programming algorithm 

that is used in parsing natural language sentences, can also be used to give insight about 

the folding process in protein leading to the prediction process of a protein structure. 

 

 

CKY maintains a chart known as a parse chart, which stores information about all the 

different grammatical parsing (syntactic structure) of a given sentence.  The parse chart 

is a table, each cell of which (chart [i][j]), represents the part of the sentence starting 

from word i to word j.  CKY fills out the table in the bottom-up form by first filling out 

the cells in the main diagonal with individual words, and then moves to the next 

diagonal level, and fills out the cells chart[i][i+1], and then the next level, i.e. cells 

chart[i][i+2], so on and so forth until it reaches the corner most cell, or the topmost cell 

at chart[1][n]. 

 

 

3.1.2 ZAMDP variant of the CKY algorithm 

 

Dill, et al. (2007) also discusses how methods normally used in computational 

linguistics can help in assembling protein-like structures. They explained how they used 

dynamic programming algorithms to build protein models of native structures. They 

have devised an efficient algorithm for predicting the structures of a protein chain, and 

an algorithm for computing the partition functions and stabilities of helix bundle 

protein. In my project, I extensively took ideas from how the first algorithm discussed 

in this paper works. I have taken similar approach in building the data structures, and 

assembling different fragments.  

 

 

As discussed in the paper, Dill, et al. (2007) have said that prediction of a structure of 

protein involves considering all the possible topologies (conformation) of a possible 

native structure from a given string information, and choosing the one that has the 

lowest free energy. They have used dynamic programming methods, i.e. they have 

divided the problem into smaller solvable problems, and have used and combined the 

solutions of these small problems to get to those of larger problems. In other words, 

they have broken down the whole protein sequence in smaller fragments, and have got 

the lowest energy structures for those fragments, and have built larger structures 

assembling these smaller ones (Dill, et al., 2007).   

 

 

Dill, et al. (2007), have actually devised a variant of the CKY (Cocke Kasami Younger) 

algorithm. Their variant is named ZAMDP (Zipping and Assembly Mechanism by 

Dynamic Programming). This algorithm uses recursion and dynamic programming to 

build protein decoys (native like protein structure). 
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3.1.3 Incorporation of the HP model in protein structure prediction algorithms  

 

In the ZAMDP variant of the CKY algorithm, Dill, et al. (2007) used the simple HP 

model, to represent the context-free-grammar-like rules for protein chain. Hockenmaier, 

et al. (2006) is where the idea of adapting the CKY algorithm to the HP model was 

introduced before Dill, et al. (2007) built this variant. In the HP model, a protein chain 

is represented by a short sequence of two different kinds of monomers. A monomer unit 

is either hydrophobic (H), or polar (P).These monomers are placed in two or three 

dimensional lattice space.  A monomer or amino acid is represented by a bead in the 

lattice space. If two hydrophobic monomers come close, they form non-covalent bonds 

that help in folding and minimize the free energy. So the energy functions, which 

indicate how much energy minimization has occurred, are based on the contacts 

between two adjacent hydrophobic monomers (Hockenmaier, et al. 2006; Dill, et al., 

2007). 

 

 

The free energy contained in the protein depends on how many HH bonds are there, and 

each such bond contributes to a -1 in the energy function. ZAMDP uses the chart 

parsing method with the adaptation of the HP model of protein representation, and 

predicts the structure of a protein. The structure of the protein is predicted by first 

finding structures for smaller fragments, storing them in a look-up table like the parse 

chart in CKY algorithm, and then assembling adjacent pairs of these fragment 

structures. The chart or the lookup table in the ZAMDP contains the structures with 

monomers represented by either an H or a P (Dill, et al., 2007). 

 

 

3.2 Usage of other dynamic programming and divide and conquer approaches 

 

Hamelryck, et al. (2006) also discusses how dynamic programming or divide and 

conquer method, is used in predicting protein structures. In such a method again, the 

larger problem of determining the structure of a long protein chain, is broken into 

smaller solvable problem of generating much smaller fragments.  Finally structures of 

these smaller fragments are again combined to generate the full structure.  In their paper 

they give the name decoy to the protein-like structures that they are generating.  The 

decoys that are assembled are either accepted or rejected based on some energy 

functions.  

 

 

They focus on generating decoys based on local sequence or structure preference (local 

structural bias, as termed by them). That is, they use fragments of sequences with 

secondary structures from the fragment library to build the whole structure. First 

fragments from the libraries, that match with parts of the given sequences are picked 

and they are combined with computationally built structures from the other parts of the 

sequences to give the final structures. The local structures of a sequence are picked 

using complex probabilistic methods. 

 

 

Hamelryck, et al. (2006) used a complex stochastic sampling method to construct an 

alpha-carbon backbone iteratively by removing steric clashes and re-sampling. They 

generated compact decoys by first initializing with candidate fragment structures, then 
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removing steric clashes and then collapsing the structures. They used 4Å to be the 

critical distance for steric clash. They accepted a structure only after the steric clashes 

are minimized, or totally removed. The lengths of the segments are chosen randomly. 

Then the structure is collapsed iteratively. Also, the structure is only accepted if the 

radius of gyration of the structure is only lower or equal than the previous structure. 

Radius of gyration, RG is a measure that gives an idea about the size of the protein and 

also about its compactness. Lobanov, et al., (2008) describes this quantity as a 

parameter that gives the equilibrium conformation of the structure. They suggest the 

computation of this value for protein using the formula: 

RG 
2
 ~ Σ(ri – RC)

2
/N, where ri is the coordinate of the i

th 
 residue, RC  is the coordinates 

of the center of mass and N is the number of atoms other than hydrogens in a protein. A 

small radius of gyration would mean a compact protein. In Hamelryck, et al., (2006), 

decoys are not accepted if there is a steric clash, and collapsing is stopped once the 

radius of gyration falls below a certain threshold or a maximum number of iterations 

take place. 

 

 

3.3   Other methods for building decoys 

 

(Kolodny and Levitt, 2002) uses assembling of small fragment taken from a fragment 

library to build larger decoys. The fragment library is composed of 20 fragments each 

having the alpha carbons of five residues. These 20 fragments are used as the building 

blocks of the decoys, as they are picked from the library and added to each other to 

lengthen the decoy chain. Each added fragment is placed on another by overlapping the 

first three residues of the fragment on the last three residues of the growing chain. The 

orientation of a fragment is determined by the first three residues composing it. Self-

avoidance is enforced by making sure that any two alpha carbons are separated by at 

least 2.5 Å. They enforce compactness by requiring the decoys not to exceed a range of 

sizes. Figure 3.2 shows how Kolodny and Levitt (2002) uses fragments from a library 

and overlaps them with each other to build decoys. While fragments with four residues 

are shown in this figure, fragments of five residues were used in the method 

implemented by Kolodny and Levitt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.2 Fragments from a library of four fragments are picked and joined with overlapping of 

residues to build decoys (from Kolodny, Levitt, 2002). 
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Figure 3.3 Theta 1 and Theta 2 represent the 

pseudo angles, and Tao represents the dihedral 

angle in an alpha carbon backbone. 

3.4   Representation of the decoy structures 

 

In their method, Hamelryck, et al. (2006) consider only the alpha-carbon backbone to 

represent the protein chain. The alpha-carbon backbone is a string the alpha-carbon 

atoms of the amino-acids. Each of the alpha-carbons is on average 3.8 Å away from the 

next one. As shown in Figure 3.3, a sequence of pseudo angles ‘Theta’, and dihedral 

angles termed as ‘Tao’ in the paper are used to describe conformation. Dihedral or 

torsion angle is the angle between two planes that contains two sets of points. For 

example, in a three dimensional chain of atoms A-B-C-D, the angle between the plane 

where the atoms A,B and C lie, and the plane where B,C and D lie is their torsion or 

dihedral angle. Many other papers have denoted dihedral angles of protein chains by 

‘Tao’ or by ‘Alpha’. In this project, I have referred to the pseudo angles by theta, and 

the dihedral angles by alpha. These pseudo angles usually in nature range between 80° 

and 150° and dihedral angles range between -180° and 180°.  
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4 A system that assembles protein-like decoys 

Just like others have tried to design methods and systems for building protein structure, 

I also tried to build a system that potentially can form protein-like structures or decoys. 

The main aim of the project was to build a program that can assemble small fragments 

with real protein geometries to build three dimensional protein-like structures (decoys) 

using a convenient data structure. 

 

 

4.1 Purpose of the system and the overview of the algorithm 

 

The purpose of the system was to take the structural information of a protein in PDB 

format as its input, use the geometries in that structure, and generate a number of three 

dimensional structures of the same length. Below is a brief description of what the 

system does. 

 

 

The system is a C program that can read in a PDB file, which contains the information 

of only the alpha-carbons of the different residues of a protein with known structure. 

Once it reads in the sequence information, it saves up the information about the 

geometries of the protein, i.e. the angles among the residues. Then it uses this 

information to form small fragments containing only three residues. It makes up several 

three-residue-long fragments, i.e. for example makes five fragments of the first, second 

and third residues, five of the second, third and the fourth residues etc. The number of 

fragments in a cell which is now set to be five, can be easily changed. Each of these 

fragments have different structures and positions in three dimensional space, reflected 

by the coordinates of the different residues, and the angles subtended by the three 

residues. The angles subtended by the three residues are assigned after they are 

randomly picked from a list of typical angles found in the given protein whose structure 

is known. All these five suggested structures for each of three consecutive residues are 

then saved in a cell of the third diagonal of a one dimensional array that can be 

visualized as a 2 dimensional triangular matrix as shown in Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 This is how the triangular 

matrix would look like if it were to 

carry structures of 19 residues. The 

green cells represent the 3rd diagonal 

where all the structures of length 

three are stored. The cells in blue 

contain structures of length eight as 

that is the 8th diagonal. The Nth 

diagonal (19th in this case) which has 

only one cell, and is the topmost 

corner has information of structures 

of length N.    
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The coordinate information, along with some more information of groups of five three-

residue-long fragments are saved in each of the cells of the third diagonal of the triangle 

as shown in Figure 4.1. As each of the fragments are of length three, the third diagonal 

is used. Fragments of length n, are to occupy the n
th

 diagonal of the triangle. If I were to 

make fragments of length one residue and fragments of length two residues, they would 

have occupied the 1
st
 and the 2

nd
 diagonals of the triangular array respectively. But this 

is not necessary for this project. As mentioned earlier, in each of the cells of the 

triangular matrix, information of five fragments is saved. This number can easily be 

altered in the program, but five used for now as this number was enough to fulfill the 

purpose. The systems task is then to build longer fragments of size four residues by 

picking up three-residue-long fragments randomly, and filling up the fourth diagonal 

layer. Every time a fragment is assembled, it is checked that no two residues in that are 

too close together, that is there is no steric clash in such a fragment. If they are too 

close(less than 3Å) then that fragment structure is not saved anymore, rather another 

structure is formed again by randomly picking up fragments from the lower diagonal 

layer(s).   

 

 

Similarly the fifth diagonal layer is filled with five-residue-long fragments built by 

randomly picking up the fragments of size four residues, and assembling them to those 

of size three residues and vice versa. Building the fragments here actually means, 

combining the coordinate information of each of the two individual fragments in such a 

way so that it formed chains by overlapping just the last two residues of the first 

fragment with the first two residues of the second fragment. Once this 5
th

 diagonal layer 

is filled, the system iteratively fills up the 6
th

, then the 7
th

 and so on and so forth. It 

knows what lengths of the fragments should be used to result in a longer fragment of a 

certain length and also knows where it can find them. (n
th

 diagonal has n residue long 

fragments.) So it searches in the appropriate diagonal layer of the triangular matrix, and 

randomly picks up appropriate fragments to build the required fragment. Iteratively all 

the layers are filled until the top-most corner cell of the triangular matrix (the cell 

colored yellow in figure 4.1) is reached were resides five complete chains of the given 

sequence. Every time a cell is filled with any fragment information, it is checked to 

avoid steric clash. Finally the system ends up in storing five chains of the entire length 

in the topmost cell of the triangular matrix.  

 

 

The five final chains in the topmost corner cell of the triangular matrix are the five final 

solutions given by the system.  The information of each of the solution structures are 

printed out on screen in the PDB format. This information then can be used to view the 

structure in a visual tool like RASMOL.  
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4.2 The main tasks of the program and the data structures 

 

The entire task carried out by a number of C functions. The main task can be divided 

into two main parts: 

 Using the geometries of naturally occurring proteins 

 Populating the triangular structure with information of fragments which can be 

subdivided in the two following parts  

o Populating the third diagonal 

o Populating the rest of the diagonals 

These different parts of the task and the data structures involved are described below 

with the help of flow-charts or pseudo-code and illustrations of the data structures.  

 

 

4.2.1 Using the geometries of naturally occurring proteins 

 

The first part of the task was to save geometries of naturally occurring protein. The task 

is illustrated in a flowchart given in Figure 4.2. In this part of the program, data from a 

given PDB file was read to calculate and save different angles that can be subtended by 

sets of three consecutive alpha carbons of a protein chain, and the different dihedral 

angles that are found naturally in between planes of alpha carbons. These values were 

stored so that they can be used later on to be assigned to the chains to be generated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 The flowchart of the part where the system learns the values the angles naturally formed by residues of protein 

chains. This angle values will be randomly assigned to the decoy structures to be generated.  

Continue to the next task 
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Reading information from a PDB file, storing them in appropriate data structures, and 

calculating and storing the angles subtended by the alpha-carbon of the chain were done 

using C functions and codes that were written by incorporating functions written and 

provided by my supervisor Dr. Graham Kemp.  

 

 

This part of the program reads in a PDB file with the sequence information of the 

protein whose information would help in assign angle values to the decoy structures to 

be produced. While the program does the reading, it stores the read information in an 

array called atom. The array atom has a size of a constant value MAX_ATOM, which 

is set to a quite big number like 10000 in order to be able to accumulate large number of 

atoms that can be present in a typical protein chain. Figure 4.3 shows the structure of 

the array atom and its constituent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The angles array is where sample pairs of theta angles, and alpha angles extracted from 

already known protein structures are stored. Figure 4.4 shows the structure in detail. 

This is an array of size MAX_ANGLES which should at least as big as the number of 

residues in the known protein sequence which is given as the input for collecting the 

sample angles.  

 

Figure 4.3 The array atom is composed of struct Atom and is used to store data read from a PDB file. The 

information read from this PDB file is used by the system to save the natural geometries of a protein. 
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This data structure was used to store the groups of angle values of theta angles, and the 

dihedral angles. The theta angles theta1 and theta2 in the data structure are the pair of 

angles each formed by set of three consecutive alpha carbons in a series of four alpha 

carbons as shown in Figure 3.3. The data field alpha in the data structure corresponds to 

the dihedral angle denoted by ‘Tao’ in Figure 3.3. 

 

 

4.2.2 Populating the triangular structure 

 

The next step is to start populating the triangular data structure. The triangular data 

structure is built of a one dimensional array, that is represented in such a way that the 

cells of it can be accessed just the way those of a two dimensional array are accessed. 

This triangular structure referred to as one_dimensional_array is composed of more 

complex data structures like solution_details, coordinate_info and aSolution. 

 

 

solution_details is the most important data structure of this program, as it contains all 

the information of a particular solution decoy fragment produced by the program. It 

forms the main constituent of our triangular matrix. Each of the cells of the matrix 

contains a pointer to an array of five (in my program it is fixed to be five but the number 

can be altered) of solution details. solution_details is composed of information like the 

number of residues found in the particular fragment represented. The ID or serial 

number of that particular fragment to distinguish among the different fragments found 

Figure 4.4 The array angles is composed of the structure Angle with the indicated data fields. This array is used to 

hold the pairs of theta angles and the dihedral angles (alpha) using sequence information of a known protein chain. 
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in a particular cell is also part of the structure. The angle subtended by the last three 

residues of the first fragment it is composed of and the angle subtended by the first three 

residues of the second fragment it is composed of are parts of the structure too. The 

torsion angle formed among the planes containing the residues of the two joining 

fragments, at the place where they join together are also saved in this data structure. It 

also contains the location information of the two fragments that build up a particular 

fragment. That is, it has pointers to a structures which contain information about where 

each of the two fragments that combine to form a single fragment have come from and 

the Cartesian coordinates of the alpha carbons of all the residues forming the particular 

fragment. Figure 4.5 illustrates the structure of this data structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 solution_details contains information about a fragment formed at any stage. It has a pointer to array of 

coordinate_info that contains the Cartesian coordinates of a fragment, a pointer to a structure called FromWhere which 

has information about where each of the constituent fragments have come from, and other information needed to 

identify a fragment. 

solution_details 
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Figure 4.7 How one_dimensional_array can be represented as the triangular structure when N=7. The two-

dimensional layout is shown on the top, and the actual one dimensional layout is shown in the bottom. The 

different colors shows the corresponding cells shown in two different layouts. Each of the cells of the triangular 

structure points to an instance of aSolution, that is contains details about five fragments. 

Figure 4.6 aSolution just has a pointer to a five element array of solution_details. Each of the cells in the 

triangular data structure points to an aSolution as shown in Figure 4.7  
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aSolution contains a pointer to a dynamically allocated array of type solution_details as 

shown in Figure 4.6. Each of the cells of our triangular matrix, i.e. one_dimensional 

array points to an instance of  aSolution. Each of the cells can be accessed just the way 

how that of a two-dimensional array is accessed. A cell is accessed through CELL(i,j) 

where i and j are the two indexes, i being the row number and j being the column 

number of a particular cell. CELL(i,j) accesses the cell one_dimensional_array[((j) * 

((j)-1))/2 + ((i)-1)]. Figure 4.7 shows one-dimensional representation of the 

one_dimensional_array alongside it’s two dimensional representation. 

 

 

4.2.2.1 Populating the third diagonal 

 

As the fragments are built starting from three-residue-long fragments it is necessary to 

first populate the third diagonal of cells in the triangular matrix by three-residue-long 

sequences. We do not need chains composed of only one residue, or two residues, so the 

1
st
 and the 2

nd
 diagonal layer of cells in the triangular structure will remain empty. First 

the three-residue-long chains populate the corresponding cells separately as this is a 

special case. The cells of the one_dimensional array with indexes (1,3), (2,4), (3,5), 

(4,6) etc are filled with the information of three-residue-long chains. Figure 4.8 

illustrates a flowchart of how the 3
rd

 diagonal of the triangular structure is populated. 

  

 

As illustrated in Figures 4.6 and 4.7, each of the cells in the one_dimensional_array has 

information of five different solutions. In other words, for a protein sequence of length, 

N, the third diagonal, that is all the cells with indexes CELL[i][i+2] (where i is a 

number between 1 and N) starting from CELL[1][3], till CELL[N-2][N], is filled first. 

Each of these cells has the information of five fragments of length three. CELL[1][3] 

has info about representation of chain from the residue number 1 to 3. Similarly, CELL 

[5][7] has information about chain starting from residue number 5 to 7. That is [i][i+2] 

has information about chain from residue number i to i+2.  

 

 

As each of the cells in the third diagonal has information of five three-residue-long 

chains in it, when each of the cell is accessed, dynamic allocation of five 

solution_details is done to be able to hold five information. As only one angle can be 

subtended by three residues, only theta1 of the solution_details is assigned with some 

value. This value of the angle to be assigned is randomly obtained from the angles 

array. The three residues are all set to have their center residue at the origin. The first 

alpha carbon of the 3 residues is set to have the coordinates (-D,0,0) where D=3.8 

(representing 3.8 Å which is the average distance between the alpha carbons in a typical 

protein chain (Hamelryck, et al., 2006)). The center residue (i.e. the second residue) has 

the coordinates at the origin, i.e. (0,0,0).The third residue has the x coordinate to be 

equal to D*radian(cos(180-theta1)), where D=3.8, theta1 is the theta angle (in degrees) 

subtended by the three residues. The third angle has the y coordinate to be equal to 

D*radian(sin(180-theta1)). The z coordinate is 0. Assigning the mentioned values 

ensure that each of these fragments are anchored at the origin of the three dimensional 

plane. 
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4.2.2.2   Populating the higher diagonals  

 

Then the program iteratively uses the three-residue-long chains to build four-residue-

long-chains. Using loops, the program accesses the 4
th

 diagonal of the triangular matrix 

and populates each of the cells in the layer with information of five four-residue-long 

chains, only keeping the ones that do not have residues placed too close together (at a 

Figure 4.8 A flowchart for how the third diagonal of the triangular structure is filled. 
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distance less than 3Å). Thus CELL [1][4] has information required to represent chain 

from residue number 1 to 4, and CELL [3][6] has chains from residue 3 to 6. That is all 

CELL [i][i+2+1] (where i is a number between 1 and N) till CELL[N-2-1][N], are next 

filled. It then goes to the 5
th

 layer, and similarly populates each of the cells with 

information of five five-residue-long chains. It iteratively does the same for the 6
th

 layer 

till the N
th

 layer, where N is the number of residues in the given sequence. The N
th

 layer 

only has only one cell, that is the topmost corner cell of the triangular matrix. Figure 4.9 

shows the high-level pseudo-code of how the cells starting from the 4
th

 diagonal till the 

top-most corner cells are filled.  Figure 4.10 shows in which order the different 

diagonals filled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Pseudo-code of how the cells starting from the fourthdiagonal uptill the topmost corner cell are 

populated.   
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Figure 4.10 The third diagonal is filled first. Then the fourth diagonal gets filled up, and so on and so forth. 

Each new diagonal is accessed once the filling of the lower one is completed. Finally the last diagonal at the 

topmost corner which has only one cell is reached and filled. 
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Figure 4.11 The first cell of 

the 8th diagonal will contain 

fragments built from two 

other fragments taken from 

other cells. The different 

colored lines show the 

possible places from which a 

pair of fragments to be 

joined can be picked from. 

For example, the red line 

shows a fragment from a cell 

of the same column but from 

the 3rd diagonal, and another 

from the same row but the 

7th diagonal can be joined to 

make a fragment of the cell 

in the 1st column of the 8th 

row. 

 

 

How the chains are combined 

 

To combine two fragments first the lengths of the two combining fragments have to be 

determined. Then it is necessary to determines which cells of the triangular matrix, and 

which slots of these cells should supply these fragments. Then necessary 

transformations in the 3 dimensional space should be carried out to on the fragments 

physically put them together to join them in one resulting fragment. These steps are 

described in detail below. 

 

 

Determine the lengths of each of the fragments 

 

Each of the chains can be built by combining two fragments. The aim is to overlap the 

last two residues of the first fragment with the first two residues of the second fragment. 

The length of the fragments will depend on the fact that two residues of each of the 

fragment will overlap on each other when they combine together. So if the required 

length of the resulting chain is z, the length of the first fragment is x, and the length of 

the second fragment is y, then it should be the case that x+y-2=z. Therefore, for 

example, a chain of length 8 (a chain at a cell of the 8
th

 diagonal) can be formed from 

fragments of sizes 3 (a fragment from 3
rd

 diagonal) and 7 (a fragment from 7
th

 

diagonal), or from fragments of sizes 4 (a fragment from 4th diagonal) and 6 (a 

fragment from 6
th

 diagonal), or two fragments of size 5 (fragments from the 5
th

 

diagonal). Figure 4.11 shows which cells are accessed to populate a cell in the 8
th

 

diagonal. Each of these fragments has to be chosen randomly, which means fragments 

of what lengths are to be combined is picked randomly. If we are filling out one cell, the 

random number will tell us which pair of cells from the lower diagonal(s) to access to 

pick out fragments to be combined. Also for each the two needed fragments, we use a 

random number to pick out one of the five fragments found in a particular cell that is 

picked. 
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Determine which cells, and which slots in the cells to access to fetch the fragments 

 

When filling out a cell with the information of a chain, the program first determines 

fragments for which lower cell in the triangular matrix can be used to make the chain of 

this particular cells. An array called fromWhere is used to maintain such information. A 

random number  is generated to pick out which of the entries in this array can be used to 

determine where to take the fragments from. fromWhere has the i and j indices of both 

the candidate fragments’ position in the triangular matrix. Another random number  is 

used to determine which of the five chains in the first cell should be chosen to be the 

fragment one, and another random number is used to determine which of the five chains 

in the second cell should be chosen to be the fragment two. These two fragments are 

then joined together to form a longer fragment.  Information of this longer fragment is 

then stored in one of the five available slots of the particular cell if none of the residues 

of this chain has steric clash. If there is a steric clash, that is any of the residue is closer 

than 3Å to any other residues in the chain, then another set of random numbers is 

generated to determine the combination of the fragments to be used to build the chain. 

 

 

Fitting the fragments together by a series of transformations 

 

It is finally necessary to superimpose the last two residues of the first fragment onto the 

first two residues of the second fragment as shown in figure 4.12, where B and C of 

Fragment 1 fit onto B’ and C’ of the second fragment.  

 

 

Functions from the transformation library are extensively used to fit one fragment on 

the other. Our aim was to let the fitting fragments have geometries, i.e. angles that are 

similar to the ones found in the nature. So first it is necessary to calculate what dihedral 

angle would be made between the plane that contains the last three residues of the first 

fragment and the first three residues of the second fragment, so that they can be altered 

if needed to match a more natural geometry. Using some of the transformation 

functions, the last residue C and the second last residue B of the first fragment third last 

residue of the first fragment A are brought to the origin. Similarly, the first three 

residues of the second fragments, B’, C’ and D’ are also moved to the dihedral angle 

between these four residues, lying at the origin A, B/B’, C/C’, D’ are then calculated. 

As shown in Figure 4.12, it is seen that the residue B overlaps with residue B’, and C 

overlaps with residue C’.  

 

 

The best possible dihedral angle that can be formed between the two theta angles in the 

nature is obtained using the function findBestAlpha. findBestAlpha is a function whose 

aim is to suggest the best dihedral angle that can be contained within two given theta 

angles. This function gives the suggestion by using the data collected (in the angles 

array) which contains a list of groups of theta1, theta2 and alpha angles. In other words, 

the dihedral angle is looked up in a look-up table maintained in an array that contains 

sets of angles found in the nature. These sets of angles are those found in a real protein. 

This function takes as parameters the angle formed by the last three residues of the first 

fragment, and the first three residues of the second fragment as theta1 and theta2.  When 
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a dihedral angle is looked for, there might not be an exact match of the pair of angles 

input, and the pairs of angles in the array that is maintained in the angles array. So it 

finds the nearest or closest theta angle pairs from the angles array, i.e. the ones that have 

the shortest distances from the pair of input theta angles using simple sorting. The 

sorting is done based on the Manhattan distances each of the theta angles pairs have 

from the input theta angle pair. Once the nearest theta angle pair is found, the 

corresponding alpha or dihedral angle to that theta pair is selected and returned. This 

alpha angle has to be assigned in the generated decoy structure in between the planes of 

the combining residues, in order to give it a more natural structure.  

  

 

The assignment of the new dihedral angle is done by adjusting the existing dihedral 

angle in between the two fragments, the value of which is already calculated. To make 

this adjustment, the difference (deltaAlpha) in the torsion angles is calculated, and using 

a transformation corresponding to rotation around the z axis, further rotation is done 

through deltaAlpha in the place where the fragments are overlapped.  

 

 

Now a series of more transformations are done to do the fitting of the two fragments, 

with the new dihedral angles. The program calculates the transformation matrix that fits 

the second fragment to the first fragment with the desired alpha angle. It then copies all 

the residues of the first fragment, and applies the obtained transformation matrix to the 

residues of the second fragment starting from the third residue onwards. Finally the 

program does an inverse of all these transformation to get the required single fragment. 

Figure 4.12 shows how two chains are combined with overlapping and Figure 4.13 

shows how the difference in dihedral angle is determined. 
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Figure 4.12  Two fragments, each of length five are brought together and the last two residues of the first 

fragment is overlapped by the first two residues of the second fragment to form a fragment of 8 residues. 

Figure 4.13 The four 

residues at a junction are 

brought to lie near the 

negative Z axis, with B C 

lying on the axis, so that 

the difference between the 

value of the dihedral angle 

at the formed junction and 

that of the  suggested one 

can be calculated so that 

the angle can be adjusted 

to match the suggested 

one. 
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5 Similarities and differences with other works 
 

 

The system that was built has similarities with some of the systems which were studied 

to obtain some ideas about how to approach this project. Still it had some novelties and 

differences to all of the previously built systems. The similarities and differences with 

the different algorithm and different approaches are described below in detail. 

 

 

5.1 CKY and ZAMDP algorithms 

 

The system that has been built for the project is implemented on an algorithm very 

similar to the CKY or more closely to the ZAMDP algorithm described by Dill, et al. 

(2007). My system also breaks a whole protein sequence in very small fragments first. 

By organizing the information about these small fragments in cells of a triangular 

matrix, it gradually combines the information of small fragments, and continues to build 

longer structure or decoys, and eventually forms structures of the same length as the 

original structure. A triangular array or matrix, is used to store the information of the 

fragments. Each cell in the array can hold information of five individual fragments. 

CKY fills out a triangular parse chart in the bottom-up form by first filling out the cells 

in the main diagonal with individual words, and then moves to the next diagonal level, 

and fills out the cells chart[i][i+1], and then the next level, i.e. cells chart[i][i+2], so on 

and so forth with information of parsing trees until it reaches the corner most cell, or the 

topmost cell, chart[1][n]. Just like in The CKY algorithm, this system also fills up the 

diagonals layer by layer with information about the smaller decoy fragments, starting 

from the third diagonal layer from the bottom till it reaches the cell in the top-most 

corner.  

 

 

Instead of keeping information of parsing trees, in each of the cells my system stores 

information about the smaller decoy fragments. Instead of starting to fill out the chart 

from the first diagonal, my system starts filling out the cells in the chart starting from 

the third diagonal. For a protein sequence of length, N, the third bottom diagonal, that is 

cells with indexes CELL[i][i+2], till CELL[N-2][N], is filled first. Each of these cells 

has the information of five pseudo-protein chain of length three. CELL[1][3] has info 

about representation of chain starting from the residue number 1 to 3. Similarly, CELL 

[5][7] has information about chain starting from residue number 5 to 7. That is [i][i+2] 

has information about chain from residue number i to i+2. Then the next diagonal layer, 

that is layer uses information from this bottom most layer to generate information for 

chains of length four. Thus CELL [1][4] has information required to represent chain 

from residue number 1 to 4. That is CELL [i][i+2+1] till CELL[N-2-1][N], are next 

filled. Then similarly the next layer of diagonal is filled, and so on and so forth.  

 

 

Dill et al. used HP model in two dimensional square lattice to test their hierarcical test 

principal. The amino-acids were categorized as hydrophobic (H) and polar (P) 

monomers. They used short chains of not more than 20 monomers and used exhaustive 

search methods to find all the possible conformations of the chains formed in the lattice 
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using an energy function based on number of HH contacts present. With help of this 

model they tested if their ZAMDP algorithm can pick the optimal conformation. 

However, HP model was not incorporated in the work that was done in this 

thesis and an off-lattice model was used. 

 

 

5.2 Fragment picking approach 

 

When one cell is filled, it requires fetching of information of two smaller fragments of 

two sizes from two different cells from lower diagonals. In my system the choice is 

made by a series of random numbers. One of these random numbers is used to pick out 

the combination the two lower cells that can provide the information of the smaller 

fragments.  Each of the other two random numbers help to choose which of the five 

fragments should be picked from each of the two chosen cells. Unlike, Hamelryck et al. 

(2006), complicated HMM is not used, rather simple random number generators 

provided by C library functions are used to pick out the new fragments. Hamelryck et 

al. (2006) have used secondary structure fragments, which is also not used in my 

system.  

 

 

5.3 Determining the stabilities of the structure generated 

 

Dill et. al (2007) use the HP-Model to determine energy of each of the chains formed, 

but in my system, that is not done.  Instead of calculating an energy value for each of 

the fragments formed, my system looks if there is any steric clash in a fragment formed. 

This procedure resembles that described in Hamelryck et al. (2006). Similar to their 

approach, any fragments having a steric clash, that is having alpha carbons in close 

proximity, are discarded, and their information are not stored any more. Random 

numbers are generated to suggest one more set of fragments to build the another 

fragment.  

 

 

Kolodny and Levitt (2002) ensures self-avoidance of the residues placing any two alpha 

carbons are separated by at least 2.5 Å. Hamelryck, et al. (2006) used 4Å to be critical 

distance between any two residues to avoid steric clashes. My system checks for steric 

clashes and discards a structure if any two alpha carbon atoms in it are placed at a 

distance less than 3 Å. Kolodny and Levitt (2002) enforce compactness by requiring the 

decoys not to exceed a range of sizes. 

 

 

5.4 Representation of the backbone structure 

 

Hamelryck et al. (2006) uses only an alpha carbon backbone to represent the protein 

chains, and thus call these chains decoys as they lack many information present about 

the real protein chain. Decoys are so called also because they are not the real native 

structures, but are close representation of them, or their fragments. I have adopted this 

term decoy, from their paper, as I am also using only alpha-carbon backbones, and 

trying to build fragments of protein-like-structures.  
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Hamelryck et al. (2006) also describe how, angles subtended by three adjacent alpha 

carbons (denoted by ‘Theta’), and the torsion or dihedral angles between the two planes 

(denoted in their paper by ‘Tao’) can describe the conformation of a structure. My 

system also uses this information about the theta angles, and the dihedral angles of the 

different fragments, in order to combine or join two individual fragments together. The 

theta angles and the dihedral angles are maintained as bigger fragments are built. When 

the smallest fragments are built, theta angles are chosen randomly from a list of sample 

theta angles typically to be found in a similar protein structure. Also when two 

fragments are combined together, the theta angle between the last three residues of the 

first fragments, and the theta angle between the first three residues of the second 

fragment are noted to suggest a dihedral angle that should be between the planes of the 

two combining fragment. This suggestion is also made using a look up table of 

combination of two adjacent theta angles and a typical dihedral angle in between them. 

Adjustments are made while combining the two fragments, so that the dihedral angle 

matches the one suggested from the lookup table.  

 

 

5.5 Combining the fragments 

 

Kolodny and Levitt (2002) uses assembling of small fragment taken from a fragment 

library to build larger decoys. These fragments from the library form the building 

blocks of the decoys, as they are picked and added to each other to lengthen the decoy 

chain. Each added fragment is placed on another by overlapping the first three residues 

of the fragment on the last three residues of the growing chain. The system that I built 

joins the two fragments by overlapping the last two residues of the first fragment on the 

first two residues of the second fragment. In my system, only the shortest fragments are 

taken from a library of real conformations from known structures and larger fragments 

are assembled from these. 
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6 Results 
 

The focus of my project was to build a system that can take a known protein sequence 

and the information about naturally occurring geometries of that protein, to assemble a 

number of protein-like structures or decoys, which do not have any steric clashes. The 

system has generated decoy structures using the geometries of Z(Taq), an affibody 

complex with PDB identification number 2B88. Affibody proteins form a class of 

engineered binding protein. The native structures of affibody complexes are already 

determined and are available in the protein database. These structures are characterized 

with 58 residues arranged in three-helix bundle (Lendel, et al., 2006). The geometries of 

the Z(Taq) complex were obtained from its PDB file. The angles formed by the 

consecutive residues and the dihedral angles formed by the planes in which these 

residues lie were used to build the decoys in the system. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 6.1 shows an image of Z(Taq) using RASMOL, a software used for viewing the 

structures of proteins, DNA’s and other macromolecules. My system tries to build 

decoy structures using natural geometries found in Z(TAQ). It generates decoys 

composed of helical structures. The helical structures are present as the geometries used 

for building the decoys are taken from a protein complex which three helices in it. 

 

 

The five decoy structures generated in my system where drawn using RASMOL. The 

images are shown in Figure 6.2 in the next page. Decoy building of this level can be 

used for prediction of structures of unknown or newly found proteins. 

 

 

 

 

 

 

Figure 6.1 An image showing Z(Taq) Affibody structure 

drawn using RASMOL 
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Figure 6.2 Images of 

the five decoys 

generated by the 

system developed.  
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7 Conclusion 
 

7.1 Achievements 

 

The aim of this project was to build a system that can assemble decoys from small 

fragments of proteins using a dynamic programming algorithm. It was aimed towards 

producing decoys which would have geometries similar to the ones of naturally 

occurring protein and would have no steric overlaps. Thus this project was an ab initio 

approach towards building decoy structures. The system achieves the aimed task very 

well, as it succeeds in building decoy structure with natural-like geometries and no 

steric clashes. It generated decoys with expected secondary structures. The system 

builds five decoy structures of full length. However, a slight modification in the code 

can allow it to build more of these structures. 

 

 

The system used a well structured data structure, to maintain the information required 

and used quite an efficient algorithm which assembled protein like decoys which did not 

have any steric clashes. When the system was given the task to assemble decoys, it 

generated them quickly.  

 

 

7.2 Limitations  

 

The system used real values of angles (subtended by consecutive alpha carbons) found 

in real protein chains with known structures. The torsion or dihedral angles which were 

assigned to the structure at their location of junction during joining the two fragments 

are also picked out from a list of torsion angles found in the same known structure. Still 

the resulting structures produced by the system had slightly different torsion angles, 

than what is tried to be assigned to them. This slight difference might have been 

resulted from rounding of errors adding up at every stage of joining of the small 

fragments. 

 

 

Even though assembling the decoys was successful, the ones generated were found to 

be not very compact as expected in a natural protein structure. Compactness in the 

resulted structures probably is not achieved because of the check against steric clash, 

where the system omitted generated structures which had alpha carbons lying closer 

than a threshold distance. More compactness could have been achieved if a check for 

radius of gyration was also included in the system, which would have omitted structures 

with a radius of gyration over a threshold value as done by Hamelryck, et al. (2006).  

 

 

7.3 Possible improvements and future work 

 

In spite of the limitations in the system, it still carries out its task fairly well. Still, there 

remains an opportunity to make a great deal of improvement on this system. As 

mentioned earlier, if a check for compactness is included, by only allowing structure 

within a certain radius of gyration, more real-looking decoy structures can possibly be 

generated.  

 



40 

 

 

At the moment, the system does not score the fragments generated at each stage of 

assembling, with any energy potential or scoring function. A scoring can be maintained, 

and the structures generated at each stage can be sorted depending on their score, and 

the best ones can be used for the assembling process in the next stage.  

 

 

For now, the constituent fragments are picked randomly at each stage. At a particular 

stage, any of these fragments has almost equal probability of being picked for usage in 

the next stage of assembling. As discussed in the literature, complex stochastic 

functions can also be used to determine this choice of fragments.  HP model can be 

incorporated also for much better results, i.e. the positions of hydrophobic and polar 

residues can be used to determine the scoring function of a generated fragment. As 

mentioned above, sorting of best scored results can also improve with the choosing 

process. 

 

 

The current system can serve as a good framework for a decoy predicting system. Its 

implementation can be easily modified to include the complex scoring functions which 

can lead to much better results. Thus, any future work on the current system is warmly 

encouraged. 
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