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Modelling biodiversity in highway stormwater ponds 

Master’s thesis in the Master’s Programme Infrastructure and Environmental 

Enineering 

RICARDO FRANCISCO HERMIDA CALVEIRO 

Department of Civil and Environmental Engineering 

Division of Water Environment Technology 

Chalmers University of Technology 

 

ABSTRACT 

The development of road infrastructures causes great disruptions in the biodiversity of 

the natural areas. The Norwegian Public Roads Administration is investigating the 

possibility of employing stormwater ponds for compensating the loss of biodiversity 

due to the construction of the E39 highway. To define the guidelines for the design of 

biodiversity-promoting stormwater ponds, a model predicting biodiversity in 

stormwater ponds based on abiotic and biotic factors is needed. The literature review 

performed in this thesis showed that specific examples regarding biodiversity 

prediction models are scarce. However, several modelling approaches were described 

and one of them was identified as the most suitable: the Machine Learning methods. 

Using this approach, a model for predicting biodiversity in stormwater ponds was 

constructed. The model was based on the monitoring data collected during a sampling 

campaign performed within the NORWAT project at the Norwegian Public Roads 

Administration. During the sampling campaign several stormwater ponds along several 

major roads near Oslo in Norway were studied. Due to the different number of samples 

for water and sediment quality, two different models were built. In order to measure 

biodiversity three indices were defined: Species richness, Shannon diversity index and 

inverse Simpson’s index. The models were feedforward Artificial Neural Networks 

trained with the backpropagation algorithm. The results showed that the prediction 

capabilities were rather poor in all the cases but one, which performed well. The two 

models that were built showed very similar performances. The performances were in 

accordance with other results found in literature. Out of the three biodiversity indices, 

the species richness presented the best performance. This model confirmed that the 

Machine Learning models can be useful for biodiversity prediction. 

 

Key words: Highway, Stormwater, Stormwater Pond, NORWAT, Ecology, 

Biodiversity, Machine Learning, Artificial Neural Network. 
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1 Introduction 

Roads and highways, as any other type of modern infrastructure, play a very important 

role in today’s society. Infrastructure is a major contributor to the economy of a region 

by allowing the transport of goods and people. 

The Norwegian Western Coast is nowadays connected by the highway E39. The route 

connects the cities of Kristiansand, in the South of Norway, and Trondheim. The road, 

with a distance of almost 1100 km, crosses several fjords with the use of ferries. This 

causes great increases of the travel time, spanning between 21 and 22 hours between 

the two cities. A new highway has been proposed in order to eliminate the ferries and 

reduce the total travel time to around 12-13 hours. Despite these advantages, the 

Norwegian Public Roads Administration (Statens vegvesen) is aware that the 

construction of a new road imposes also some damages to the environment, especially 

to the biodiversity. Thus, the aim of Statens vegvesen with the new highway E39 is to 

build a biodiversity-neutral road. 

The effect that roads have on the environment is a recent area of research. However, it 

is already well known that road development contributes to the loss of biodiversity. 

There are several causes to the loss of biodiversity along the roads. One of the negative 

effects for biodiversity is water pollution. The European Water Framework Directive 

(WFD), implemented in 2003, and incorporated into the Norwegian Law in 2007, was 

introduced to enforce the protection of the natural water bodies, in terms of the chemical 

and ecological quality. Since its implementation, a great effort has been made to reduce 

the pollution generated by the road traffic in the surrounding water bodies. A 

remediation for this problem has been the installation of Best Management Practices 

(BMPs) along roads, especially stormwater ponds. These constructed devices eliminate 

the majority of the pollutants carried by the water runoff generated on the surfaces of 

the roads. 

After the progressive increase in the number of Best Management Practices (BMPs) 

along roads, some researchers discovered that these systems unexpectedly support high 

species biodiversity (Bishop et al., 2000a, Bishop et al., 2000b, Wall, 2007, Le Viol et 

al., 2009, Kazemi et al., 2009, Kazemi et al., 2011, Moore and Hunt, 2012, Le Viol et 

al., 2012). Despite supporting biodiversity, the effect that BMPs apply to biodiversity 

on a regional scale has not been agreed. While some think that BMPs can cause 

damages to the regional ecosystems (Bishop et al., 2000a, Bishop et al., 2000b), others 

discuss the contribution that these aquatic systems can provide to the nature (Oertli et 

al., 2002, Le Viol et al., 2009, Kazemi et al., 2009, Kazemi et al., 2011). The importance 

of the new human-created environments are reinforced considering the progressive 

decrease that natural water ponds, a similar ecosystem, have experienced over the last 

century (Le Viol et al., 2009). 

The negative effects of road construction on biodiversity can be minimized by 

developing measures that fight against them. But, even with the best preventions the 

impact on biodiversity cannot be completely avoided. Hence, in order to build a 

biodiversity-neutral road, it is not possible to reduce the footprint of roads to zero. 

Statens vegvesen, in collaboration with the Chalmers University of Technology, are 

investigating the possibilities to compensate the loss of biodiversity with the provision 

of new ecosystems with high biodiversity. For this purpose, Statens vegvesen has 

considered the use of BMPs (specifically stormwater ponds) as the source of 

biodiversity. 
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1.1 Aim and objectives 

The main aim of the project started by Statens vegvesen and Chalmers University of 

Technology is to gain knowledge on the use of BMPs for the promotion of biodiversity-

neutral roads. While other students have focused on the understanding of the variables 

involved in the process of biodiversity development, this Master’s Thesis investigates 

how to simulate the biodiversity creation capacity of stormwater ponds. In order to 

achieve this aim, the following objectives have been proposed: 

 Review previous literature to find which approaches have been attempted to 

model biodiversity. 

 Analyse the measurements provided by the NORWAT project conducted by 

Statens vegvesen. 

 Determine which of the possible modelling approaches found in literature is the 

most suitable for the application on highway stormwater ponds. 

 Implement such model using the data collected during the NORWAT project. 

 Analyse the results of the model and make recommendations on the possible 

applicability of the model to predict biodiversity. 
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2 Background 

2.1 Biodiversity 

2.1.1 Definition 

The definition of biodiversity is not easy to give. There is not a short explanation for 

the concept of biodiversity in scientific literature. According to United Nations (1992), 

the biodiversity is formally defined as “the variability among living organisms from all 

sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the 

ecological complexes of which they are part; this includes diversity within species, 

between species and of ecosystems”. Thus, the term biodiversity applies to all the living 

organisms, including animals, plants and microorganisms, as well as, ecosystems and 

the processes happening inside them. 

The concept of biodiversity tries to represent the number and frequency of all these 

elements in a certain area. The definition of biodiversity can be cut down to three levels: 

genetic, species and ecosystem diversity. The genetic diversity accounts for the number 

and variation of the genetic information within the organisms living in a region. The 

species diversity refers to the variety of organisms in a certain region. The ecosystem 

diversity is the frequency and variety of ecosystems (European Environment Agency, 

2010). 

The keystone for the assessment of biodiversity and its importance relies on the number 

of species. The total number of species on the Earth is to date unknown. Despite having 

a good knowledge of the total number of vertebrates and plants, the scientists have only 

been able to guess the total number of insects. Insects represent a very important share 

of the total amount of the already discovered species and almost the totality of the 

species to be discovered. To date, the total number of discovered species is under 2 

million species. Nevertheless, the estimations of the total number of species is believed 

to range from 10 million up to 30 or 50 million (Abe et al., 1997). 

The human presence and activities have endangered the biodiversity on the Earth. The 

consumption of both renewable and non-renewable resources has caused abrupt 

changes in the habitats of many species in the world. These changes, combined with 

the fragility and singularity of some species, have led to the extinction of many of them. 

The increasing population and the growth of the demand of those resources are 

deteriorating the biodiversity even further and at a rate that increases continuously 

(Winiger, 1998). 

The necessity of protecting the biodiversity is not easy to justify by scientific facts. The 

protection of biodiversity can be understood as an exercise of responsibility of the 

human race (Winiger, 1998). Also, conservationists have also considered biodiversity 

as a resource itself to be managed for the future. As said in Winiger (1998), the uses 

that the society could find in the future for the variety of genes, species and ecosystems 

are unpredictable. Furthermore, the understanding of how ecosystems work is very 

limited, and the roles played by the different species are yet to be fully discovered. 

Hence, endangering one single species of whose importance society is not aware, can 

lead to unpredicted damages and high costs for us in the future (Winiger, 1998). 

2.1.2 Effects of roads on biodiversity 

The construction of roads is one of the contributors to the loss of biodiversity. The 

effects that road development causes to the environment is a field very well documented 
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(Andrews, 1992, Carr et al., 2002, Coffin, 2007, Forman, 1998, Forman, 2003, Seiler, 

2001, Spellerberg, 1998, Trombulak, 2000). In Andrews (1992), the author classifies 

the harmful effects of roads on the biodiversity: 

 Alteration and loss of habitats. The alteration of the orography of the region 

and the cut of vegetation cause the direct loss of ecosystems and contributes 

to the alteration of others by the modification of hydrology. 

 Edge effect. The natural gradation of species habitats (ecotones) is modified 

by the inclusion of a road. The road causes the ecosystems to interrupt 

abruptly. Edge areas hinder the species with poor dispersal abilities and 

attract those who are more capable of invading and colonizing. Thus, the 

edge effect leads to areas where a few species dominate. 

 Barrier effect. The inclusion of physical barriers obstructs the freedom of 

movement of the species, causing the cut off of vital resources as water and 

disrupts social organizations. 

 Disturbance. Roads cause the species to avoid the areas surrounding the 

roads. Noise from traffic also causes certain species to abandon the area. 

 Road kills. Collisions between traffic and animals crossing the roads 

increase mortality. 

 Increased human access. The development of a new road causes an increase 

of the human activity in the area. This can lead to increased hunting, increase 

in the fires, and a notable increase of the pollution. 

Improving the construction design process, paying special attention to minimizing the 

effects on ecosystems, can help to mitigate some of these undesired effects. Other 

elements of the list, such as the disturbance effect or the increase of human access are 

more difficult to solve. The addition of systems such as the Best Management Practices 

(BMPs) can help to reduce the effect of the contamination on the aquatic ecosystems 

around the roads. These systems receive the runoff water collected on the road 

pavement with the sediments and contaminants that its flow carries. The main purpose 

of the BMPs is to reduce the pollution load and turbidity when the runoff water reaches 

the natural recipient water bodies. 

2.2 Best Management Practices (BMPs) 

2.2.1 Definition 

In recent years, there has been an increased concern about the damage that the runoff 

from human modified surfaces can have on the natural water bodies. First in the U.S. 

and afterwards in Europe, new regulations have been implemented. The U.S. was the 

pioneer in the development of laws and regulations for the protection of water bodies 

from this type of pollution (Hvitved-Jacobsen et al., 2011). The Clean Water Act 

(CWA) passed in 1972 was a keystone in the control and implementation of pollution 

control programs. Two additional programs, the Nationwide Urban Runoff Program 

(NURP) in 1983 and the Stormwater Program in 1990 and 1999, followed the CWA. 

With them, the commitment to protect the environment from the stormwater pollution 

was further reinforced. In Europe, the equivalent of those three programs was 

introduced with the name of Water Framework Directive (WFD). This set of laws and 

norms was introduced in 2000, and implemented in 2003. Its aim is to improve the 

quality of all the water bodies in Europe by 2015. The WFD has been introduced as a 
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law in all the countries members of the EU and Norway. The WFD was implemented 

in the Norwegian law in 2007, and since then, work has been done in order to fulfil it. 

In the urban environments, as well as in roads and highways, the soil, vegetation cover 

and the irregularities of the terrain are substituted by an impervious and smooth surface. 

This change causes an increase in the percentage of water that becomes runoff, which 

otherwise would evaporate and infiltrate. Furthermore, the inclusion of a drainage 

network with low roughness accelerates the movement of the surface water in the 

catchment. The combination of these two modifications leads to an increment of the 

quantity of the water and to the shortening of the time in which that water is discharged. 

Thus, the runoff is discharged to the water bodies in the form of high peaks of flow. 

Furthermore, over the urban surfaces, the traffic and other human activities deposit dust, 

sediments and garbage. This increased pollution on the surface is washed off by the 

runoff and transported directly into the receiving natural waters. The negative effect of 

the contaminants discharged into the environment is further increased by the first wash. 

The first wash is the peak of pollutant concentrations created by the erosion of the first 

and softest layer of dirt on the surfaces of the catchment. The first wash can cause severe 

harm to the organisms inhabiting the natural water bodies. 

The Best Management Practices (BMPs) are systems designed for the mitigation of the 

harmful effects of stormwater runoff in urban environments. The main aims of the 

BMPs are the removal and reduction of the water pollutant content and the providing 

an increased buffer capacity for the stormwater peak flows. The BMPs are usually 

implemented inside the cities to collect and treat the stormwater separately from the 

sewage water. The BMPs are also used in the treatment and regulation of the runoff 

from the pavements of roads and highways.  

The term for BMPs is not unique, and the notation for this type of systems has not been 

normalized. Some publications use such terms as Sustainable Drainage Systems 

(SuDSs), which is mainly used in the UK, Low-Impact Development (LID) and Best 

Management Practices (BMPs), which are used mainly in the U.S. and Canada, and 

finally Water-Sensitive Urban Design (WSUD), often applied in Australia. In this 

report, the term chosen for referring to these systems will be Best Management 

Practices (BMPs). 

The design of BMPs is usually done following the guidelines marked by public 

institutions. Among these guidelines, some state design manuals in the U.S. and some 

publications from the CIRIA association can be highlighted (Woods-Ballard et al., 

2007, Schueler and Claytor, 2000, Atlanta Regional Commission, 2001a, Atlanta 

Regional Commission, 2001b, Bishop et al., 2000a). 

2.2.2 Types of Best Management Practices 

BMPs are divided in different types, depending on the treatment that is provided to the 

water. Again, the division and the nomenclature of the different BMPs are not well 

defined. In The SuDS Manual by Woods-Ballard et al. (2007), 11 types of BMPs are 

defined: 

 Filter strips: Provide treatment by infiltration and settling of particles. They 

are installed adjacent to big impervious surfaces as a linear structure 

between one of the borders of the area and a receiving water body, water 

collection structure or an additional BMP. They are covered with vegetation 

and have a width between 7.5 and 15m. The runoff is forced to move 

towards the filter strip where it is evenly distributed. 
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 Trenches: Provide treatment by infiltration or filtration. They consist of 

trenches filled with void-creating material, such as stones, pebbles or rubble. 

They can receive either lateral inflow, which is preferable, or point sources. 

If the soil is permeable and it is allowed, the trenches are designed to filter 

and infiltrate runoff water. When the soil is impermeable the trenches are 

designed to filter and convey water for drainage or additional treatment. 

 Swales: Provide treatment by settling of particles and, in some cases, 

infiltration. They are linear drainage systems consisting of a vegetated 

channel that is used to convey water to a receiving water body or to an 

additional BMPs. The swales can be designed to be standard, wet or dry 

swales, which are differentiated by the presence of temporary, permanent or 

complete lack of surface water. 

 Bioretention: Provide treatment by particle removal and filtration. They 

consist of shallow depressions installed in small catchments with 

predesigned soil profiles and vegetation to provide improved treatment of 

water. Usually, the bioretention areas are drained with perforated pipes. This 

BMP design allows the effective reduction of both volume and rate of 

runoff. 

 Pervious pavements: Provide treatment by filtration and infiltration. They 

consist of pavements designed to allow the infiltration of the surface water 

to lower layers of the pavements, in which the water is stored. After storage 

the water can be infiltrated into the soil, transferred to an additional BMP or 

discharged to a water body. The main disadvantage of this system is the 

limitations that this type of pavements applies to the traffic, lowering speeds 

and axle loads. 

 Geocellular or modular systems: These systems provide no water quality 

treatment. The main purpose of these systems is to store runoff water for 

posterior infiltration or conveyance to an additional treatment step. The 

geocellular systems are formed by smaller modules of plastic material with 

a very high void ratio that are installed underground. These systems provide 

a cheap and easy to install method for runoff control that can be used under 

pedestrian and street pavements, or under public open spaces. 

 Sand filters: Provide treatment by filtration. The sand filters are structures 

in the form of boxes that contain sand as a primary filter medium. This 

configuration provides great pollutant removal and is mostly used when high 

pollution is expected in the runoff, due to the high cost of installation and 

maintenance. The capacity for runoff peak flow and volume reduction is 

rather limited in the sand filters, by only allowing a small amount of ponding 

in top of filter. 

 Infiltration basins: Provide treatment by infiltration. They consist of large 

vegetated depressions that provide enough volume for storage and surface 

for infiltration. The fact that the system infiltrates the runoff water excludes 

its use in locations where groundwater is vulnerable. The design has a low 

cost both on construction and installation but it is very surface demanding. 

 Detention basins: Despite providing some water treatment by particle 

settling, the detention basins are mainly used for peak flow reduction. The 

detention basins are surface depressions that provide some buffer volume 

for the incoming runoff water. Most of the detention basins remain dry 

between rain events, filling up with water during these events. There can be 
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a small permanent pool that can help to prevent re-suspension of sediments. 

Infiltration is not allowed in these systems. 

 Ponds: Provide treatment by sedimentation and biological uptake. The 

ponds are constructed depressions with a permanent pool of water. The 

ponds work by storing and treating the runoff water between consecutive 

rain events. The existence of a permanent pool of water allows the growth 

and development of plant and animal life, which help in the treatment of the 

pollution both by stimulating the sedimentation of particles and the uptake 

of nutrients. The design of the ponds includes usually a smaller basin for 

pre-treatment. This slam-basin allows the sedimentation of coarser 

sediments and other type of large residues. The shoreline of the ponds is 

designed for the support of vegetation, which is done by decreasing the slope 

of the bench or preventing the consolidation of the soil. 

 

Figure 1. Pond at Taraldrud Junction (59.79703555; 10.84086138) near Oslo (Norway). 

 Stormwater wetlands: Provide treatment by sedimentation and biological 

uptake. The stormwater wetlands combine shallow ponds with parts almost 

completely covered with vegetation. The wetlands are designed to allow 

long retention periods, time enough for sediment settling and aerobic 

decomposition of nutrients. This BMP method requires great extensions of 

land, which in many cases could not be available. On the other hand, the 

great areas occupied by the wetlands allow a big buffering capacity for 

extreme events, which in other cases would not be treated. Furthermore, the 

maintenance cost of the stormwater wetland can be quite low, once the 

system is established. 
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2.2.3 Effect of BMPs on biodiversity 

The selection of the type of BMP most suitable for an individual case is usually based 

on five different criteria. According to Woods-Ballard et al. (2007), these five factors 

are: 

1. Land use characteristics. 

2. Site characteristics. 

3. Catchment characteristics. 

4. Quantity and quality performance requirements. 

5. Amenity and environmental requirements. 

The last of this criterion, Amenity and environmental requirements, includes the 

capacity of habitat creation as one of the factors to consider. The use of BMPs is known 

to provide an improved area for wildlife. Not all the BMPs are equal in their habitat 

creation capacity. The ponds and wetlands, when well designed and maintained, 

provide an excellent habitat for vegetation and aquatic life. Also, the presence of grass 

strips in swales, trenches or filter strips can be used as green corridors connecting two 

habitats (Woods-Ballard et al., 2007). 

This capacity for habitat creation and biodiversity boosting is a very recent field of 

study. Bishop et al. (2000a) and Bishop et al. (2000b) are some of the first documents 

that cover this aspect of the wetlands and ponds. In these two documents, the authors 

study the biodiversity of 15 stormwater ponds and 1 wetland in order to determine the 

contribution of the wetlands to the creation of habitats for wildlife. 

Despite that these two studies found that the ponds’ created habitats were low quality 

with low species richness, several studies appeared in recent years, agreeing that the 

biodiversity capacities of constructed wetlands and ponds should not be 

underestimated. In a study conducted on 6 stormwater ponds in south-eastern France, 

the results indicated that the ponds’ biodiversity was very similar to that found in natural 

water ponds in the same region (Scher et al., 2004). The authors stated the high benefit 

of the highway stormwater ponds, not for providing a better quality habitat for species, 

but for increasing the number of ponds when the number of natural ponds has decreased 

progressively during the last century. The same conclusions were also drawn by Scher 

et al. (2004) in a study performed in 25 ponds along 56 km of a highly used highway in 

France. More recent studies have even explored the possibilities of the use of wetlands 

and stormwater ponds for carbon sequestration by organic uptake of plants and animals 

(Moore and Hunt, 2012). 

Despite of mainly being focused on stormwater ponds and wetlands, the study of the 

biodiversity benefits of BMPs has also been extended to bioretention basins, swales and 

filter strips. In two different studies, Kazemi et al. (2009) and Kazemi et al. (2011), the 

authors concluded that the construction of such structures generated a positive effect on 

the biodiversity of the areas where they were installed. 

Given the positive effect of the highway stormwater ponds and wetlands, the study field 

has now moved towards the identification of the factors that contribute to and harm the 

development of wildlife in these ponds. Increasing our knowledge in the factors 

affecting biodiversity could lead to development of new enhanced designs for ponds 

and wetlands. With these new designs, the stormwater ponds could not only reduce the 

pollution of the receiving waters, but also increase the biodiversity and species richness 

in the region. 
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2.3 Factors affecting biodiversity in BMPs 

The factors affecting biodiversity can be divided into two groups: abiotic and biotic 

factors. Abiotic factors are non-living physical and chemical properties of the 

environment that affect the ability of survival of the organisms present. Biotic factors 

are the effect that the living species in a habitat impose to the rest of fellow species. 

The study of the factors that affect biodiversity in BMPs is a very recent field of study 

among biologists. There are few research publications specifically regarding the study 

of the biodiversity factors in BMPs (Bishop et al., 2000a, Bishop et al., 2000b, Le Viol 

et al., 2009, Le Viol et al., 2012, Thygesen, 2013, Clarke, 2014). In many cases, the 

study is limited to the analysis of the differences found between natural and artificial 

water ponds (Le Viol et al., 2009). 

In this section, the classification of factors reviewed by Clarke (2014) will be followed, 

describing the effects that several abiotic and biotic factors have on the environment 

and, particularly, on the biodiversity of BMPs and, particularly, stormwater ponds. 

2.3.1 Abiotic factors 

According to Clarke (2014), ten different abiotic factors can be identified for having a 

major responsibility for the biodiversity of stormwater ponds. Half of the factors 

account specifically for water quality properties. 

 Salinity: The use of salts, specially sodium chloride (NaCl), is common 

along roads as de-icing agent during winter time (Le Viol et al., 2009, Seiler, 

2001). As a result, high levels of salinity have been found in stormwater 

ponds. The effect of salinity on biodiversity depends greatly on the species 

involved and the sensitivity and tolerance of these species to salt (Snodgrass 

et al., 2008). However, in the vast majority of the cases, such effect is of 

negative consequences, and tend to affect the most those species categorized 

as sensitive (Snodgrass et al., 2008) 

 Conductivity: Conductivity is also a factor related to the presence of salts in 

the water. As with salinity, conductivity values are often found to be greater 

in stormwater ponds than in natural ponds. The effect of high conductivities 

on biodiversity has not been completely elucidated (Clarke, 2014). 

However, the effect seems to be mostly negative. 

 pH: The pH values that are found in stormwater ponds are often different 

that those measured in natural water ponds. The most accepted theory states 

that the pH in stormwater ponds is lower than in natural ponds because of 

the much lower presence of vegetation litter, which decomposes generating 

humic acids (Le Viol et al., 2009). The difference of pH values has not to be 

found to affect biodiversity importantly (Clarke, 2014). 

 Nitrogen oxides: The presence of nitrogen oxides has been found to be 

higher in stormwater ponds than in natural ponds. The source of this 

nitrogen oxide surplus is caused mainly by traffic emissions and agricultural 

fertilizers. Very high levels of nitrogen oxides can lead to eutrophication of 

the waters, which has very negative consequences for the biodiversity. 

Hence, despite that moderate levels of nitrogen oxides have no clear effect 

on biodiversity levels, the presence of nitrogen oxides should be controlled 

(Clarke, 2014). 
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 PAHs and heavy metal accumulation: The impact of Polycyclic Aromatic 

Hydrocarbons (PAHs) and heavy metals on biodiversity is a branch of 

research that it is being explored today. Out of the many PAHs and heavy 

metals existing in the environment, only a few have been analysed in detail. 

Thus, the source of heavy metals and PAHs has been found to be vehicle 

combustions and by-products of traffic (Sternbeck et al., 2002) The 

conclusion tends to determine that the presence of elevated levels of both 

heavy metals and PAHs has a negative impact on biodiversity (Clarke, 

2014). 

 Average Annual Daily Traffic (AADT): AADT measures the volume of 

traffic that a specific road holds. Several studies relate biodiversity with 

AADT (Thygesen, 2013, Clarke, 2014). However, in other cases, the effect 

of AADT is decomposed into the individual factors that are consequence of 

the volume of traffic (Clarke, 2014) 

 Basin size, depth and shape: The size, depth and shape of the pond have a 

great effect on biodiversity. The size of stormwater ponds is apparently 

positively correlated with biodiversity. Regarding depth and shape of the 

stormwater ponds, researchers tend to indicate that ponds should present 

variety of slopes and depths to accommodate as many species as possible 

(Clarke, 2014). 

 BMPs substrate type: The type of substrate base of stormwater ponds has 

been identified as a possible factor for biodiversity development. In general, 

the use of a natural base types increases the levels of biodiversity (Le Viol 

et al., 2009). 

 Age: Several studies point out a positive correlation between the age of the 

stormwater pond and the levels of biodiversity present in the pond. Le Viol 

et al. (2009) found that old enough stormwater ponds could hold as much 

biodiversity as natural ponds. This is considered to be caused by a 

progressive naturalization of the pond (Clarke, 2014). 

 Noise: Noise is an effect that is present during the various processes of road 

development, from construction to final use. The impact of noise on some 

species has been long studied, and in any case the effect appears to be 

negative (Coffin, 2007). 

2.3.2 Biotic factors 

The biotic factors are the living components of an ecosystem that affect the ecosystem 

and the rest of organisms existing in that environment. Despite the numerous possible 

biotic factors, two are identified by Clarke (2014) as most relevant: vegetation and 

human influence. 

 Vegetation: Vegetation is a key component of any ecosystem. This key role 

entails, as well, the great importance of vegetation on the biodiversity of an 

ecosystem. The own plant biodiversity constitutes a relevant factor affecting 

biodiversity. Thus, the greater the diversity of vegetation, the more diverse 

the number of taxa it can support (Clarke, 2014). However, the presence of 

vegetation can affect also negatively some species while increasing levels 

of a different one (Clarke, 2014). Thus, special attention must be paid to 

balance the contributions of different vegetation ecosystems in stormwater 

ponds. In this situations, researchers have found that the preservation of 
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natural woodland contributes positively to achieving high biodiversity 

levels (Clarke, 2014). In essence, vegetation is generally regarded as a key 

factor for biodiversity provision. Vegetation can not only be effectively used 

for increasing biodiversity in a stormwater pond, but also for promoting 

specific desired species. 

 Human influence: It has been long demonstrated that improved accessibility 

of natural spaces by humans tend to create important disruptions and 

increased levels of pollution (Andrews, 1992). The consequences of human 

presence on biodiversity tend to be negative. The impact of human 

influences on stormwater ponds are difficult to account, but there is evidence 

that the effect is slightly negative (Clarke, 2014). 
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3 Review of ecological modelling approaches 

3.1 Ecological modelling 

The first ecological model ever recorded corresponds to Lotka-Volterra and their 

predator-prey equations, and Streeter-Phelps, with their study of water pollution 

relating Dissolved Oxygen (DO) and Biological Oxygen Demand (BOD), both of them 

in the 1920s. Nevertheless, the greatest development and explosion of ecological 

modelling did not occur until the 1970s. During this decade and the following, 

ecological models evolved answering questions never solved before. The development 

of such models carried also problems and difficulties on how to represent real world 

topics into the scheme of a model. 

According to Jørgensen (1999), the main problems that the ecological modelling have 

been facing since its beginning and that are to be solved yet are: 

a. The scarcity of sampling data for its use in model development. 

b. The parameterization of the model, which is usually the weakest point. 

c. The complexity of the real world problems is not fully represented by current 

models. 

From this short list, the third point is the only one that ecological modellers can 

participate in its improvement. In recent years, new types of models have been 

developed in order to address some of these issues, such as the modelling of spatial 

problems, and the development of dynamic models. Regarding the two first points, the 

major work lays over the modeller by increasing the frequency and resolution of the 

measurements to be applied in their models. However, some new model types have 

been created or translated from different study areas into the ecology field allowing the 

user to represent the reality prioritising the economy of data over the details included 

in the model. 

The range of topics that the ecological modelling covers is huge. Due to this, several 

different types of models have been developed during the last 40 years. These models 

differ in many aspects such as type of available data, type of problem, type of required 

resolution … It is not possible to study the changes in the distribution of a certain 

species of trees in a natural park and the evolution of the population of a water pond in 

time with the same type of model (Mladenoff and Baker, 1999). These two examples 

have two completely different aims and, however, both of them can be referred to as 

ecological models. Also, they do not share most of the variables and parameters, and, 

of course, the output of the model is completely alike. Thus, the aspects that distinguish 

one type of model from the others will be further discussed in this chapter. 

3.2 Model approaches in ecological modelling 

In a review of all the publications in the journal Ecological Modelling (Salski, 2006, 

Jørgensen and Fath, 2011), the authors distinguished nine different types of models. 

The list of ecological model types created by Jørgensen and Fath (2011) focus mainly 

on the quality and quantity of available data, and on the key feature the model seeks. A 

definition and a list of pros and cons of each model, as well as the most suitable scenario 

for each of the models were included. The list of the nine models considered is 

presented below accompanied by a brief description of each of them. 
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Despite distinguishing these nine model classes, the authors also recognised the 

existence of hybrid models combining two or more of these basic types. These hybrid 

models mostly are a combination of biogeochemical models with another model 

(Jørgensen and Fath, 2011). 

3.2.1 Dynamic biogeochemical 

This type of model is the most widely applied of the nine, with an application rate of 

32% (Jørgensen and Fath, 2011). The aim of the dynamic biogeochemical models is to 

represent the biogeochemical and geochemical processes occurring in a certain 

environment. The processes are computed dynamically by the use of differential 

equations. They are based on mass or energy conservation principles and usually based 

on causality. The dynamic biogeochemical models are often useful as a prediction tool 

and are easy to understand, interpret and develop. The main disadvantage is the high 

number of parameters required when the model becomes slightly complex. Hence, a 

large and good quality set of data is required for calibration. 

3.2.2 Steady-state biogeochemical 

A steady-state biogeochemical model, as the dynamic biogeochemical mode, is based 

on the representation of the biogeochemical and geochemical processes happening in 

the study case but simplifying them disregarding the effect of time. This results in an 

easier to build and calibrate model, which can provide useful results for worst-case and 

average scenarios (Jørgensen and Fath, 2011). 

3.2.3 Population dynamics 

In this category fall all the models that represent the evolution of the population or 

populations of different species sharing the same space. Population dynamics study 

how a certain population distributes, grows or interacts with other species. The main 

processes that are represented in this kind of model are factors as the natality, the 

mortality or predation. The models can be built using deterministic or stochastic 

approaches, being the former category the most broadly used. The main disadvantages 

are the difficulty of the calibration and the need of a good and homogenous database 

(Jørgensen and Fath, 2011). 

3.2.4 Structurally dynamic 

The structurally dynamic models are a very complex model type that can be used for 

an accurate representation of ecosystems. When studying an ecosystem, two 

approaches can be taken, reductionism and holism. The first one aims the analytical 

study of all the processes underlying behind the apparent behaviour of the ecosystem. 

Holism states that it is impossible to represent all these processes analytically, both 

because of the amount of them and because of the high level of interaction existing. 

Because of this, the holism approach looks at ecosystems trying to examine the whole 

system and the most relevant reactions of it. Thus, structurally dynamic models focus 

on the most relevant processes occurring in an ecosystem as a whole, rather than as the 

sum of smaller processes of different species. Hence, the adaption and the changes in 

the species composition play a very important role in structurally dynamic models. 

The evolution of the ecosystem is usually achieved by defining a goal function to which 

the ecosystem is forced to adapt. This goal function is often a unit of energy, like the 

exergy and eco-exergy variables. The exergy of an ecosystem can be defined as the 

difference of energy an ecosystem presents against a reference condition, normally 
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established by the surrounding environment. The complex definition of this goal 

function is one of the main disadvantages of this model kind. Other disadvantages 

include the lack of specific software to develop the model, the high resource 

consumption of the model when it is run and the need of data describing the structural 

changes aimed by the model (Jørgensen and Fath, 2011). 

3.2.5 Fuzzy 

Fuzzy models are based on fuzzy algorithms. This type of algorithms developed by 

Zadeh (1968) are designed to process uncertain or incomplete data. The fuzzy set theory 

defines fuzzy sets as elements that are classified by a grade of membership intermediate 

between full and none membership. This theory differs with the classic set theory 

because the fuzzy sets have not sharp boundaries. This difference can be exemplified 

with the definition of colour. In classic set theory, the shades of a certain colour are 

defined as specific names such as, in the case of blue, baby blue, light blue, dark blue, 

navy blue… On the other hand, the fuzzy set theory would define all this colours as 

more or less blue. The definition of the statement more or less blue is not immediate 

and even more difficult to define. It is not a closed boundary or definition, but a fuzzy 

set, which contains all the members of the group blue. Fuzzy models allow to use fuzzy 

sets to build statements and algorithms for its application on regular logical and 

arithmetical operations (Salski, 2006). 

The use of fuzzy models is quite suitable to ecological modelling. Ecological data is 

usually heterogenic and uncertain, and many times the only available knowledge is 

subjective or expert knowledge. Fuzzy models can be easily combined with quantitative 

information to provide reliable results with poor or incomplete data. The main 

inconvenient of fuzzy models are the lack of specific software, the absence of a precise 

numerical result or the limited complexity of the models build with this methodology 

(Jørgensen and Fath, 2011). 

3.2.6 Artificial Neural Networks 

The Artificial Neural Networks (ANNs) have their origin on the idea of the neural 

networks present on the human and animal brains. The millions of nerve cells present 

on the brain are interconnected forming groups with different fashions and number of 

members. The connection or synapses between neurons are the main responsible of the 

process of learning in our brain. The ANNs have translated this idea into the computer 

science. 

In an ANN, a neuron is defined as a nonlinear, parameterized, bounded function 

(Dreyfus, 2005). If the function is of linear order, it is called linear neuron. Normally, 

the parameterization of the function is performed by two methodologies: 

parameterizing the inputs by including a weight to each of them or by parameterizing 

the nonlinearity of the function included in the neuron (Dreyfus, 2005). 

A neural network can also be classified by the type of connections existing between 

two different neurons. The Feedforward Neural Networks (FNNs) are sets of neurons 

connected together that process inputs that at the same time are composition of the 

functions of its neurons. Information in this type of networks only can flow from the 

input to the output. The networks are formed by two or more layers of neurons. Each 

of the neurons in a layer is connected to every neuron in the previous layer and, if 

desired, to neurons in previous layers. The neurons of the last layer are called output 

neurons and the neurons in the intermediate layers are called hidden neurons (Dreyfus, 

2005). The recurrent neural networks are ANNs where the connection between neurons 
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can be cyclic, meaning that the information available in a certain layer can be returned 

to a previous neuron layer. The definition of recurrent neural networks imply the 

definition of an additional dimension such time, since a neuron can only have one value 

at a certain time. Hence, each connection in a recurrent neural network is assigned a 

time step or delay. In order to present causality, each cycle of connections must have at 

least one connection with zero delay (Dreyfus, 2005). 

The ANNs are black-box models in which a set of inputs is connected with a set of 

layers of neurons that process the information to provide a certain output or set of 

outputs. As any other black-box model, the ANNs need a process of training. The 

training of an ANN consists of the estimation of the parameters of every neuron in the 

network. With a supervised training, the ANNs can be used for the approximation of 

any given function in a finite region of space, given that the function is bounded and 

sufficiently regular (Dreyfus, 2005). 

By the process of training and the use of nonlinear functions, the ANNs can find 

relations between variables out of a heterogeneous database. This, of course, means that 

the result of the model will not present a relation of causality. The model will behave 

just as a black-box. Furthermore, the use of nonlinear functions allows this method to 

be quite parsimonious, this means that it will work sufficiently well despite the quantity 

and quality of the database. Another benefit of the ANNs is the ease of implementation 

and use compared with the rest of models. On the other hand, the main disadvantage of 

the model is that the capacity of prediction of the model will be very limited. Therefore, 

if a sufficiently broad and homogeneous database is available, the use of other method 

based on causality should be considered (Jørgensen and Fath, 2011). 

 

Figure 2. Schematic description of a feedforward neural network (at the left) and a recurrent neural 
network (at the right). The feedforward neural network has an output g(x,w) that depends 
on the input vector x and the neuron layer N defined by the weights w. The recurrent neural 
network have an output g(kT) that depends on the input vector u, the weights w and the 
time unit T. The boxes in the graph represent the delay in the connections (Dreyfus, 2005). 

3.2.7 Spatial 

There are many cases in which processes in nature present important differences in 

space. For example, movement, dispersion and distribution of species (Jørgensen and 

Fath, 2011). Spatial models are models in which the spatial dimension of those 
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processes is accounted. The processes and variables accounted in spatial models are 

similar to the rest of the models presented, with the difference that the spatial dimension 

and time are always considered. 

The addition of supplementary dimensions is, in many cases, the only method to 

represent and study some specific processes and conditions. However, as a general rule, 

the inclusion of a new dimension means adding complexity to a model. The addition of 

spatial dimensions increases the number of parameters and, hence, requires more 

knowledge of the processes (Jørgensen and Fath, 2011). Thus, the main disadvantage 

of spatial models is the requirement of large databases that are employed for a more 

difficult calibration and validation of the model. With this extra difficulties, the spatial 

models are reserved to studies in which the spatial distribution is the key variable and 

in which its consideration is crucial for the analysis (Jørgensen and Fath, 2011). 

3.2.8 Individual-based or agent-based 

Some areas of research in ecology cannot consider an ecosystem from a holistic 

approach as the structurally dynamic models do. Sometimes, the individuals of one or 

two species in an ecosystem are the centre of that investigation. An individual based 

model is a model that focuses on the behaviour and interaction of the members of one 

or more individual species in a system. In an agent-based model, all the individuals, or 

agents, differ from each other and from themselves in time as the life cycle continues. 

This constitutes the main difference between individual-based models and the 

previously described population dynamics models, in which all the individuals of the 

same species are defined uniformly. The properties of each agent in the system 

determine how it interacts, both with the other agents and with the environment 

(Jørgensen and Fath, 2011). 

The rules set for every agent can be simple or very complex. However, independently 

of the complexity of the rules defining the agent behaviour, the agent-based models 

seek for a higher degree of behaviour. The aim of agent-based models is to obtain a 

complex behaviour of a system from the combination of simple rules assigned to 

individuals, which can interact between themselves and the environment (Bandini et 

al., 2009). 

The definition of the agent is, therefore, key for the development of this model type. 

An agent is referred in modelling to a software entity with some level of autonomy and 

with a certain capability to learn from the interaction with other agents and the 

environment (Politopoulos, 2007). The construction of an agent has to consider the 

agent behaviour, the agent-agent interaction and the environment. First, the behaviour 

of the agent has to be adaptive. In other words, the agent has to come with different 

behaviours depending on the conditions of the system, to produce situation-specific 

decisions (Jørgensen and Fath, 2011). The approach to this behaviour can be in the form 

of deliberate or reactive decisions (Bandini et al., 2009). Reactive agents are simple 

agents that adjust their behaviour directly and automatically from the condition of other 

agents and the environment, while deliberative agents produce behaviours not only 

based on the present conditions but also from their knowledge and from past 

experiences. 

Finally, these models are most suitable for the simulation of systems where the 

individuality of the members of the species in that system plays a key role. 

Nevertheless, the agent-based models have as an inconvenient that the definition of a 
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sufficiently advance behaviour of the agent can be very complex and that the database 

required for setting up and validating the model must be large. 

3.2.9 Ecotoxicological 

Ecotoxicology models are a class of models that is used in ecotoxicology research. 

Their main differences with other models relay in the limited information and 

knowledge of the parameters, the use of safety factors and the inclusion of an effect 

component (Jørgensen and Fath, 2011). 

Table 1. Recommended data set characteristics and most suitable problem for the main nine 
ecological models distinguished by Jørgensen and Fath (2011) 

Model type Data set recommended Problem studied 
Dynamic biogeochemical High quality, homogeneous Exchange of matter/energy 

Steady-state 
biogeochemical 

Low quality, homogeneous Exchange of matter/energy 

Population dynamics High quality, homogeneous Population dynamics 

Structurally dynamic High quality, homogeneous Structural changes and adaptation 
are significant 

Fuzzy models Uncertain or only-rules data Any 

Artificial Neural Networks Medium-high quality, 
heterogeneous 

Any 

Spatial High quality Spatial differences 

IBMs1 or ABMs2 - Individuality is relevant 

Ecotoxicological - Toxic substances, distribution and 
effect 

                                                 
1 IBM: Individual based model 
2 ABM: Agent based model 
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4 Methodology and model theory 

In this chapter, the methodology and proceedings followed for the acquiring of the final 

results and subsequent conclusions are explained. The purpose of this chapter is to 

explain in full detail all the steps undertaken in order to provide the resources for being 

able to replicate the experiments and obtain results comparable to the ones extracted in 

this Master Thesis. 

4.1 Data collection 

In this section a brief description of the sampling methodology is provided. The 

measurements employed in this Master’s Thesis were not made by the author. The 

sample data used for the model of this project was obtained by Thygesen (2013). For 

her thesis a four-month sampling campaign was performed. A more detailed description 

of her sampling methodology can be found in her thesis. 

The NORWAT project has been simultaneously taken samples in a project that will 

extend in duration for more than those 4 months. During the development of this 

Master’s Thesis, the NORWAT group proposed the participation in one of the sampling 

campaigns. The NORWAT sampling campaigns are usually undertaken in a single day, 

during which all the studied stormwater ponds are visited. The methodology that is 

followed by NORWAT differs slightly from the sampling procedures made by 

Thygesen (2013). 

4.1.1 Chemical sampling 

The chemical sampling has been performed with a multi-parameter water quality sonde. 

The sonde that has been used for the measurements is the model 6600V2-4 from the 

company YSI. A multi-parameter quality sonde is an instrument equipped with sensor 

that directly registers measurements of several quality parameters from the water 

source. This specific model has the capacity to detect Dissolved Oxygen concentration, 

conductivity, salinity, temperature, pH, turbidity, nitrate, ammonia, and chloride, along 

other parameters. The sonde cannot measure metal concentrations of water. 

The measurements are performed in the surroundings of the intake of the stormwater 

ponds. The sensor of the multi-parameter sonde is introduced in the water of the pond. 

The measurements taken by the sensor are continuous, and can be checked in the screen 

of a small handheld controller. This controller serves, as well, as a memory stick in 

which the results of all the measurements are stored. The procedure can be observed in 

Figure 3. 

During the sampling of the stormwater ponds, no other water quality samples were 

taken. However, during Thygesen (2013) campaign, the water quality sampling was 

complemented with several water samples. The water samples were analysed by ALS 

Laboratory Group (Oslo) in order to measure the concentration of metals, oils and 

Polycyclic Aromatic Hydrocarbons (PAHs) in water. The metals that were analysed 

were Al, Sb, As, Ba, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Mo, Ni, P, K, Si, Ag, 

Na, Sr and Zn. Three anions were also analysed, chloride (Cl-), nitrate (NO3
-) and 

sulphate (SO4
2-). Also the total organic carbon (TOC) was measured. 
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Figure 3. Picture of the water quality sampling with a multi-parameter water quality sonde. 

4.1.2 Biological sampling 

The purpose of the biological sample is to determine which species of organisms live 

in the stormwater ponds and measure the abundance of each of the species. To 

guarantee that the sampling is representative of the reality, between two and three 

samples are taken in different sites within the same pond. 

The samplings are performed with a kick net. The specifications of the kick net are 

according to Thygesen (2013) of an opening of 30x30 cm and a mesh size of 0.45 mm. 

The procedure of the sampling is the same in any case. The net is introduced in the 

water at one side of the pond. The net is swept five times in the same spot, trying to 

cover all the depth. The procedure can be observed in Figure 4. In the case of the 

presence of ice on the pond’s surface, the place with the thinnest ice cover is sampled. 

The ice cover is broken and the pieces of ice are removed so not to enter in the net. 

The organic material caught with the net is then placed in a sampling tray. To preserve 

the samples for the posterior analysis, ethanol is added to the organic material and the 

solution is poured into a plastic bag. The bags containing the biological samples can 

then be stored without risking the validity of the sample. The process can be seen in 

Figure 4 and Figure 5. 

While the biological samples taken by Thygesen (2013) were almost analysed 

immediately, the samples taken by NORWAT have not been analysed yet. The 

biological samples taken by NORWAT will be sorted to the species level when 

possible. In Thygesen (2013), due to time restrictions, the samples were sorted to family 

level, and in some cases to species level. 
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Figure 4. Picture of the biological sampling process. The kick net is swept five times from one side to 
the other in the same spot, covering all the depth of the pond. 

 

Figure 5. Picture of the biological sampling process. The biological sample is placed in a sampling 
tray, where ethanol is added for preserving the sample. Afterwards, the sample is stored in 
a plastic bag. 
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4.2 Literature review 

In first place, a literature review was conducted. The aim of the review was to provide 

a guide with the information that is required for a basic understanding of the motives, 

development and initial conditions in the field that this document approaches. 

The background is mostly focused on the review of the different types of ecological 

modelling that have been developed in recent years. It is not the intention of this section 

to be a reference document, but to provide enough resources to acquire a basic 

knowledge of this particular topic. Also, it has the aim of supplying references to 

additional documents supporting the links that allow the broadening of this piece of 

knowledge. 

4.3 NORWAT data 

The raw data were available through the work performed by Thygesen (2013). This 

document contains several datasheets containing the results of several water quality and 

biological analyses performed during four different months during 2013. Additional 

data for sediment quality were provided by NORWAT members, although no reference 

was given, since the data have not yet been published. 

In this section, the different proceedings applied to the raw data provided by Thygesen 

(2013) and sediment quality data are described. 

4.3.1 Water quality data 

The water quality data were inside a excel file with extension .xlsx with the name 

WaterQuality. The file contained two different worksheets, WaterQuality and 

Vanndata. The first worksheet contained the raw data, while in the second worksheet 

the data were slightly modified for its introduction in the software program CANOCO. 

The two sheets contained the same chemical analysis results, so the WaterQuality 

worksheet was employed, since it contained the complete names and information about 

the month in which the samples were collected. 

Water quality data were measured in twelve different stormwater ponds: Skullerud, 

Taraldrud North, Taraldrud Junction, Taraldrud South, Nøstvedt, Vassum, Idrettsveien, 

Nordby, Ennebakk, Fiulstad, Såstad and Karlshusbunn. A detailed description of the 

studied stormwater ponds can be found in Thygesen (2013) . The measurements were 

taken once per month during the months of April, June, August and October in 2012. 

Generally, only one sample was taken. However, in three ponds, Idrettsveien, Nordby 

and Karlshusbunn, two samples were taken, one per side of the pond. 

The first column contained the complete name of the pond that was analysed and the 

month in which the sampling was performed. The second column contained an 

abbreviated code for the pond and month. According to Thygesen (2013), the code was 

introduced for simplifying the analysis of data in CANOCO. The rest of the columns 

contained the numerical values of the concentrations of 28 variables. The variables 

contain 23 different elements and 5 additional data: Total Organic Carbon (mg/l), 

Temperature (C°), Oxygen (mg/l), pH and Conductivity (µs/m). 

The water quality data supplied were not modified and no work was performed over it. 

4.3.2 Sediment quality data 

The sediment quality data were also provided in an excel file (.xlsx file extension) 

named Sediment_chemical data. The file contained a single worksheet, Tulostaulukko. 
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The sheet contains 55 columns, from which the 4 first are filled with information about 

the samples, Sample ID, Sample name, Product Code and Place. The 51 remaining 

columns contain the results of the chemical analysis of the sediment. There are two 

different groups of chemical compounds, single element concentrations and 

hydrocarbon compounds. 

The data provided in the data file contain the analysis results of 32 samples. Each 

sample corresponds to a different pond. Hence, the sheet contains data of 32 different 

ponds. From these 32 ponds, there are only 9 sets of data corresponding with the ponds 

contained in the water quality data file. Thus, the sediment quality data of 3 pounds, 

Fiulstad, Såstad and Karlshusbunn, were not recorded. According to the NORWAT 

project coordinators, some of the ponds were not monitored after the first analyses due 

to some of them not working properly at the time when the samples were taken. Only 

the sediment data of the ponds where the water quality data were studied were used. 

The sediment data contained only one analysis per stormwater pond. The sediment 

samples were taken between 2013/04/30 and 2013/06/27. According to NORWAT 

researchers, sediment quality does not vary drastically between different months; 

having remained stable after a first set of samples was obtained. This is consistent with 

literature, where German and Svensson (2005) found very little variations in sediment 

quality provided no extreme contamination events occur. Considering these facts, the 

quality data for the sediments were assumed to be constant and equal in the 4 months 

of measurements of water quality data. Furthermore, the neural network models with 

which the data were modelled, introduce an element of randomness into data, as they 

assume that there is an associated uncertainty to them (Dreyfus, 2005). 

For modelling purposes, the analysis data were modified and processed. Some of the 

element and hydrocarbon columns presented data with the less-than sign. The meaning 

of this was not provided in the excel file. Nevertheless, it can be safely assumed that 

the less-than sign corresponds to measurements where concentrations were below the 

detection limit of the sampler. The treatment of data below the detection limit is not 

obvious. Since the exact registered values for the below the detection data were not 

provided, the only statistical treatment possible was to ignore these data or use a simple 

substitution method (Helsel, 1990). The decision was made to use the detection limit 

values as if the sampler registered the original data. However, some chemical elements 

and the Polycyclic Aromatic Hydrocarbons (PAHs) presented a vast majority of data 

points below the detection limit. Considering that substituting the below detection limit 

with the exact detention limit value would drop the statistical significance of the sample, 

the decision was made to not use those concentrations. The elements that were 

eliminated from the sample data were mercury (Hg), silver (Ag) and selenium (Se). In 

the list of hydrocarbon compounds, all the individual PAHs were eliminated, leaving 

the sum of 16 US EPA PAHs as the only source of data for PAH. 

4.3.3 Biological data 

Two sets of biological data were provided by NORWAT, one excel file containing data 

of taxa sampling and another containing fuzzy data of the vegetal populations in the 

stormwater ponds. 

4.3.3.1 Taxa sampling data 

The taxa sampling data were included in an excel file with the name Artliste taxa, 

species numbers. The excel file contained two worksheets, ORIGINAL and BRUK. The 

two sheets contained the same data and in a similar fashion to that observed in the water 
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quality excel file. The sheet ORIGINAL was the one employed for the extraction of 

data. 

The data were distributed in 118 columns. The first column contained information about 

the sampling site, the month when the sample was collected and the part of the pond 

where the sampling was taken. The second column contained a code for the 

identification of each sampling for its use in CANOCO. The remaining 116 columns 

contained the number of individuals of each of the 116 found species for every sample. 

If a sample contained individuals of a specific species or taxa then the number of 

observed individuals was introduced in the corresponding cell. If no individuals were 

observed then the cell was left blank. 

The taxa sampling was performed in the exact same ponds as the water quality sampling 

was done. Nevertheless, the number of sampling tests carried on differed. While in the 

water quality analysis one sample was taken per month and pond during the taxa 

sampling 5 samples were generally taken. As explained in section 4.1, the sampling 

methodology consisted of three samples with the net, one in the inlet and two in the 

main basin, and two traps. However, for some months, one or more of the subsamples 

are missing. Also, in some stormwater ponds 6 subsamples were taken in a single month 

(Idrettsveien and Karlshusbunn). 

The taxa data were processed considering each of the ponds as a single habitat, and 

hence, unifying the data from the subsamples into a set of values representing the 

totality of the pond. Due to the high variability in the number of subsamples taken in 

each pond and month, the sample mean value of each species was considered. This 

value was obtained by summing the number of individuals found in every subsample 

collected and dividing that number by the total of subsamples. With this modification, 

the data from different months and ponds could be compared. 

Using the modified data, three biodiversity indicators, the Species Richness, the 

Shannon index and the Inverse Simpson index were calculated.  

4.3.3.2 Aquatic plant sampling data 

The aquatic plant survey data were included in an excel file with the name 

Damundersøkelse-planter-data. The excel file contained two worksheets. 

In the first worksheet, with the name Totalliste damdeler mengde, an account of the 

species encountered in each pond and their frequency are presented. The aquatic species 

in this sheet are divided depending on if they were seen in the water or at the shore of 

the stormwater pond. The first column of the sheet presents the common name of the 

aquatic plant accounted, while the second column contains the scientific name. The 

following columns contain the frequency of appearance of the species in the different 

ponds. The frequency of appearance in some of the ponds is independently accounted 

in the inlet and the main body of the pond. For the two groups of aquatic plants (water 

and shoreline plants) the total number of species present in each pond and the total 

number of ponds in which the aquatic plant was found were accounted. Hence, the 

worksheet contains information of aquatic plant species in every pond, the number of 

species present in every pond and the number of ponds in which each plant species was 

found. 

In the second worksheet, named Forekomst damkompleks, the two groups of plant 

species are mixed together and the total number of aquatic plant species for each pond 

is calculated. Neither the data contained in the first worksheet nor the data in the second 

were modified. 
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4.4 Biodiversity measurement 

Biodiversity can be defined as “the structural and functional variety of life forms at 

genetic, population, community, and ecosystem levels” (Sandlund et al., 1992). This 

definition includes two important concepts. First, the biodiversity is not only the 

measurement of the number of individual species, but of a more complex structure of 

interrelated forms of life. Second, there is not only one type of biodiversity, but several 

biological levels of biodiversity (Van Dyke, 2008). 

Considering these two concepts, any measurement of biodiversity must include 

information about what feature of biodiversity is measured, the level of biodiversity 

explored, and the dimension of that level (Van Dyke, 2008). There are several levels of 

biodiversity such as genetic, species, community or ecosystem diversity. Despite this, 

the term biodiversity is most often used at the species level (Colwell, 2009). 

The dimension of the biodiversity levels is generally divided in three, which are defined 

by the alpha, beta and gamma diversities. The alpha diversity measures the mean 

species diversity within an ecological community, or, in other words, at a local scale, 

for example, sample sites. The beta diversity is the diversity among different ecological 

communities. This provides an understanding of biodiversity at a regional scale. The 

gamma diversity is defined as the measurement of the total diversity across a landscape 

level. The gamma diversity is the product of the alpha and beta diversities across the 

landscape. Thus, the gamma diversity measures the diversity of different types of 

ecological communities across a landscape level (Van Dyke, 2008). In the case of this 

Master’s thesis, the biodiversity will only be measured at a local scale. Hence, only the 

alpha diversity will be considered. 

The first approach to the measurement of biodiversity within an ecological community 

is to obtain a list of species. In this list the number and name of species identified at a 

particular sample site is noted down. The information provided by this measurement is 

quite limited. An improvement can be made by standardizing the measurement of the 

number of species per sampling area or per a determined number of observations (Van 

Dyke, 2008). This biodiversity measurement is called species richness. The species 

richness is defined as “the number of species of a particular taxon or life form that 

characterize a particular biological community, habitat, or ecosystem type” (Colwell, 

2009). However, the only measurement of the species richness would not give any 

information about the abundance of each of the species. The evenness is the 

measurement of the abundance of each species relative to the others in the same 

community, habitat, or ecosystem type (Maurer and McGill, 2011). 

Thus, the species richness and the evenness are the basis for other measurements of 

biodiversity. There are many other formulations, which mostly measure both species 

richness and evenness, and in some cases, even other biodiversity qualities. This 

biodiversity metrics are called biodiversity indices (Van Dyke, 2008). In this thesis, two 

of the most relevant and widely employed biodiversity indices will be employed: the 

Shannon index and the Inverse Simpson’s diversity index. 

The Shannon index (Equation 4.1) is probably the most widely used diversity index. 

The Shannon index is based on the Shannon’s information theory. Thus, the Shannon 

index measures the uncertainty of an individual selected at random from a population 

being of a certain species. The more species there are and the more nearly even their 

distribution, the greater the uncertainty, and, hence, the greater the diversity (Peet, 

1974). 
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D p p    (4.1) 

where: 

 DShannon is the Shannon diversity index. 

 pi is the percentage of abundance within the community by the ith species. 

The Simpson’s index (Equation 4.2) is the first heterogeneity index used in ecology 

(Peet, 1974). It measures the probability that two individuals drawn from a sample, 

which can be an infinite or finite community, would belong to the same species (Maurer 

and McGill, 2011). As Simpson’s index is inverse of the diversity, several new versions 

were created to solve this problem. The most common approach is the Simpson’s 

diversity index, which is the inverse of the Simpson’s index. 
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where: 

 D is Simpson’s index. 

 DSimpson is the Simpson’s diversity index or Inverse Simpson index. 

 pi is the percentage of abundance within the community by the ith species. 

4.5 Model theory 

4.5.1 Static black-box modelling 

Out of the several model types analysed in Section 3 the black-box models have been 

selected for its application in this specific case. Black-box models are models that find 

a relation between observed explanatory variables and target variables. They do not rely 

on specific analytical formulations, therefore, not requiring a full understanding of the 

problem to be modelled. The use of black-box models combined with statistical analysis 

allows the modeller to define models with a given accuracy, even when not all the 

variables that might interfere are measured (Dreyfus, 2005). 

As black-box models are only based on observed data, the importance of observed data 

grows compared with analytical methods. The precision and range of application of the 

model depend almost exclusively on the data used for the definition of the model. 

Hence, the use of black-box models should be preceded by a well-defined sampling 

campaign. First, the modeller should define the level of precision that the model will 

require. The error of the measurements will define the overall error of the model. 

Second, the sampling should define variables as frequently and widely as possible, at 

least in the range of values in which the model is most likely to be used. Black-box 

models are not good estimators outside the range of values with which they are created. 

Hence, for creating a model with good predictive capabilities, the observed data must 

cover all the probable values that the variable can have. Also, when the quantity of data 

samples is large, the model can learn more examples and, thus, provide better 

performances. If measurements are already taken, the modeller should check the 

validity of data for its use in a black-box model, and if necessary undertake extra 

measurements. 

In essence, black-box models search for the regression function. The regression 

function uses the value of the measured variables to provide an expectation value of the 

target variables. The first step in the construction of a black-box model consists of 
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making an assumption on how the function will behave (Dreyfus, 2005). If the variation 

of the target variable against the explanatory variables is assumed to be linear, then a 

linear or an affine model might be used. If the relationship is thought to be more 

complex or the results using a linear model are not satisfactory, a non-linear behaviour 

can be assumed. 

According to Dreyfus (2005), the development of a black-box model (non-linear) 

includes three main tasks: 

1. Input variable selection. Choose from all the variables measured only those that 

explains the variation of the target variables. It is done in two steps: reduction 

of the number of variables to eliminate redundancy and rejection of the variables 

not contributing to the model. 

2. Estimation of model parameters. For the development of the model, one must 

choose which type of model (functions defining it) to use and then decide which 

conditions within the chosen model type are best. 

3. Performance analysis. If the calibrated model is not satisfactory, a different type 

of model might be chosen. With the new type of model the process is repeated 

from point 2. 

First, the input variables for the model are selected. Afterwards, a linear model is 

created. If the results are regarded as not satisfactory, a non-linear model is built. The 

non-linear model can be created using different sets of function, from which only neural 

networks will be used. After calibration, the results are analysed, and the calibration 

process is repeated until the results are as good as desired. 

4.5.2 Input variable selection 

Input variable selection is one of the major problems in the application of neural 

networks in real world problems (Giordano, 2014). Some applications of models are 

focused in cases in which the processes and variables are clearly defined or at least 

bounded. Nevertheless, neural networks and other black-box models are applied when 

the knowledge of the processes and variables interfering in them are often unknown. In 

such problems, sampling methodologies usually try to be as broad as the budget and 

technical possibilities allow. Thus, the modeller starts with an ample quantity of 

variables from which the model must be developed. In a set of sampling data with 

numerous variables, three main difficulties may arise: excessively large number of 

variables, the existence of correlated variables (redundant variables) and of variables 

with little or no predictive power (May et al., 2011). 

The number of input variables of a model defines its prediction capacity and general 

performance. An under-specified model is a model with insufficient variables or 

defined by uninformative variables. On the other hand, a model with an excessive 

number of variables, in which many are redundant or uninformative, is called an over-

specified model. According to May et al. (2011), the input variable selection has a major 

impact in the relevance of the model, the computational effort, the training difficulties, 

the dimensionality and comprehensibility. The relevance of the model is affected by 

the selection or not of explanatory variables within those among the input of the model; 

the absence of one, several or even all relevant variables derive in a model with bad 

performance. The computational effort in any model is dependent on the number of 

parameters of the model. In neural networks, the presence of an extra input variable 

adds at least one parameter to the model, which increases the size of the network and 

contributes to extend the computational burden. Additionally, the training becomes 



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2014:127 
27 

more difficult if redundant and uninformative variables are included in the model. In 

one hand, redundant variables add more combinations of possible solutions to the 

network, increasing the number of local minima, which might not be the ones yielding 

the best error. On the other, irrelevant variables add noise to the network and decrease 

the efficiency of the algorithms. Dimensionality relates the number of parameters in the 

model with the number of samples required to maintain a given precision. Thus, the 

greater the number of parameters the more samples would be required, relation that 

grows rapidly. Finally, the comprehensibility or capacity of the network to discover 

relationships between input and output variables is decreased when the number of input 

variables is increased. 

Regarding all these effects of the input variables in the model, a definition of a perfect 

input selection can be yielded. A desired input variable would be a highly informative 

explanatory variable and independent to the other input variables. Consequently, the set 

of input variables would be minimal in the number of variables, reducing redundancy, 

and with maximum prediction capacity over the output, thus minimizing the number of 

uninformative variables. (May et al., 2011). 

There exist numerous algorithms and methodologies for both reducing redundant 

variables and highlighting unimportant variables. However, the existent reviews and 

compilations of methods fail in their effort to classify the methodologies 

comprehensively (May et al., 2011, Hamby, 1994).  

In this section, the classification defined by May et al. (2011) will be  followed and 

some of the methods will be shortly explained. May et al. (2011) review is more recent, 

including more methods, and provides a more reasonable classification of the Input 

Variable Selection (IVS) groups. 

4.5.2.1 Dimension reduction 

Dimensionality reduction methods are not exactly defined as IVS methods. Their main 

aim is the reduction of the number of input variables for minimization of the 

computational burden. The field of application of this type of methods is essentially 

multivariate data analysis, but are often employed for input selection. 

Several methods exist inside this description, being the Principal Component Analysis 

(PCA) the most well known. Other methods have been developed with PCA in focus 

but modifying some restrictions and limitations of the former, such as Independent 

Component Analysis (ICA) and Curvilinear Component Analysis (CCA). 

4.5.2.1.1 Principal Component analysis 

Despite that its precise origin is difficult to trace, PCA was one of the first statistical 

analysis to be developed (Jollife, 2002). The concept of principal components is to 

reduce the number of variables in a problem to a set of newly created uncorrelated 

variables derived from the original set with the maximum explanatory capacity. 

The PCA method uses the input space or representation space, which contains as many 

dimensions as variables exist in the model, as starting point. Each observation is 

represented as a point in the multidimensional space according to the values that each 

of the variables has. The PCA reduces the dimension of the representation space by 

creating sub-spaces with fewer dimensions where the distribution of the observations 

is as close as that in the input space (Šmilauer and Lepš, 2014). The similarity between 

representations is measured by the total inertia of the scatter diagram, which in 

statistical terms is defined as variance. Thus, the PCA consists of the linear projection 
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of the observations in sub-spaces that maximize the inertia of the scatter diagram 

(McGarigal et al., 2000). In this way, the first axis in PCA would be the axis to which 

variance of data is maximum, followed by a second orthogonal axis to which the 

variance of the data projected from the first axis is maximum, etc. 

From a mathematical perspective, the PCA of a data set X is developed as follows. 

1. The mean value of each variable is subtracted. 

2. The covariance matrix is calculated. 

3. The eigenvectors of the matrix are calculated. 

4. According to the eigenvalues, a ranking of eigenvectors is performed. 

5. Select the number of desired principal components from the ranking. 

PCA are usually represented in 2 dimensions, the first principal component in the 

abscissa and the second component in the ordinate. The immediate plot in this situation 

would be the projection of the observations in the new plane. The information of such 

a representation is quite limited. Due to this, the PCA are always represented in biplots. 

A biplot represents the observations but also display the relative positions of the 

variables in the two dimensions defined by the two first principal components. 

Representing the two plots simultaneously provides useful additional information about 

the relationship between variables and observations (Jollife, 2002). An example of a 

PCA biplot can be seen in Figure 6. 

For dimension reduction purposes, the PCA is employed by substituting the initial 

variables with the principal components of the analysed data. However, not all the 

principal components are required, since only the first principal components retain the 

vast majority of the variability. Hence, for the dimension reduction, a set of the most 

relevant principal components is chosen. Nevertheless, it is not clear how to decide 

whether a principal component is relevant enough or not. Thus, the number of principal 

components is chosen by the percentage of explanation of the overall data that each of 

the principal components contain. A common method for determine the number of 

components to choose is based on the scree plot. The scree plot is the representation of 

the percentage of explanation of the principal components against the order of the 

principal components. One method establishes that the last relevant principal 

component is the principal component in which the gradient of the cumulative 

variability curve changes in slope. Another method, more conservative, declares that an 

appropriate limit for the principal component selection is that where the cumulative 

variability reaches the 95%. In Figure 7, an example of a scree plot is shown. 
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Figure 6. Example of a PCA biplot. The isolated dots represent the projections of the observations in 
the new axes, while the lines display the variables. 

Nevertheless, the use of PCA for dimension reduction has some flaws. First, the PCA 

assumes linearity in the mixing of input variables, and between them and the output 

variables. If there is any non-linear relationship between data, the PCA will fail in 

finding it and, even more, will linearize the relationship after the linear projections. 

Second, the PCA transforms the original variables into a new set of orthogonal 

uncorrelated vectors with explanatory basis. Hence, after the transformation the identity 

of the original variables is lost. Thus, it is not possible to account the contribution of 

each variable to the variance of the final output (May et al., 2011). Thus, if only the 

first principal components are chosen, but a later principal component explains the 

variance of a single important variable, the information contained in that variable would 

be lost (McGarigal et al., 2000). 
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Figure 7. Example of a scree plot. The bars represent the eigenvalues of the principal component 
axes, while the line represents the cumulative variability explained by the PCA axes. 

4.5.2.1.2 Other dimension reduction methods 

Considering the flaws of PCA, data analysts have developed several different 

dimension reduction methods. Mainly, the new methods focus on the problem of non-

linear data. The Independent Component Analysis (ICA) is an alternative methodology 

to PCA that is usually employed in signal processing. Since ICA is not restricted to 

linear correlations, it has been more often used with non-linear datasets (McGarigal et 

al., 2000). The Curvilinear Component Analysis (CCA) is also a nonlinear 

dimensionality reduction method, often employed in data analysis. The method is 

employed to represent data structures distributed in a nonlinear manner (Dreyfus, 

2005). 

4.5.2.2 Variable selection 

The Input Variable Selection (IVS) methodology consists of the use of algorithms for 

selection of the input variables that maximize the explanatory capacity of the input 

minimizing the total number of variables. The IVS algorithms have been usually 

classified into three kinds, wrapper, embedded, and filter algorithms (May et al., 2011). 

Wrapper algorithms are the simplest IVS algorithms. Wrapper algorithms treat IVS as 

part of the optimization process of the model. Thus, the efficiency of a wrapper model 

for IVS depends on the ability of the selected model to learn the relationships between 

input and output variables. One of the most simple and used algorithms among the 

wrapper algorithms is the Single Variable Regression (SVR) method. The SVR 

algorithm consists of the training of a model with just one variable at a time, and 

measuring the error of the model with a test data set. Depending on how well the input 

variable explains the output, a ranking of input variables can be built. Furthermore, the 

algorithm includes a statistical bootstrap method for determining whether a variable 

0

20

40

60

80

100

0

1

2

3

4

5

6

7

8

9

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

C
u

m
u

la
ti

ve
 v

ar
ia

b
ili

ty
 (

%
)

Ei
ge

n
va

lu
e

Axis

Scree plot



CHALMERS Civil and Environmental Engineering, Master’s Thesis 2014:127 
31 

contributes to the explanation of the result or not. In this case, the bootstrap method 

consists of the random selection with replacement of the samples of the input variable. 

Thus, the model is trained several times, once using the original variable, and several 

(many) more using the randomized variable. When the error of the model containing 

the original variable is greater than a certain percentile of the randomized variable error, 

then that variable is rejected. The main flaw of the SVR method is that it does not 

consider the existence of redundant variables, and using the method can yield in a set 

of many redundant variables. Therefore, a dimensionality reduction pre-processing step 

is required (May et al., 2011). 

Embedded algorithms are algorithms that are embedded or directly incorporated inside 

the training algorithm of the model. Embedded algorithms are similar to wrapper 

algorithms with the difference that only one model is trained. Both wrapper and 

embedded algorithms are based on iterative processes. In embedded algorithms, instead 

of iterating different models for each variable, as in the wrapper algorithms, only a 

single model, containing all variables is iterated. Also, while wrapper algorithms 

consider model performance of each variable at a time, the embedded algorithms can 

account for the impact of each variable in the model performance (May et al., 2011). 

Finally, filter algorithms are algorithms not based in any model. This means, that the 

process of IVS can be performed even if the type of model has not yet decided. Filter 

algorithms test relevance of individual or combinations of variables independently of 

the model to indicate which the most important variables are. Within the filter 

algorithms to different classes can be distinguished: the ones based on linear 

correlations and the algorithms based on mutual information (MI) criteria, which is a 

theoretic measurement of the dependence between variables. In the group of linear 

correlation algorithms, two methods are highlighted: the rank correlation method and 

the partial correlation method. The two methods are based on the classification of 

variables in base of the Pearson correlation between the input and the output variables. 

The difference between the rank and the partial correlation methods relies on the 

consideration of redundancy. While rank correlation does not consider it, the partial 

correlation includes a term for testing the correlation between input variables. The 

linear correlation methods have the flaw of only considering linear relations. Due to 

this, the mutual information methods were developed. Mutual information methods are 

more capable of identifying relationships when data seems to be chaotic or non-linear 

(May et al., 2011). 

4.5.3 Artificial Neural Networks (ANNs) 

4.5.3.1 Simple neuron 

A neuron is defined as a nonlinear, parameterized, bounded function (Dreyfus, 2005). 

The neuron or simple neuron is the basic unit that composes a neural network. A single 

neuron is composed of three basic elements or operations: 

1. Synapsis. The synapsis is the link that connects the neuron with the 

previous neurons or inputs. The synapsis is characterized by the weight of 

the bond between the two elements. The weight is used for prioritizing 

inputs that the model finds to be more important and degrading those not 

affecting the goodness of the model. There are several weight functions, 

although the most employed is the product. Thus, the weight function 

would consist of the product of the neuron input p and the weight w. The 
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result is called weighted input and is passed to the following element in the 

neuron as an input. 

In a structure with more than one input, there would be a weight scalar for 

every input to the neuron. The weight function would be the scalar product 

of the input and the weigh vector. 

2. Bias. The bias is introduced in the neuron to account for the uncertainty of 

the input. Usually the bias is added to the weighted input as a scalar. The 

result is called net input, n. The bias is applied to the weighted input as a 

single element and not to each of the input elements. Hence, developing 

the equation for an input vector of R elements: 

 1,1 1 1,2 2 1,R Rn w p w p w p b         (4.4) 

3. Transfer or activation function. The activation function is a function that 

limits the amplitude range of the output of the neuron. Usually this range 

is limited to the closed spaces [0,1] or [-1,1], depending on the function 

used. Although there are several different transfer functions, three of them 

are most important. 

The threshold function transforms the net input into two groups. The 

neurons using this transfer function are referred as all-or-none neurons, 

following the expression: 
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The piecewise-linear function transforms the net input using three different 

linear functions. The linear transfer functions are usually employed in the 

final layer of multilayer layers. For a piecewise-linear function with an 

amplification factor of 1, the expression of the function is: 
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 (4.6) 

The sigmoid functions are a group of functions that provide an s-shaped 

graph as a result. It is the most common employed type of transfer 

function, as they provide an ideal balance between linearity and non-

linearity. Among the sigmoid functions, one can find the logistic function, 

logarithmic sigmoid function or the hyperbolic tangent function. 

The result of applying these three elements to the input of the neuron gives an output, 

a, that can be used by a new neuron as an input or it can be the final result of the model. 

The structure of the neuron can be finally defined by the equation: 

 ( )a f w p b    (4.7) 

A scheme of a simple neuron with all its components can be observed in Figure 8. 
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Figure 8. Schematic figure of a single simple neuron neural network. 

4.5.3.2 Network 

An Artificial Neural Network (ANN) can be constituted by just one single neuron, as 

the one explained in the former section, or a high number of them. When an ANN is 

formed by more than one neuron the neurons can be organized in two dimensions, 

number of layers of neurons and number of neurons per layer. 

When an ANN contains more than one layer of neurons, the structure of the network 

becomes more complex. In a single neuron, the input is combined and computed by the 

neuron and an output of the model is obtained. In a multi-layered network, the first of 

the neuron layers functions exactly the same as in a single neuron model. However, the 

output of this neuron is not the output of the model. The result of the neuron is 

transmitted to other neurons, which use the output of the model as its input. 

Depending on how the output of the neurons are transmitted, two different neural 

network classes can be defined, the feedforward and the recurrent neural networks. The 

difference between the two types of networks is the direction in which the information 

flows. 

The feedforward neural networks are networks where the information only goes in a 

forward direction. The flow of information starts with the input variables and is 

propagated from one layer of neurons to the next until the final output of the model is 

obtained. The result of the transfer function in the first layer of neurons is used as an 

input for the following layer or layers of neurons, in which the process is repeated until 

the output layer of the neural network is reached. 

In a multi-layered feedforward neural network, three different types of layers can be 

found. The input layer is a layer that contains the values of all the variables for every 

sample taken, which are fed to the model. The input layer is not a neural layer, since it 

does not contain neurons. Nevertheless, when accounting the number of neuron layers, 

some authors consider the input layer as a neuron layer. The hidden neuron layers are 

the layers of the model that contain neurons but do not provide an output for the model. 

The hidden neural layers process the output of the previous layer of neurons (or the 

input layer) and fed the following neuron layer with their output. Normally, the transfer 

functions employed in the hidden layers are sigmoid transfer functions, which account 

for the non-linearity to the model. Finally, the output layer is the layer of neurons that 

provide the output or result of the model. The output layer contains as many neurons as 
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target variables are studied in the model. The transfer function of the output layer is 

usually configured to be a linear function for function approximation. A scheme of a 

multilayer neural network can be seen in Figure 9. 

 

Figure 9. Scheme of the connectivity of a multi-layered artificial neural network. Each square 
represent the input for each variable to the model, the circles represent the neurons in the 
model, and the triangles represent each of the output variables of the model. 

The recurrent or feedback neural networks are the most general neural network 

architecture (Dreyfus, 2005). These types of networks allow the information not only 

to flow forward but also backward, to neurons in the same layer or prior layers. The 

definition of such architecture requires the definition of an additional dimension. If a 

neuron of a recurrent network sends the output to a previous layer, in what is called a 

cycle, and no new dimension is added, there would be two inputs simultaneously for 

this neuron. Thus, in order to solve this problem, the dimension of time has to be 

defined. With the inclusion of time and time steps or delays, the information can be 

divided between current values and values from the past. The delays determine the 

moment in time when the connection between two neurons takes place. In every cycle 

there must be at least one connection with delay different than zero. 

4.5.3.3 Preparation of data 

Before undergoing the design of a new neural network, the data to be used in it has to 

be collected and then prepared. The preparation of the sample data can be divided in 

two steps: pre-processing and division of data into subsets. Even before the preparation, 

the user has to check that the data that has been collected will be useful if introduced in 

a neural network. Neural networks are not accurate predicting data outside the range in 

which they have been trained with. Hence, it is important to verify that the collected 

data covers sufficiently the range of values in which the networks is going to be used. 

The pre-processing of data ensures that the network will behave efficiently during the 

process of training. The pre-processing of data usually consists of the normalization of 

data prior to the training. The normalization of the input data has as its aim to prevent 

the transfer functions to become saturated, especially when the functions are sigmoid. 

The normalization of data is performed both with the input and the target data. The 
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network’s output is afterwards reverse-transformed to match the units of the original 

target data. 

The pre-processing of data also verifies that the input and target variables fed to the 

neural networks have no elements repeated. The repetition of samples provides no 

improvement in the network but increases the computational time. Another task carried 

out with the pre-processing concerns the unknown or “don’t care” values in the target 

variables. When one or several of the target variables are missing, the input and target 

values of that sample are eliminated. 

The division of data into subsets is a general proceeding before the training of the 

network. The subsets into which the data is divided are the training, the validation and 

the test sets. The training set is the group of examples used for the training of the 

network. The validation set is a complementary data set that is used for avoiding 

overfitting of neural networks by the early-stopping method. Finally, the test set is a set 

completely separated from the training process. The purpose of the test set is the 

comparison of the prediction capacity of different models. 

The division of data can be performed in different manners. A common methodology 

consists of the division of observations randomly (Lek, 1996, Karul et al., 2000, Lock 

et al., 2014). Other data division method consists of splitting data in three contiguous 

sets (Singh et al., 2009). In other cases, a more complex sort of data division is 

employed. For instance, in Bowden et al. (2006), a Genetic Algorithm (GA) is used for 

data division. With the GA, the data division guarantees that all the patterns in the 

available will be present both in the training and test sets. 

4.5.3.4 Training 

The most relevant property of the neural networks is the ability of the network to learn 

from the information that is provided by the user. With the learning, the network 

improves its performance. The process of learning in neural networks is usually referred 

as training. 

The training of a neural network consists of the progressive adjustment of the weights 

and bias in each of the neurons in order to explain or replicate the information provided 

to the network. In the case of recurrent neural networks, the training would also adapt 

the delays of the synapses to achieve the same aim. According to Haykin (1994), the 

learning process involves three steps. The first step consists of the feeding of an existing 

neural network with new information. With this new information, the neural network 

modifies its parameters in order to “remember” the data. Finally, the neural network, 

with the changes in its structure, responds in a new way. 

For the adjustment of the parameters of the model, first, a measurement of the 

“distance” between the predicted and the sampled values must be defined. This 

measurement is usually called cost function and its purpose is to quantitatively account 

the accuracy of a model by comparing the outputs with the measured data. The training 

of neural networks consists hence of the minimization of the cost function, and thus, 

minimizing the distance between predicted and sampled output. One of the most 

common cost functions, and the one that is going to be used in this thesis, is the least 

squares cost function. The least squares cost function consists of the total summation 

of the squared residuals of the observations in the training set. 

According to Dreyfus (2005), the training of a neural network can be performed in two 

different forms depending on how the samples are managed during training. The non-

adaptative training, or batch training, is a training method that only updates the 
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parameters in the model once all the examples in the training set have been processed. 

On the other hand, the adptative or on-line training, updates the parameters of the model 

every time a new example is found. Therefore, the model can be improved over time, 

even when the training has already taken place. Usually, the training process is 

performed in the first place with a batch training method, and, if later on, more examples 

are available, an off-line training method can be used to further improve the model. 

During the development of this project there was no prediction of new examples for the 

model, so only batch training was employed. Thus, only the insides of the batch training 

processes are discussed in this section. 

The batch training process is quite different if the network that is modelled is linear or 

non-linear to their parameters. In a linear model, the least squares cost function is 

quadratic with respect to their parameters. This means that an absolute minimum value 

might be obtained, and that minimum can be obtained analytically just by solving a 

system of linear equations. If the model is non-linear then the least squares cost function 

is not well defined and can have more than one single minimum. Hence, the selection 

of the most accurate model is not direct, since several different local minima can be 

found during the training process. Also, the process of identifying those local minima 

is not a direct solution of a system of equations but part of a more complex technique. 

The batch training of non-linear neural networks is approached through an iterative 

process. In each iteration, the cost function is computed and a gradient of the cost 

function is estimated. With the gradient, the parameters of the model are updated and 

the process is repeated successively. The most complex element of the training of non-

linear networks relies on the computation of the gradient of the cost function. The most 

common and computational economic method for the estimation of the gradient is the 

backpropagation algorithm. 

The backpropagation algorithm is an algorithm for the computation of the cost 

function’s gradient in feedforward non-linear neural networks. The algorithm consists 

basically of two steps. The propagation step consists of the calculation of the output of 

the network using the input and a random set of parameters in the neural network. With 

the results, the cost function and its gradient are calculated. The backpropagation step 

consists of the calculation of the gradient by the application of the rule of chained 

derivatives repeatedly backwards in the network. A step-by-step development of the 

algorithm can be found in Dreyfus (2005). 

The last step in the training of a neural network is the update of the parameters. This is 

performed using the gradient of the cost function and an iterative minimization 

algorithm. The most common minimization algorithms are the Simple Gradient 

Descend; and several second-order algorithms, such as the Levenberg-Marquardt 

(Hagan and Menhaj, 1994) and the Broyden-Fletcher-Goldfarb-Shanno algorithm 

(BFGS algorithm). Among all of them, the Levenberg-Marquardt algorithm is the 

preferred algorithm in small networks (Dreyfus, 2005, Karul et al., 2000, Hudson et al., 

2013). 

4.5.3.5 Generalization performance 

The selection of the model to be used is the third pillar of the neural network design 

(Dreyfus, 2005). When designing a neural network, the user is interested in achieving 

the greatest generalization properties out of the model. In other words, when designing 

a neural network, the modeller must search for the perfect balance between learning 

capacity and generalization. If the learning capacity of a neural network is set too high, 

the model can learn even the noise of the training set. Thus, a neural network is said to 
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generalize when the model learns the main average patterns of data avoiding falling 

into the random error that the data contain. When the opposite happens, the neural 

network is overfitted or overtrained. If the neural network reduces the learning capacity 

too much in order not to train the random noise, the networks is underfitted. 

Therefore, from a mathematical point of view, the modeller must find a method to select 

the model in which the number of parameters is enough to approximate the regression 

functions but limiting the sensitivity of the model to data noise. This can be performed 

in two different ways, by reducing the number of parameters of the model or reducing 

the effective size of each parameter dimension (Abu-Mostafa et al., 2012). There exist 

several methods for the reduction of the number of parameters such as pruning, greedy 

construction learning, or weight sharing. (Abu-Mostafa et al., 2012). For reducing the 

size of the parameter dimension, two methods are usually employed, regularization and 

early-stopping. 

The first group of algorithms have as an aim the reduction of the effective number of 

parameters inside the network. The pruning algorithms deal with this problem 

eliminating some of the parameters when the algorithm detects that that connections are 

not used for the final result and, thus, could have been adding noise to the solution 

(Reed, 1993). The greedy construction learning proceeds almost opposite, increasing 

the size of the network successively until a good solution is found. With this method, 

the algorithm adds hidden neurons progressively but in the form of a cascade, every 

time a neuron is added the rest of the neurons are kept fixed. The new neuron is set to 

improve the result obtained by the last neuron to be added (Fahlman and Lebiere, 1989). 

Finally, the weigh sharing algorithm reduces the size of the parameter space by sharing 

the parameter values of different neuron connections. 

The second group of algorithms is the most frequently employed generalization 

algorithms. All the methods based on parameter dimension constriction require of a 

special set of data called validation set. The validation set is an independent set of data 

from the training and the test sets. The purpose of the validation set will be explained 

in each case, for the regularization method and the early-stopping method. 

The regularization methodology is based on the concept of the cost function and the 

effect of the function in training. The cost function, most often the least squares 

function, is the function that measures the difference between the output of the model 

and the measurements. During the training of the network, the cost function is 

minimized. When the complexity of the model is too high, the model can overfit the 

data used for learning and then provide a poor generalization of the processes modelled. 

The solution that the regularization algorithm provides consists of the modification of 

the cost function to account for the complexity of the model (Wall, 2007). With this 

new term, the complexity of the model is penalized, even when the error is minimum, 

and favours the simpler models, despite having higher errors. The restriction to the 

complexity is achieved by limiting the value of the squared sum of all the weights of 

the network under some prior decided limit. The most used regularization algorithm is 

the weigh decay algorithm. The main flaw of the system comes from the selection of 

the limit value, for which there are no analytical formulations. The importance of the 

limit selection is crucial since a value too low can result on the overtraining of data, and 

a value too high can result on underfitting of data (Abu-Mostafa et al., 2012). 

The solution to the constraint optimization comes with the validation set. The validation 

set is a complementary data set to the training set. By itself, the validation data is a 

training set, but instead of training the weights of the network, the new data is employed 
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for training the value of the constraint. The validation set is hence used for the 

computation of the out-of-sample error. The out-of-sample error is the error of the 

model outside the data employed during training. The out-of- sample error serves as 

indicator of the generalization capacity of the model. The lower the out-of-sample-error 

is, the greater the generalization of the model will be. However, since the validation set 

is limited in size, the out-of-sample error cannot be exactly calculated but estimated. 

The accuracy of this estimation depends on the size of the validation set, the greater the 

number of points, the more accurate the estimation will be. Nevertheless, there is a 

limited amount of data that has to be shared between training, testing and now 

validating the model. If the validation set is too big, then the training of the model will 

have to be performed with less data and the learning capacity of the model will be 

reduced. If the opposite happens, either overfitting or underfitting might happen. Again, 

no direct mathematical solution for the data split decision is available. Although, as a 

rule-of-thumb, the validation set size is recommended to be set between one fifth and 

one sixth of the total size of data (Abu-Mostafa et al., 2012). 

Early stopping is a different approach to the generalization problem. Whilst the 

regularization method searched generalization by restricting the value of the parameters 

of the model, the early stop method tries to identify the point of the training in which 

the model starts to overfit. As it was explained in the previous section, the training of 

neural networks is done in a recursive way. Every time the weights of the neural 

network are updated during training is usually called epoch. Thus, early stopping seeks 

the epoch of the training where the model has trained the most but before overfitting 

can happen. As with regularization, the identification of this exact point is done with 

the help of a validation set, which is used for the training of the epoch in which the 

model should stop. Hence, the model would be trained as usual, but, additionally to the 

test set, the mean squared error of the validation set would be calculated. The training 

algorithm would normally reduce the mean square error of the training set 

progressively, until a certain limit, either a minimum value or a number of repetitions, 

would be reached. In early stopping, the validation error is also calculated to estimate 

the out of sample error of the model. During a normal training, both errors, the test and 

validation errors, would descend simultaneously firstly. Then, once the model has 

learned the general patterns, the model would start to overfit the training data. When 

that happens, the validation error stops the descending to slowly start to grow, 

separating its path from the training error. When this happens, the algorithm decides 

that the model at the epoch before the overtraining starts is the one that generalizes data 

the best. Since there are some cases when the training algorithm despites finding a local 

minimum can later converge to a better minimum, the algorithm usually continues 

training the model for several epochs more. This is performed to verify with certainty 

that the model has identified its final minimum (Abu-Mostafa et al., 2012). 

4.5.3.6 Model selection 

In black-box modelling is usual to have several different models. They can be models 

of different type, a same model with different complexities or a model with a given 

complexity and different starting conditions, or even models with different 

regularization parameters (Dreyfus, 2005). The final step in the modelling process 

consists of the selection of one out of the different models that have been built. Again, 

the selection is done following the bias-variance trade-off of the model. The model with 

the best predictability and with the least overfitting is the wanted model. 

Despite that there are several model selection methodologies, all of them are based on 

the same principle (Dreyfus, 2005). This principle is the generalization error. The 
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generalization error is a measurement of the error that the model would present over 

unseen data (Murphy, 2012). Thus, the model with the best predictability and with the 

least overfitting would have the lowest generalization error. A perfect model would 

hence have no generalization error. However, since prior to the building the functions 

governing the model are unknown, the generalization error cannot be analytically 

calculated. The generalization error has to be estimated. 

Estimation of the generalization error requires an independent set of data not used 

during training (Abu-Mostafa et al., 2012). The previously mentioned validation set, 

despite not being used during training, is employed for the process of early-stopping or 

regularization. Hence, this data set cannot be used for the estimation since the 

estimation of the generalization error would be biased (Haykin, 1994). There is a need 

for an additional independent data set, the test set. 

The introduction of a new data set can become problematic when the available amount 

of data samples is limited, for the total data samples have to be divided in training, 

validation and test set. Thus, with the introduction of the test set, the number of data 

samples used for training purposes has to be reduced (Abu-Mostafa et al., 2012). Hence, 

the generalization performance of the trained model would decrease. Furthermore, the 

estimation of the generalization error is also dependent on the size of the test set. The 

larger the test set is, the more accurate the estimation of the generalization error would 

be. This constitutes a problem difficult to solve, since either the performance of the 

model or the accuracy of the generalization error has to be prioritized over the other. 

However, with the use of a technique called cross-validation this dilemma can be solved 

(Abu-Mostafa et al., 2012). 

Cross-validation is a technique used for the estimation of the generalization error of a 

model based on the use of a test set. The cross-validation technique allow to 

simultaneously use a proportionally large training set and to be able to estimate 

accurately the generalization error (Dreyfus, 2005). This is achieved by dividing the 

available data into D subsets. Then, the model is trained iteratively using D-1 subsets 

of data. For each of the trained models, the generalization error is estimated using the 

remaining subset of data, which in this case plays the role of test set. In the end, D 

different models are trained and D estimations of the generalization error are obtained. 

Finally, the estimation of the generalization error is calculated as the average value of 

the D generalization error (Murphy, 2012). 

Any number of subsets can be used in the cross-validation technique. However, it must 

be noted that the accuracy in the estimation of the generalization error increases with 

the number of subsets (Abu-Mostafa et al., 2012). Also, the number of models to be 

trained increases with the number of subsets, increasing simultaneously the 

computational effort. Hence, the leave-one-out cross-validation (LOOCV), which is the 

cross-validation technique when the number of subsets equals the number of data 

samples, would yield the best estimation of the generalization error. Nevertheless, the 

computational effort required for that accuracy might not be justified. Thus, it is desired 

to have a balance between accuracy and computational effort. In literature, the most 

common cross-validation techniques are the 5-fold and 10-fold, which divide data into 

five and ten subsets respectively (Dreyfus, 2005, Abu-Mostafa et al., 2012, Murphy, 

2012). These two divisions are said to preserve computational time while providing a 

sufficiently accurate estimation of the generalization-error (Murphy, 2012). 
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4.6 MATLAB 

MATLAB is a computer program developed by MathWorks. MATLAB is a numerical 

computing environment broadly employed in academy and industry. The software 

includes a programming language, which is backed up by a great quantity of predefined 

functions. The combination of the MATLAB programming language and the functions 

included in it, simplifies in a great degree the development of quite complex programs. 

For this thesis, the version of MATLAB 7.12.0 (R2011a) was employed. The software 

was provided by Chalmers. 

4.6.1 Neural Network Toolbox 

The functionality of MATLAB is further boosted by the inclusion of Toolboxes. The 

MATLAB toolboxes are complements to the MATLAB basic package that extend the 

amount of included functions in MATLAB in a specific area. 

For this specific thesis, the Neural Network Toolbox was used. The Neural Network 

Toolbox implements into MATLAB a series of functions that allow the user to create 

most of the types of ANNs of almost any type of complexity. In fact, the toolbox defines 

four types of user depending on the level of complexity and changes that they apply 

into the toolbox. Thus, a user can just simply employ a basic graphic interface, which 

provide a limit range of modelling options, or go as deeper as desired in order to modify 

the functions designed by MATLAB behind the basic interface. 
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5 Results 

5.1 Artificial Neural Networks (ANNs) 

5.1.1 Input variable selection 

5.1.1.1 Input variables 

The original input data to the model consisted of water quality measurements, sediment 

quality measurements, vegetation presence, macro invertebrate diversity, and generic 

information about the properties and location of the stormwater ponds. The number of 

observations was not uniform, being 12 ponds for water quality and 9 ponds for the 

sediment data. Due to this difference, a decision had to be made between using or not, 

the sediment data. The use of the sediment data would imply that the unmatched water 

quality observations should be discarded, and therefore, the size of the training set 

would be reduced. 

5.1.1.2 Dimension reduction 

The dimension reduction technique that was used for the building of the model is 

Principal Component Analysis (PCA). As explained in the previous chapter, PCA is a 

method used for dimension reduction of the input variable space. The technique consists 

of the recursive projection of the observations on planes, orthogonal among them, 

defined by the axis of maximum inertia, defined by the variance. Thus, the new axes or 

principal components can hence be used for explaining the input data in a more efficient 

manner, since they are orthogonal, thus independent, and they maximise the variance 

of input data. 

The purpose of the PCAs was to reduce the total number of variables, reducing 

redundancy of data. Due to the separation between water and sediment quality data, two 

different PCAs were made. In Figure 10, the results of the PCA analysis of the water 

quality data is presented, while in Figure 11, the sediment quality data results are 

displayed. 

In Figure 10, the biplot of the PCA of the water quality input data is displayed. In the 

figure, the dots represent the projection of the observations in the plane defined by the 

first and second principal components. The vectors represent the projection of the 

variance of the input variables in the new plane. The first principal component is the 

axis with maximum explanation, with a 39.95%. Most of the data are positively 

correlated with this axis. The second principal component explains the 16.99% of the 

data variance. This axis is highly correlated with the group of variables formed by Na, 

Mo and Sb. Three different groups of variables are formed due to common correlation. 

The group formed by Na, Mo and Sb, correlated to the second component; a group 

represented by K, Ni and Cu and another represented by Al, Cd and Mn, mainly 

correlated to the first component. 

The explanatory capacity of the two principal components displayed is quite limited, 

only representing a 56.45% of variance. It seems necessary to increase the number of 

principal components to explain the input data with sufficient accuracy. An explanatory 

capacity of 95% is regarded as optimal for the representation of data. Thus, using the 

scree plot of the PCA of water quality data in Figure 10, nine components are selected. 

With the selection of these 9 components, approximately the 95% of the variability is 

explained. 
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Figure 10. Principal Component Analysis (on top) and scree plot (on bottom) of the principal 
components of the water quality input data. In PCA the dots represent the projection of the 
observations whilst the vectors represent the projection of the variance of the variables. In 
the scree plot, the bars represent the variance explained by each principal component and 
the line represents the accumulated variance of the principal components. 
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Figure 11. Principal Component Analysis (on top) and scree plot (on bottom) of the principal 
components of the sediment quality input data. In PCA the dots represent the projection of 
the observations whilst the vectors represent the projection of the variance of the variables. 
In the scree plot, the bars represent the variance explained by each principal component 
and the line represents the accumulated variance of the principal components. 
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Finally, the results of the PCA of the sediment quality input data are presented in Figure 

11. In this case, the first principal component explains the 60.26% of data variance. 

Again, most of the variables display a positive correlation with the axis that represents 

the first principal component; only Uranium and Dry matter show negative correlation. 

The second principal component lowers the explanatory capacity to a more modest 

16.36% of data variance. Here, the correlation of the variables with the second principal 

component is divided. Several groups of variables with similar behaviours can be 

defined. One group represented by Fe, Si and Gasoline Fraction is mainly correlated 

with the second principal component. Another group is represented by Pb, Ba and 

PAHs, and mostly correlates with the first principal component. The same correlation 

is found in a third large group represented by Cu, Zn, K and Ni. 

Despite that the two first principal components explain a 76.62% of data variance, it is 

still not sufficient for an accurate description of the input data. As it has been said, a 

level of 95% of variance explained is regarded as an optimal value. For achieving this 

level of explanatory capacity, a total of 5 principal components have to be selected, as 

seen in Figure 11. 

5.1.1.3 Variable selection 

The variable selection has been made following a filter method. The method that has 

been selected is the simple rank correlation method. The rank correlation is based on 

the relevance measure determined by the Pearson correlation. The Pearson correlation 

is defined by the formula: 
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where x corresponds to an input variable and y corresponds to a target variable. 

The variable selection is performed by ranking the input variables according to their 

Pearson correlation values RXY. Again, the system was divided depending or not the 

sediment data were included. The classification was performed using 3 different 

indicators. 

First the Pearson correlation was calculated for every diversity index and input. Then, 

a ranking of input variables was constructed for each diversity index. Afterwards, a 

number of input values were chosen for each index. Two methods could be followed, 

greedy selection or a Person correlation limit value. The greedy selection consists of 

picking a determined quantity of input variables from the ranking, regardless of any 

other consideration. The limit value of the Pearson correlation is approximated by the 

rule of thumb that says that the absolute correlation of a significant variable has to be 

greater than 2/√n, with n being the total number of observations. Since this last method 

was more specific than greedy selection, the input variables selected for the model were 

chosen by the rule of thumb. 

Applying the rule of thumb to the obtained Pearson correlations showed to be very 

strict. This can be due to either the non-linearity of data or due to the little significance 

of the explanatory variables. Thus, the use of the rule of thumb left very few variables 

as relevant, and those were different for each of the target variables. Due to this, the 

selection of the relevant variables was modified to widen the number of them. Also, for 
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the simplification of the modelling process, the same explanatory variables were 

selected for the three cases. 

The final results of the variable selection process for the Water Quality and the Water 

and Sediment Quality models are presented in Table 2 and Table 3. The results are 

presented for the three biodiversity indicators. As explained, some basic parameters of 

the stormwater ponds are added as variables to the model. These variables are the 

month, Total Organic Carbon (TOC), temperature, dissolved oxygen concentration, pH, 

conductivity, Average Annual Daily Traffic (AADT), age and size of the pond, the 

main basin base type, the presence of tunnel wash, the presence of a pre-basin and the 

presence of a wetland. These variables are compared with the selected principal 

components from the PCA dimension reduction. The principal components are named 

as FW, if the principal component comes from the water quality data, and FS, if it comes 

from the sediment quality data. In the end, the variables selected for the modelling of 

the neural networks were: temperature, oxygen, pH, conductivity, AADT, main basin 

type, tunnel wash, pre-basin, wetland, FW3, and FW8, for the water quality variables. 

For the sediment variables, the variables selected were the same as in water quality plus 

month, FW2 and FW4, FS1 and FS2, and without FW8. 

Table 2. Variable selection for the Water Quality model input data by the Simple Rank Correlation 
method. Three different biodiversity indicators were used: Species Richness, Shannon and 
Inverse Simpson. The values of the Pearson correlation greater than the relevancy limit are 
filled in grey. 

 Richness Shannon Inv. Simpson 

Month 0.070024 0.176744 0.0625287 

TOC 0.113789 0.123323 0.0790544 

Temperature 0.229134 0.167737 0.1639703 

Oxygen 0.339204 0.236533 0.1690786 

pH 0.392570 0.250015 0.1472604 

Conductivity 0.146081 0.095876 0.3269010 

AADT 0.286772 0.370699 0.2137642 

Age 0.027684 0.216685 0.1063507 

Size 0.025403 0.123065 0.1792595 

Main Basin Base Type 0.213663 0.259373 0.2251645 

Tunnel Wash 0.006564 0.253139 0.2941399 

Pre-basin 0.256170 0.275562 0.3632902 

Wetland 0.287597 0.408786 0.0759527 

FW1 0.020926 0.027798 0.0787338 

FW2 0.069463 0.155503 0.1777572 

FW3 0.145075 0.266656 0.0792712 

FW4 0.158225 0.175828 0.033959 

FW5 0.010363 0.072725 0.1715205 

FW6 0.07859 0.185774 0.0203984 

FW7 0.183992 0.085986 0.0330937 

FW8 0.326304 0.072092 0.0197281 

FW9 0.160794 0.023316 0.1537084 
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Table 3. Variable selection for the Water and Sediment Quality model input data by the Simple Rank 
Correlation method. Three different biodiversity indicators were used: Species Richness, 
Shannon and Inverse Simpson. The values of the Pearson correlation greater than the 
relevancy limit are filled in grey. 

 Richness Shannon Inv. Simpson 

Month 0.059480 0.268860 0.1274302 

TOC 0.107384 0.179496 0.1589702 

Temperature 0.222589 0.226668 0.0899987 

Oxygen 0.335649 0.152752 0.3522663 

pH 0.447999 0.392763 0.2756770 

Conductivity 0.146014 0.174646 0.2438978 

AADT 0.252857 0.294554 0.2601740 

Age 0.033166 0.253126 0.0075476 

Size 0.098871 0.009512 0.1241008 

Main Basin Base Type 0.208168 0.200635 0.2284864 

Tunnel Wash 0.021630 0.243983 0.2127753 

Pre-basin 0.231152 0.239219 0.2407430 

Wetland 0.237969 0.334459 0.0536630 

FW1 0.037012 0.032099 0.0499674 

FW2 0.039818 0.138068 0.3417106 

FW3 0.151969 0.420004 0.2387651 

FW4 0.373015 0.323847 0.0563036 

FW5 0.037048 0.115842 0.1220343 

FW6 0.211058 0.099311 0.0136232 

FW7 0.191022 0.033772 0.0759485 

FW8 0.235548 0.033887 0.0621896 

FW9 0.157334 0.068131 0.1539246 

FS1 0.233671 0.291777 0.3184034 

FS2 0.021168 0.296446 0.1123885 

FS3 0.137614 0.100380 0.0505906 

5.1.2 Model 1: Water quality data 

5.1.2.1 Description 

In this section the first models are built and their performance is assessed. These models 

were created employing the water quality variables and general data. The specific 

variable values of all the 12 water ponds used for the creation of this model can be 

found in Appendix 3. However, the most relevant statistics of the variables can be seen 

in Table 4. The input variables of the model were selected in the previous section. 

The target variables of the model are three biodiversity indices: the Richness factor, the 

Shannon Index and the Inverse Simpson Index. The specific target values used for the 

creation of this model can be found in Appendix 2. 
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Table 4. List of input variables for the Water Quality models. The table includes information about 
the mean, maximum and minimum values, as well as the standard deviation for each 
variable. 

Variable Mean Value Max Value Min Value Std Deviation 
Temperature (  ̊C) 11.963 19.500 5.800 3.732 
Dissolved Oxygen (mg/l) 9.729 17.500 4.550 2.361 
pH 7.099 9.740 4.340 1.029 
Conductivity (µs/m) 590.862 1836.000 59.000 473.779 
AADT 33179.800 66500.000 22735.000 12146.418 
Main Basin Type 0.600 0.750 0.250 0.222 
Tunnel Wash 0.356 0.667 0.333 0.084 
Pre-Basin 0.444 0.667 0.333 0.158 
Wetland 0.489 0.667 0.333 0.168 
FW3 0.000 4.475 -4.938 1.488 
FW8 0.000 2.792 -2.010 0.776 

There are two different manners of creating an artificial neural network model in order 

to provide three different outputs. One is to create a single artificial neural network with 

an output layer of three neurons and three outputs. The other would consist of building 

three independent neural networks, each one with a single output. This way, the 

calibration of the number of hidden neurons in the network would be performed 

individually for each network, and better results might be achieved. The drawback of 

the second procedure would be the increased computational time required to train three 

networks instead of just one. Nevertheless, due to the reduced size of the network, and 

the limited amount of samples to be processed by the networks, the computational time 

should not be a problem. Therefore, the decision was to build three different models for 

each of the diversity indices. 

The type of model that was employed is a feedforward artificial neural network. This 

type of model technique, which is further explained in section 4.5.3, consists of a series 

of neurons located in one or several layers and in which data only go in one direction. 

The feedforward ANN is a two layered ANN. Hence, the ANN contains an input layer, 

with as many elements as there are variables in the model; one hidden neuron layer, 

with an indeterminate number of neurons; and an output neuron layer, containing as 

many neurons as outputs are required by the model, which in this case is just one. The 

number of hidden neurons was determined by the calibration of the model, which was 

performed by the use of the cross-validation procedure. 

5.1.2.2 Training 

The training of the models was done following a 10-fold cross-validation method. 

Hence, the whole data set was divided in 10 smaller data sets, forming, thus, a 10-fold 

cross-validation system. This means that the model was trained 10 times, each time 

with nine different sets for training and one for validation. The squared error of the 

validation set was calculated in the training of each of the folds and the mean value of 

the 10 squared errors, the Mean Squared Error (MSE) was obtained. For the training, a 

two hidden layer neural network was used. The initial weights and bias were randomly 

selected in the beginning of the process and the values were kept fixed during the rest 

of the process of training. The cross-validation method was used to determine how 

many hidden neurons were required for obtaining the best generalisation performance. 

A first estimation of the number of hidden neurons required was necessary. This was 

needed for determining the range in which the calibration was performed. Thus, the 
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number of neurons in the hidden layer was estimated to be between 1 and 20. Hence, 

for the calibration of the hidden neurons quantity, a total number of 200 different 

trainings were required. Considering the complexity of the model, such a proceeding is 

computationally affordable. 

The results of the cross-validation process are displayed in Figure 12, Figure 13 and 

Figure 14. The representation of results is the same in the three figures. The abscise 

axis represents the number of neurons used in the training of the model. The ordinates 

axis represents the performance of the neural network in terms of the measured MSE. 

Three different curves are plotted in the figures, first, the training performance curve 

(simple dashed line), then the validation performance curve (point-dashed line), and, 

finally, the total performance curve (filled line). In order to determine the model with 

the best prediction performance, the number of hidden neurons for which the validation 

performance is minimized is marked with a circle. The MSE for that specific case is 

showed in the legend box. 

In Figure 12, the performance results of the Richness factor model are shown. In the 

graph, it can be seen that the validation performance is almost steady for any value of 

hidden neurons. It can also be seen that the training and the overall performance of the 

model decreases with the number of neurons. Thus, the best performance results for the 

training are recorded for the smallest number of hidden neurons. This behaviour can be 

the result of the noise generated by the number of hidden neurons that are not efficiently 

employed by the model. Thus, the higher the number of hidden neurons are in the 

model, the higher the number of hidden neurons that are not used by the model will be, 

and, therefore, the higher the noise in the output will become. Despite this, the lowest 

validation performance is recorded for a number of hidden neurons equal to 16. 

Figure 13 displays the results of the model with Shannon Index as target variable. The 

curves in this case are a bit more unsteady compared with those in Figure 12. 

Nevertheless, the same behaviour can be observed. Neither improvement nor worsening 

of the validation performance is observed with the increase in number of the hidden 

neurons. The effect of the increase of the number of hidden neurons in the training and 

overall performance is the same as in the former case. The increase of neurons implies 

a reduction of the performance. It is likely that the reason behind this behaviour is, 

again, the noise of the unemployed hidden neurons. In this case, it is noticeable that the 

performance of the model for a number of neurons between 1 and 3 is increased. This 

might indicate that the model requires a larger amount of neurons to explain the target 

variable. In the end, the best performance of the validation is achieved for the model 

with 12 hidden neurons. 

In Figure 14, the performance of the Inverse Simpson model is displayed. The three 

performance curves are quite unstable, presenting numerous maximum and minimum 

peaks. However, again, the behaviour is, on average, similar to the observed in the two 

previous cases: the validation performance is more or less steady, while the training and 

overall performances tend to increase with the number of hidden neurons. The best 

validation performance is obtained for the model containing 6 hidden neurons. 
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Figure 12. Calibration of the number of hidden neurons for Richness based on the cross-validation 
error using the water quality data. The simple dashed line represents the error of the 
training set, the point-dashed line represents the validation error and the filled line 
represents the combined total error. The minimum cross-validation error is marked with a 
circle marker. 

 

Figure 13. Calibration of the number of hidden neurons for the Shannon Index based on the cross-
validation error using the water quality data. The simple dashed line represents the error of 
the training set, the point-dashed line represents the validation error and the filled line 
represents the combined total error. The minimum cross-validation error is marked with a 
circle marker. 
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Figure 14. Calibration of the number of hidden neurons for the Inverse Simpson index based on the 
cross-validation error using the water quality data. The simple dashed line represents the 
error of the training set, the point-dashed line represents the validation error and the filled 
line represents the combined total error. The minimum cross-validation error is marked with 
a circle marker. 

5.1.2.3 Model performance 

The final performance of the model was measured with the regression factor, R, of the 

outputs of the model and the measured values of the target variables. With the 

regression factor (R), the performance of the three models can be compared between 

them and, also, with the results of other models found in literature. The advantage of 

the regression factor compared to the MSE is that the regression factor is dimensionless, 

and, hence, it can be used to compare models with different outputs. 

For the final assessment of the model performance, only the models with the number 

of hidden neurons that performed the best in the calibration process are employed in 

this section. Thus, in this section, the mean regression factor values obtained by the 

application of the cross-validation method are calculated. With those values a 

comparison can be made between the performances of the different target variables. 

Also, the regression plots of the models that had the best validation performance among 

the 10-fold cross validation method are showed. 

The mean regression values of the models representing the three target variables, 

Species Richness, Shannon Index and Inverse Simpson Index are presented in Table 5. 

The results show that the variable that presents the best predictability is the Species 

Richness. The regression factor for Species Richness is the best in the overall, the 

training and the validation performances. This is especially true for the training and 

overall regressions, which values are almost twice the obtained for the Shannon and 

Inverse Simpson. The results of the validation regression for Species Richness are more 

modest, but also better than the Shannon and the Inverse Simpson indices. In the case 

of Shannon and Inverse Simpson, the results suggest that the Inverse Simpson index 
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might behave better, most notably the validation regression. Nevertheless, the fact that 

the training regression is lower than the validation regression indicates that the model 

might not be working as well as the raw numbers state. The validation regression cannot 

be higher than the training regression. Thus, in this case, the most probable reason for 

this difference is the lower number of samples used for the estimation of the validation 

performance. Overall, the results of the regression factors for the three models show to 

be rather disappointing. The regression factors that were obtained do not predict the 

target variables with sufficient accuracy. Hence, the use of the models for biodiversity 

prediction would prove to be unsuccessful. 

Table 5. Mean regression values of the ANN models targeting Richness, Shannon Index and Inverse 
Simpson Index in a 10-fold cross-regression method over the Water quality data. The 
regression of all the data set is Rall; the regression of the training data is Rtrain; and the 
regression of the validation set is Rvalidation. The number of hidden neurons used for the 
models is specified for each of the three variables. 

 Richness (n = 16) Shannon (n=12) Inv. Simpson (n=6) 
Rall 0.6046 0.3222 0.3271 
Rtrain 0.6225 0.3195 0.3230 
Rvalidation 0.4624 0.2966 0.3411 

A better glance of what the regression factors displayed in Table 5 look like can be seen 

in Figure 15, Figure 16 and Figure 17, for the Species Richness; Figure 18, Figure 19 

and Figure 20, for the Shannon Index; and Figure 21, Figure 22, and Figure 23, for the 

Inverse Simpson Index. For each target variable, three figures are provided, one for the 

training regression, one for the validation performance, and a final figure for overall 

performance. 

In general terms, the behaviour of the three models can be explained using the same 

terms. The training regression figures show that the performance achieved in this 

process is quite deficient. In every case, the variance of the model outputs is lower than 

the variance of the sample data. Graphically, this means that the regression line of the 

target versus output data has a slope lower than the unity. The models with this 

behaviour tend to perform well for the average cases but fail when estimations outside 

the average are required. 

The figures presented correspond with those models that present the highest validation 

performance. The fact that one or more of the cases of the 10 models trained have a 

high validation performance does not necessary indicate that the model presents good 

prediction behaviour. One has to take into account when observing these graphs that 

the displayed validation performance is not the real performance, but that of one of the 

multiple possible cases employing the available sample data set. A very good validation 

performance might be due to the use of a set of samples that randomly provide good 

match with the target variables. A closer approximation to the real performance of a 

model is obtained with the mean regression values of the cross-validation method. 

In spite of this, the results for the training, validation and overall performance are 

clearly better in the case of the Species Richness variable. This is the same behaviour 

observed with the mean regression values in Table 5. 
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Figure 15. Regression plot of the results of a neural network with 16 neurons and Richness as target 
variable for the training data set. The filled circles represent the data points, being the 
abscise axis the observed values and the ordinates axis the outputs of the model. The point-
dashed line represents the linear regression, which equation is stated in the legend. The 
regression factor R is 0.6411. 

 

Figure 16. Regression plot of the results of a neural network with 16 neurons and Richness as target 
variable for the validation data set. The filled circles represent the data points, being the 
abscise axis the observed values and the ordinates axis the outputs of the model. The point-
dashed line represents the linear regression, which equation is stated in the legend. The 
regression factor R is 0.4667. 
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Figure 17. Regression plot of the results of a neural network with 16 neurons and Richness as target 
variable for the all data. The filled circles represent the data points, being the abscise axis 
the observed values and the ordinates axis the outputs of the model. The point-dashed line 
represents the linear regression, which equation is stated in the legend. The regression 
factor R is 0.6159. 

 

Figure 18. Regression plot of the results of a neural network with 12 neurons and Shannon index as 
target variable for the training data set. The filled circles represent the data points, being 
the abscise axis the observed values and the ordinates axis the outputs of the model. The 
point-dashed line represents the linear regression, which equation is stated in the legend. 
The regression factor R is 0.5193. 
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Figure 19. Regression plot of the results of a neural network with 12 neurons and Shannon index as 
target variable for the validation data set. The filled circles represent the data points, being 
the abscise axis the observed values and the ordinates axis the outputs of the model. The 
point-dashed line represents the linear regression, which equation is stated in the legend. 
The regression factor R is 0.4810. 

 

Figure 20. Regression plot of the results of a neural network with 12 neurons and Shannon index as 
target variable for the all data. The filled circles represent the data points, being the abscise 
axis the observed values and the ordinates axis the outputs of the model. The point-dashed 
line represents the linear regression, which equation is stated in the legend. The regression 
factor R is 0.5140. 
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Figure 21. Regression plot of the results of a neural network with 6 neurons and Inverse Simpson 
index as target variable for the training data set. The filled circles represent the data points, 
being the abscise axis the observed values and the ordinates axis the outputs of the model. 
The point-dashed line represents the linear regression, which equation is stated in the 
legend. The regression factor R is 0.4422. 

 

Figure 22. Regression plot of the results of a neural network with 6 neurons and Inverse Simpson 
index as target variable for the validation data set. The filled circles represent the data 
points, being the abscise axis the observed values and the ordinates axis the outputs of the 
model. The point-dashed line represents the linear regression, which equation is stated in 
the legend. The regression factor R is 0.6115. 
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Figure 23. Regression plot of the results of a neural network with 6 neurons and Inverse Simpson 
index as target variable for the all data. The filled circles represent the data points, being 
the abscise axis the observed values and the ordinates axis the outputs of the model. The 
point-dashed line represents the linear regression, which equation is stated in the legend. 
The regression factor R is 0.4513. 

5.1.3 Model 2: Water and sediment quality data 

5.1.3.1 Description 

In this section the models were created employing the data samples that include water 

and sediment quality variables, and general data of the ponds. The specific variable 

values of the 10 ponds used for the creation of this model can be found in Appendix 3. 

However, the most relevant statistics of the variables can be seen in Table 6. The 

number of data samples available including all variables is smaller than those only 

including water quality variables. As in the previous case, the final input variables of 

this model were selected in the previous section. 

Table 6. List of input variables for the Water and Sediment Quality models. The table includes 
information about the mean, maximum and minimum values, as well as the standard 
deviation for each variable. 

Variable Mean Value Max Value Min Value Std Deviation 
Month 7.000 10.000 4.000 2.262 
Temperature (  ̊C) 12.275 18.880 5.800 3.630 
Dissolved Oxygen (mg/l) 9.445 17.500 4.550 2.333 
pH 7.067 8.590 4.340 0.991 
Conductivity (µs/m) 520.191 1420.000 59.000 405.308 
AADT 35007.000 66500.000 22735.000 13367.517 
Main Basin Type 0.545 0.750 0.250 0.237 
Tunnel Wash 0.364 0.667 0.333 0.097 
Pre-Basin 0.424 0.667 0.333 0.150 
Wetland 0.485 0.667 0.333 0.168 
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Variable Mean Value Max Value Min Value Std Deviation 
FW2 -0.006 10.817 -5.502 2.088 
FW3 -0.405 2.649 -4.938 1.290 
FW4 -0.011 1.191 -2.082 0.676 
FS1 0.000 7.241 -5.164 4.155 
FS2 0.000 4.931 -2.883 2.165 

As previously, the target variables of the model are three biodiversity indices, the 

Richness factor, the Shannon Index and the Inverse Simpson Index. The specific values 

used for the creation of this model can be found in Appendix 4.Three independent 

neural networks, each one with a single output, was created and calibrated. 

As for the Water Quality model, in section 5.1.2, the type of model that was employed 

is a feedforward artificial neural network. Again, the feedforward ANN is a two layered 

ANN. The number of hidden neurons was determined by the calibration of the model, 

which was performed by the use of the cross-validation procedure. 

5.1.3.2 Training 

Exactly as for the Water Quality model, the training was done using a 10-fold cross-

validation system. The squared error of the validation set was calculated in the training 

of each of the folds and the mean value of the 10 squared errors, the Mean Squared 

Error (MSE) was obtained. Again, as a first estimation, the number of hidden neurons 

required varies between 1 and 20.  

In Figure 24, Figure 25 and Figure 26, the calibration of the number of hidden neurons 

for the three models presented is displayed. The representation of results is the same in 

the three figures. The abscise axis represents the number of neurons used in the training 

of the model. The ordinates axis represents the performance of the neural network in 

terms of the measured MSE. Three different curves are plotted in the figures, first, the 

training performance curve (simple dashed line), then the validation performance curve 

(point-dashed line), and, finally, the total performance curve (simple line). In order to 

determine the model with the best prediction performance, the number of hidden 

neurons for which the validation performance is minimized is marked with a circle. The 

MSE for that specific case is showed in the legend box. 

The results of the hidden neuron calibration for the Species Richness target variable are 

presented in Figure 24. It can be observed that the three curves have the same tendency 

of decreasing performance (increasing MSE) when the number of hidden neurons is 

increased. This same behaviour was obtained in the previous section, where the water 

quality samples were employed. The explanation for this phenomenon is again, most 

likely, due to the noise added by the redundant hidden neurons. These neurons do not 

contribute to the explanation of the output of the model in any way. However, the value 

of these neurons after the training process is not exactly zero. This means that there is 

some contribution of these hidden neurons to the final output, but instead of explaining 

the output, it consists of random noise. 

In Figure 24 it is also noticeable that the training of the model presents a maximum 

performance around the 2 or 8 neurons in the hidden layer. The maximum performance 

of the validation set is also obtained in the same range. In the end, the minimum MSE 

is achieved with a model with 7 neurons, as displayed in the legend. 

In Figure 26, the performance graphs of the Shannon Index model are shown. In this 

case, the behaviour of the curves differs from the seen previously. Thus, the training 

performance seems to increase with the number of neurons in the hidden layer. The 
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validation performance seems not to be greatly modified by the number of neurons. 

This curve shows a quite unstable behaviour with several maximum and minimum 

peaks. One of these peaks presents the absolute minimum MSE, specifically for 20 

neurons. Despite that the training performance tends to increase with the number of 

neurons, the results displayed in all the other cases suggest that the number of 

parameters in the model is sufficient. Hence, there should not be any improvement in 

the model if the number of neurons were increased. 

The performance graphs of the Simpson Index are represented in Figure 26. The 

training performance for the Simpson Index target variable shows again a tendency to 

slightly increase the MSE with the number of neurons. This behaviour suggests that the 

number of neurons that are fully employed by the model is quite limited. At the same 

time, all the unemployed neurons contribute to the output with random noise. Thus, the 

more unemployed hidden neurons, the greater the error gets. Nevertheless, this 

tendency is not as relevant as in the two other models observed before. The maximum 

performance is obtained for 6 neurons in the hidden layer. 

 

Figure 24. Calibration of the number of hidden neurons for the Richness index based on the cross-
validation error using the Water and Sediment quality data. The simple dashed line 
represents the error of the training set, the point-dashed line represents the validation error 
and the filled line represents the combined total error. The minimum cross-validation error 
is marked with a circle marker. 
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Figure 25. Calibration of the number of hidden neurons for the Shannon index based on the cross-
validation error using the Water and Sediment quality data. The simple dashed line 
represents the error of the training set, the point-dashed line represents the validation error 
and the filled line represents the combined total error. The minimum cross-validation error 
is marked with a circle marker. 

 

Figure 26. Calibration of the number of hidden neurons for the Inverse Simpson index based on the 
cross-validation error using the Water and Sediment quality data. The simple dashed line 
represents the error of the training set, the point-dashed line represents the validation error 
and the filled line represents the combined total error. The minimum cross-validation error 
is marked with a circle marker. 
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5.1.3.3 Model performance 

The final performance of the model was measured with the regression factor, R, of the 

outputs of the model and the measured values of the target variables, as it was done in 

section 5.1.2.3. Again, only the regression plots of the models that had the best 

validation performance among the 10-fold cross validation method are showed. 

The mean regression values of the models predicting the three target variables, Species 

Richness, Shannon Index and Inverse Simpson Index, are presented in Table 7. As with 

the water quality models, the results show that the variable that presents the best 

predictability is the Species Richness. The regression factor for Species Richness is best 

in the three cases, training, validation, and overall. The difference between the results 

is remarkable, with a regression up to 0.8763 in the training set. The validation 

regression is, however, more discrete, with only 0.4688, but still notably higher than 

the Shannon and Inverse Simpson indices. With all said, the overall performance of the 

Species Richness model is regarded as quite satisfactory. 

Comparing Shannon and Inverse Simpson indices, the results suggest that, in this case, 

the Shannon index might behave better. This is mainly due to the higher training 

regression of this index. Overall, the results of these two regression factors showed to 

be rather disappointing, especially for the training sets. In all the cases, the regression 

factors that were obtained do not predict the target variables with sufficient accuracy. 

Hence, the use of models for biodiversity prediction would prove to be unsuccessful. 

Table 7. Mean regression values of the ANN models targeting Richness, Shannon Index and Inverse 
Simpson Index in a 10-fold cross-regression method over the Water and Sediment quality 
data. The regression of all the data set is Rall; the regression of the training data is Rtrain; and 
the regression of the validation set is Rvalidation. The number of hidden neurons used for the 
models is specified for each of the three variables. 

 Richness (n = 7) Shannon (n = 20) Inv. Simpson (n = 6) 
Rall 0.8612 0.5524 0.5646 
Rtrain 0.8763 0.5713 0.6028 
Rvalidation 0.4688 0.3744 0.3419 

All the regression plots from Figure 27 to Figure 35 represent the best results of each 

of the three models. Three figures are presented for each model. First, the training 

regression, Figure 27, Figure 30 and Figure 33; second, the validation performance, 

Figure 28, Figure 31 and Figure 34; and last, the overall performance, in Figure 29, 

Figure 32 and Figure 35. 

One has to take into account when observing these graphs that the displayed validation 

performance is not the real performance, but that of one of the multiple possible cases 

employing the available sample data set. A very good validation performance might be 

due to the use of a set of samples that randomly provide good match with the target 

variables. A closer approximation to the real performance of a model is obtained with 

the mean regression values of the cross-validation method. 

In general terms, the different figures show the same behaviour indicated by the average 

values in Table 7. Thus, the results of the Species Richness performance are quite good, 

whilst the Shannon and Inverse Simpson performances are poor. However, as seen in 

the water quality models, the variance of the model outputs is lower than the variance 

of the sample data. Graphically, this means that the regression line of the target versus 

output data has a slope lower than the unity. The models with this behaviour tend to 

perform well for the average cases but fail when estimations are outside the average.  
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The results for the training, validation and overall performance are clearly better in the 

case that the Species Richness variable is used. It is remarkable that the regression 

factor of the training set is quite close to the mean regression for the same set in Table 

7. This might indicate that for this target variable the neural network model shows some 

stability. This, at the same time, is a sign that the model is working efficiently and that 

the neurons can find a relationship between variables. A reflection of the good 

behaviour of this model can be found in Figure 28, where the validation performance 

is analysed. The regression factor for the validation set is R = 0.86, which is a good 

result, especially when it is compared with any of the validation performances of the 

other studied models. With the combination of good training and validation 

performances, it can be said that the model is capable of predicting with moderate 

accuracy the Species Richness in a stormwater pond with the given variables. 

 

Figure 27. Regression plot of the results of a neural network with 7 neurons and Richness as target 
variable for the training data set. The filled circles represent the data points, being the 
abscise axis the observed values and the ordinates axis the outputs of the model. The point-
dashed line represents the linear regression, which equation is stated in the legend. The 
regression factor R is 0.8918. 
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Figure 28. Regression plot of the results of a neural network with 7 neurons and Richness as target 
variable for the validation data set. The filled circles represent the data points, being the 
abscise axis the observed values and the ordinates axis the outputs of the model. The point-
dashed line represents the linear regression, which equation is stated in the legend. The 
regression factor R is 0.8570. 

 

Figure 29. Regression plot of the results of a neural network with 7 neurons and Richness as target 
variable for the all data. The filled circles represent the data points, being the abscise axis 
the observed values and the ordinates axis the outputs of the model. The point-dashed line 
represents the linear regression, which equation is stated in the legend. The regression 
factor R is 0.8871. 
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Figure 30. Regression plot of the results of a neural network with 20 neurons and Shannon index as 
target variable for the training data set. The filled circles represent the data points, being 
the abscise axis the observed values and the ordinates axis the outputs of the model. The 
point-dashed line represents the linear regression, which equation is stated in the legend. 
The regression factor R is 0.5923. 

 

Figure 31. Regression plot of the results of a neural network with 20neurons and Shannon index as 
target variable for the validation data set. The filled circles represent the data points, being 
the abscise axis the observed values and the ordinates axis the outputs of the model. The 
point-dashed line represents the linear regression, which equation is stated in the legend. 
The regression factor R is 0.6240. 
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Figure 32. Regression plot of the results of a neural network with 20 neurons and Shannon index as 
target variable for the all data. The filled circles represent the data points, being the abscise 
axis the observed values and the ordinates axis the outputs of the model. The point-dashed 
line represents the linear regression, which equation is stated in the legend. The regression 
factor R is 0.5767. 

 

Figure 33. Regression plot of the results of a neural network with 6 neurons and Inverse Simpson 
index as target variable for the training data set. The filled circles represent the data points, 
being the abscise axis the observed values and the ordinates axis the outputs of the model. 
The point-dashed line represents the linear regression, which equation is stated in the 
legend. The regression factor R is 0.5737. 
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Figure 34. Regression plot of the results of a neural network with 6 neurons and Inverse Simpson 
index as target variable for the validation data set. The filled circles represent the data 
points, being the abscise axis the observed values and the ordinates axis the outputs of the 
model. The point-dashed line represents the linear regression, which equation is stated in 
the legend. The regression factor R is 0.5250. 

 

Figure 35. Regression plot of the results of a neural network with 16 neurons and Inverse Simpson 
index as target variable for the all data. The filled circles represent the data points, being 
the abscise axis the observed values and the ordinates axis the outputs of the model. The 
point-dashed line represents the linear regression, which equation is stated in the legend. 
The regression factor R is 0.5711.  
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6 Discussion 

The discussion is divided in five different points, covering the most relevant parts of 

this Master Thesis work. 

6.1 NORWAT data 

All data employed in the models built in this thesis were provided by the NORWAT 

project. The provided data, which details can be seen in section 4.3, consisted 

essentially of three major parts, water quality, sediment quality and biological sampling 

data. Measurements of water quality and biology samples were taken in 11 different 

stormwater ponds along important roads near Oslo (Norway). The sediment quality was 

sampled in some of these ponds but not in all of them. Also, the sediment samples were 

taken only once during the campaign. 

The primary aim of these samplings was the monitoring and study of biodiversity in 

stormwater ponds and the effect that different abiotic and biotic factors play in the 

development of biodiversity in these ecosystems. The collected data allowed a basic 

knowledge of the conditions in these ponds and the estimation of average values of 

different values. In Thygesen (2013) a careful analysis of the results of this campaign 

was recorded. The outcomes of this research allowed to reveal some relationships 

between some variables and biodiversity indicators. Further work was developed by 

Clarke (2014), with the study of a different set of variables. In both cases, the authors 

pointed out the need of further sampling and study of the possible relations, as the 

conclusions drawn by the two were not conclusive. 

The use of these data in the models developed in this thesis revealed similar problems. 

One of the most relevant difficulties with the data was the limitation of range of the 

samples. Most of the variables displayed short ranges of values, and in some of these 

ranges only some values were taken. One example is the age of the stormwater ponds. 

The measured ponds had ages between 4 and 13 years. This means that there are 9 

different years that can be measured between the 4 and 13 years. However, only 3 years 

of those 9 were measured, 8, 9 and 12 years. Any possible trend regarding this variable 

would be regarded as inconclusive. The same would happen with other variables such 

as the month when the measurements were taken or the type of bottom material. In other 

cases, the variables present a reasonable range of values, but the number of sample 

points in between the two range limits is insufficient to draw the real trends of such 

variables. 

The fact that most of the variables might be highly interrelated makes the problem even 

more complex. A correct definition of these relationships would require accurate and 

abundant samples, at least, an enough of number of samples to determine with enough 

precision the relations between the different variables and the biodiversity indices. 

Nevertheless, the number of possible factors affecting the biodiversity is enormous. It 

is possible that most of them might not be discovered, and if they are, it is probable that 

the resources for measuring them would be too high. Hence, it has to be assumed that a 

perfect representation of all conditions in these ecosystems is, in fact, impossible. 

6.2 Modelling approach 

In Chapter 3, a review of the different approaches to model ecology was performed. 

There was a great amount of material regarding ecological modelling, a science that 

started around the 1920s and that continues to grow. Several groups of model 
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techniques were identified. Each one has a different aim, a different mathematical 

approach and a different application range (Jørgensen and Bendoricchio, 2001). 

However, the main aim of this project was to study what types of models have been 

applied to biodiversity prediction. In this specific field very little literature was 

encountered, and, the few found were very recent. This means that this research is still 

in its beginning (Jørgensen and Fath, 2011). 

As it has been said many times, the representation of any process in a model requires 

the modeller to identify all variables and relationships (or at least most of them) between 

them and the desired outcome of the model. In the particular case of biodiversity this is 

almost impossible to achieve. The biodiversity is affected by numerous, almost 

uncountable variables, most of them highly interrelated (Ingram and Steel, 2010). 

Therefore, with situation as described, a model is not easily built following a traditional 

deterministic empirical approach. It is not possible to define the exact equations and 

processes happening in reality. Hence, a different approach was required. The answer 

was provided by the Machine Learning systems (Fielding, 1999). These mathematical 

tools do not need the user to input the specific equations relating explanatory and target 

variables. Instead, they find those relationships by themselves. Out of the several 

Machine Learning methods, the Artificial Neural Networks (ANNs) were chosen for 

the development of the final model. 

Despite the great benefit of not having to introduce specific equations in the model, the 

Machine Learning methods presented some important drawbacks. The first, and maybe 

most relevant, is that they are not based on any sort of physical, chemical or biological 

basis. This is a direct consequence of the former statement. The Machine Learning 

methods are based on learning, which means that they form relations between variables 

with examples provided by the user. Hence, the accuracy and validity of the model is 

related with the training data, which limits the applicability of the model in great 

manner. For example, when used for function approximation, as it is the case in this 

project, the Machine Learning methods can only be effectively used for prediction 

inside the range of values of the data set employed for training the model (Murphy, 

2012). Outside these margins, the model has no information to guess how the 

relationships work. As it is obvious, this downside implies a great limitation to its use, 

since for a real application it would be required to learn the model every possibility and 

extreme case. 

This leads to another drawback, the learning of data. The Learning Methods require a 

great amount of training data on examples of real situations to let the model copy the 

patterns. The number of examples required to accurately define a model depends on the 

complexity of the process to model, the quality of the samples and the precision 

required to the model (Murphy, 2012). However, in any of the cases, the amount of 

examples is very high. In some situations in which the process might not be complex, 

the amount of resources required for sampling and building the model would be more 

effectively used trying to implement a different type of model. The cost of the sampling 

would only be justified if the complexity of the process to model is high enough to be 

the only available possibility to make the model. Furthermore, since the knowledge of 

the processes is in many times very limited, there are some variables that are not 

acknowledged and, hence, not measured and introduced in the model. 

A third and final drawback is also related to the sampled data and the involved error. 

Any sample is always accompanied by some uncertainty. The more accurate a 

measurement is, the lower the related uncertainty is. However, the uncertainty will 
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never be zero; the measurements will always have some error. This becomes an 

inconvenience when the only information with which a model is built comes from 

samples with error. The model could interpret the error as truth and train the model to 

represent this error as real. A model trained in such a way would lead to inaccurate 

predictions and bad performance. This behaviour in which the model assumes the error 

as real information is called overfitting (Murphy, 2012). Despite several solutions that 

are available to reduce or even avoid the problem, it is always an issue that has to be 

taken into account when employing these methods. 

Hence, in the specific case of this project, and with the limited resources of time and a 

limited knowledge in the ecological and biological field, particularly in biodiversity, 

the decision was made to proceed with a Machine Learning method. The literature 

review showed that this approach has been used frequently in recent years, in some 

cases the situations were comparable to the one in this project (Tamvakis et al., 2014). 

The complexity of biodiversity modelling justifies the use of this type of model, even 

with such drawbacks. The data available were regarded as sufficient for a first attempt 

to create this type of models, with a sufficient amount of measured variables and 

examples. 

6.3 Modelling methodology 

The methodology followed for the creation of the models was defined after a thorough 

review of literature and several examples of usage of Artificial Neural Networks. The 

construction of a Machine Learning method requires two basic steps: input variable 

selection and training of the model. 

6.3.1 Input variable selection 

The input variable selection is a very important step in the definition of the model. The 

aim of this procedure is to optimise the explicatory capacity of the variables minimising 

the total number of variables. Essentially, the aim is to produce a set of data that would 

optimize the training capacity of the model, which is penalised by correlated variables 

and by the size of the variable space. In section 4.5.2, a detailed description of the 

specifics of the methodology can be found. In this same section, it is also asserted that 

the methodology for input variable selection was not closely defined and that several 

methodologies were found (Reed, 1993, Haykin, 1994, Stoppiglia et al., 2003, Dreyfus, 

2005, May et al., 2011, Giordano, 2014). Out of the different classifications of these 

input variable selection methods, only the clearest one was analysed for the final 

application (May et al., 2011). This means that there could be more complex or precise 

methods for this purpose not mentioned in the section. 

The input selection method followed in the project consisted of two different parts: 

dimension reduction and variable selection. The dimension reduction consisted of the 

reduction of the number of input variables by selecting those that maximise the variance 

in the variable space and eliminate redundant variables. The variable selection consisted 

of the selection of the variables, out of the defined in the former step, that were more 

correlated with the target variables. The chosen methods were Principal Component 

Analysis (PCA), for dimension reduction, and the Rank Correlation method, for the 

variable selection. 

In essence, these two methods, PCA and Rank Correlation, were chosen due to their 

relative simplicity and because of multiple references in literature relating to these 

methods. Despite this fact, the two procedures have quite a few of disadvantages that 

could penalise the ultimate performance of the models. 
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In first place, the PCA is a method that consists of linear projections of the variable 

space in order to maximise the variance of the samples. To achieve that, the PCA creates 

new variables, which are meant to preserve the variance of the real variables (May et 

al., 2011). This leads to the substitution of physical, chemical or biological variables 

into some dimensionless variables, and the knowledge of the importance of the original 

variables is lost. If no information of the variable relevance can be obtained, any new 

sample campaign would require measuring every variable, instead of the variables that 

are really being used. The other important issue with the PCA comes from the 

linearization of the variables. By performing linear projections based on the variance, 

the non-linear behaviour of any of the variables, which might be important for the 

explanation of the biodiversity, would be lost (May et al., 2011). Hence, any 

exponential or logarithmic trend in the variables would be transformed into a linear 

trend. 

The main drawback of the Rank Correlation method is also related to the linearity of 

the method. The Rank Correlation method is based on the Pearson Correlation, which 

is a measure of the linear correlation between two variables. Again, any non-linear 

behaviour between explanatory and target variables would be penalised (May et al., 

2011). It could happen that two variables highly non-linearly correlated were left out of 

the final model simply because the linear correlation of the two of them was less than 

the established limit value. 

There are several methodologies that account for non-linearity of variables for both of 

the methods. Some of them also allow the preservation of the original variables during 

all the process, allowing the identification of those important variables. These methods 

are usually combinations of the two steps in just one step, such as some complex 

wrapper methods (Forward selection, backward selection or GA-ANN), filter methods 

(Mutual Information) and embedded methods (Recursive Feature Elimination or 

Evolutionary ANNs). In all cases, the gain in performance that might be achieved by 

their use comes together with a much higher complexity in calculation (May et al., 

2011). 

6.3.2 Artificial Neural Network 

The definition of an artificial neural network is quite complex. There are multiple 

configurations for the creation of artificial neural networks. These methods are quite 

flexible and present a great number of alternative functions and parameters with which 

to define them. First, the type of network can be decided, feedforward or recurrent, how 

many layers, how many neurons per layer, which algorithms to use for calibration… 

The type of model that was finally employed was a feedforward artificial neural 

network trained by the backpropagation algorithm. This is a classical and simple type 

of neural network, which is frequently found in literature (Lek, 1996, Lek, 1999, Karul 

et al., 2000, Bowden et al., 2006, Kuo et al., 2007, Singh et al., 2009, Lock et al., 2014, 

Tamvakis et al., 2014). The model was defined with one hidden neural layer. With this 

configuration an artificial neural network can, as said by the universal approximation 

theorem, approximate any continuous function given that a sufficient number of 

neurons is available. 

One of the key decisions in the creation of the model was the calibration of the number 

of neurons in the hidden layer. The procedure to determine the optimal value was the 

cross-validation method. A 10-fold cross-validation was applied in order to determine 

the average Mean Squared Error (MSE) of the validation sets of the model. The results 
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obtained after applying the method showed some uneven curves that could be improved 

by increasing the number of folds (Abu-Mostafa et al., 2012). By doing this, a more 

accurate approximation of the validation performance could be obtained. On the other 

hand, increasing the number of folds would, as well, increase the computational time. 

This increase in resources might also not cause any improvements to the results. 

6.4 Analysis of results 

Two different types of models were built and tested. The models differed in the 

variables and number of samples. One of the models employed the water quality data 

in combination with generic data on the stormwater ponds. The other model added to 

these variables some sediment quality measurements. Nevertheless, the number of 

stormwater ponds where the sediment quality samples were taken was fewer than the 

ponds where the water quality samples were obtained. Hence, the available number of 

samples containing all variables was fewer than the number of samples only containing 

water quality variables. 

Furthermore, three different biodiversity indices were used: the Species Richness, the 

Shannon Index and the Inverse Simpson Index. The three indices are commonly 

employed for the assessment of biodiversity. The three biodiversity measures point to 

different aspects of biodiversity and are calculated using different procedures.  

The purpose of employing different models and biodiversity indices was to determine 

in which of all these cases the prediction capabilities of the neural networks worked the 

best. Also, also it could resolve if the models trained and tested could be employed for 

a real application for the design of new stormwater ponds in order to maximise 

biodiversity. 

The model performance was approximately the same both for Water Quality data and 

Water and Sediment Quality data. In the case of the MSE, the Water Quality model 

presents the best performance with the only exception of the Species Richness model, 

as it can be seen in Table 8. The predictive performance measured with the regression 

factor provides a different scenario. The results of the regression factor, presented in 

Table 9, indicate that the best performance is achieved by the Water and Sediment 

Quality data. Hence, it can be said that there is no clear winner regarding which model 

performs the best. Thus, the additional variables in the Water and Sediment Quality 

model seemed not to cause any improvement to the model. It can be inferred as well, 

that a larger number of samples might cause no noticeable improvement. However, 

further work should be placed in order to sustain that conclusion. 

Table 8. Comparison of the predictive performance, in terms of Mean Squared Error (MSE), between 
the results of the Water Quality model and Water and Sediment Quality model for the 
Species Richness, Shannon Index and Inverse Simpson Index. 

 Water Quality model Water and Sediment Quality model 
Species Richness 26.09 23.73 
Shannon Index 0.14 0.15 
Inverse Simpson 1.73 1.81 

The results obtained for the model of Species Richness and using Water and Sediment 

Quality data were the only that showed some useful prediction capacity of biodiversity. 

Despite the relative success of the model, the results are far from perfect but can be 

acceptable in some cases. 
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There are very few examples in literature with the obtained results can be compared. In 

Tamvakis et al. (2014) a comparison between the performances of three machine 

learning methods used to model a set of biodiversity indices is performed. In Tamvakis 

et al. (2014) several biodiversity indices are tested. Luckily, the indices used in this 

thesis are among the reviewed in Tamvakis et al. (2014)and, hence, their results can be 

compared. This comparison is presented in Table 9. Nevertheless, the object of the 

research was the biodiversity in coastal water in the Aegean Sea. Thus, the explanatory 

variables do not coincide with those employed in this project. Also, despite being the 

same biodiversity indices, the target variables represent different ecosystems that might 

influence the final performance. Therefore, the results of Tamvakis et al. (2014) must 

be taken carefully into consideration when comparing the performances of the models. 

Table 9. Comparison of the predictive performance, in terms of regression factor (R), between the 
results of the Water Quality model, Water and Sediment Quality model and the results 
presented in Tamvakis et al. (2014) for the Species Richness, Shannon Index and Inverse 
Simpson Index. 

 Tamvakis et al. 
(2014) 

Water Quality 
model 

Water and Sediment 
Quality model 

Species Richness 0.47 – 0.56 0.46 0.47 
Shannon Index 0.40 – 0.44 0.30 0.37 
Inverse Simpson 0.35 – 0.51 0.34 0.34 

The predictive performance obtained in the models built in this project is, in general, 

worse than the performance in Tamvakis et al. (2014). However, the results reflected in 

Tamvakis et al. (2014) are not good. The maximum performance obtained is a little 

over 0.50, and in most of the cases, below that value. The only results that are 

comparable are the Species Richness and Inverse Simpson. 

The comparison of the results also suggests that the Species Richness is the best of the 

biodiversity indices for model usage. Both Shannon and Inverse Simpson indices 

present indistinctive performances, neither better nor worse than the other, and, hence, 

it is unclear which one would be better to use in a model. The same behaviour can be 

observed in the Water Quality and Water and Sediment Quality model performances. 

6.5 Further work 

As it has been discussed in the previous sections of this chapter, there are numerous 

aspects of the project that can be improved. This improvement may lead to a better 

predictive capacity of the models, but this assertion cannot be proved. It might just 

occur that after the improvements and changes, the models would continue to have 

rather poor performance. 

The first important improvement that can be made is to use a different type of Machine 

Learning method. In Tamvakis et al. (2014), the author concluded that the artificial 

neural networks might not provide the best results among other Machine Learning 

methods. In fact, the Instance Based Learning method (IBk) scored much higher 

performances than the artificial neural networks. Another Machine Learning method 

employed in Tamvakis et al. (2014) was the Model Trees (MTs), which performance 

was also better than that of the artificial neural network. Some additional Machine 

Learning methodologies are further described in Fielding (1999) and Dominguez-

Granda et al. (2011). 

The sampled data can also be improved. The number of samples plays a great influence 

in the final performances of the models. Insufficient data can lead to models with poor 
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predictive performance. Other improvement could be to increase the number of 

variables to analyse and include in the models. There could be factors, not 

acknowledged yet, that might play a great influence on the biodiversity of the ponds. 

Therefore, a broader sampling campaign might be advisable, both in number of samples 

and in number of variables. The precision of the measurements should also be assessed, 

especially in the case of species counting, which might include a great amount of 

uncertainty. 

Another area that could be well improved is the input variable selection. As explained 

previously, the methods used for the variable selection in this project present some 

important drawbacks, as the linearization of the variables and the loss of the original 

variable identification after this process. Some proposed methods, such as Forward 

selection, Backward selection or GA-ANN; Mutual Information; or Recursive Feature 

Elimination, or Evolutionary ANNs, do not present any of those disadvantages (May et 

al., 2011). However, the complexity of the process would be much increased. 

Finally, if the decision is made to use artificial neural networks, some improvements 

could also be implemented. One enhancement could be the improvement of the 

generalisation methodology. The methodology employed in this thesis might have been 

too conservative when applying generalisation methodologies, which might cause the 

training of the model to be underfitting the variables. By using a more refined 

generalisation methodology, the training of the model could be driven further to achieve 

a more accurate model without entering on the grounds of overfitting. 
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7 Conclusions 

A literature review of biodiversity modelling approaches showed that this area of 

research is still in development. The methodology suggested for this type of model is 

based on Machine Learning methods. This branch of modelling is quite broad and there 

are several different methodologies that can be employed. Also, it has its basis in 

complex statistics that might be not easy to follow from zero. 

After the implementation of one of these models, Artificial Neural Network (ANN), 

some results were obtained and then compared with literature. The results showed 

predictive performances that are regarded as far from good. The factors of regression 

(R) are in all the cases below 0.5 and, in most of the cases, even below 0.3. The 

comparison with literature indicated that the model performance results obtained in the 

project were worse. Only one of the models performed acceptable, with a regression 

factor of 0.48. 

The final results also indicated that the Water Quality model and the Water and 

Sediment Quality model offered very similar performances. Hence, further work has to 

be done on how to improve the performance of the models. 

Comparing the three studied biodiversity indices, the one that presented a greater 

performance was the Species Richness; this is consistent with other studies. The other 

two indices, the Shannon and Inverse Simpson indices, presented similar results. In this 

situation, no preference of one of the two indices over the other can be established. 

Finally, despite the apparent rather poor performance of the models, it was showed that 

the Machine Learning methods can be applied to the biodiversity prediction and with 

some acceptable results. The performance of these models could be improved by using 

a different type of Machine Learning method, by improving the number of variables 

and samples, or by enhancing the input variable selection procedures. 
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Appendix 1: Input data for the Water Quality model 

Treatment pond Temperature  ̊C Oxygen mg/L pH conductivity µs/m 

Skullerud, field no. 1, April 5,800 10,200 8,590 82,400 

Skullerud, field no. 2, June 12,400 9,980 6,170 514,000 

Skullerud, field no.3, August 16,220 6,400 7,070 282,000 

Skullerud, field no. 4, October 10,610 9,990 7,430 59,000 

taraldrud north  8,300 10,100 7,920 95,000 

taraldrud north  15,300 11,420 6,060 750,000 

taraldrud north  18,530 6,970 6,720 276,000 

taraldrud north  10,480 7,460 8,530 976,000 

Taraldrud junction 7,800 11,600 8,340 122,200 

Taraldrud junction 14,900 10,700 6,200 1350,000 

Taraldrud junction 17,400 7,610 7,360 602,000 

Taraldrud junction 10,380 9,720 7,530 640,000 

Taralrud south 11,500 10,300 8,040 155,600 

Taralrud south 16,000 7,890 5,400 1420,000 

Taralrud south 18,880 7,120 7,780 498,000 

Taralrud south 10,020 8,090 7,620 260,000 

Nøstvedt 13,500 10,750 8,330 103,400 

Nøstvedt 16,300 8,700 6,230 1191,000 

Nøstvedt 18,830 7,700 8,410 257,000 

Nøstvedt 10,680 10,070 7,650 206,000 

Vassum 10,400 10,350 8,550 133,000 

Vassum 16,800 14,400 7,270 656,000 

Vassum 15,740 6,250 7,410 1062,000 

Vassum 10,090 9,980 7,780 392,000 

Idrettsveien , left (V) towards main pond 6,200 6,400 6,550 141,900 

Idrettsveien, right (H) towards main pond 7,200 8,780 7,140 250,000 

Idrettsveien , left (V) towards main pond 11,200 4,550 4,340 1420,000 

Idrettsveien, right (H) towards main pond 11,700 8,600 4,760 266,000 

Idrettsveien , left (V) towards main pond 12,980 6,900 6,360 1234,000 

Idrettsveien, right (H) towards main pond 13,720 6,810 6,700 324,000 

Idrettsveien , left (V) towards main pond 11,020 8,110 7,460 700,000 

Idrettsveien, right (H) towards main pond 11,400 8,010 6,910 252,000 

Nordby, left (V) inlet 6,300 11,100 7,820 112,300 

Nordby, right (H) inlet 6,300 9,080 6,920 164,400 

Nordby, left (V) inlet 14,200 13,580 5,850 962,000 

Nordby, right (H) inlet 15,400 17,500 5,730 447,000 

Nordby, left (V) inlet 12,550 11,160 7,370 856,000 

Nordby, right (H) inlet 16,480 9,760 7,220 412,000 

Nordby, left (V) inlet 10,920 10,690 6,860 499,000 

Nordby, right (H) inlet 10,870 9,890 7,330 305,000 
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Treatment pond Temperature  ̊C Oxygen mg/L pH conductivity µs/m 

Enebakk/missingen, inlet 6,300 10,970 7,480 95,200 

Enebakk/missingen, inlet 13,000 11,100 5,540 982,000 

Enebakk/missingen, inlet 13,960 8,650 7,190 907,000 

Enebakk/missingen, inlet 11,540 10,190 7,030 476,000 

Fiulstad 5,800 10,100 7,200 137,300 

Fiulstad 8,300 11,780 5,400 1234,000 

Fiulstad 12,990 7,010 9,740 1067,000 

Fiulstad 10,090 9,980 7,780 392,000 

Såstad 6,100 10,370 7,590 139,600 

Såstad 8,800 12,660 5,600 1812,000 

Såstad 12,290 4,700 7,040 1836,000 

Såstad 11,090 10,430 7,220 750,000 

karlshusbunn, left (V) inlet 8,500 10,470 8,070 122,400 

Karlshusbunn, right (H) inlet 6,300 10,650 7,120 328,000 

karlshusbunn, left (V) inlet 17,200 12,250 5,880 1717,000 

Karlshusbunn, right (H) inlet 16,400 14,500 5,580 495,000 

karlshusbunn, left (V) inlet 19,500 13,470 8,530 976,000 

Karlshusbunn, right (H) inlet 11,910 9,860 7,790 574,000 

karlshusbunn, left (V) inlet 11,520 10,240 7,050 678,000 

Karlshusbunn, right (H) inlet 10,860 9,700 7,410 305,000 
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Treatment pond AADT Main Basin Base Type Tunnel Wash Pre-basin 

Skullerud, field no. 1, April 66500,000 0,250 0,333 0,667 

Skullerud, field no. 2, June 66500,000 0,250 0,333 0,667 

Skullerud, field no.3, August 66500,000 0,250 0,333 0,667 

Skullerud, field no. 4, October 66500,000 0,250 0,333 0,667 

taraldrud north  42900,000 0,250 0,333 0,333 

taraldrud north  42900,000 0,250 0,333 0,333 

taraldrud north  42900,000 0,250 0,333 0,333 

taraldrud north  42900,000 0,250 0,333 0,333 

Taraldrud junction 42200,000 0,250 0,333 0,333 

Taraldrud junction 42200,000 0,250 0,333 0,333 

Taraldrud junction 42200,000 0,250 0,333 0,333 

Taraldrud junction 42200,000 0,250 0,333 0,333 

Taralrud south 42200,000 0,250 0,333 0,333 

Taralrud south 42200,000 0,250 0,333 0,333 

Taralrud south 42200,000 0,250 0,333 0,333 

Taralrud south 42200,000 0,250 0,333 0,333 

Nøstvedt 35500,000 0,500 0,333 0,667 

Nøstvedt 35500,000 0,500 0,333 0,667 

Nøstvedt 35500,000 0,500 0,333 0,667 

Nøstvedt 35500,000 0,500 0,333 0,667 

Vassum 41000,000 0,750 0,667 0,667 

Vassum 41000,000 0,750 0,667 0,667 

Vassum 41000,000 0,750 0,667 0,667 

Vassum 41000,000 0,750 0,667 0,667 

Idrettsveien , left (V) towards main pond 22735,000 0,750 0,333 0,333 

Idrettsveien, right (H) towards main pond 22735,000 0,750 0,333 0,333 

Idrettsveien , left (V) towards main pond 22735,000 0,750 0,333 0,333 

Idrettsveien, right (H) towards main pond 22735,000 0,750 0,333 0,333 

Idrettsveien , left (V) towards main pond 22735,000 0,750 0,333 0,333 

Idrettsveien, right (H) towards main pond 22735,000 0,750 0,333 0,333 

Idrettsveien , left (V) towards main pond 22735,000 0,750 0,333 0,333 

Idrettsveien, right (H) towards main pond 22735,000 0,750 0,333 0,333 

Nordby, left (V) inlet 22735,000 0,750 0,333 0,333 

Nordby, right (H) inlet 22735,000 0,750 0,333 0,333 

Nordby, left (V) inlet 22735,000 0,750 0,333 0,333 

Nordby, right (H) inlet 22735,000 0,750 0,333 0,333 

Nordby, left (V) inlet 22735,000 0,750 0,333 0,333 

Nordby, right (H) inlet 22735,000 0,750 0,333 0,333 

Nordby, left (V) inlet 22735,000 0,750 0,333 0,333 

Nordby, right (H) inlet 22735,000 0,750 0,333 0,333 
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Treatment pond AADT Main Basin Base Type Tunnel Wash Pre-basin 

Enebakk/missingen, inlet 23837,000 0,750 0,333 0,333 

Enebakk/missingen, inlet 23837,000 0,750 0,333 0,333 

Enebakk/missingen, inlet 23837,000 0,750 0,333 0,333 

Enebakk/missingen, inlet 23837,000 0,750 0,333 0,333 

Fiulstad 33575,000 0,750 0,333 0,667 

Fiulstad 33575,000 0,750 0,333 0,667 

Fiulstad 33575,000 0,750 0,333 0,667 

Fiulstad 33575,000 0,750 0,333 0,667 

Såstad 33575,000 0,750 0,333 0,667 

Såstad 33575,000 0,750 0,333 0,667 

Såstad 33575,000 0,750 0,333 0,667 

Såstad 33575,000 0,750 0,333 0,667 

karlshusbunn, left (V) inlet 22735,000 0,750 0,333 0,333 

Karlshusbunn, right (H) inlet 22735,000 0,750 0,333 0,333 

karlshusbunn, left (V) inlet 22735,000 0,750 0,333 0,333 

Karlshusbunn, right (H) inlet 22735,000 0,750 0,333 0,333 

karlshusbunn, left (V) inlet 22735,000 0,750 0,333 0,333 

Karlshusbunn, right (H) inlet 22735,000 0,750 0,333 0,333 

karlshusbunn, left (V) inlet 22735,000 0,750 0,333 0,333 

Karlshusbunn, right (H) inlet 22735,000 0,750 0,333 0,333 
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Treatment pond Wetland FW3 FW8 

Skullerud, field no. 1, April 0,333 -0,081 0,393 

Skullerud, field no. 2, June 0,333 -0,731 0,263 

Skullerud, field no.3, August 0,333 -0,784 0,393 

Skullerud, field no. 4, October 0,333 -0,690 0,006 

taraldrud north 0,333 -0,202 -0,103 

taraldrud north 0,333 -0,792 -0,082 

taraldrud north 0,333 -1,199 0,037 

taraldrud north 0,333 -0,865 0,039 

Taraldrud junction 0,333 1,232 -0,007 

Taraldrud junction 0,333 0,774 -0,056 

Taraldrud junction 0,333 -0,419 0,167 

Taraldrud junction 0,333 -0,426 0,365 

Taralrud south 0,333 -0,714 -0,354 

Taralrud south 0,333 -0,704 -0,318 

Taralrud south 0,333 -0,890 -0,095 

Taralrud south 0,333 -1,474 0,065 

Nøstvedt 0,333 -1,899 0,478 

Nøstvedt 0,333 -1,136 0,182 

Nøstvedt 0,333 -1,337 0,373 

Nøstvedt 0,333 -1,459 0,814 

Vassum 0,333 0,324 0,310 

Vassum 0,333 -2,875 -0,283 

Vassum 0,333 -4,938 0,164 

Vassum 0,333 -1,912 0,959 

Idrettsveien , left (V) towards main pond 0,667 1,751 0,761 

Idrettsveien, right (H) towards main pond 0,667 -0,365 0,028 

Idrettsveien , left (V) towards main pond 0,667 2,649 2,792 

Idrettsveien, right (H) towards main pond 0,667 -0,480 -0,142 

Idrettsveien , left (V) towards main pond 0,667 1,348 0,617 

Idrettsveien, right (H) towards main pond 0,667 -0,165 -0,138 

Idrettsveien , left (V) towards main pond 0,667 -0,529 2,472 

Idrettsveien, right (H) towards main pond 0,667 -0,420 0,078 

Nordby, left (V) inlet 0,667 0,844 -0,383 

Nordby, right (H) inlet 0,667 -0,131 -0,784 

Nordby, left (V) inlet 0,667 1,152 -0,220 

Nordby, right (H) inlet 0,667 0,304 -1,242 

Nordby, left (V) inlet 0,667 1,018 -0,158 

Nordby, right (H) inlet 0,667 0,833 -1,036 

Nordby, left (V) inlet 0,667 0,725 -0,362 

Nordby, right (H) inlet 0,667 -2,294 -2,010 
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Treatment pond Wetland FW3 FW8 

Enebakk/missingen, inlet 0,667 -0,283 -0,232 

Enebakk/missingen, inlet 0,667 -0,138 -0,524 

Enebakk/missingen, inlet 0,667 -0,061 -0,128 

Enebakk/missingen, inlet 0,667 -0,385 -0,262 

Fiulstad 0,333 1,109 0,648 

Fiulstad 0,333 2,253 0,049 

Fiulstad 0,333 1,676 0,249 

Fiulstad 0,333 0,214 2,156 

Såstad 0,333 2,112 -1,019 

Såstad 0,333 3,373 -1,007 

Såstad 0,333 4,475 -0,116 

Såstad 0,333 -0,137 -0,514 

karlshusbunn, left (V) inlet 0,667 -0,512 -0,051 

Karlshusbunn, right (H) inlet 0,667 0,734 -0,633 

karlshusbunn, left (V) inlet 0,667 1,187 -0,380 

Karlshusbunn, right (H) inlet 0,667 0,974 -0,358 

karlshusbunn, left (V) inlet 0,667 -0,921 -0,075 

Karlshusbunn, right (H) inlet 0,667 1,138 -0,174 

karlshusbunn, left (V) inlet 0,667 -0,798 -0,594 

Karlshusbunn, right (H) inlet 0,667 0,947 -1,018 
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Appendix 2: Target data for the Water Quality model 

Treatment pond Species Richness Shannon Inverse Simpson 

Skullerud, field no. 1, April 11,000 1,381 2,945 

Skullerud, field no. 2, June 14,000 1,822 4,347 

Skullerud, field no.3, August 13,000 0,618 1,305 

Skullerud, field no. 4, October 19,000 1,627 2,459 

taraldrud north 19,000 1,684 3,315 

taraldrud north 24,000 2,003 4,424 

taraldrud north 24,000 1,606 3,082 

taraldrud north 16,000 1,781 4,527 

Taraldrud junction 14,000 1,263 2,121 

Taraldrud junction 15,000 2,243 7,901 

Taraldrud junction 18,000 1,035 1,872 

Taraldrud junction 13,000 1,448 2,717 

Taralrud south 13,000 1,005 1,932 

Taralrud south 19,000 1,343 2,739 

Taralrud south 17,000 0,635 1,451 

Taralrud south 18,000 0,912 2,051 

Nøstvedt 10,000 1,580 4,092 

Nøstvedt 13,000 2,090 5,853 

Nøstvedt 19,000 1,377 2,181 

Nøstvedt 15,000 0,875 1,522 

Vassum 13,000 1,208 1,922 

Vassum 22,000 1,149 2,437 

Vassum 20,000 0,715 1,445 

Vassum 18,000 1,680 3,577 

Idrettsveien , left (V) towards main pond 17,000 1,773 4,527 

Idrettsveien, right (H) towards main pond 17,000 1,773 4,527 

Idrettsveien , left (V) towards main pond 27,000 2,001 4,172 

Idrettsveien, right (H) towards main pond 27,000 2,001 4,172 

Idrettsveien , left (V) towards main pond 12,000 1,723 4,035 

Idrettsveien, right (H) towards main pond 12,000 1,723 4,035 

Idrettsveien , left (V) towards main pond 12,000 1,578 3,917 

Idrettsveien, right (H) towards main pond 12,000 1,578 3,917 

Nordby, left (V) inlet 21,000 1,829 4,193 

Nordby, right (H) inlet 21,000 1,829 4,193 

Nordby, left (V) inlet 35,000 1,889 4,130 

Nordby, right (H) inlet 35,000 1,889 4,130 

Nordby, left (V) inlet 25,000 1,551 3,432 

Nordby, right (H) inlet 25,000 1,551 3,432 

Nordby, left (V) inlet 21,000 1,559 2,702 

Nordby, right (H) inlet 21,000 1,559 2,702 
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Treatment pond Species Richness Shannon Inverse Simpson 

Enebakk/missingen, inlet 13,000 1,873 4,694 

Enebakk/missingen, inlet 14,000 1,000 1,694 

Enebakk/missingen, inlet 13,000 1,608 2,866 

Enebakk/missingen, inlet 8,000 0,764 1,478 

Fiulstad 13,000 1,471 2,810 

Fiulstad 15,000 1,423 2,675 

Fiulstad 17,000 1,260 2,352 

Fiulstad 12,000 1,488 2,934 

Såstad 23,000 1,512 2,836 

Såstad 20,000 1,721 3,516 

Såstad 18,000 1,281 2,930 

Såstad 18,000 1,833 4,045 

karlshusbunn, left (V) inlet 19,000 1,959 5,066 

Karlshusbunn, right (H) inlet 19,000 1,959 5,066 

karlshusbunn, left (V) inlet 24,000 1,591 3,245 

Karlshusbunn, right (H) inlet 24,000 1,591 3,245 

karlshusbunn, left (V) inlet 19,000 2,161 6,272 

Karlshusbunn, right (H) inlet 19,000 2,161 6,272 

karlshusbunn, left (V) inlet 21,000 1,958 4,558 

Karlshusbunn, right (H) inlet 21,000 1,958 4,558 
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Appendix 3: Input data for the Water and Sediment 

Quality model 

Treatment pond Month Temperature  ̊C 
Oxygen 

mg/L 
pH 

Skullerud, field no. 1, April 4 5,800 10,200 8,590 

Skullerud, field no. 2, June 6 12,400 9,980 6,170 

Skullerud, field no.3, August 8 16,220 6,400 7,070 

Skullerud, field no. 4, October 10 10,610 9,990 7,430 

taraldrud north  4 8,300 10,100 7,920 

taraldrud north  6 15,300 11,420 6,060 

taraldrud north  8 18,530 6,970 6,720 

taraldrud north  10 10,480 7,460 8,530 

Taraldrud junction 4 7,800 11,600 8,340 

Taraldrud junction 6 14,900 10,700 6,200 

Taraldrud junction 8 17,400 7,610 7,360 

Taraldrud junction 10 10,380 9,720 7,530 

Taralrud south 4 11,500 10,300 8,040 

Taralrud south 6 16,000 7,890 5,400 

Taralrud south 8 18,880 7,120 7,780 

Taralrud south 10 10,020 8,090 7,620 

Nøstvedt 4 13,500 10,750 8,330 

Nøstvedt 6 16,300 8,700 6,230 

Nøstvedt 8 18,830 7,700 8,410 

Nøstvedt 10 10,680 10,070 7,650 

Vassum 4 10,400 10,350 8,550 

Vassum 6 16,800 14,400 7,270 

Vassum 8 15,740 6,250 7,410 

Vassum 10 10,090 9,980 7,780 

Idrettsveien , left (V) towards main pond 4 6,200 6,400 6,550 

Idrettsveien, right (H) towards main pond 4 7,200 8,780 7,140 

Idrettsveien , left (V) towards main pond 6 11,200 4,550 4,340 

Idrettsveien, right (H) towards main pond 6 11,700 8,600 4,760 

Idrettsveien , left (V) towards main pond 8 12,980 6,900 6,360 

Idrettsveien, right (H) towards main pond 8 13,720 6,810 6,700 

Idrettsveien , left (V) towards main pond 10 11,020 8,110 7,460 

Idrettsveien, right (H) towards main pond 10 11,400 8,010 6,910 
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Treatment pond Month Temperature  ̊C 
Oxygen 

mg/L 
pH 

Nordby, left (V) inlet 4 6,300 11,100 7,820 

Nordby, right (H) inlet 4 6,300 9,080 6,920 

Nordby, left (V) inlet 6 14,200 13,580 5,850 

Nordby, right (H) inlet 6 15,400 17,500 5,730 

Nordby, left (V) inlet 8 12,550 11,160 7,370 

Nordby, right (H) inlet 8 16,480 9,760 7,220 

Nordby, left (V) inlet 10 10,920 10,690 6,860 

Nordby, right (H) inlet 10 10,870 9,890 7,330 

Enebakk/missingen, inlet 4 6,300 10,970 7,480 

Enebakk/missingen, inlet 6 13,000 11,100 5,540 

Enebakk/missingen, inlet 8 13,960 8,650 7,190 

Enebakk/missingen, inlet 10 11,540 10,190 7,030 
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Treatment pond 
conductivity 

µs/m 
AADT Main Basin 

Base Type Tunnel Wash 

Skullerud, field no. 1, April 82,400 66500,000 0,250 0,333 

Skullerud, field no. 2, June 514,000 66500,000 0,250 0,333 

Skullerud, field no.3, August 282,000 66500,000 0,250 0,333 

Skullerud, field no. 4, October 59,000 66500,000 0,250 0,333 

taraldrud north  95,000 42900,000 0,250 0,333 

taraldrud north  750,000 42900,000 0,250 0,333 

taraldrud north  276,000 42900,000 0,250 0,333 

taraldrud north  976,000 42900,000 0,250 0,333 

Taraldrud junction 122,200 42200,000 0,250 0,333 

Taraldrud junction 1350,000 42200,000 0,250 0,333 

Taraldrud junction 602,000 42200,000 0,250 0,333 

Taraldrud junction 640,000 42200,000 0,250 0,333 

Taralrud south 155,600 42200,000 0,250 0,333 

Taralrud south 1420,000 42200,000 0,250 0,333 

Taralrud south 498,000 42200,000 0,250 0,333 

Taralrud south 260,000 42200,000 0,250 0,333 

Nøstvedt 103,400 35500,000 0,500 0,333 

Nøstvedt 1191,000 35500,000 0,500 0,333 

Nøstvedt 257,000 35500,000 0,500 0,333 

Nøstvedt 206,000 35500,000 0,500 0,333 

Vassum 133,000 41000,000 0,750 0,667 

Vassum 656,000 41000,000 0,750 0,667 

Vassum 1062,000 41000,000 0,750 0,667 

Vassum 392,000 41000,000 0,750 0,667 

Idrettsveien , left (V) towards main pond 141,900 22735,000 0,750 0,333 

Idrettsveien, right (H) towards main pond 250,000 22735,000 0,750 0,333 

Idrettsveien , left (V) towards main pond 1420,000 22735,000 0,750 0,333 

Idrettsveien, right (H) towards main pond 266,000 22735,000 0,750 0,333 

Idrettsveien , left (V) towards main pond 1234,000 22735,000 0,750 0,333 

Idrettsveien, right (H) towards main pond 324,000 22735,000 0,750 0,333 

Idrettsveien , left (V) towards main pond 700,000 22735,000 0,750 0,333 

Idrettsveien, right (H) towards main pond 252,000 22735,000 0,750 0,333 

 

 

 

 

 

 

 

 



 

CHALMERS, Civil and Environmental Engineering, Master’s Thesis 2014:127 
xii 

Treatment pond 
conductivity 

µs/m 
AADT Main Basin 

Base Type Tunnel Wash 

Nordby, left (V) inlet 112,300 22735,000 0,750 0,333 

Nordby, right (H) inlet 164,400 22735,000 0,750 0,333 

Nordby, left (V) inlet 962,000 22735,000 0,750 0,333 

Nordby, right (H) inlet 447,000 22735,000 0,750 0,333 

Nordby, left (V) inlet 856,000 22735,000 0,750 0,333 

Nordby, right (H) inlet 412,000 22735,000 0,750 0,333 

Nordby, left (V) inlet 499,000 22735,000 0,750 0,333 

Nordby, right (H) inlet 305,000 22735,000 0,750 0,333 

Enebakk/missingen, inlet 95,200 23837,000 0,750 0,333 

Enebakk/missingen, inlet 982,000 23837,000 0,750 0,333 

Enebakk/missingen, inlet 907,000 23837,000 0,750 0,333 

Enebakk/missingen, inlet 476,000 23837,000 0,750 0,333 
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Treatment pond Pre-basin Wetland FW2 FW3 FW4 

Skullerud, field no. 1, April 0,667 0,333 0,374 -0,081 0,849 

Skullerud, field no. 2, June 0,667 0,333 0,086 -0,731 0,673 

Skullerud, field no.3, August 0,667 0,333 -0,171 -0,784 0,887 

Skullerud, field no. 4, October 0,667 0,333 -1,605 -0,690 -0,012 

taraldrud north  0,333 0,333 0,115 -0,202 -0,368 

taraldrud north  0,333 0,333 -0,090 -0,792 -0,057 

taraldrud north  0,333 0,333 -1,459 -1,199 -0,580 

taraldrud north  0,333 0,333 -0,855 -0,865 0,055 

Taraldrud junction 0,333 0,333 0,856 1,232 -0,678 

Taraldrud junction 0,333 0,333 1,151 0,774 -0,524 

Taraldrud junction 0,333 0,333 -0,013 -0,419 -0,014 

Taraldrud junction 0,333 0,333 -0,105 -0,426 0,326 

Taralrud south 0,333 0,333 0,546 -0,714 -0,375 

Taralrud south 0,333 0,333 0,424 -0,704 -0,334 

Taralrud south 0,333 0,333 -0,923 -0,890 -0,063 

Taralrud south 0,333 0,333 -0,994 -1,474 0,353 

Nøstvedt 0,667 0,333 0,001 -1,899 0,750 

Nøstvedt 0,667 0,333 1,056 -1,136 0,234 

Nøstvedt 0,667 0,333 -0,311 -1,337 0,502 

Nøstvedt 0,667 0,333 -1,165 -1,459 1,191 

Vassum 0,667 0,333 1,982 0,324 -0,013 

Vassum 0,667 0,333 10,817 -2,875 -1,243 

Vassum 0,667 0,333 2,597 -4,938 0,659 

Vassum 0,667 0,333 1,345 -1,912 1,161 

Idrettsveien , left (V) towards main pond 0,333 0,667 0,029 1,751 -1,297 

Idrettsveien, right (H) towards main pond 0,333 0,667 -0,663 -0,365 -0,099 

Idrettsveien , left (V) towards main pond 0,333 0,667 -0,133 2,649 -2,082 

Idrettsveien, right (H) towards main pond 0,333 0,667 -0,746 -0,480 -0,110 

Idrettsveien , left (V) towards main pond 0,333 0,667 -0,209 1,348 -0,727 

Idrettsveien, right (H) towards main pond 0,333 0,667 -0,667 -0,165 -0,036 

Idrettsveien , left (V) towards main pond 0,333 0,667 -2,412 -0,529 0,254 

Idrettsveien, right (H) towards main pond 0,333 0,667 -0,854 -0,420 0,262 
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Treatment pond Pre-basin Wetland FW2 FW3 FW4 

Nordby, left (V) inlet 0,333 0,667 0,376 0,844 -0,349 

Nordby, right (H) inlet 0,333 0,667 -2,191 -0,131 0,697 

Nordby, left (V) inlet 0,333 0,667 0,351 1,152 -0,132 

Nordby, right (H) inlet 0,333 0,667 -0,551 0,304 -0,320 

Nordby, left (V) inlet 0,333 0,667 0,520 1,018 0,068 

Nordby, right (H) inlet 0,333 0,667 -0,263 0,833 -0,295 

Nordby, left (V) inlet 0,333 0,667 -0,049 0,725 0,398 

Nordby, right (H) inlet 0,333 0,667 -5,502 -2,294 -1,344 

Enebakk/missingen, inlet 0,333 0,667 -0,319 -0,283 0,006 

Enebakk/missingen, inlet 0,333 0,667 0,318 -0,138 0,117 

Enebakk/missingen, inlet 0,333 0,667 0,092 -0,061 0,196 

Enebakk/missingen, inlet 0,333 0,667 -1,039 -0,385 0,917 
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Treatment pond FS1 FS2 

Skullerud, field no. 1, April -0,501 -1,952 

Skullerud, field no. 2, June -0,501 -1,952 

Skullerud, field no.3, August -0,501 -1,952 

Skullerud, field no. 4, October -0,501 -1,952 

taraldrud north  4,170 -1,678 

taraldrud north  4,170 -1,678 

taraldrud north  4,170 -1,678 

taraldrud north  4,170 -1,678 

Taraldrud junction 7,241 4,931 

Taraldrud junction 7,241 4,931 

Taraldrud junction 7,241 4,931 

Taraldrud junction 7,241 4,931 

Taralrud south 5,135 -1,581 

Taralrud south 5,135 -1,581 

Taralrud south 5,135 -1,581 

Taralrud south 5,135 -1,581 

Nøstvedt 0,002 -1,288 

Nøstvedt 0,002 -1,288 

Nøstvedt 0,002 -1,288 

Nøstvedt 0,002 -1,288 

Vassum 2,989 -2,883 

Vassum 2,989 -2,883 

Vassum 2,989 -2,883 

Vassum 2,989 -2,883 

Idrettsveien , left (V) towards main pond -2,387 1,818 

Idrettsveien, right (H) towards main pond -2,387 1,818 

Idrettsveien , left (V) towards main pond -2,387 1,818 

Idrettsveien, right (H) towards main pond -2,387 1,818 

Idrettsveien , left (V) towards main pond -2,387 1,818 

Idrettsveien, right (H) towards main pond -2,387 1,818 

Idrettsveien , left (V) towards main pond -2,387 1,818 

Idrettsveien, right (H) towards main pond -2,387 1,818 
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Treatment pond FS1 FS2 

Nordby, left (V) inlet -5,164 0,428 

Nordby, right (H) inlet -5,164 0,428 

Nordby, left (V) inlet -5,164 0,428 

Nordby, right (H) inlet -5,164 0,428 

Nordby, left (V) inlet -5,164 0,428 

Nordby, right (H) inlet -5,164 0,428 

Nordby, left (V) inlet -5,164 0,428 

Nordby, right (H) inlet -5,164 0,428 

Enebakk/missingen, inlet -3,933 -0,039 

Enebakk/missingen, inlet -3,933 -0,039 

Enebakk/missingen, inlet -3,933 -0,039 

Enebakk/missingen, inlet -3,933 -0,039 
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Appendix 4: Target data for the Water and Sediment 

Quality model 

Treatment pond Species Richness Shannon Inverse Simpson 

Skullerud, field no. 1, April 11,000 1,381 2,945 

Skullerud, field no. 2, June 14,000 1,822 4,347 

Skullerud, field no.3, August 13,000 0,618 1,305 

Skullerud, field no. 4, October 19,000 1,627 2,459 

taraldrud north  19,000 1,684 3,315 

taraldrud north  24,000 2,003 4,424 

taraldrud north  24,000 1,606 3,082 

taraldrud north  16,000 1,781 4,527 

Taraldrud junction 14,000 1,263 2,121 

Taraldrud junction 15,000 2,243 7,901 

Taraldrud junction 18,000 1,035 1,872 

Taraldrud junction 13,000 1,448 2,717 

Taralrud south 13,000 1,005 1,932 

Taralrud south 19,000 1,343 2,739 

Taralrud south 17,000 0,635 1,451 

Taralrud south 18,000 0,912 2,051 

Nøstvedt 10,000 1,580 4,092 

Nøstvedt 13,000 2,090 5,853 

Nøstvedt 19,000 1,377 2,181 

Nøstvedt 15,000 0,875 1,522 

Vassum 13,000 1,208 1,922 

Vassum 22,000 1,149 2,437 

Vassum 20,000 0,715 1,445 

Vassum 18,000 1,680 3,577 

Idrettsveien , left (V) towards main pond 17,000 1,773 4,527 

Idrettsveien, right (H) towards main pond 17,000 1,773 4,527 

Idrettsveien , left (V) towards main pond 27,000 2,001 4,172 

Idrettsveien, right (H) towards main pond 27,000 2,001 4,172 

Idrettsveien , left (V) towards main pond 12,000 1,723 4,035 

Idrettsveien, right (H) towards main pond 12,000 1,723 4,035 

Idrettsveien , left (V) towards main pond 12,000 1,578 3,917 

Idrettsveien, right (H) towards main pond 12,000 1,578 3,917 
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Treatment pond Species Richness Shannon Inverse Simpson 

Nordby, left (V) inlet 21,000 1,829 4,193 

Nordby, right (H) inlet 21,000 1,829 4,193 

Nordby, left (V) inlet 35,000 1,889 4,130 

Nordby, right (H) inlet 35,000 1,889 4,130 

Nordby, left (V) inlet 25,000 1,551 3,432 

Nordby, right (H) inlet 25,000 1,551 3,432 

Nordby, left (V) inlet 21,000 1,559 2,702 

Nordby, right (H) inlet 21,000 1,559 2,702 

Enebakk/missingen, inlet 13,000 1,873 4,694 

Enebakk/missingen, inlet 14,000 1,000 1,694 

Enebakk/missingen, inlet 13,000 1,608 2,866 

Enebakk/missingen, inlet 8,000 0,764 1,478 
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