
Multi-Modal Learning for Threat
Analysis

A study on fine-tuning CLIP for a specific domain and how to
use it in a classification setup

Master’s thesis in Computer science and engineering

Kajsa Andreasson, Ria Dass Raj

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Multi-Modal Learning for Threat Analysis

A study on fine-tuning CLIP for a specific domain and how to use it
in a classification setup

Kajsa Andreasson, Ria Dass Raj

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Multi-Modal Learning for Threat Analysis
A study on fine-tuning CLIP for a specific domain and how to use it in a classifica-
tion setup
Kajsa Andreasson, Ria Dass Raj

© Kajsa Andreasson, 2022. © Ria Dass Raj, 2022.

Supervisor: Tobias Norlund, Computer Science and Engineering
Advisors: Aron Lagerberg, Mats Kvarnström, Recorded Future
Examiner: Richard Johansson, Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Typeset in LATEX
Gothenburg, Sweden 2022

iv

Multi-Modal Learning for Threat Analysis
A study on fine-tuning CLIP for a specific domain and how to use it in a classifica-
tion setup

Kajsa Andreasson, Ria Dass Raj
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In recent years, the area of multi-modality has gained immense interest in computer
vision, where it has showed to be powerful for the purpose of letting models learn
visual concepts from raw text instead of from manual annotations. One specific
model using this concept is CLIP [1], which has shown state-of-the art performance
on general zero-shot image classification tasks. However, few works have explored
how competitive CLIP is in specialized tasks. To fill this gap, this report explores
whether a CLIP model can be successfully adapted to the domain of security in-
telligence using threat associated data collected from social media, while using the
same training task as in the original article. In addition, we explore how CLIP’s
Image Text Alignment abilities can be used for multi-modal event classification. We
present a novel approach to using CLIP’s zero-shot capabilities for event classifi-
cation, in addition to a traditional, supervised approach where CLIP is used for
feature extraction. Our fine-tuned model and the pre-trained CLIP model are used
side-by-side for both approaches to compare performance.

Our results show that CLIP can be successfully fine-tuned on social media data
where its zero-shot image-caption matching abilities are improved with 2%. We
furthermore show that our novel approach achieves an AUC-score of 22% and the
traditional approach 74%, which leads to the conclusion that using CLIP’s innate
zero shot capabilities for event classification requires far more work to be competitive
compared to a traditional approach. Finally, we conclude that our fine-tuning does
not affect the performance in the event classification setup.

Keywords: Multimodality, ITA-Models, CLIP, Event Detection, Fine-tuning, Con-
tinued Training, Classification

v

Acknowledgements
First of all, we would like to give a big thanks to our academic supervisor Tobias
Norlund who always, with an enthusiastic and encouraging outlook, has given con-
structive feedback and thorough help. Aron Lagerberg and Mats Kvarnström, thank
you both for your insightful discussions and always providing new ideas we could ex-
plore. Anders Hansson, thank you for your willingness to contribute with your time,
energy and feedback. A big thanks to Recorded Future, and everyone therein, for
being the ones providing us with the possibility to conduct this research. We would
also like to thank our examiner Richard Johansson for constructive feedback, quick
responses to all of our queries and of course for taking on this project to examine.

Thank you to OpenAI for providing open source code, and a well documented
and maintained code, and to AI Sweden for providing computational resources that
enabled the heavy computations in this project.

Of course, without the support from our friends and families, we would never have
been where we are, so thank you for always being there.

Finally, we would like to thank Chalmers University of Technology for everything
these five years have had to offer. Thank you for giving us the knowledge we have
been able to use to carry out this research investigation.

Kajsa and Ria, Gothenburg, July 2022

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Related Work . 3
1.2 Aim . 5
1.3 Limitations . 6
1.4 Contribution . 6

2 Theory 7
2.1 Natural Language in technology . 7
2.2 Natural Language Processing – methods and preprocessing 8
2.3 Transformers . 8

2.3.1 Attention . 10
2.3.2 Vision Transformer . 10

2.4 Contrastive representation learning 11
2.5 Contrastive Language–Image Pre-training (CLIP) 12

2.5.1 Encoders . 13
2.5.2 Loss . 13

2.6 Metrics . 16
2.6.1 Zeroshot classification . 16
2.6.2 Mean Reciprocal Rank . 17
2.6.3 Mean Average Precision . 17

3 Method 19
3.1 Dataset . 19

3.1.1 RFSM dataset . 20
3.1.2 Google Vision dataset . 21

3.2 Data pre-processing . 22
3.3 Experiments . 23

3.3.1 Using CLIP for Zero-shot transfer 24
3.3.1.1 Fine-tuning CLIP . 25

3.3.2 Multi-label classification . 26
3.3.2.1 Approach A: Similarity based classification with CLIP 27
3.3.2.2 Approach B: Feature based classification with an ex-

tended CLIP architecture 28

ix

Contents

4 Results 31
4.1 Using CLIP for Zero-shot transfer . 31
4.2 Multi-label event classification . 33

4.2.1 Approach A . 33
4.2.2 Approach B . 33

5 Discussion 37
5.1 Using CLIP for Zero-shot transfer . 37
5.2 Multi-label event classification . 38

6 Conclusion 43

Bibliography 45

x

List of Figures

2.1 A visualization of one of the six layers in the Transformer Architec-
ture, as presented in [2]. The left half represents the encoder and the
right half the decoder. 9

2.2 Vision Transformer Architecture, as presented in [3]. The left half
represents the encoder and the right half the decoder. 11

2.3 A summary of CLIP’s approach as described by the original article. . 13
2.4 A visualization of how the prediction matrix, or logits matrix, is cal-

culated in the training step of CLIP. 14

3.1 A descriptive image of the pipeline used to perform zero-shot image
to text pairing. 24

3.2 A descriptive image of the pipeline used to perform zero-shot text to
image pairing. 25

3.3 A descriptive image of the pipeline used in that what we refer to as
Approach A. 28

3.4 A descriptive image of the pipeline used in that what we refer to as
Approach B. 29

4.1 Plots showing learning rate, training loss, validation loss and mAP for
three different training sessions, which all three had different learning
rate schedulers. From these plots, it’s easy to see how the learning
rate affects the behaviour during training. The green training was in-
terrupted early due to that it showed unsuccessful training behaviour
already after a few hundred training steps. 32

4.2 Precision-recall curves for Approach A when using average to cal-
culate the feature-merge. The colored graphs show the performance
with respect to each label, and the black graph shows the micro av-
erage of them. 34

4.3 Precision-recall curves when evaluating using the orignal, or finetuned
CLIP model. 35

xi

List of Figures

xii

List of Tables

3.1 Three examples of what the data looks like in the RFSM dataset. . . 20
3.2 One example of an image and text pair per event category from the

Google Vision dataset. 21
3.3 Data distribution of Google Vision dataset for each event label. Each

sample can have more than one label. 22
3.4 Number of samples having multiple labels. 22

4.1 Resulting metrics for the three models showed in figure 4.1. The table
shows metrics both for the image to text pairing ("Image 2 Text") and
for the text to image pairing ("Text 2 Image"). The best performing
model, i.e. the orange one, is now named SM-CLIP and is further
used in the remaining experiments. 32

4.2 Resulting metrics for the B-CLIP and SM-CLIP on three differently
sized datasets. The table shows metrics both for the image to text
pairing ("Image 2 Text") and for the text to image pairing ("Text 2
Image"). 1: 1 822 967 samples, 2: 955 391 samples, 3: 110 055 samples. 33

4.3 AUC-PR values for Approach A, for each of the models, along with
the difference when using average vs sum as calculation method for
feature-merging. The AUC-PR values are given per label. 34

4.4 A balanced average of the AUC-PR values over all labels for Ap-
proach A. This is computed for each of the models when using av-
erage as calculation method for feature-merging. 34

4.5 AUC-score for Approach B, for each of the models over each indi-
vidual label. The best results are highlighted in the table. 35

4.6 A balanced average AUC-PR values for Approach B, for each of the
models when using sum as calculation method for feature-merging. . . 35

xiii

List of Tables

xiv

1
Introduction

For many years, Machine Learning modelling focused on using a single data type
to create systems that could learn to understand patterns in the data and then
use that understanding for various tasks, such as classification. There are many
examples of models that use only one data type, also known as modality – image
classification, numerical regression models, Generative Adversarial Neural Networks
(GANs), text analysis models such as BERT [4] and audio classification models
to mention a few. More recently, the task of creating AI systems with a deeper
understanding of its surroundings and the world has gained interest – essentially
with the purpose of replicating human intelligence captured within a computer. As
we all know, but might be more or less aware of, our outlook of the world does not
only consider one type of input at a time, e.g. sounds, visions, emotions etc, but
instead considers all of the available inputs at once. One step towards replicating
human intelligence in computers is to mathematically recreate the human mind’s
complex way of correlating everything it perceives, which has opened up a new field
of so called Multi-Modal ML modelling.

Multi-modality refers to the interplay between different representational modes, for
instance, between images and written/spoken word. One example of how humans
subconsciously use the multi-modal interplay is when understanding the meaning
of a sarcastic meme that has the text "Look at all the people who love you" along
with an image of an empty desert. The way the post is perceived and understood
changes completely when the image is added to the otherwise seemingly sweet text.
When both the text and image are perceived together, they display a message of
sarcasm or even bullying. This sarcastic message would be impossible to understand
without seeing the image. The idea behind Multi-Modal modelling is hence to try
to give models this type of deeper understanding by relating different modalities to
each other.

Multiple works have introduced ways of using Multi-Modality to build models that
can process and relate information from separate modalities [5], such as [6], who
create shared representations between image, text and sound shown to be useful
for several tasks such as cross-modal retrieval or transferring classifiers between
modalities. Another example is [7] who learns words from pairs of short video-clips
and sentences, which could be used for e.g. automatically generating descriptions
of new videos.

1

1. Introduction

Much of the effort spent in the multi-modal field has been directed towards exploring
how to use one of the modalities as ground truth of a single-modal problem. Tradi-
tional, single-modal systems, especially in the field of computer vision, are trained
to predict a fixed set of predetermined classes from annotations – a procedure known
as supervised learning. This type of training requires large amounts of annotated
data to successfully learn to generalize on unseen data. Advancements of Graphical
Processing Units (GPUs) and computational resources in recent years has allowed
for the development of larger and deeper artificial neural networks, where research
has shown that they in many cases outperform their smaller precursors. However,
with a larger network, a larger amount of data is also required. In combination with
the increased use of supervised learning in the community, the need for manually
annotated data has skyrocketed, leading to a strong interest in how to work around
the need for annotations. In addition, this traditional approach to supervision is
restrictive in nature since it limits usability, which occurs due to its need for ad-
ditional labeled data in order to learn any other concept, i.e. class, than the ones
originally used for training.

Learning about images directly from natural language (NL) has shown to leverage a
much broader source of supervision [1], and eliminates the need for manually created
annotations. The state-of-the-art Contrastive Language-Image Pretraining (CLIP)
model, presented by [1], has shown leading performance when learning joint repre-
sentations of images along with text, also known as multi-modal representations. At
the core of their approach they adopt the idea of learning image perception through
supervision from natural language.

CLIP is a so called pre-trained Image Text Alignment (ITA) model, which means
that it has been trained to align correlated text and image pairs in a single coordinate
system. The dataset of text and image pairs that have been used for training has
been collected from various sources on the internet, and hence has a large variation
of language and visual concepts – in contrast to domain specific datasets used for
example in tumor detection or dog breed classification. The purpose of training
with a highly varied dataset is to learn a wide range of concepts, providing general
knowledge rather than domain specific knowledge.

Due to the wide range of data CLIP has been trained on, there are almost endless
possible use cases. The authors of [1] have showed that CLIP performs exception-
ally well on high level, general tasks, such as image classification on a wide range
of images. However, its performance on complex and specialized tasks in specific
domains, such as the medical domain, is quite weak [1]. One common way of using
pre-trained models is to leverage their general knowledge in a fine-tuning process.
This means that the pre-trained model is used as a starting point in an additional
task-specific training, with the purpose of adding domain specific knowledge to the
model’s base knowledge – a procedure known as transfer learning. Hence, an ex-
ploration of how CLIP can be affected from domain-specific learning is of interest
to actors that are in need of specialized high performing, yet easily accessible, Ma-
chine Learning (ML) models. Recognizing this aspect, this project’s exploration
embarks in investigating the extent to which CLIP is affected by further learning

2

1. Introduction

from text-image pairs collected from social media that are associated to the threat
domain.

One example of an industrial actor that has an interest in applying CLIP’s general
knowledge to a more specific domain is Recorded Future, which is a company that
works with cyber and threat intelligence by collecting, processing, analysing and
communicating threat and intelligence information. A model like CLIP can be
used in many different ways in an industrial setting, for example for the purpose of
detecting information about threat related events on the internet such as protests or
military activity. For companies within the threat intelligence domain, like Recorded
Future, it can be valuable to learn whether CLIP’s pre-trained state is useful as it
is for tasks relevant to the domain, or if a fine tuning on threat associated data
improves its performance.

As mentioned, one specific task in the threat intelligence industry is to detect events
on social media as soon as possible or even before they have taken place, either for
monitoring purposes or to immediately take the needed actions to avert or reduce
the threat. However, the research in the past few years on event extraction and
classification has been conducted on images and text separately. Because of the
natural way that image and text complement each other with information, it gives
rise to the question of whether using the modalities together, instead of separately, is
valuable. Seeing how a text and image pair often gives a human-reader more context
to a situation compared to what can be understood from only the text or only the
image, makes us wonder if this might have the same affect on a ML model. As of
today, Recorded Future uses a language model to detect threat activity. With the
aim to add a new dimension to previous text based event detection, this project will
explore whether joint image-text representations can be used to identify events on
social media. More specifically, the event detection in this project will be based on
text and image representations created by CLIP. This exploration will be conducted
using both the pre-trained CLIP as well as a fine-tuned CLIP-model.

1.1 Related Work
As described in the introduction, a lot of research has been conducted on multi-
modal models in the last few years. The most groundbreaking studies have used
multi-modality for the purpose of creating a self-supervised learning process, where
language normally is the modality that acts as supervision. Apart from OpenAI’s
CLIP, other similar works have been presented that learn about visual concepts
from natural language with equally good or even better results, such as [8], Mi-
crosoft’s T-Bletchley [9] and Google’s ALIGN [10]. The common goal for all of
these is to show the model a wide enough range of concepts that it can learn to
understand additional concepts that haven’t been included in the training. CLIP
stands out from the rest of the mentioned models since OpenAI has made their
pre-trained model publicly available. All three works are described to use separate
language and image encoders that are trained to align semantically similar image
and text inputs by encoding the in a common feature space. At the time of publi-

3

1. Introduction

cation, T-Bletchley showed state of the art performance on multi-lingual image-text
alignment with the ability to understand 94 different languages. When it comes to
domain specific image classification, the creators of CLIP show results on domain
specific image classification tasks only without fine-tuning the model for that specific
dataset. In contrast, the authors of ALIGN reports results only after fine-tuning on
specific datasets such as the Oxford Flowers-102 [11]. The authors of T-Bletchley
don’t report any results at all for domain specific data. The finetuning of ALIGN
shows promising results, which indicates that a fine-tuning of CLIP should yield an
improvement as well, since they share the same conceptual architecture of one text
encoder and one image encoder. The authors of [10] explain that their finetuning
process consists of finetuning the encoders on a chosen dataset along with finetuning
a single classification layer, similar to the fine tuning carried out in this project. In
addition, ALIGN showcases how multi-modal queries can be used for image retrieval
– such as inputting an image of a pair of grey shoes, and adding the word "red" to
the query. This experiment indeed shows that ALIGN manages to retrieve an image
of the same pair of shoes but in red. The merge of the modalities in the query is
described to be done with elementwise addition of the two created feature vectors.
These interesting results suggests that ITA models can interpret the meaning of two
concepts at once when the feature vectors for the two concepts are merged using
elementwise addition.

Multiple works have studied single-modal approaches to event detection [12], [13],
[14], [15], [16]. A common approach to event detection has, in the past, been based
on extracting semantics or trigger words, which is used by [13],[15], [16] and [14].
Similarly, studies have been focused on event detection by extracting concepts from
images only [12]. However, all these single-modal approaches fail to make use of the
context for which the text or image appears in, since images and text often appear
together in news articles or social media posts.

Other works have presented multi-modal approaches to event detection, for example
[17] which uses a text and graph-based approach for event detection, or [18] which
presents an approach for detection of disasters in text and images in tweets. The
approach presented in [18] is based on creating feature embeddings for the text and
image using both a vanilla Supervised Multimodal Bitransformer and a ViLBERT
model, that have both been finetuned to model the correlation between the text
and image by aligning them in a common feature space. They furthermore use the
created embeddings by adding the two vectors with elementwise addition, i.e. the
same approach as in [10], before sending them through a linear classification layer.
[19] presents a similar approach to do multi-modal event detection in news articles
using text and images. They propose a new model, Dual Recurrent Multimodal
Model (DRMM), that uses BERT for text encoding and ResNet for image encoding.
The competetive results presented in these two works suggests that using combined
text and image embeddings is a good approach for event detection. Based on these
works, our study aims to adopt the same approach as [18] for threat related event
detection, but using CLIP as the text and image encoder.

One study that has used CLIP for encoding purposes unrelated to event detection

4

1. Introduction

is [20], which studies multi-modal sentiment analysis on text and images. Their
experiments show that CLIP was the superior encoder for images specifically, which
is yet another argument to use CLIP for feature generation in an event detection
pipeline.

1.2 Aim
The purpose of this project is firstly to assess how fine-tuning a pre-trained CLIP
model on data that is associated to the threat domain affects its performance. One
could argue that this process should be called continued pre-training, since we aim
to train CLIP using the same task as in the pre-training, but instead of using
general data, which is normally the case for pre-training, we will use domain-specific
data. Fine-tuning on the other hand normally means that the training is done for a
specific task, on domain specific data, with an additional classification layer. Since
the training we refer to in this project lies somewhere in between continued pre-
training and fine-tuning, we have chosen to use the phrase fine-tuning to emphasise
the use of domain-specific data. The performance of the pre-trained, and later on
the fine-tuned model, will be evaluated using the same methods as in the original
article [1], i.e. to evaluate how well the model can identify the actual matching
text and image pairs out of a large set of such. This assessment will be conducted
on data sourced from one social media outlet only1, which differs to the data used
in the pre-training. Due to the frequent use of sarcasm, memes and in other ways
un-related text to images on social media, the nature of the dataset is challenging.
This fact gives rise to the question of whether CLIP’s way of learning allows for it to
understand complex concepts such as sarcasm, and in turn deepen its understanding,
or if it will simply confuse CLIP.

Up until now, there has been very little research done on the topic of adapting and
fine-tuning CLIP for a specific domain. We aim to fill that gap by exploring if
and how CLIP can be adapted to the threat domain on social media. A successful
adaptation could open up for many businesses to create specialized, well-performing
models by taking advantage of CLIP’s general knowledge and fine-tuning it in a
chosen domain – which would be a relatively efficient and cheap process compared
to training an equally good model from scratch. Considering the fact that CLIP
has showed to perform inadequately on specialist tasks [1], the idea of fine-tuning
to improve the performance in such tasks seems even more purposeful.

Lastly, this project will investigate different ways of using the image and text feature
vectors created by CLIP for event detection, as a multi-label classification problem.
The first approach will use CLIP’s built-in ability to find similarities between the
text and image pair and the event type labels and make the classification based
on the calculated similarities. The second approach will use an added classifier
that takes the embedded text and image as input – which essentially is a type
of feature learning. Comparing these two approaches to each other, but also to

1Because of confidentiality and legal matters, we’re not able to explicitly write out the name of
the social media outlet.

5

1. Introduction

existing single modal event detection models, can indicate whether CLIP and its
feature embeddings can be a good alternative for event detection. Since very few
works, if any at all, has previously explored using CLIP’s embeddings for event
detection, we see a good opportunity to contribute with novel investigations to the
community.

In short, the research questions that are to be investigated throughout the project
are:

1. Is it possible to successfully fine-tune a general ITA-model within a more
specific domain?

2. How can text and image representations from an ITA-model be used for
multi-label classification, more specifically for threat classification, and how is
the performance affected by the previously mentioned, domain-specific, fine-
tuning?

1.3 Limitations
The main limitation for this project has been the computational resources. Many
existing ITA models, such as CLIP, consist of millions of trainable parameters, and
hence need extreme amounts of computing power to train and test. The authors
of CLIP reported that their training took up to 18 days on 592 V100 GPUs [1].
The training in this project will be carried out on 5 NVIDIA A100-SXM4-40GB
GPUs. The limitation on computational power has limited our work to only work
with smaller datasets compared to the pre-training of CLIP, as well as the number
of different trainings we have been able to run to find the optimal training scheme.

1.4 Contribution
This project has shown that CLIP can be fine-tuned towards a specific domain.
Furthermore, CLIP has most probably used social media data in their pre-training,
making this an inadequate dataset to use when fine-tuning the model. Since the
authors of CLIP do not specify what data they use in their pre-training, this project
shows the extent to which the model’s general knowledge ranges giving indications
on what could be a good dataset when fine-tuning the model.

Furthermore, the project has suggested a novel approach in which one may use
the numerical representations CLIP generate to conduct domain-specific tasks. The
project showed that a traditional approach, in which one fine-tunes a fully connected
classification layer, performs better. However, due to the quality of the dataset being
questionable, this novel approach is worth to explore further. The code developed
and used to conduct this study can be found at our github repo2 and is open source.

2https://github.com/riiaraj/multimodal-learning-for-threat-analysis ©

6

https://github.com/riiaraj/multimodal-learning-for-threat-analysis

2
Theory

This chapter aims to provide the reader with the required information that is needed
to understand the concepts mentioned and used in the following chapters. It starts
by giving a general introduction to the field of Natural Language Processing (NLP)
(Section 2.1) and NLP methods (Section 2.2) and continues with an explanation
of transformers and encoder-decoder models (Section 2.3), which is some of the
technology used in CLIP that has acted the backbone model in this project. The
chapter continues with an explanation of the technique used to train CLIP, namely
Constrastive representation learning (Section 2.4), followed by a more detailed pre-
sentation of CLIP to give an understanding of how it works under the hood (Section
2.5). Finally, we end the chapter with presenting the metrics used for evaluation in
this project (Section 2.6).

2.1 Natural Language in technology

NLP is a subfield of computer science, artifical intelligence and linguistics. As the
name suggests, NLP is concerned with the interactions between computers and
human natural language (NL). NL differs from other types of languages, such as
computer language, by including only such language that would be written or spoken
by a human. The goal for the NLP field is in short to give computers the ability
to understand and respond to natural language in the same way as humans [21].
Examples of applications of NLP are programs that do language translation from
one language to another such as the famous Google Translate functionality, virtual
agents or chat bots such as Apple’s Siri and voice recognition such as voice operated
GPS systems - just to mention a few. All these NLP use cases can be divided into
separate NLP tasks, such as named entity recognition, speech recognition, natural
language generation, sentiment analysis or semantic analysis. This project’s NL
scope lies mainly within the semantic analysis task, which is an area that can be
summarized as identifying the meaning of language and understanding the topic
of a text by looking at the context. The semantic analysis carried out in this
project is related to both using the contextual information from text to learn visual
concepts, as well as using the context extracted from both text and images to detect
information about events.

7

2. Theory

2.2 Natural Language Processing – methods and
preprocessing

There is a standard way to approach processing natural written text, which allows
the computer to make sense of natural language. The first step is normally to
parse the written string by removing parts of the string that won’t add any value
to the model. This could be emojis, url:s or other special characters. The next
step is normally to translate the text into the machine’s own vocabulary, called
tokenization. This means that the text is broken down into smaller pieces that the
machine can process, which can be sentences if the text is a long paragraph, or
words, parts of words or even individual characters. A common practice is to divide
the text by white space, such that each word becomes an individual token. In some
cases, the tokenized string has to be truncated at a certain length, i.e. cut off at a
certain number of tokens, due to some language models having a constraint on how
many tokens it can process at a time. It is also common to add one special token
at the beginning of each tokenized string, called a Start-Of-String (SOS) token, and
one End-Of-String (EOS) token at the end of the tokenized string. These two tokens
allow the language model to better understand the beginning and end of a sentece or
a longer text. The tokenized string can then be further processed to create textual
features, using various vectorization methods, such as the term frequency–inverse
document frequency (TF-IDF) or bag-of-words. These methods are not used in this
project and will hence not be further explained. The set of unique tokens that are
remaining after tokenization make up the so called model vocabulary. In practice
this means that the model can normally only recognize tokens that are included in
its vocabulary.

2.3 Transformers

The transformer architecture was proposed by [2] in 2017. This architecture revo-
lutionized the way in which inputs strings are mapped to output strings i.e. trans-
duction, where machine translation is one common application. Before its coming
about, most state-of-the-art sequence transduction models based their architecture
on a complex two-stage RNNs or CNNs in a encoder-decoder structure.

Encoder-decoder models can be summarised as a family of models that learn to
map data-points from one input domain to an output domain. A classical encoder-
decoder model is a two-stage network, which consist of firstly an encoder that com-
presses, i.e. encodes, the input to a latent feature space representation – hence on
be referred to as embedding. The network’s second part consists of a decoder which
aims to predict the output by decompressing, i.e. decoding, the embedding.

The Transformer also has an encoder-decoder structure, however its revolutioniz-
ing aspect is that it eschews recurrence and entirely relies on a so called attention
mechanism, which is a technique used to provide an additional focus on a specific
component. This concept is further explained in section 2.3.1. However, what is

8

2. Theory

worth to notice for now is how this approach creates global dependencies between
input and output, while also allowing for significantly more parallellisation as com-
pared to the RNNs and CNNs. As presented in [2], Figure 2.1 shows the architecture
of the Transformer. One component of the transformer is the multi-head attention
sub-layer. This is essentially multiple self-attention (See Section 2.3.1) modules
stacked on top of each other. Another component is point-wise, fully connected
layers for both the encoder and decoder, shown in the left and right halves of Figure
2.1, respectively.

Figure 2.1: A visualization of one of the six layers in the Transformer Architecture,
as presented in [2]. The left half represents the encoder and the right half the
decoder.

The encoder of the Transformer is composed of a stack of six identical layers, each
layer consisting of two sub-layers [2]. As explained in the article, the first sub-layer is
a multi-head self-attention mechanism and the second a position-wise fully connected
feed-forward network, each with a residual connection, followed by a layer normaliza-
tion. Meaning, the output of each sub-layer is LayerNorm(x+Sublayer(x)), where
Sublayer(x) refers to the function implemented by the specific sub-layer. To facilitate
the residual connections, each output carries the same dimension of d = 512.

The decoder of the Transformer is also composed of a stack of six identical layers.
In addition to the two sub-layers in each encoder layer, the decoder begins with
a third sub-layer performing multi-head attention over the output of the encoder

9

2. Theory

stack. The motivation to this structure is to ensure that the predictions for position
i can depend only on the known outputs at positions less than i.

To make sure the model makes use of the order of the sequence, even though it does
not contain recurrence or convolution, the transformer adds positional encodings to
the input embedding at the bottom of the encoder and decoder stacks through a
simple summation.

2.3.1 Attention
Attention in neural networks is a technique, mimicking cognitive attention, that
enhances some parts of the input data while diminishing other parts [22]. The
thought behind it is that the network should devote more focus to important parts
of the data similar to e.g. the visual attention mechanism that the human brain
uses to focus on aspects of an image with higher resolution and subsequently viewing
the surrounding areas with a lower resolution. The attention mechanism evaluates
inputs to identify the most important components, and assigns each of them with a
weight. Deciding which part of the data is more important than others depends on
the context.

There are different types of attention mechanisms, with one of the most common
one being self-attention. [2] used self attention, which is the attention mechanism
that relates different positions within a single sequence, in order to compute a rep-
resentation of the whole sequence. Self-attention has successfully been used in a
variety of tasks, including reading comprehension, textual entailment and learning
task-independent sentence representations [2].

2.3.2 Vision Transformer
The Vision Transformer (ViT) architecture was proposed by [3] in 2021. After the
Transformer architecture grew to become the de-facto standard for NLP tasks, ViT
was created as a result of wanting to apply the Transformer architecture to CV
applications with the fewest possible modifications.

Figure 2.2 shows an overview of ViTs architecture. In order to preserve the main
structure of the Transformer, ViT preprocesses the input-images to a format com-
patible with the Transformer’s encoder. In practice, ViT splits the input-images into
a sequence of patches (allowing for the images to be treated as tokens in an NLP ap-
plication) that are linearly embedded, and then inputs this sequence of embeddings
to the Transformer.

As seen in Figure 2.2, ViT prepends a learnable [class] embedding (much like BERT’s
[class] token that is used to represent the entire sentence) to the sequence of embed-
ded patches, which serves as the image representation. It also prepends positional
embeddings to retain positional information. The positional information in this con-
text refers to one element’s (of the whole patch-sequence) position. The resulting
sequence of embedding vectors then serves as input to the encoder that shares its

10

2. Theory

Figure 2.2: Vision Transformer Architecture, as presented in [3]1. The left half
represents the encoder and the right half the decoder.

structure with the original Transformer presented in [2].

2.4 Contrastive representation learning
Representation is an important part of machine learning. To explain contrastive rep-
resentation learning, we first have to explain the concept of representation learning
itself. Representation learning consists of extracting relevant features or information
from raw data, that allows for later use on downstream tasks such as classification.
One straightforward example of representation learning is feature extraction from
e-mails to detect spam. The raw e-mail text can be tokenized (see Section 2.2) and
then turned into features using a vectorization method, such as TF-IDF or bag-
of-words. The vectorization methods result in feature vectors, often based on the
frequency of each token, transformed with a given mathematical formula depending
on which vectorization method that is used. As an example, the bag-of-words vec-
torization creates a feature vector where each element is an integer representing the
number of occurrences of each token in a given sentence. The vector representation
can then be fed into a linear classifier to make a spam/not spam prediction.

Contrastive representation learning is a type of representaion learning with a slightly
different objective. Whereas the regular contrastive learning focuses on only extract-
ing relevant information from raw data, the contrastive representation learning aims
to extract the relevant data by learning the optimal way to embed samples in a fea-
ture space, in which similar sample pairs stay close to each other while dissimilar
ones are far apart. Although we find contrastive learning to be applied to both
supervised and unsupervised settings, it is one of the most powerful approaches in
self-supervised learning.

The contrastive learning loss is defined using cosine similarity, which is a measure of
similarity between two sequences of numbers. The sequences are viewed as vectors

1This image is re-used from the original article [3] with the permission from the authors.

11

2. Theory

A⃗ and B⃗ in a feature space and the cosine similarity is defined as the cosine of
the angle between them. That is, the dot product of their vectors divided by the
product of their lengths 2.1, meaning the similarity depends not on the magnitudes
of the vectors, but on the angle between them.

cosine similarity = A⃗ · B⃗

∥A∥∥B∥
=

∑n
i=0 AiBi√∑n

i=0 A2
i

√∑n
i=0 B2

i

(2.1)

2.5 Contrastive Language–Image Pre-training (CLIP)

The Contrastive Language–Image Pre-training (CLIP) model presented by [1] is
a state-of-the art multi-modal model. When the cross-modal retrieval is based in
images and text, i.e. retrieving an image given a text query, or captions that suc-
cessfully label an image, the models are usually referred to as Image-Text Alignment
(ITA) models [23]. At the core, CLIP implements an approach to learning perception
through representation learning with supervision from NL.

Many state-of-the-art computer vision systems use a predictive approach to learn
visual concepts, such as the Noisy Student EfficientNet-L2 that predicts 1000 Im-
ageNet classes [1]. However, CLIP required a whole 33 TPUv3 core-years to be
trained. Considering the amounts of computational power this model required dur-
ing training only to learn a limited amount of visual concepts, training a model to
learn an open set of visual concepts from NL requires a refined approach. CLIP
overcomes the limitation by swapping the predictive objective for a contrastive ob-
jective. This simplifies the task in that, that it predicts only which text as a whole
is paired with which image, rather than the exact words of that text.

To attain this, CLIP learns a multi-modal embedding space, which essentially is a
feature space that is common for the images and texts. Through firstly embedding
the image and text of the (image, text) pair in an image and text encoder respec-
tively and secondly jointly train the encoders, this embedding space is created. The
training aims to maximise the cosine similarity between the embeddings of the im-
age and text pairs that belong together and minimise the cosine similarity between
the pairs that don’t belong together, which is done through optimising a symmetric
cross entropy loss over the similarity scores.

This means, for a batch of N (image, text) pairs, CLIP is trained to predict which
of the NxN possible (image, text) pairings across a batch actually occurred. And
to do that, they maximise the cosine similarity of the N real pairs in the batch, and
minimise the cosine similarity of the N2 −N false pairs. A summary of the approach
is visualized in 2.3.

12

2. Theory

Figure 2.3: A summary of CLIP’s approach as described by the original article.

2.5.1 Encoders
CLIP’s image encoding component is a closely followed ViT architecture as described
in Section 2.3.2, however with an additional layer normalization to the combined
patch, and a different initialization scheme.

The text encoding component is the Transformer, with architecture modifications as
described in [24]. The base size is a 63M-parameter, 12-layer 512-wide model with 8
attention heads. The text is represented as lower-case byte encodings (BPE), where
the max sequence length is capped at 76 (for computational efficiency). The total
vocabulary size is 49,152.

2.5.2 Loss
In traditional binary and multi-class classification problems, cross entropy is the
most commonly used loss function, which measures the difference between two prob-
ability distributions for a given random variable. CLIP however uses a contrastive
loss function whose goal is to pull together text and images, that belong together
(positive-pair), in the feature space, while simultaneously pushing apart (or con-
trast) text and images that don’t belong together (negative-pair). The contrastive
loss function is introduced in Equation 2.2,

lIi,Tj
= − log

 exp[sim(f(Ii),g(Tj))
τ

]
exp[sim(f(Ii),g(Tj))

τ
] +∑N

k=1 [k ̸=j] exp[sim(f(Ii),g(Tk))
τ

]

 (2.2)

where the similarity function sim is the cosine similarity (see Equation 2.1) between
the image embedding of image i (f(Ii)) and text embedding of text j (g(Tj)). τ is
a normalization factor also called the temperature parameter.

To minimise the loss the numerator must be maximized while the denominator must
be minimized, which is done by ensuring that the cosine similarity for negative-pairs
is as small as possible and that of positive-pairs is as large as possible.

Since we know which text and images that belong together, the contrastive learning

13

2. Theory

carried out when training CLIP is in practice supervised. This allows for implement-
ing the contrastive loss using loss functions that are normally used for supervised
problems, such as the Cross Entropy Loss. The remainder of this section will hence
consist of a technical description of how contrastive loss can be implemented using
Cross Entropy Loss.

The formula for cross entropy looks as follows:

H(t, p) = − 1
N

N∑
k=1

tklog(pk) (2.3)

where tk = target for sample k, pk = prediction for sample k and N = batch size.

The classification task used for training CLIP is a multi-class problem. In such multi-
class cases, the cross-entropy calculations of the torch library expects a logits-matrix
(prediction) as input (showed in equation 2.4), paired with an array of class-indices
(target). The logits-matrix in this case is a symmetric matrix where each element
contains a logit, in our case similarity, for each possible text and image pair in
the batch. High similarity naturally means that the text and image are likely to
belong together, while low similarity means that the text and images are likely to
not belong together. Using both the logits-matrix and the target vector, it’s possible
to calculate the cross-entropy-loss over each row in the logits-matrix (see Equation
2.4), with the correct target class index. The correct target class index in our case is
each diagonal element (since this element represents the image-text pair), visualized
in figure 2.4. Therefore it is sufficient to represent the correct target for each row
using a range vector [0, 1, 2, ..., N − 1], where N = batch size.

Figure 2.4: A visualization of how the prediction matrix, or logits matrix, is
calculated in the training step of CLIP.

14

2. Theory

a⃗ =

a0,0 a0,1 a0,2 ... a0,N

a1,0 a1,1 a1,2 ... a1,N

...

...
aN,0 aN,1 aN,2 ... aN,N

 (2.4)

Equation 2.4 shows the logits array where

ai,j = f(Ii) · g(Tj)
∥f(Ii)∥∥g(Tj)∥

(2.5)

The logits matrix corresponds to the predictions in terms of how likely it is that
each image and text pair correctly belong together. In torch, the predictions are first
translated to a probability, row-by-row, using the softmax function as presented in
Equation 2.6 (which shows an example when calculating the softmax for row number
0). This gives a "prediction-matrix", as shown in Equation 2.7

p⃗0,i =

[
exp[a0,0], exp[a0,1], exp[a0,2], ..., exp[a0,N]

]
∑N

j=1 exp[a0,j]
(2.6)

where a0,0 to aN,N are entries in a row in the logits-matrix and exp is the exponential
function.

p⃗ =

p0,0 p0,1 p0,2 ... p0,N

p1,0 p1,1 p1,2 ... p1,N

...

...
pN,0 pN,1 pN,2 ... pN,N

 (2.7)

When the predictions are found, the cross-entropy is calculated. Recall that the
objective of our loss calculation is to minimise the loss over the diagonal elements
(the true pairs, meaning the targets), hence these are the relevant elements to be
included in the calculations from each row. In practice, this means that the loss
is calculated only for the elements on the diagonal, since all other elements have a
target value 0 and are hence not included due to the multiplication of the target
value in equation 2.3. That is, when inserting all the elements in Equation 2.3 the
resulting loss calculations contain only terms for the diagonal elements and look as
follows:

15

2. Theory

H(t, p) = − 1
N

N∑
k=1

tklog(pk)

= − 1
N

(log(p0,0) + log(p1,1) + ... + log(pN,N))

= − 1
N

(
log

(
exp[a0,0]∑N

k=1 exp[a0,k]

)
+ ... + log

(
exp[aN,N]∑N

k=1 exp[aN,k]

))
(2.8)

And so we see that Equation 2.8 is in the same form as that of Equation 2.2, showing
how CLIP incorporates contrastive learning in their training. To minimize the loss,
we have to maximize the fractions in the log expressions in equation 2.8. To do so, the
numerator for each term containing the similarity values for the diagonal elements
in the prediction matrix have to be maximized while the denominators containing
the sum of all the similarity values have to be minimized. This means that the other
entries of the matrix, signifying the incorrect pairs, are implicitly addressed for the
loss calculations through minimizing the log of the sum. In practice, this means
that the similarities for the correct pairs on the diagonal are trained to be as high
as possible while the similarities for all the other pairs are trained to be as low as
possible.

2.6 Metrics
This section will describe the metrics used to evaluate the different models in this
project.

2.6.1 Zeroshot classification
Most regular classification tasks consist of predicting one or several classes for a
certain sample out of a number of classes that the model has been trained on. The
sample could be a text, image, numerical features etc – for example an image of a
dog with the class "dog". The model has previously to the prediction been "showed"
(trained on) images of dogs and their class-labels so that it has learned to classify
images of dogs with the class "dog". Zero shot classification on the other hand,
works by predicting a class (or several classes) for a sample without having seen
that particular class before. An example of this could be that a model trained on
cats and dogs is given an image of a lion and is then supposed to predict the correct
class "lion" out of a few alternative classes "lion", "jaguar", "tiger" for the image.
Naturally, this increases the complexity of the classification task and the model
itself has to be adjusted to be able to handle zero shot classification.

In practice, the zero shot classification works by taking an input sample and a list
of alternative classes that are unfamiliar to a given model. By using it’s previous
knowledge of classes that are familiar to the model, it can make a prediction of which

16

2. Theory

classes that are the most probable for the given sample, often based on a similarity
value. The zero-shot classification using CLIP in [1] is based on the cosine-similarity
values between the sample and all alternative classes.

In practice, the zero-shot classification in CLIP means that we view each text sample
as its own class and based on a given input image, CLIP finds the correctly associated
"class", i.e. text sample with the highest similarity value, for that image. The zero-
shot classification pipeline naturally also works the other way around, where each
image is treated as its own class, and the correct "class" (image) is to be predicted
for a given text fragment based on the highest similarity value.

2.6.2 Mean Reciprocal Rank
The first evaluating metric used in this work is the Mean Reciprocal Rank (MRR),
which is commonly used in ranking tasks. In the context of ranking, the terms query
and documents are commonly used. The query is the input to the model, and the
documents are all the alternatives that should be ranked based on a chosen method
with regards to the query. For zero-shot image classification, an input image is the
query. The documents are all the available classes that should be ranked, i.e. all
text strings the model can "choose" from.

The MRR evaluates the performance by considering the highest rank of one of the
relevant documents for each query. The mathematical formula for MRR is

MRR = 1
|Q|

|Q|∑
q=1

1
rankq

(2.9)

where Q is the number of queries and ranki is the highest rank of any of the relevant
documents in the predicted ranking list. The MRR will get a final value between 0
and 1, where a higher value means that the model is better at ranking the relevant
documents at top positions in the ranking list. In other words, a perfect ranking for
each sample would give a MRR of 1.

2.6.3 Mean Average Precision
The second evaluating metric used is the mean Average Precision (mAP) which
measures the performance by looking at how many relevant documents are predicted
with a high ranking. The more relevant documents at the top of the ranking list, the
higher the average precision (AP) value. This metric is similar to the precision-at-k,
but instead of a given number k, all documents are considered. The AP is calculated
for each query, followed by taking the mean over all queries. The mathematical
formula for MAP is:

MAP = 1
|Q|

|Q|∑
q=1

AP(q) (2.10)

17

2. Theory

where Q is the number of queries, i.e. inputted images/fragments (depending on the
direction), and AP(q) is the average precision for a query q. The average precision
itself is calculated according to the following formula:

AP(q) =
∑N

k=1 NP(k) × rel(k)
number of relevant fragments (2.11)

where NP(k) is the precision at cut-off k in the list, rel(k) is an indicator function
which equals 1 if the item at rank k is a relevant document, and zero otherwise.
Similarily as for the MRR, the mAP will get a final value between 0 and 1, where
a higher value means that the model is better at ranking the relevant documents
at top positions in the ranking list. A perfect ranking for each sample would give a
mAP of 1.

18

3
Method

This project investigates CLIP’s zero-shot classification abilities within the threat
intelligence domain along with if and how CLIP’s feature embeddings can be used for
event detection. As earlier stated, the research questions that are to be investigated
in this project are:

1. Is it possible to successfully fine-tune a general ITA-model within a more
specific domain?

2. How can text and image representations from an ITA-model be used for
multi-label classification, more specifically for threat classification, and how is
the performance affected by the previously mentioned, domain-specific, fine-
tuning?

The research to investigate these questions has been divided into two parts: the
first one called the fine-tuning, where we explore how to successfully conduct a
fine-tuning of CLIP on domain specific data and how such a fine-tuning affect the
performance. The second part is called multi-label event classification, where we set
up two different pipelines to make use of the text and image embeddings created by
CLIP. For these two parts, two separate datasets have been collected.

In this chapter the research through which these investigations took place are de-
scribed, along with an examination of the datasets used, pre-processing methods
and a detailed explanation of the experiments conducted.

3.1 Dataset

Two main datasets have been used for this project:

• Social media sourced text- and image pairs, denoted as RFSM dataset.

• Text and image pairs, labeled with 3 event types through Google Vision, de-
noted as Google Vision dataset.

19

3. Method

3.1.1 RFSM dataset

The first dataset consists of 54 million text and image pairs originating from social
media posts. Because of confidentiality and legal matters, we’re not able to explic-
itly write out the name of the social media outlet. The dataset has been provided
by Recorded Future, and they have sourced data relevant to their domain of threat
intelligence giving its threat association. The data was collected continuously start-
ing from September 1st 2021 throughout December 18th 2021. Due to the nature
of social media and how images often are re-posted, the same image can occur in
many different posts. This is true also for our dataset, where one image can occur
in multiple samples with different fragments.

Those who are familiar with modern social media outlets know that there is a high
frequency of so called memes as well as screenshots with computer typed text. It is
also quite common that the text is contradictory or unrelated to the image, due to
for example irony or sarcasm. With this in mind, there is a possibility that CLIP
might perform worse on our own data due to the possible lack of correlation between
the text and images. To give an idea of what the data looks like in this dataset, a
few samples are presented in Table 3.1.

Image Fragment

"Vienna Protest Against Tyrannical
Vaccine Passports and
Mandatory Vaccinations."

"This is your Classic VICTIM
mentality, which has become
very popular in our current
society and judicial system.
I’m SMH as someone who
believes in consequences
that match the behavior/crime..."

"#syria #raqqah Al-Khabour:
Two members of the regime
forces were killed in an armed
attack targeting a military vehicle
on the road between the cities
of Maskana and Debsi Afnan,
southwest of Raqqah."

Table 3.1: Three examples of what the data looks like in the RFSM dataset.

20

3. Method

3.1.2 Google Vision dataset
The second dataset has been collected by Recorded Future from all over the web and
consists of 363 096 text and image pairs. The images in these pairs are annotated
using Google Vision and the text fragments are annotated with Recorded Future’s
internal rule-based event annotator. Each sample can have 0 or more labels. These
labels are of different nature but those that are relevant in the case of this project
relate to threat oriented activity. Hence, the labels from this dataset that are used
are Manmade Disaster, Protest, Military Event, Tank. We make the as-
sumption that the text and image in each pair are related to each other and hence
describe the same concept. In other words, in the case of where only the image has
a label, we consider that label to be valid for the text as well. The same goes for
the opposite case, when only the text has a label. For the case of when the text and
image have different labels, we assign both labels to the sample. To give an idea of
what the data looks like in this dataset, a few samples are presented in Table 3.2.

Class Image Fragment

Manmade disaster

"The Ukrainian emergency service
said it had put out 24
fires in and around Kharkiv
caused by shelling,
and it had disabled 69
explosive devices."

Military

"A Ukrainian soldier directs
a Russian tank that Ukrainians
captured after fighting with
Russian troops, as Russia’s
attack on Ukraine continues,
outside Brovary, near Kyiv,
Ukraine, March 10, 2022."

Protest

"GENEVA - The U.N. human
rights office called Tuesday
for the release of all peaceful
protesters who
were arrested after taking
part in Russia in demonstrations
protesting the war in Ukraine."

Table 3.2: One example of an image and text pair per event category from the
Google Vision dataset.

A so called Manmade Disaster is an event where a disaster has occured as a con-
sequence of human actions, such as non-natural fires or explosions, and the events

21

3. Method

following after such. Military on the other hand, is any event that includes military
vehichles, such as tanks or military aircrafts, or military persons. Any text related
to invasions or other war related vocabulary will also fall into this category. Protest
is a bit more straightforward, and will include text and images of both protest and
demonstrations, usually showing crowds with poster and flags.

After pre-processing the data, 55833 relevant samples are retrieved, out of which
45220 are negative samples. The distribution of the labels is reflected in Table 3.3.
Note that each sample can have more than 1 label, hence will the percentages add
up to a value larger than 100.

Number of samples %
Manmade disaster 5745 10.29
Military 12761 22.86
Protest 6187 11.08
No label 32 694 58.56

Table 3.3: Data distribution of Google Vision dataset for each event label. Each
sample can have more than one label.

Number of multi-label samples
Manmade disaster and Military 830
Manmade disaster and Protest 206
Military and Protest 524
Manmade disaster, Military and Protest 6

Table 3.4: Number of samples having multiple labels.

The dataset was also divided in a training, validation, and test set consisting of 70,
10 and 20 percent of the data respectively, where the label distribution reflects its
distribution as in the whole dataset.

3.2 Data pre-processing
A few pre-processing steps were taken to prepare the data for being used to train
and evaluate the CLIP-model.

For the RFSM dataset, the first step of pre-processing the textual data was to remove
user tags in the post text fragments, for example @username, since the user names
themselves aren’t part of the natural language. Secondly, all url:s were removed
from the text, for example https://www.examplewebsite.com. The text fragments
that, after this step, had empty text strings were also removed from the dataset.
Like most NLP architectures, CLIP can’t send raw text through its text encoder:
first each text fragment has to be truncated and tokenized, which is done using the
tokenizer developed along with CLIP by [1]. The tokenization process truncates all

22

3. Method

text fragments at 77 tokens so that the remaining tokens are removed, and then
finally returns a tensor of 77 elements with the tokenized representation of each
inputted fragment.

The same steps were taken even for the Google Vision dataset, however with an
additional step included. Since this dataset was used with the aim to evaluate
CLIP’s event detection abilities, the labels had to reflect events. As described in
Section 3.1.2, the labels from the dataset that were used were Manmade Disaster,
Protest, Military Event and Tank. However, it is only the three first labels that
reflect occurrence of an event. Seeing that tanks are almost exclusively found in
military contexts, the Tank-labels were mapped into the Military Event category.

The image pre-processing was conducted in the exact same way for both datasets.
This was done with CLIP’s own image preprocess method, which is a torchvision
transformer that converts an image into a tensor. Simply put, the pre-processing
resizes, crops and normalizes the image into a 3 × 224 × 224 tensor (where the first
dimension is the RGB-scale).

3.3 Experiments

The backbone of this project was, not only the architecture used by [1], but the
model itself along with its pretrained weights. To answer the research questions
(see Section 1.2), the project set sail in two streams. The first one was to use
CLIP for zero-shot transfer and then fine-tuning CLIP (a continued training of the
original pre-trained CLIP)1 to see how it is affected from domain-specific learning.
For this stream, the RFSM dataset was used for training and evaluation, see section
3.1.1. The training was conducted with different learning rates along with different
learning rate schedules. To evaluate the performance before and after fine-tuning,
ranking metrics such as mAP and mRR were used.

The second stream of the project regarded seeing how and if CLIP’s image-text
representations can be used for multi-label classifications. This was done by com-
paring two approaches. The first approach evaluated CLIP itself as a multi-label
classifier in a similarity based classification. The second approach evaluates CLIP
extended with a fine-tuned linear classification layer. This chapter explains in detail
how these experiments were conducted.

1To highlight our reasoning behind the naming of this stream, we give further explaintion here.
Due to the fast advancements in this field of pre-trained models, terminology is lacking a bit
behind. To note is that this experiment is not fine-tuning in its traditional sense, where one add
a classification layer to a model, and fine-tunes it for a specific task. This combined with the fact
that our training objective is the same as the original one, one could argue that the experiment is
one of simply a continued training of CLIP. But, since the data used for training is domain specific,
it is not completely true to call this experiment a continued training either. Hence, note that our
experiment is a middle way approach to traditional fine-tuning and continued pretraining, but to
underline our aim we have chosen to denote this experiment as fine-tuning CLIP, which is how we
refer to it throughout the report.

23

3. Method

3.3.1 Using CLIP for Zero-shot transfer
As earlier explained, CLIP has been trained to find matching text-image pairs from a
large batch of alternatives, and it could be argued that it carries an innate zero-shot
classification set up. To see how well CLIP performed on zero-shot classification on
threat associated social media-sourced data, an evaluation pipeline was built. The
evaluation was done for the two use cases explained above, meaning 1) Zero-shot
image to text pairing 2) Zero-shot text to image pairing.

3.3.

Figure 3.1: A descriptive image of the pipeline used to perform zero-shot image
to text pairing.

1) Zero-shot image to text pairing In this first evaluation task, CLIP was used
to compute a feature embedding for an inputted image (using the image encoder)
as well as for the set of all possible texts in the dataset (using the text encoder).
These embeddings were then used to calculate the cosine similarity between the
inputted image and each of the text alternatives in the dataset. These similarity
values were then normalized using softmax. Finally, using the similarity values, the
text alternatives were ranked based on descending similarity values, for the specific
image and a Average Precision (AP), Reciprocal Rank (RR) and Top-1 accuracy
could be calculated. After conducting these scores for each of the images in the
dataset, a mean AP (mAP) and mean RR (mRR) was calculated. Given that one
image can have several corresponding fragments, meaning one or more "classes" per
image, these ranking metrics are the way in which performance was evaluated.

2) Zero-shot text to image pairing The second use case uses the same pipeline
but in the opposite direction, i.e. it takes a fragment as input and ranks all images

24

3. Method

in a batch according to their similarity to the specific fragment. This is, in similar
fashion as in case 1), done for each fragment to allow for calculation of evaluating
metrics. 3.3.

Figure 3.2: A descriptive image of the pipeline used to perform zero-shot text to
image pairing.

3.3.1.1 Fine-tuning CLIP

The training of CLIP on the RFSM-dataset in this project has been set up following
the same principle as in the pretraining carried out in [1], using PyTorch Lightning
which provides boilerplate code to easily train neural networks using multiple GPU’s.
The training was carried out based on most of the configurations used in the original
pre-training in [1]. The Adam optimizer [25] was used with a weight decay of 0.2 and
beta values of (0.9, 0.98), apart from the inherited parameters from the pre-trained
CLIP model. Our best performing models were trained with a 1cycle learning rate
scheduler initially described in [26], instead of a cosine annealing scheduler which was
used in [1]. The 1cycle learning rate scheduler anneals the learning rate from a small
initial learning rate up to a maximum learning rate for a given percentage of the
total training steps, and from that maximum learning rate down to a learning rate
10−4 times lower than the initial rate during the remaining training steps. We call
our final, best performing model Social Media-CLIP, SM-CLIP, and the pre-trained
model Base-CLIP, B-CLIP, to simplify the notation from now on. The learning
rate scheduler used to train SM-CLIP used a initial learning rate of 9 · 10−10 and a
maximum learning rate of 2 · 10−8.

Several experiments were carried out with regards to the learning rate scheduler to
find a schedule that resulted in a successful training, where both a flat learning rate
was evaluated as well as a cosine annealing learning rate scheduler [27], in addition
to the 1cycle scheduler. Different values for the minimum and maximum learning

25

3. Method

rates were also experimented with for both the 1cycle scheduler as well as the cosine
annealing scheduler.

CLIP was trained using a batch size of 32 768 and trained for 32 epochs [1]. The
trainings in this project were carried out on 5 NVIDIA A100-SXM4-40GB GPUs for
18 epochs in most cases, which required a total computational time of 24 hours. The
effective batch size used in this project was 33 280. The actual batch size used was
512 due to memory constraints, but by accumulating the gradients for 13 batches
before taking one optimizer step, the training could be carried out with an effective
batch size of 512 × 13 × 5 = 33280, where 5 is the number of GPU’s. The validation
was carried out on 148 666 samples.

The contrastive loss calculations were carried out using cross entropy loss, as ex-
plained in Section 2.5.2. Throughout the training, mRR and mAP was also calcu-
lated in each validation step to allow for monitoring the progress according to our
own metrics. These metrics were calculated in both directions, i.e. ranking images
based on a given text sample, and ranking texts based on a given image sample. For
simplicity, the training procedure disregards the fact that multiple text fragments
can refer to the same image. This means that one image will appear multiple times
as distinct images in the training dataset if that same image appears in multiple
social media posts with different text fragments. The model was saved at the end
of each training to be able to use further for evaluation.

3.3.2 Multi-label classification
To address the second research question presented in Section 1.2, it was of inter-
est to first explore how image-text representations from CLIP can be used for a
classification task specific to the threat domain. It was also of interest to see how
this performance was changed when a fine-tuned model as retrieved from Section
3.3.1.1 was used to generate these image-text representations. Two different ways
of using the CLIP embeddings for classification were developed – one classification
method that utilizes CLIP’s innate zero-shot abilities, and one classical supervised
classification method. We refer to these two as Approach A for the zero-shot CLIP
classification, and Approach B for the supervised classification. In other words,
these two approaches are different methods to address one identical classification
problem. The datatset used for both approaches was the Google Vision dataset, see
Section 3.1.2 and the labels used for classification were hence Manmade Disaster,
Protest and Military Event.

The classification in Approach A is done by embedding a sample and all possible
labels to find the label that lies closest in the feature space. The classification in
approach B on the other hand, is carried out using a linear classification layer that
has been trained to predict event labels using the CLIP embeddings as input. Both
approaches take an image embedding and text embedding as input, after they have
been merged into one feature vector. This merge has been done in two ways to
compare how they affect the results. Following previous works [10][18], the first
method was feature-wise addition. The second method was to take a feature-wise

26

3. Method

average. Approach A and B will be described further in detail below.

3.3.2.1 Approach A: Similarity based classification with CLIP

Approach A addresses how image-text representations from CLIP perform in a clas-
sification task specific to the threat domain and how this performance was changed
when a fine-tuned model as retrieved from Section 3.3.1.1 was used to generate these
image-text representations.

The pipeline used to measure the performance of this zero shot event classification
look as follows:

1. Create embeddings for text-image pair. Separate text-embeddings et and image-
embeddings ei for the text-image pair were created using CLIP’s text and
image encoder respectively.

2. Feature-merging. A feature-wise average or sum of the text- and image em-
beddings (êt+i = ea) was calculated.

3. Create embeddings for chosen event types. Firstly, we decide on which event
types to use in the event classification, e.g. protests, police violence, mili-
tary activity. In our case, manmade disaster, protest and military event were
chosen. Then, a text embedding eevent for each of the possible event type
was created using CLIP’s text encoder. Since this is a zero shot approach, in
theory new labels could be defined each time.

4. Calculate cosine-similarity. The similarity, sa→event, between ea and each of
the event embeddings eevent was calculated.

5. Find prediction. The prediction was found by specifying a threshold for each
class, as in a classical multi-label classification set-up.

The pipeline is depicted in Figure 3.3, where each step is marked with its corre-
sponding number.

This pipeline that is explained above, and depicted in Figure 3.3, clarifies the way
in which we evaluate the performance of CLIP as a zero shot event classifier. The
pipeline was implemented using both B-CLIP and SM-CLIP, with the aim of later
being compared. Before doing so, a sub-experiment was conducted of choosing the
best calculation method for feature-merging, indicated as step 2 in Figure 3.3.

As mentioned in related works, [10] and [18] both use a feature-wise sum when
conducting feature-merging. This experiment explores the difference, if any, between
using the feature-wise sum and feature-wise average to merge the text and image
feature vectors. The reason for using the average in contrast to other studies, is that
we believe that might be more beneficial when the text and image reflect the same
or a smiliar concept, compared to in [10] when they combine the information about
two different concepts by using the plus operator on the two feature vectors.

27

3. Method

Figure 3.3: A descriptive image of the pipeline used in that what we refer to as
Approach A.

As a final part to this experiment we also explored how the performance was affected
by fine-tuning CLIP, through comparing when using original CLIP and the fine-
tuned CLIP model.

3.3.2.2 Approach B: Feature based classification with an extended CLIP
architecture

To give yet another dimension to the second research question presented in Sec-
tion 1.2, that Approach A addresses, a parallel pipeline for event identification was
developed, based on adding a linear classifier layer onto CLIP.

The input given to the linear classification layer is either the averaged or summed
image and text embeddings, ea, explained in step 2 of Approach A (see Figure
3.3). The output is a predicted probability for each event type. Since the linear
layer needs to be trained, this approach carries one training step and one evaluation
step implying that it is not a zero shot approach, but instead a more traditional
supervised approach. The training step was conducted on one linear layer of 512
input neurons, using PyTorch lightning, on one RTX A5000 GPU. We used an Adam
optimizer [25] with a flat learning rate of 10−3, batch size of 32 and 67 epochs. The
training objective was to minimize the Binary Cross Entropy loss after applying a
sigmoid layer on the output. The steps taken in the evaluation pipeline are described
below:

1. Create embeddings on text-image pair. Separate text-embeddings et and image-
embeddings ei for the text-image pair were created using CLIP’s text and
image encoder respectively.

28

3. Method

Figure 3.4: A descriptive image of the pipeline used in that what we refer to as
Approach B.

2. Calculate sum. An feature wise sum of the text- and image embeddings (êt+i =
ea) was calculated.

3. Find prediction. With êa as input, the linear layer outputs logits that are
transformed to probability values for each of the possible event types pevent,
using a softmax function. The prediction was then found by specifying a
threshold for each class, as in a classical multi-label classification set-up.

Similarly to Approach A, this pipeline was evaluated with both the pre-trained CLIP
as well as the fine-tuned CLIP. The pipeline is depicted in Figure 3.4, where each
step is marked with its corresponding number.

29

3. Method

30

4
Results

This chapter will present the results from the experiments described in Section 3.3.

4.1 Using CLIP for Zero-shot transfer
Achieving a successful fine-tuning of the pre-trained B-CLIP, required many trials
with different set-ups. Three of these are shown in figure 4.1, where the learning
rates, training loss, validation loss and mAP for the image-to-text pairing is pre-
sented for each training. The training was done on 18 151 890 samples collected in
September and October. The validation was done on 148 666 samples collected in
December, to minimize the risk for overlap in the training and validation data. Also
the test data was taken from December.

The only varying parameter in between the three trainings presented is the learning
rate. All three use a "1cycle learning rate scheduler", as presented earlier, but use
different initial, maximum and final values for the learning rate. The plots for
training loss, validation loss and mAP show that there is a clear correlation between
the performance of the training behaviour and the learning rate. The training using
the highest initial, maximum and final learning rate (Version 3, colored in green)
was interrupted prematurely, since it was obvious that the training had failed and
wouldn’t result in a competitive model when compared to the pre-trained model
and the other two fine-tuned models.

Although the plots give a quite clear indication that model Version 2 visualized in
orange would perform the best, an evaluation was also carried out on the test set
to get objective results, which is presented in Table 4.1. The evaluation on the test
set followed the image-to-text pairing and text-to-image setup explained in Section
3.3.1. The same evaluation was also carried out using B-CLIP to use as a baseline
for the performance. The evaluation of the best model, Social Media-CLIP (SM-
CLIP), was finally carried out on three differently sized test sets, to see how the size
of the dataset affected the results.

31

4. Results

(a) Learning rate (b) Training loss

(c) Validation loss (d) mAP

Figure 4.1: Plots showing learning rate, training loss, validation loss and mAP for
three different training sessions, which all three had different learning rate sched-
ulers. From these plots, it’s easy to see how the learning rate affects the behaviour
during training. The green training was interrupted early due to that it showed
unsuccessful training behaviour already after a few hundred training steps.

Image 2 Text Text 2 Image
mRR mAP top-1 accuracy MRR top-1 accuracy

Version 1 22.00 22.00 16.75 20.15 15.04
Version 2 (SM-CLIP) 22.25 22.25 16.87 20.45 15.23
Version 3 21.85 21.85 16.60 20.02 14.96

Table 4.1: Resulting metrics for the three models showed in figure 4.1. The table
shows metrics both for the image to text pairing ("Image 2 Text") and for the text
to image pairing ("Text 2 Image"). The best performing model, i.e. the orange one,
is now named SM-CLIP and is further used in the remaining experiments.

32

4. Results

Image 2 Text Text 2 Image
mRR mAP top-1 accuracy MRR top-1 accuracy

B-CLIP1 9.44 9.44 6.58 8.33 5.66
SM-CLIP1 10.56 10.55 7.36 9.19 6.27
B-CLIP2 11.47 11.45 8.16 10.25 7.12
SM-CLIP2 12.80 12.79 9.12 11.30 7.88
B-CLIP3 20.04 20.03 15.13 18.54 13.79
SM-CLIP3 22.25 22.25 16.87 20.45 15.23

Table 4.2: Resulting metrics for the B-CLIP and SM-CLIP on three differently
sized datasets. The table shows metrics both for the image to text pairing ("Image
2 Text") and for the text to image pairing ("Text 2 Image"). 1: 1 822 967 samples,
2: 955 391 samples, 3: 110 055 samples.

4.2 Multi-label event classification
The second part of the results regard the usage of CLIP as a feature encoder for
multi-label classification on threat related events, more specifically Manmade disas-
ter, Military and Protests. This evaluation consists of a few separate experiments,
explained in detail in Section 3.3.2. Firstly, the results for the experiments using
approach A will be presented. The experiments on approach A include an evalua-
tion of the best way to merge the text and image features as well as an evaluation
of the effects of prompt engineering. Lastly, a comparison of using B-CLIP ver-
sus SM-CLIP will be presented. For approach B, results will be presented for the
experiment on feature merging followed by a comparison of using B-CLIP versus
SM-CLIP as the text and image encoders to create the input for the classifier.

4.2.1 Approach A
As explained in the methodology, Approach A (see Figure 3.3) clarifies the way in
which we evaluate the performance of CLIP as a zero shot event classifier. In this
section we present the results of the experiments of choosing the calculation method
for feature-merging as well as the comparisons of the two CLIP models (B-CLIP vs.
SM-CLIP) using the pipeline presented in Approach A.

To evaluate the calculation method for the feature-merge, we tested calculating
using an average or sum. The features were created using B-CLIP or SM-CLIP.
The results are compiled in Table 4.6. The Precision-Recall curves for the best
calculation method, for both B-CLIP and SM-CLIP are presented in Figure 4.2.

4.2.2 Approach B
This section describes the results from the experiments for the supervised classifier,
i.e. Approach B (see Figure 3.4).

33

4. Results

AUC-PR
B-CLIP SM-CLIP

Sum Average Sum Average
Manmade disaster 0.1226 0.1345 0.1243 0.1345
Military 0.4047 0.4064 0.4229 0.4240
Protest 0.2368 0.2617 0.2141 0.2371

Table 4.3: AUC-PR values for Approach A, for each of the models, along with the
difference when using average vs sum as calculation method for feature-merging.
The AUC-PR values are given per label.

AUC-PR
B-CLIP SM-CLIP
Average Average

Labelsmicro 0.2093 0.2004

Table 4.4: A balanced average of the AUC-PR values over all labels for Approach
A. This is computed for each of the models when using average as calculation
method for feature-merging.

(a) B-CLIP (b) SM-CLIP

Figure 4.2: Precision-recall curves for Approach A when using average to cal-
culate the feature-merge. The colored graphs show the performance with respect to
each label, and the black graph shows the micro average of them.

Although we have assumed that the text and image in each sample-pair are related,
as mentioned in Section 3.1.2, we cannot be certain that this is the case. Admitting
this uncertainty, we have chosen to train the linear layer using sum-calculation for
the feature-merging, since this would allow for contrasting concepts to be learnt
more intuitively as described in Section 3.3.2.1. Furthermore, the technical difference
between a summation calculation and average calculation is simply a constant factor
of two, and knowing this, it is reasonable to assume that the network would learn

34

4. Results

this and adjusting the weights accordingly. Moreover, the difference between sum
and average calculations are marginal as reflected in Table 4.6.

The main part of this approach was, as mentioned in Section 3.3.2.2, to give an-
other dimension to the research question addressed by Approach A (question 2 in
Section 1.2). Hence, the main part of this experiment regards the comparison be-
tween B-CLIP and SM-CLIP. To compare, both a visual and numerical result is
presented. Figure 4.3a and Figure 4.3b provide the Precision-Recall curves of the
predictions when using 100 different thresholds between 0 and 1, with features be-
ing created from B-CLIP and SM-CLIP respectively. Table 4.5 show the numerical
values representing the Area Under the Curve (AUC) for each of the plots.

(a) Precision-Recall curves with B-
CLIP

(b) Precision-Recall curves with SM-
CLIP

Figure 4.3: Precision-recall curves when evaluating using the orignal, or finetuned
CLIP model.

AUC-PR
B-CLIP SM-CLIP

Madmade disaster 0.6667 0.6793
Military 0.7339 0.7372
Protest 0.8170 0.8247

Table 4.5: AUC-score for Approach B, for each of the models over each individual
label. The best results are highlighted in the table.

AUC-PR
B-CLIP SM-CLIP

Averagemicro 0.7412 0.7480

Table 4.6: A balanced average AUC-PR values for Approach B, for each of the
models when using sum as calculation method for feature-merging.

35

4. Results

36

5
Discussion

This chapter will discuss the results presented in Chapter 4, starting with a discus-
sion of the obtained results of the fine-tuning followed by a discussion of the results
from the event classification in approach A and B.

5.1 Using CLIP for Zero-shot transfer
The main aim for this project was to explore whether it is possible to successfully
fine-tune CLIP within a more specific domain, as explained in Section 1.2. Hence,
the core of this project consisted of fine-tuning CLIP on social-media, threat asso-
ciated data. The results presented in Section 4.1, more specifically Table 4.1 and
4.2, show that a fine-tuning on threat associated data indeed improves the perfor-
mance on zero shot image-to-text matching and text-to-image matching. However,
the improvements are quite modest, of 1-2% depending on the size of the dataset
used for evaluation. Table 4.2 shows, very intuitively, that the performance of the
models increase when a smaller dataset is used for performance. This is intuitive,
since the evaluation is based on a ranking principle that for each query has to rank
all available documents in the entire test set, which naturally becomes more and
more difficult when the size of the dataset increases.

When it comes to the comparison of the three different trained models, presented in
Figure 2.4 and Table 4.1, it is quite surprising to see that version 3, i.e. the one that
showed strange behaviour, performs almost equally well as the other two, by only
0.15 % lower performance than Version 1. This difference is so small that it is almost
statistically insignificant. The similar performance of Version 1 and 2 is, on the other
hand, not as surprising, since they show very similar behaviours during training.
As previously explained, the only factor that differs for these three models is the
learning rate. Version 3 had an initial and final learning rate of 2e-8 and a maximum
learning rate of 4e-8, which is only a factor of 2 larger than the corresponding values
for Version 2, which used 1e-8 as initial and final learning rate, respectively 2e-8 for
maximum learning rate. The behaviour of Version 3 shares similarities with typical
overfitting behaviour, when the model learns the training data too well and loses
its ability to generalize on new data, so the performance on the validation data
decreases. On the other hand, overfitting shouldn’t occur so early in the training
process. Instead, it could be an example of so called catastrophic forgetting, which

37

5. Discussion

is when the model conceptually forgets its pre-trained knowledge and overwrites it
with knowledge specific for the fine-tuning data. One explanation for this could be
that the learning rate is too big, which allows the model to quickly travel from its
original global minimum in the parameter space to a new local minimum which is
better suited for the new training data.

Another point to notice is how the validation loss is very low already at the start of
the continued training, which is the case for all three Versions. This might be an indi-
cation of CLIP already having been exposed to the type of data used in this project,
since if it wasn’t in alignment to the data used in the pre-training, the validation loss
would have higher initial value. The very small improvements in performance after
fine-tuning is yet another argument that the format or characteristics of the data
used for fine-tuning is already somewhat familiar to the pre-trained CLIP. Based on
these results, it seems reasonable to use data that is even more specialized in future
attempts to fine-tune CLIP to hopefully achieve greater improvements.

Nevertheless, the three different versions show that the fine-tuning is extremely
sensitive to the size of the learning rate. In general, very (!) small learning rates
had to be used to successfully train the models, compared to baseline learning rates
that normally are used, which usually lie between 1e-2 and 1e-5. This might although
be quite reasonable – first of all since this case regards a fine-tuning of an already
extensively trained model, and second of all since it is a huge model.

An aspect of the fine-tuning that would have been interesting to explore is whether
it would be possible to use a multi-training-task instead of the single image-to-
text matching used in this work. [28] uses a pre-trained CLIP model and presents
a second learning objective when continuing the training. Their second learning
objective is described as using two event graphs, one for text and one for image, and
aligning those two during training. By doing so, they achieve better performance
on zero-shot event extraction. Such an approach could possibly benefit this study
as well.

5.2 Multi-label event classification

To address the second research question this project aimed to answer, Approach
A was developed. The first part of the research question reads "How can text and
image representations from an ITA-model be used for multi-label classification ...".
This inspired experimenting with the calculations behind feature-merging. Seeing
that current work such as [10] and [18] carry out an element-wise addition to merge
the features, one could assume that this technique would yield a higher performance.
However, as reflected in Table 4.6 the performance when considering the AUC values
instead was higher in the case of average calculations.

In the case of additive calculations, one conceptually "adds" information from differ-
ent modalities. One example of this is presented using ALIGN in [10], where they
feed their model a multi-modal query of an image of a pair of grey shoes, along with

38

5. Discussion

a text string "red". The image and the text string are then encoded using ALIGN’s
image and text encoders. The image-features would then reflect the concept of
"shoes", and the text features would reflect the concept of the color "red". Then,
the feature-merge using feature-wise addition would translate to the combination of
"shoes" and "red", i.e. red shoes. And intuitively, the ALIGN model outputs a new
image of a red pair of shoes. Technically, this means that the image-features that
represent one specific place in the embedding space, added with the text-features
that represent another place in the embedding space, would result in a feature vector
that represents a new, third place in the embedding space reflecting the combined
information of "red shoes".

In the case of when both the text and image contain the same concept, i.e. if the
image shows a dog, and the text is a string "A dog", both the image-features and
text-features would reflect the same concept, and both feature representations would
probably lie very close in the embedding space. Using feature wise average to merge
the features in this case, would result in a combined feature vector whose position
in the embedding space is very close to the original locations of "dog" and the image
of a dog. If the text and image however reflect non-similar concepts, the average
calculation would map to a different place in the embedding space somewhere in
between the two original places. Seeing that our data samples are text-image pairs,
they ought to reflect the same concept. With this reasoning, it makes sense that the
average calculations perform slightly higher.

Since the images and texts in the Google Vision dataset are similar in some cases,
but more contrasting, i.e. different, in nature than first anticipated, one could argue
that this is the reason to why the performance between average and additive feature-
merging are as small as they are. This uncertainty opens the door to relevant future
work. With the discussion carried out until now, one could assume that an additive
calculation method of the feature-merge would be more appropriate in the case when
the input-pairs are contrasting in nature. The reason being that the information of
both modalities would be used to map to a new place in the embedding space. An
average calculation method however, might be more appropriate in the case of the
input-pairs being similar in nature, since they would always map to similar place in
the embedding space.

The overall performance of using CLIP’s innate zero-shot capabilities for multi-label
event classification is however low. When investigating the Google Vision dataset
used, it was visible that the annotations from both Google Vision and Recorded
Future were partly unreliable. The reason we call the dataset unreliable is that
for quite many samples neither the image-labels or text-labels seem to reflect the
context appropriately. That is, they do not reflect the high level concepts such as
events occurring, but instead low level concepts such as objects present. For the case
of the image labels, they seem to be in fact more accurate in object detection, while
the text labels reflect keywords rather than the contextual event. This inevitably
affects the performance of the evaluation. Because of the unreliability in the dataset,
it is difficult to properly conclude whether the approach itself is useful or not.

39

5. Discussion

The second part of the research question addressed by Approach A reads "... how is
the performance affected by the previously mentioned, domain-specific, fine-tuning".
Judging by results presented in Table 4.6 and precision-recall curves presented in
Figure 3.3, both B-CLIP’s and SM-CLIP perform quite poorly as zero-shot multi-
label classifiers. The ideal case for a Precision-Recall plot is to have a curve that
follows the upper and right boundaries of the plot as closely as possible. The larger
the area is under the curve, the better the performance. SM-CLIP shows a slight
improvement for the Military events, while lowering its performance for Protest
events. The marginal difference in performance might be explained by the fact that
the improvement of SM-CLIP itself is marginal as discussed in Section 5.1, which
can be seen in Table 4.2.

Another aspect worth exploring for approach A is the effect of prompt engineering.
As the authors of CLIP used different prompt templates when evaluating the model
as a zero-shot classifier, achieving positive results [1], the hypothesis is it would be
similar for our case since the event labels used were short in nature. However, due
to time constraints the aspect could not be explored further.

With the aim of putting the performance of Approach A in perspective, Approach
B was developed. As can be seen in Table 4.5, the performance of multi-label
event classification improves by almost 4 times when using Approach B compared
to Approach A. Adding a classification layer and training it with a specific objective
allows for better overall predictions. The network still seems to have difficulties in
distinguishing between the labels in an ideal manner, seen in Figure 3.4. Keeping
in mind the high quality performance of CLIP’s zero-shot image-to-text matching
abilities in the fine-tuning setup, it seems more reasonable that the results reflect
the quality of the dataset. As previously discussed, there are discrepancies in the
labeling of the dataset – partly because of flaws in the labelling, and partly because
of that the image and text are unrelated in many cases, which naturally would con-
fuse the model. The fact that the performance of approach B indeed is much better
than Approach A is another argument that the labeling is poor, since Approach
A is completely dependent on the actual semantic of the label, while approach B
only looks for patterns in the data that are common for each label without actually
paying attention to the meaning of the label. The differences in performance hence
prove that there are patterns in the data, but that they are partly unrelated to the
labels. Another aspect of the somewhat inadequate performance in both approaches,
is the overlap in content between the event labels. The data was collected during
a time when a large part of news articles and other posts were related to the inva-
sion of Ukraine. Naturally, protests, military activity and manmade disaster occur
frequently in the reports of the situation in Ukraine. As a consequence of this, it is
natural to believe that there are a lot of similarities between samples in the different
event categories, since many of them are related to the same subjects. In particu-
lar, it is natural that there is a large overlap between the Military event samples
and the Manmade disaster samples, since many of the Manmade disaster samples
regard explosions or fires, which themselves often are a consequence of bombs (in
the context of Ukraine) which can be considered a Military activity. This ambiguity
can be a factor of confusion of the model.

40

5. Discussion

When it comes to comparing SM-CLIP and B-CLIP in approach B, we see that SM-
CLIP marginally outperforms B-CLIP as reflected in Table 4.5 for all event types.
This is an argument that the fine-tuning of CLIP indeed having a positive effect
in the domain of threat intelligence, although a very small such, which follows the
argumentation previously stated.

41

5. Discussion

42

6
Conclusion

From the discussion carried out we can conclude that CLIP can be successfully fine-
tuned on threat associated data to improve its zero-shot performance, which answers
the first research question. However, the marginal improvements suggest that the
data used for the fine-tuning has been seen by CLIP already in the pre-training,
which leaves questions on the value of fine-tuning CLIP on social media data. The
experiments conducted shows clearly that such a fine-tuning is highly affected by
the learning rate, where a relatively low value should be chosen for catastrophic
forgetting to not occur. Furthermore, fine-tuning CLIP gives slight improvements
in using it as an image and text encoder for the a supervised classification task.

As for the investigation of how the image and text embeddings created by CLIP
can be used for multi-label event classification, it is clear that Approach B outper-
forms Approach A. But as reflected in the discussion, there is an uncertainty in
the dataset, which gives incentive to further explore this aspect. The question also
adressed how fine-tuning would affect the performance of the classification. Due to
the marginal differences seen from the fine-tuning, one can conclude that fine-tuning
on social media data does not affect the performance when using CLIP’s features in
a classification set up.

43

6. Conclusion

44

Bibliography

[1] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning
transferable visual models from natural language supervision,” 2021. [Online].
Available: https://arxiv.org/abs/2103.00020

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017. [Online].
Available: https://arxiv.org/abs/1706.03762

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
and N. Houlsby, “An image is worth 16x16 words: Transformers for image
recognition at scale,” CoRR, vol. abs/2010.11929, 2020. [Online]. Available:
https://arxiv.org/abs/2010.11929

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” 2019.

[5] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine
learning: A survey and taxonomy,” 2017. [Online]. Available: https:
//arxiv.org/abs/1705.09406

[6] Y. Aytar, C. Vondrick, and A. Torralba, “See, hear, and read: Deep aligned
representations,” 2017. [Online]. Available: https://arxiv.org/abs/1706.00932

[7] H. Yu and J. M. Siskind, “Grounded language learning from video described
with sentences,” in Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Sofia, Bulgaria:
Association for Computational Linguistics, Aug. 2013, pp. 53–63. [Online].
Available: https://aclanthology.org/P13-1006

[8] Z. Wang, J. Yu, A. W. Yu, Z. Dai, Y. Tsvetkov, and Y. Cao, “Simvlm: Simple
visual language model pretraining with weak supervision,” 2021. [Online].
Available: https://arxiv.org/abs/2108.10904

[9] Microsoft, “Turing bletchley: A universal image language representa-

45

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1705.09406
https://arxiv.org/abs/1705.09406
https://arxiv.org/abs/1706.00932
https://aclanthology.org/P13-1006
https://arxiv.org/abs/2108.10904

Bibliography

tion model by microsoft,” https://www.microsoft.com/en-us/research/blog/
turing-bletchley-a-universal-image-language-representation-model-by-microsoft/,
2021.

[10] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le,
Y. Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” 2021. [Online]. Available:
https://arxiv.org/abs/2102.05918

[11] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large
number of classes,” in 2008 Sixth Indian Conference on Computer Vision,
Graphics Image Processing, 2008, pp. 722–729.

[12] D. Won, Z. C. Steinert-Threlkeld, and J. Joo, “Protest activity detection
and perceived violence estimation from social media images,” 2017. [Online].
Available: https://arxiv.org/abs/1709.06204

[13] A. H. Hossny and L. Mitchell, “Event detection in twitter: A keyword volume
approach,” in 2018 IEEE International Conference on Data Mining Workshops
(ICDMW), 2018, pp. 1200–1208.

[14] N. Ding, Z. Li, Z. Liu, H. Zheng, and Z. Lin, “Event detection with
trigger-aware lattice neural network,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp.
347–356. [Online]. Available: https://aclanthology.org/D19-1033

[15] S. Liu, Y. Li, F. Zhang, T. Yang, and X. Zhou, “Event detection without
triggers,” in Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, Jun. 2019, pp. 735–744. [Online].
Available: https://aclanthology.org/N19-1080

[16] Q. Lyu, H. Zhang, E. Sulem, and D. Roth, “Zero-shot event extraction via
transfer learning: Challenges and insights,” in ACL/IJCNLP (2), 2021, pp.
322–332. [Online]. Available: https://doi.org/10.18653/v1/2021.acl-short.42

[17] Z. Wang, X. Wang, X. Han, Y. Lin, L. Hou, Z. Liu, P. Li, J. Li, and
J. Zhou, “CLEVE: contrastive pre-training for event extraction,” CoRR, vol.
abs/2105.14485, 2021. [Online]. Available: https://arxiv.org/abs/2105.14485

[18] e. a. Tiberiu Sosea, “Using the image-text relationship to improve multimodal
disaster tweet classification,” Proceedings of the ISCRAM Conference, vol. 18,
05 2021.

[19] M. Tong, S. Wang, Y. Cao, B. Xu, J.-Z. Li, L. Hou, and T.-S. Chua, “Image

46

https://www.microsoft.com/en-us/research/blog/turing-bletchley-a-universal-image-language-representation-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-bletchley-a-universal-image-language-representation-model-by-microsoft/
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/1709.06204
https://aclanthology.org/D19-1033
https://aclanthology.org/N19-1080
https://doi.org/10.18653/v1/2021.acl-short.42
https://arxiv.org/abs/2105.14485

Bibliography

enhanced event detection in news articles,” in AAAI, 2020.

[20] G. S. Cheema, S. Hakimov, E. Müller-Budack, and R. Ewerth, “A fair and
comprehensive comparison of multimodal tweet sentiment analysis methods,”
2021. [Online]. Available: https://arxiv.org/abs/2106.08829

[21] I. C. Education, “Natural Language Processing (NLP),” 2020. [Online].
Available: https://www.ibm.com/cloud/learn/natural-language-processing

[22] A. Galassi, M. Lippi, and P. Torroni, “Attention in natural language
processing,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 10, pp. 4291–4308, oct 2021. [Online]. Available: https:
//doi.org/10.1109%2Ftnnls.2020.3019893

[23] J. Wehrmann, C. Kolling, and R. Barros, “Adaptive cross-modal embeddings
for image-text alignment,” 11 2019.

[24] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” 2019.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: https://arxiv.org/abs/1412.6980

[26] L. N. Smith and N. Topin, “Super-convergence: Very fast training of
neural networks using large learning rates,” 2017. [Online]. Available:
https://arxiv.org/abs/1708.07120

[27] K. Naoki, “Cosine annealing with warmup for pytorch,” https://github.com/
katsura-jp/pytorch-cosine-annealing-with-warmup, 2020.

[28] M. Li, R. Xu, S. Wang, L. Zhou, X. Lin, C. Zhu, M. Zeng, H. Ji, and S. Chang,
“Clip-event: Connecting text and images with event structures,” CoRR, vol.
abs/2201.05078, 2022. [Online]. Available: https://arxiv.org/abs/2201.05078

47

https://arxiv.org/abs/2106.08829
https://www.ibm.com/cloud/learn/natural-language-processing
https://doi.org/10.1109%2Ftnnls.2020.3019893
https://doi.org/10.1109%2Ftnnls.2020.3019893
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1708.07120
https://github.com/katsura-jp/pytorch-cosine-annealing-with-warmup
https://github.com/katsura-jp/pytorch-cosine-annealing-with-warmup
https://arxiv.org/abs/2201.05078

Bibliography

48

	List of Figures
	List of Tables
	Introduction
	Related Work
	Aim
	Limitations
	Contribution

	Theory
	Natural Language in technology
	Natural Language Processing – methods and preprocessing
	Transformers
	Attention
	Vision Transformer

	Contrastive representation learning
	Contrastive Language–Image Pre-training (CLIP)
	Encoders
	Loss

	Metrics
	Zeroshot classification
	Mean Reciprocal Rank
	Mean Average Precision

	Method
	Dataset
	RFSM dataset
	Google Vision dataset

	Data pre-processing
	Experiments
	Using CLIP for Zero-shot transfer
	Fine-tuning CLIP

	Multi-label classification
	Approach A: Similarity based classification with CLIP
	Approach B: Feature based classification with an extended CLIP architecture

	Results
	Using CLIP for Zero-shot transfer
	Multi-label event classification
	Approach A
	Approach B

	Discussion
	Using CLIP for Zero-shot transfer
	Multi-label event classification

	Conclusion
	Bibliography

