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Detection of secondary task engagement in naturalistic driving data
SRIRANNGA HULUKUNTE GOPINATH
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
Fatalities related to road traffic accidents are up to 25,000 in the EU annually. In most
cases, these accidents occur due to human error in judgement or action. Driving requires
undivided attention, but studies show that drivers often engage in secondary tasks which
result in distraction causing accidents. To analyse this behaviour of drivers, naturalistic
driving studies provide video data of drivers indulging in this behaviour.
Meanwhile, progress in computer vision and machine learning has led to algorithms capable
of automatically detecting objects in images or videos. Convolutional neural networks
(CNNs) are the most common artificial neural network used for such applications. This
thesis work focuses on using the latest object detection algorithm named YOLO (You
Only Look Once) to detect secondary tasks in images from naturalistic driving data. The
algorithm is capable of detecting custom objects provided it is trained for them. The
distractions caused due to engagement in secondary tasks were categorised and manually
labelled. The data was categorised into 9 types of distractions. The labelled data was
trained on a cloud virtual machine.
The results were noted for three different trials, and each trial varied in data size and
classes of secondary tasks trained. Trial 3 had the best results with an average detection
rate per class of around 88%. This trial was most comprehensive, and it was an iterated
improvement based on the observations from previous trials. To make the algorithm
robust, it needs to be trained with different datasets to arrive at a generalised model. This
work aims to reduce the effort of manually annotating secondary tasks in huge naturalistic
driving data.
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1
Introduction

The activity of driving has become strenuous, especially in the urban areas considering
the increase in the number of vehicles and large traffic densities. For these reasons, the
activity of driving requires complete attention. Studies show that in most cases, accidents
are caused due to human error in judgement or action [1]. The number of deaths in traffic
accidents amounts to around 25,000 annually in the EU alone [2]. Apart from the tragedy
to the family of the deceased, it also has an economical impact on the country or state.
The cost for accidents in the EU are estimated to 0.4-4.1% of the GDP [3]. These costs
can be consolidated into categories starting from medical costs like hospitalization &
medical treatments, property damages like vehicle or infrastructure and administrative
costs which includes the involvement of police officers, insurance and legal costs.
To reduce accidents or fatal crashes, plenty of measures can be taken. The road and
infrastructure design can be improved by mitigating fatalities. Governments or other
responsible agencies can promote awareness on road safety and pass regulations promoting
the safety of traffic participants. The manufacturers of vehicles play a crucial role as
well by developing safer vehicles. Automotive safety is grouped into two major categories
focusing on different functions. Passive safety focuses on preventing humans from getting
injured in an accident while active safety systems target to avoid or at least mitigate the
severity of accidents [4]. Various passive safety systems have helped to prevent injuries
in crashes like seat belts, airbags and some advanced restraining systems [5]. An active
safety system can be categorized into systems which issue a warning or systems which
enable dynamic control of vehicles laterally and longitudinally [5]. Two examples of the
former are Lane Departure Warning (LDW) and Frontal Collision Warning (FCW). In a
further escalation, some active safety systems intervene when drivers fail to act. One such
system is Automatic Emergency Braking (AEB) which detects a possible frontal collision
and initiates a full brake to prevent or mitigate the crash. A culmination of all such
advanced intervention systems is included in the automated vehicles available today [6].
Developments in machine learning, computer vision and sensor fusion have enabled the
automotive industry to apply these technologies in developing systems improving safety
[7]. However, a study from AAA Foundation for traffic safety reported that drivers who
are familiar with using ADAS (Advanced driver assistance systems) are twice as likely to
engage in secondary tasks leading to distracted driving [8].
According to the NHTSA (National Highway Traffic Safety Administration), distracted
driving due to engagement in secondary tasks is one of the main reasons for accidents [9].
It defines distraction as any activity where the driver, whose primary task is to drive the
vehicle, is involved in secondary tasks like using a mobile phone, eating or drinking and
interaction with the infotainment system. The first step in addressing this problem is to
raise awareness through campaigns to educate about the risks involved with distracted
driving. This can be observed when the number of cell phone users dropped in the USA
from 3.3% in 2016 to 2.9% in 2017 [10].
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1. Introduction

The NHTSA has reported that out of 6,734,000 motor vehicle crashes in 2018, the number
of crashes due to distracted driving were 400,000 [9][11]. Meanwhile, the ETSC (European
Transport Safety Council) has passed laws which penalize people for using cell phones
while driving in many European countries [12]. For improving safe driving, it is of interest
for researchers to investigate factors which make drivers indulge in these activities. Some
questions like duration of time on cell phones, interaction with infotainment systems and
which part of the journey where this behaviour is prevalent like highways or urban roads
add more value to the reported numbers of cases. It is important to have driving data
where people are showing natural behaviour while driving. This approach provides a more
conclusive cause of crashes while indicating the interaction of driver with vehicle and
environment.

There are several ways of collecting driving data, e.g. in a Natural Driving Study (NDS),
a Field Operational Test (FOT) or a pilot study. This driving data contains a large
pool of videos which is relevant to observe the drivers engagement in other activities
besides driving. In a NDS, vehicles are equipped with loggers & cameras and provided
to study participants to use in their everyday life without any restrictions. A major
difference between FOT and NDS is that the latter is observational while the former
disclose relations between traffic events, driver behavior and crash causation [13]. FOT
data gives valuable information on natural interaction between drivers and systems since
drivers show normal behaviour after a short adaptation phase.

Meanwhile, on the technological front, advancements have taken place in computer vision
which have enabled technologies like facial recognition, classification and detection of
objects. Deep learning or deep neural networks are instrumental in accelerating the
above-mentioned technologies. Although deep learning has existed for a long time, they
are now capable of performing complex operations due to the computational capabilities
of machines today and the amount of data available [14]. Convolutional neural networks
(CNNs) are capable of identifying objects with supervised and unsupervised training.
There are several open-source algorithms which use different approaches to identify custom
objects after training. Among a plethora of object detection algorithms like RCNN
(Regional Convolutional neural network) and SSD (Single Shot Detector), YOLO (You
only look once) is one such algorithm which is latest to be added to the list. It is
unique in its approach to object detection, unlike others mentioned above. It follows a
regression-based approach for classification while being computationally light [15].

With the help of object detection algorithms, custom objects in an image can be detected.
For CNNs to detect custom objects in an image, it has to train on those objects so that the
algorithm identifies a pattern in the image over the course of training. The crucial aspect
of training for custom objects is that, this pattern of similarity can also be a behaviour.
Therefore, a pattern in different secondary tasks will qualify it to be treated as custom
objects. For example, if drinking from a cup has to be detected, then all the images used
for training will contain identical posture of drinking. If the data of secondary tasks can
be categorized and used for training, the algorithm can detect them. Two sets of data are
available for this work. The first set was available on request from Machine Intelligence
group at American University of Cairo (MI-AMC) [16]. The second dataset available
at SAFER – the Vehicle and Traffic Safety Centre at Chalmers - contains annotated
naturalistic driving data of individuals engaged in secondary tasks while driving. This
work is intended to utilize the data sets available to train the YOLO algorithm detecting
secondary tasks.
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1. Introduction

1.1 Background
The total number of fatalities due to road traffic accidents in the EU from 2000 to 2016 has
decreased by 53 percent [17]. One possible explanation could be due to the improvement
in safety features of vehicles sold currently. Another reason could be due to the laws
passed by the EU to ensure vehicles are equipped with compulsory safety features like
ABS (Anti-locking braking system) among others [18]. Although this downward trend of
accidents is promising, distracted driving due to secondary task engagement has claimed
the lives of 2,841 people in the USA in 2018. The EU has also identified driving distraction
as a major source for accidents [19]. The number of fatalities caused by distracted driving
in EU, however, is unavailable for now.

1.1.1 Distracted driving due to secondary task engagement
After understanding the consequences of distracted driving in terms of accidents and
fatalities, it is important to clarify the term distraction in the context of driving. Going
through well-documented resources on distracted driving, NHTSA’s definition provided
clarity and classified various categories of distraction [9]. This understanding is important
while preparing the dataset. Distractions are categorized into different types such as
visual, cognitive, auditory and physical. Any data collected for distracted driving will
fall under these categories. A major issue in terms of distraction over the years has been
mobile phones. It is interesting to note that using a mobile phone causes distractions of
all categories stated above. A report shows a high number of cases of distracted driving
as a result of mobile usage [20]. As the possession of mobile phones increased from 250
million units in 2007 to more than 1.5 billion units in 2020, the surge in cases of distracted
driving may be a result of this increase [21]. Although possession of phone may not be
equivalent to usage in the vehicle, it is likely to be used in the vehicle. Therefore, the
dataset which will be prepared should be categorized for all forms of cell phone usage like
texting and talking.

1.1.2 Feature extraction and object detection
Before dwelling on identifying distractions from videos or images, it is important to
understand some fundamentals of image analysis. The main purpose of image analysis is
to identify objects or features in an image. Different applications require different degrees
of accuracy, and based on this, the feature is recognized and segmentation is necessary for
accurate delineation. After extraction of features/objects, it is the work of a classifier to
categorize them. Linear classifiers are the simplest but usually less powerful. Images are
treated as vectors, and a linear classifier performs a dot product of the image vector along
with a weighted vector so that the resulting dot product if greater than a set threshold
value will be classified as the desired feature. This concept can also be applied to an
image which contains a lot of features. The classifier will be moved in a sliding window
operator across the image to extract features.
Another powerful technique to classify images is the process matching features in images
irrespective of scale and orientation called SIFT (Scale Invariant Feature Transform)
descriptor [22]. To extract features, the SIFT descriptor identifies blobs or interest
points in images. The position and scale of these interest points are determined to
match similarities and further classify as features between images. After the evolution
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of classifiers which could learn on supervision, the SIFT descriptor is usually used for a
specific purpose, and it performs poorly under bad lighting.

1.1.3 Driver distractions identified with an ensemble of CNNs
The Machine Intelligence group at American University of Cairo (AUC) had one of
the earliest work in identifying driver distractions, making it a benchmark for future
researchers [23]. Their research identified the need to address this problem due to the
growing number of people using phones, availability of sophisticated infotainment systems
in vehicles and interaction of people with these devices. Subsequently, following this was
the progress in object detection using deep learning and convolutional neural networks.
The work follows the principle of using several CNNs in tandem to identify distractions
precisely. The data used for their research is a custom made dataset inspired by the
predefined classes of driving distractions by State Farm’s Dataset competition on Kaggle
[24]. The dataset contains 10 distractions in a fixed pose which was made publicly available
for research on request. The images are segmented to various parts of the body viz; face,
hands, skin devices and fed to various CNNs like VGG, AlexNet and Inception. The
weights learnt from all the networks are concatenated to an ensemble of classifiers which
help decide for the distraction identified in an image. The results of their work showed
a classification accuracy of over 90 percent and have provided a baseline accuracy for
future researchers to benchmark against. The future work for this research included using
a state of the art algorithm at that time named R-CNN (Regional based Convolutional
neural network). Since their model was heavy to run in a real-time environment, it would
be interesting for future researchers to build models which could handle the real-time
implementation.

1.1.4 Driver distractions using machine learning and fuzzy logic
There is a different approach to identify and evaluate distractions [25]. A system is
proposed, which has a model for normal driving and secondary task or distraction
engagement. The driver performance is evaluated under various circumstances like driving
without any distraction and driving with engagement in a secondary task. The vehicle
data in both these instances serve as a metric to identify a possible distraction. To evaluate
the distraction identified, they use fuzzy logic. To verify the working of the presented
approach, a driver in the loop experiment was carried out. The proposed method starts
with noting the driver’s performance on a known segment of road. Variables like speed
and ability to stay on the lane are also calculated. Following this, the driver is engaged
in a distraction while driving on the same segment of road. The same variables which
were evaluated for normal driving are compared with distracted driving and relation is
established between the two. Finally, the fuzzy logic evaluator normalizes these variables
and designates a percentage of distraction identified. This approach is different compared
to other methods, as other methods require a visual aid to identify distractions and
collecting and labelling such data may be extensive and expensive. The approach followed
by the researchers here eliminates all such cost and have shown the feasibility of their
model to be applied in real-time. However, this work comes with few limitations as
mentioned in the paper. It only focuses on one distraction. It also missed a statistical
analysis of different categories of drivers based on age, gender and driving experience. To
have a robust system, all these limitations have to be addressed.
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1.2 Aim and Scope
Researchers of traffic safety need to analyze secondary task engagement from the large
naturalistic driving database to understand this behaviour. This data contains videos which
exceed thousands of hours and manually annotating secondary tasks can be cumbersome.
The thesis is intended to utilize the capabilities of image processing and feature extraction of
open source deep learning algorithms to identify secondary tasks causing driver distraction
automatically. The dataset containing images should be categorized to various secondary
tasks like drinking, texting and talking on the phone and labelled accordingly. Through the
course of this work, an open-source object detection algorithm is trained on the available
dataset. It is of interest to determine the prediction rate of the algorithm considering
the level of training it undergoes. The output of training may depend on the quality of
data used, duration of training and amount of data. The algorithm is expected to be easy
to use and should also accommodate features/functions which could be added for future
work.
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2
Theory of object recognition

2.1 Linear classifiers
As mentioned in section 1.1.2 that linear classifiers can be used for object detection or
feature extraction. It is important to understand that images are vectors of pixels with
each pixel indicating the intensity [26]. Since the images are treated as vectors, arithmetic
operations can be performed, and this creates the fundamental concept of a linear classifier.
For example, if we have to identify between cells in an image or its background, a linear
classifier can be used to categorize an input image into one of the classes.

patches of background patches of cell

Figure 2.1: Images of cells [27]

An image is broken down into patches, and a classifier usually moves in a sliding window
manner to identify the class. In Fig. 2.1, the patches of cells and background/non-cells are
shown. To design a linear classifier which can make this categorization, additional vector
ω, which when multiplied by Image (I) should result in a product greater than threshold
τ . If the product is lesser than τ , then the patch can be classified as background.

I · ω > τ (2.1)

This technique can be applied to an image of bigger size, wherein the image can be divided
into small patches, and weight vector ω can be moved in a sliding window to identify all
the patches containing required features. Later, all the output can be combined to obtain
an output similar to input image but with all identified class.

2.2 Learning of a classifier
The linear classifier formulated above can also be formulated in an alternative way by
introducing an unknown constant instead of the threshold τ :

7



2. Theory of object recognition

I · ω + ω0 > 0 (2.2)

This classifier works by determining good values for ω and ω0. It can be considered as
a precursor to neural networks. Determining best values depends on the detection and
classification of data.

2.2.1 Evaluating a classifier
Performance of a classifier can be evaluated based on false classification it makes [28].
Consider the example of cells and non-cells (Fig. 2.1). If the classifier is trained to detect
only cells, it will classify everything fed to it as cells even if there are non-cells. Therefore,
having good metrics for evaluation is vital. The concepts of precision and recall depict
this behaviour.

Precision for class A = number of examples correctly classified as A
number of examples classified as class A (2.3)

Recall for class A = number of examples correctly classified as A
number of examples from class A (2.4)

Precision and recall together can be a better evaluator for a classifier while having only
one metric can be misleading.

2.2.2 Negative log likelihood
Consider two classifiers shown in Fig. 2.2, where both of them succeed in classifying
positive (green dot) and negative (red dot) examples but the classifier on top will probably
perform better on a new dataset. This limitation of precision can be addressed by logistic
regression. Through logistic regression, we can assign class probabilities to each example,
and likelihood can be used to evaluate the performance of the classifier as a whole. A
sigmoid function can be one possible way to solve logistic regression.

Figure 2.2: Output of two filters [27]

p = ey

1 + ey
with, y = I · ω + ω0 < 0 (2.5)

2.2.3 Softmax function
When there is multiple classes to be detected, the classifier is made in such a way that
the class probability for a patch is the summation of all the classes equal to 1. Softmax is

8



2. Theory of object recognition

a generalization of logistic regression which helps to achieve a probability of classes to
sum to 1. For a set of numbers yc, the probability pc such that

∑
j

pj = 1andyc > yj ⇔ pc > pj (2.6)

by setting,

pc = ey
c∑

j
ey

j

(2.7)

The equation 2.7 represents the generalization of logistic regression.

2.2.4 Overfitting
Overfitting occurs when there are large number of parameters to tune, and in case a
higher-order polynomial is used to fit all the measurements as shown in Fig. 2.3. In
object detection, overfitting occurs when the amount of model parameters is higher when
compared to the amount of data available. Hence, to avoid overfitting, more data needs
to be included.

Figure 2.3: Overfitting, optimal fitting and under fitting of
measurements[29]

2.2.5 Data expansion/ augmentation
It is essential to have a large labelled dataset for training to avoid overfitting. Labelling
data for training can be a painstaking process as it has to be done manually. Therefore, a
smarter way to create more data would be to modify the existing data by transformations
and thus creating a larger dataset. The data modifications can be done in the following
ways.

• Rotational or reflective transform of data
• Moderate change in brightness and scale
• Adding pixel noise

2.2.6 Training, validation and test set
A classifier with large ω value will have a low loss (miss classification rate) [30]. When we
have to choose between different classifiers to address the problem, looking at loss functions
alone may not be thoroughly justified for its choice. A smaller classifier with a lower
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2. Theory of object recognition

value of ω can still perform better on a new dataset. To avoid this, we create a different
validation dataset with positive and negative examples. Based on the performance on a
validation set, a classifier can be chosen accordingly.

2.3 Neural network
Neurons are the building blocks of the brain and nervous system. The human visual
system is part of the nervous system. It is fast, accurate and precise in classifying various
objects. This serves as an inspiration to the system which is based on artificial image
analysis. The progress in science and technology has allowed studying the working of
neurons. Neural networks use mathematical models which are inspired by them.

A neuron mathematical model of neuron

Figure 2.4: Biological neuron and its mathematical replica [27]

A simple mathematical model is shown in 2.4. The model is fed with inputs xk while being
multiplied by weights wk. Few mathematical activation functions similar to biological
activation include logistic sigmoid, tanh and rectified linear unit(Relu). However, in the
model shown in 2.4, it is represented by ξ for simplicity.

2.3.1 General model of a Neural Network

Figure 2.5: Schematic representation of a neural network [27]

10



2. Theory of object recognition

A generic model of a neural network is shown in Fig 2.5. The input image is fed to the
network with dimensions 64*64. The first layer of the network consists of 30 5*5 filters
and a rectified unit layer (ReLU) as an activation function which returns zero if it receives
a negative value. The output of this layer consists of 30 channels of 64*64 response maps.
This is similar to RGB channels in terms of different channels stacked together, The next
layer is called max pooling, where each of the response maps from the previous layer is
divided into 2*2 regions which only keep the maximum value of the pixel value as shown
in fig 2.6. The output from this layer, however, still consists of 30 channels, but the
dimensions are reduced by half.

Figure 2.6: Max pooling [27]

The output from max pooling is fed to the third layer, which consists of 20 filters (vectors
similar to images) with 3*3 dimensions and a ReLU. It is important to note that each
filter colludes with 30 channels from the previous layer. Therefore, the output of this layer
has to be known thoroughly. Since every filter f deals with 30 channels, each filter has
a tensor of 30*3*3. The k-th filter fk works on 30 channels, and if Xk(x, y) is the k-th
channel in the output from the previous layer, then the filter response will be,

30∑
j

Xk ∗ fk (2.8)

Moving on, layer 4 and 5 are similar in operation to the layers mentioned previously.
But layer 6 takes a fully connected layers approach where 100 neurons compute a linear
combination of outputs 10*16*16 from the previous layer. These fully connected layers are
the penultimate layers before going to softmax function, where probabilities are estimated
to assign a class for detection.

2.3.1.1 Transfer learning

The idea of transfer learning as the name suggests is to use the things learnt from one
network in solving a problem and implement on a different network to solve a different
problem. Sometimes due to the lack of large datasets, this technique can be used. There
are several image databases like ImageNet, which contain a plethora of images that can
be utilized for training.

2.3.1.2 Intersection Over Union (IOU)

Objects detected by CNN in an image is usually localized by enclosing a bounding box.
IOU is used as an evaluating metric to measure the closeness of this bounding box with

11



2. Theory of object recognition

the ground truth, which is the actual location of the object in the image [31].

IOU = Area of overlap
Area of union (2.9)

IOU is calculated as the area of overlap over the area of union shown in Fig. 2.7. The area
of overlap measures the area under intersection between the predicted box and ground
truth. Area of union is the total area enclosed by predicted box and ground truth. The
ground truth is obtained from labelling the class during training. IOU is expressed in
percentage and higher the percentage, the closer is the predicted box to the ground truth.

Area of overlap Area of union

Figure 2.7: Pictorial representation of area of union and area of
overlap [32]

2.3.1.3 Batch size, Iterations and epochs

Most of CNNs used for prediction arrive at an optimal solution after going through several
iterations. Over the course of training, the algorithms try to minimize the loss. Loss is the
error in prediction calculated for every iteration against the actual label in steps. The loss
function is controlled by a parameter called the learning rate. Learning rate determines
the steps in which the loss function is minimized for each iteration.

• Batch size: It will be difficult for the algorithm to process all the images at once.
Therefore, the images are divided into batches and fed accordingly. The batch size
refers to the number of images fed to the algorithm at a time. Batch size depends
on the memory available for computation. More images can be fit in a batch if the
memory is more. The memory here can be from CPU and GPU. Several batches
together are termed as number of batches. For example, if there are 100 images in
total, which has 10 images in a batch, the number of batches is 10.

• Epochs: One epoch means all the images are passed forward and backward through
all the layers of the network. For a large database with several thousands of images,
having only one epoch will result in under fitting shown in Fig. 2.3. As the number of
epochs increases, the weight is changed, and this results in under fitting to overfitting
the data. There is no set number of epochs to have the optimal fitting of data as it
depends on the problem.

• Iterations : Iterations depend on the above-mentioned terms. The number of batches
required to complete one epoch. Assume we have a dataset containing 1000 images
and number of batches is 100 which means each batch contains 10 images. Therefore,
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2. Theory of object recognition

it takes 10 iterations to complete one epoch. To further simplify, the formula
mentioned below will help in putting all the terms in context.

Number of batches (N) = Total number of images
Batch size (2.10)

Iterations (I) = Total number of images
Number of batches(N) (2.11)

1 epoch = Number of batches (N) ∗ Iterations (I) (2.12)
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2.3.2 Training on CPU (Central Processing Unit) vs GPU (Graph-
ical Processing Unit)

Both GPU and CPU are microprocessing units designed for performing computations.
CPU is capable of performing different types of computations sequentially, whereas GPU
is capable of performing similar tasks parallelly [33]. It is difficult to conclude if GPUs are
better than CPUs as they work on different principles. But for machine learning tasks,
especially for image processing, GPUs proved to be more suitable. This is because GPUs
are capable of performing matrix multiplications of image vectors parallel faster, better
memory bandwidth and having large and fast registers capable of processing faster than
CPU [33]. The Fig. 2.8 shows the performance of GPUs for deep learning tasks over
the last 3 years. For approximation, an AMD CPU takes 30 times more time than an
NVIDIA GPU for training a CNN.

Figure 2.8: Performance of GPU compared to CPU [34]
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2.4 Object detection history

2.4.1 Viola Jones algorithm
In 2001, Paul Viola and Michael Jones created the first efficient facial detection algorithm
[35]. This algorithm worked on the principle of hand-coding features of faces and feeding
them into a classifier. This algorithm was the first important breakthrough in computer
vision. It was operational on a webcam which gave it an edge over other facial detection
available at that time.
For every image fed to the algorithm, it would downsample them to different hand-coded
features. These features extracted from various filters were later concatenated to fed to a
linear classifier which would categorize the input image into a binary classification. The
main drawback of this algorithm was its inability to identify different poses. Even though
object detection improved after this, the idea was groundbreaking at that time and was
implemented into OpenCV as well.

2.4.2 Histogram of Oriented Gradients
Another technique of object detection came in the year 2005 and is called histograms of
oriented gradients. This technique still involved hand-coding features but with a different
approach. The idea was to measure the intensity of each pixel to the surrounding pixels.
Later on, the gradient is pointed in the direction of the surrounding pixel with the highest
intensity. For each pixel, the gradients are calculated and placed in different bins of
varied intensity, as shown in Fig. 2.9. After obtaining histogram bins for each pixel, it is
replaced by a single gradient direction which is more prevalent than all other gradient
directions. Finally, the image with pixels is replaced by gradients for the entire image.
After obtaining this, it can be compared with images to measure similarity and to help in
classification.

Image with gradients histogram bins Resulting histogram

Figure 2.9: Example of histogram of gradient descent [27]

2.4.3 Beginning of deep learning era
ImageNet organizes yearly competitions for researchers to check their detection algorithms
to see which is the best performing algorithm for every year. During 2012, ImageNet’s
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large scale visual recognition challenge held its annual competition where Alex Krizhevsky,
along with his team, tested their convolutional neural network. It outperformed every
other network in the competition. This was one of the major turning points in the era of
deep learning. Even though convolutional neural networks have existed for decades, their
usage was limited for two major reasons. The implementation of CNNs was restricted by
the hardware available for computation and amount of data available for training [36]. The
advancements in the development of hardware, especially with the graphical processing
units (GPUs) has increased the computational capabilities. This was also followed by the
availability of large amounts of images online, which helped in the pursuit of collecting
images in a large scale hierarchical databases like ImageNet [37].

2.4.4 Convolutional neural networks for detection
CNNs, along with other linear classifiers, can be used to classify features or objects in an
image. But, just a binary classification of whether a particular object is present in an
image is insufficient unless it is localized. It would be great if the object is detected in
an image and also a bounding box is placed enclosing the object. Fortunately, research
on this area came to the conclusion that object detection is very much possible using
CNNs. The idea behind using CNNs for object detection started off with utilizing existing
convolutional neural networks like VGG (Visual Geometry Group) or Inception which
have already been trained on several images to localize objects in an image. If a CNN has
to be used to find objects in images as seen in Fig. 2.10, the simplest approach would
be to divide the image into smaller patches and slide a small window across the whole
image to detect various classes of objects. At each step, we can predict the class of object
detected inside the window. Although this process seems easy, it can be computational
heavy. Therefore, a smarter way to detect objects is needed to reduce the computational
load.

Figure 2.10: Detection of objects using CNN [38]

2.4.5 R-CNN
A better approach for object detection was found in 2015, which used a regional-based
localization of objects in an image called R-CNN [39]. R-CNN uses a process called
selective search or region selection where an image before being fed to a CNN is segmented
for various features or objects. The selective search or regional search looks for objects
with an image by placing various bounding boxes of different size and shape. For each
of these boxes placed, the adjacent pixels are compared in terms of intensity and colour
to find objects. Fig. 2.11 below shows the process involved in detection using R-CNN.
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After the image is broken down into selective regions where there is a high probability of
objects, these segments of images are fed to a CNN. The output of CNN is further fed to
a classifier to detect an object. Finally, these objects are checked by a linear regression
model to output tighter co-ordinates into the bounding boxes of the objects detected.
This approach at the time proved to be the most efficient way to solve the object detection
conundrum, and several improvements were made to this approach. Improvements of the
same approach like Fast R-CNN, Faster R-CNN and Masked R-CNN were released the
following years, and all of them score high precision scores on various large datasets.

Figure 2.11: Detection of objects using R-CNN [39]
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3
Methodology

To recall, the identification of driving distraction as result of secondary task engagement
using a convolutional neural network is possible considering the level of accuracy and
computational capabilities of hardware available at present to handle the data. This work
focuses on identifying the distraction as a holistic based approach where it is labelled
manually and trained for the same using the YOLO algorithm. To simplify, distractions
are treated as custom objects to be detected in an image. However, this work does not
follow a segmented approach, where distractions are broken down to gestures and objects
like phone and cups for prediction. But, the framework provided here can be extended
to accommodate a segmented approach for identifying distractions. Another important
aspect is to implement a state of the art image detection algorithm to solve our problem,
which has not been done for this problem yet. Its creators [40] have well documented the
prowess of YOLO in terms of its speed and accuracy. Some distractions have a distinct
pattern which makes the detection of it as a whole more suitable. For example, all the
drinking distractions involve the same gesture where the driver has one hand on the
steering wheel while the other hand is occupied in holding the drink to the mouth.
Python contains several open source libraries available for computer vision and deep
learning. Some of the main libraries which are crucial in executing this project are
OpenCV, Tensorflow and Numpy. However, some of libraries come built-in with Python
like math, which contains basic operations involving constants.
The OpenCV library consists of functions capable of working with images or videos in
terms of feature extraction, image transformation and image filtering [41]. It is an open
source item, which makes the ease of usage hassle free and has lot of tutorials available
online to get familiar with functions. Some of the vital functions which is crucial for this
work may include, reading the neural network, extracting features and applying bounding
boxes and adjusting the shape of the image.
Tensorflow is an open source library which basically is capable of machine learning
application like neural network. It is originally developed as part of Google brain project
[42]. Numpy is a library capable of handling high performance multidimensional arrays
and functions capable of operating these arrays [43]. Matplotlib is a plotting library which
also an extension of Numpy [44].
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3.1 Data Procurement

The fundamental idea of using CNN is to recognise a pattern from data instead of tedious
programming. Therefore, for the algorithm to perform well, we need a lot of training
data. The dataset used for the algorithm was obtained on request from [23]. The pattern
observed by the algorithm here for the distractions could be transferred when training for
a new dataset. The data created by American University in Cairo (AUC) was inspired
by the StateFarm’s dataset, which was one of the earliest available datasets to classify
various distraction features. However, this dataset could be used for competition purpose
the only [24]. Hence the new dataset created by AUC had all the enlisted classes of
distraction used in the StateFarm competition. This dataset was provided from AUC for
academical use. There are some limitations to their data wherein naturalistic behaviour
is not followed. Some of the data collected are premeditated as the subjects involved in
the study are told of distractions to perform while being recorded.

3.1.1 Ethics of assessment

Since the project involves personal identity of participants and their behaviour collected
as part of naturalistic driving study, it is the responsibility of researchers to protect these
data and ensure the identity of participants is kept confidential. The data containing
videos is property of SAFER. Only authorised individuals have access to the data. The
FOT rooms do not have access to internet and thus ensures data is not shared online
for any purpose. The researchers at SAFER have pledged to the keep the privacy of
participants.

3.1.2 Labelling

The algorithm needs labelled data for training. The labels in images represent the class of
the object which in this case is the distraction and allows the algorithm to learn those
features. To learn from the images, the position or coordinates are marked. There are
several software tools available to perform labelling. The labelled images with coordinates
are saved as a text file along with the image dataset. This is done so that algorithm will
only learn from specified coordinates corresponding to the image. LabelImg was used to
perform this task. It is simple to use and available for all operating systems. This software
allows to label the data for both YOLO and pascal VOC data formats. Fig.3.1 shows the
interface of the tool in which the labelling is done. The distraction is enclosed in a green
box, and subsequently, the class is labelled as drinking. This procedure can be tedious
as the user should label all the classes of images used for training. However, Google has
labelled images available for objects in the COCO (Common Objects in Context) dataset,
and this contains around 80 classes of general objects. Since our dataset requires labelling
of distractions, this has to be done manually. As the labelling is done manually, it can be
cumbersome for large datasets. It will be interesting to have methods which could make
the process of customised labelling automatic.
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Figure 3.1: Labelling distraction in the tool

3.1.3 Data cleaning and segregation
The distracted driver dataset contains mixture of images which has to be arranged
according to the various types of distractions. The data available can be classified as
following distractions viz; safe driving, text left, text right, talk left, talk right, adjust
radio, reach behind, drinking, hair and make up.

Table 3.1: Classes of distractions

Classes Description
c0 safe driving
c1 talk left (phone)
c2 talk right (phone)
c3 text left (phone)
c4 text right (phone)
c5 adjust radio
c6 reach behind
c7 hair and makeup
c8 drinking

The Table 4.3 shows different classes of distractions captured in images available for
training. These classes were defined in StateFarm dataset for the Kaggle competition
[24]. Safe driving here means when both hands were on the steering wheel, whereas every
other class involves driver having only one hand on the steering wheel and the other hand
is used for secondary task engagement. The same classes were used for the preparation
of the dataset except for one class. This class contained images of talking to passengers.
The quality of the image was poor and conflicted with safe driving due to its similarities
in posture. This needed a segmentation of the distraction instead of holistically labelling
as talking to passengers. For these reasons, it is excluded from training.
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3.2 YOLO (You Only Look Once) algorithm
As the name suggests, the YOLO algorithm scans through the image once and generates
a bunch of confidence scores for different classes of objects. YOLO is written on a darknet
framework which is a neural network written in C and CUDA. Darknet is known for its
simplicity in installation and usage. It is also made to support both CPU and GPU for
computation [45].

Figure 3.2: Image divided into 13*13 grid by YOLO [40]

YOLO performs differently compared to other object detection systems. It does not follow
the traditional approach of training a classifier to scan through the image in a sliding
window fashion to detect different classes of object. Instead, YOLO divides an image into
small patches or grids, as shown in Fig. 3.2. In each of these grids, the algorithm applies
bounding boxes which basically enclose an object found in the image. The bounding boxes
are of various size, considering that objects come in different shape and aspect ratio. The
bounding boxes, however, are not limited to the size of the grid. After all the bounding
boxes are applied, it will look similar to Fig. 3.4. While it draws five bounding boxes
for each of these grids, it simultaneously also predicts the confidence score of an object
being found in that box. These objects are further associated with different classes of
objects. The novelty with YOLO is that all the above-mentioned tasks are performed
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simultaneously by a single convolutional neural network which has not been done yet.

Figure 3.3: Bounding boxes for predicted class [40]

Figure 3.4: confidence scores for various classes detected [40]
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Figure 3.5: Final detection of objects by YOLO [40]

The thicker the border of the box, stronger is the confidence score for an object. YOLO
was trained on PASCAL VOC (Visual Object Classes) dataset which contained around
20 different classes of data, namely car, dog, person, cat etc. As seen in Fig. 3.3, the
thickest box has the best probability of finding an object. The final detection is based
on combining the confidence score of the most significant bounding box and the class
probability of an object. As referred from Fig. 3.2, there are 13*13 grids which means that
the image has 169 grids in total. Since YOLO drops 5 bounding boxes per grid, a total of
845 bounding boxes are predicted for the whole image. Most of the boxes probably will
have low confidence score as seen from thin boxes in the bottom right corner of the Fig.
3.4, only the ones with a confidence score of 30 percent or more are kept. The confidence
score is the product of the probability of object found and IOU (Intersection Over Union).
The confidence score will be zero for boxes which do not enclose any object. For possible
objects in the image, the confidence score depends on the IOU. The final detection for the
image is shown in Fig. 3.5.

Confidence score = Pr (object) ∗ IOU (predicted) (3.1)
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3.2.1 YOLO Architecture

Figure 3.6: A graphical representation of architecture of YOLO
[40]

The YOLO algorithm is a convolutional neural network. The creators have released several
versions of the same algorithm with incremental changes in the architecture, although
keeping the fundamental approach of treating detection as a regression problem [15]. The
architecture of YOLO as seen from the Fig. 3.7 consists of series of convolutional layers
and max pooling. The kernels are filters which are responsible for extracting features in
every convolutional layer. It can be seen from Fig. 3.6 that the downsampling of images
occurs after passing through several convolutional layers. The strides indicate the shift in
a filter to pixels. When stride is 1, the filter is shifted by 1 pixel, and it is shifted by 2
pixels for stride value of 2. Filters also facilitate feature extracting which is max pooled
for dominant gradients.
It can be seen from Fig. 3.6 that the input image has the size of 416*416*3. Here, the
height and width of the image are 416, and 3 channels represent RGB ( Red, green and
blue). Consider that there are 20 classes of objects to be detected. The bounding boxes
after the initial scan from the algorithm, as seen in Fig. 3.3 is fed to the algorithm. The
output after going through several convolutions is 13*13*125. For simplicity, it can be
understood as 125 stacks of 13*13 size extracted features. This output shape is for every
grid or patch. The number of channels at the output layer depends on the number of
bounding boxes and the data collected for each of the bounding boxes. The data elements
for each box is represented in the table below. It consists of the position of the box in
terms of co-ordinates x & y, width and height of the box, object score (confidence score)
and class probabilities for all the classes in the dataset. Here, the number of classes of the
dataset is 20, but this can change for every problem. This amounts to 25 data elements
for each bounding box. Since YOLO registers 5 boxes per grid, the output tensor is
13*13*5*25 which can be re-written as 13*13*125.

Box pos.(x) Box pos.(y) height of box(h) width of box(w) object score class 1 .. class N
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Figure 3.7: Architecture of YOLO [40]

3.2.2 YOLO improvements

YOLO versions
YOLOv1 YOLOv2 YOLOv3 YOLOv4
Object detection
is solved by
the approach
of treating it
as a regression
problem instead
of classification
problem. It
looks at entire
image globally
instead of locally
using a CNN

YOLOv2
matched mean
average precision
(MAP) with
SSD and Faster
RCNN

Incremental
inputs with
respect to
bounding boxes,
better MAP
scores compared
to RetinaNet
and 3.8 times
faster [15]

YOLOv4 boasts
of improved
speed and accu-
racy compared
to YOLOv3.
The MAP
& FPS have
increased 10
percent and
12 percent
respectively [46].

3.3 Training dataset on cloud virtual machine
Google Colab offers a free cloud service for machine learning and artificial intelligence
research. To get started, it is necessary to have a Google account to have access to a
GPU. The training is explained in steps starting from cloning the necessary repositories
to training a custom dataset.
Step 1 : Enable GPU acceleration with notebook
An IPYNB file is a notebook document which enables to code with python language and
its data [47]. The notebook document is uploaded to the Google Colab. Before using, the
GPU should be enabled, which allows the user to connect to the cloud server of Google,
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thereby allowing the usage of cloud GPU.
Step 2: Cloning and building Darknet
The darknet is cloned from AlexyAB’s repository [45]. The YOLO algorithm is built on
Darknet. Hence to run the training, the necessary dependencies of darknet should be
enabled. OpenCV and CUDA are the main libraries which can be sourced directly from
Git.
Step 3: Download YOLO pre-trained weights
Convolutional neural networks are made of several layers of neurons. The initial layers are
capable of identifying primitive features like lines and circles, and as the layers go deeper,
the networks extract more complex features [48] [49]. The final layers of the network
after training are responsible for the detection of various classes of data like a cat, dog,
person and more. The purpose of using pre-trained weights is to avoid training from the
beginning for every problem but instead, enable transfer learning which is an approach in
machine learning where a new problem is solved using the knowledge gained from previous
ones. As distractions are treated as custom objects here, throughout the training process,
the final layers will be updated with the pattern observed from the distractions. YOLO is
pre-trained for 80 classes on the COCO dataset [40]. Among these, classes like a person,
mobile phone and cups or bottles will from pre-trained weights will aid in training. The
YOLO pre-trained weights are available on the official site. It can also be pulled from git.
Step 4: Connect Google Drive to Google Colab
The advantage of using Google cloud service is the connectivity provided among all the
Google applications. The images which are required for training are uploaded to the
google drive, which can be accessed by the Google Colab on request. However, the images
can also be directly uploaded from the local machine onto the Google Colab.
Step 5: Gathering and labelling a custom dataset
As mentioned previously, the images are manually labelled using any third party labelling
software available. The labelling is done based on an interesting point. In this case, the
labelling is done for particular distractions as mentioned in 4.3. The coordinates of the
bounding box are saved as a text file in the same folder as the images. The folder should
also contain a text file named "classes.txt" indicating all the classes of images labelled.
Step 6: Moving the dataset to cloud virtual machine
All the images, along with the text files indicating the coordinates for the labelled features,
are uploaded to the cloud virtual machine. The data is compressed beforehand to reduce
the time needed for the upload. Later on, the files are decompressed to work with on the
cloud virtual machine.
Step 7: Configuration files for training
To have flexibility and reusability in solving machine learning problems, it is necessary to
have a configuration file which can make the work easier. Configuration files are necessary
to run the model with the settings user needs to achieve the solution. The configuration
file for YOLO can again be picked from the official site. This file contains the information
of architecture of the algorithm and certain parameters which can be changed based on
the user inputs.
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Step 7.1 : Parameters to change in the configuration file

[net]
# Testing
#batch=1
#subdivisions=1
# Training
batch=64
subdivisions=16
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=0.001
burn_in=1000
max_batches =18000
policy=steps
steps=14400,16200
scales=.1,.1

The configuration file contains a large set of parameters as shown above and begins with
batch and subdivisions. Batch refers to the number of images used in each iteration of
training. The batch size is set to 64 in the highlighted text code above, which means
that each iteration of training uses 64 images for learning. Batches are further divided
mini-batches or subdivisions which are processed parallelly by the GPU. For the above
file, the subdivision is set to 16, which implies that 4 cycles of subdivision complete a
batch of images. If the GPUs have higher memory, the subdivisions can be set to lower
values. The batches and subdivisions are set to the highlighted values during training,
and while testing, both of them are set to 1 as only 1 image can be tested at a time. In
case of issues during training which often pertains to the lack of GPU memory, the batch
can be set to 32 or 16.
The width and height of the image as input is 416*416, but any other size of the image
used will be resized by the algorithm automatically for all the 3 channels ( Red, green
and blue). Momentum and decay are optimizers. Momentum refers to the factor by
which the successive weights are updated. Decay is set low to minimize the weights of
features which are less significant. The angle, saturation, hue and exposure are related
to augmentation of the images. The images are rotated randomly during training. The
algorithm also changes the saturation, exposure and hue of the image randomly over the
course of training. These parameters ensure generalization of data. Learning rate is the
response to the error for change in weights. Keeping the learning rate low increases the
training process but ensures better training. The parameter burn in corresponds to a slow
increase in the learning rate for the initial set of batches until the set learning rate. Here,
the learning rate is set as 0.001, and burn in ensures that for 1000 batches, the learning is
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lower than the set value. The maximum batches are the product of 2000*( number of
classes ), and training will be processed for this number of iterations. In contrast, steps
are 80 and 90 percent of maximum batches respectively to adjust learning rate.
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Step 7.2 : Changes in YOLO and convolutional layers

[yolo]
mask = 6,7,8
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90
classes=9
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1

The YOLO layers are final detection layers in the algorithm. Mask refers to the indexes
of bounding boxes and anchors refer to the various size of bounding boxes referred in
this chapter which are adjusted throughout the training. The classes are set to 9 which
represents the number of distractions. Jitter crops and resizes images specifically for
the YOLO layer. Meanwhile ignore thresh and truth thresh adjusts duplicate detections.
There are 3 YOLO layers present in the architecture and the highlighted changes have to
be made for all of them.

[convolutional]
size=1
stride=1
pad=1
filters=42
activation=linear

All the convolutional layers of the algorithm which contains the data of filters have to be
changed. YOLO algorithm has multiple convolutional layers, refer Fig. 3.7 The number
of filters have to be changed according to the number of classes. The formula for number
of filters goes by..

Filters = (number of classes + 5) * 3.

Step 7.3 : Additional configuration files

safe_driving
text_right
talk_right
text_left
talk_left
adjust_radio
Drinking
reach_behind
makeup

Two more text files have to be created. A (.names) text file as shown above should contain
all the classes of data similar to the text file in the folder of images. A (.data) text file as
shown below should contain the number of classes and backup path where the trained
weights are stored after every thousand iterations. One last step before training is to
create a text file which holds the relative path to all the training images. This completes
all the necessary setup to start the training process.
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classes =9
train = data/train.txt
valid = data/test.txt
names = data/obj.names
backup = /mydrive/yolov3/backup/

Step 8 : Downloading some more pre-trained weights for the convolutional
layers
This step is not mandatory, but doing so will definitely help the training and model to
converge while being accurate. Google colab allows using the GPU continuously for about
12 hours. For every 3000 iterations, the weights are saved in Google Drive. The learning
rate can also be seen as the training progresses.

Figure 3.8: Flow chart of training process setup
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3.4 Training dataset on local machine

The dataset can also be trained on a local machine. It is necessary to fulfil certain
hardware and software requirements for a smooth operation. The steps for the training
setup are methodically explained below.

Step 1: Procuring darknet YOLO is originally built on the framework of darknet
[45]. Darknet provides YOLO with the capabilities to object detection. Therefore, it is
necessary to install darknet on the local machine. Running it on Windows may not be
the most optimal way as the creators have written in C. However, the creator named
ALexyAB has modified darknet to work on Windows or Linux efficiently. This version of
darknet can be pulled from git and should be installed on the local machine.

Step 2: CUDA and OPENCV installation CUDA (Compute Unified Device Archi-
tecture) enables the use of a GPU as a supplementary source in processing the computation
needed for training and running YOLO algorithm. Before downloading CUDA, it is im-
portant to check if the local machine is enabled with GPU like Nvidia. The training can
also be performed on the CPU, but having both CPU and GPU working together will
accelerate the process and makes it faster. Download the correct version of CUDA for the
GPU available on the local machine. OpenCV, as mentioned before, is a machine learning
framework for computer vision applications and allows you to see the object detection
real-time. Any version above 4.0 can be installed, and the exact version is given in the
appendix.

Step 3: Downloading weights file The weight file allows for solving a new problem
based on learning from the previous problem. YOLO is pre-trained for classes in COCO
dataset [40]. The weight file can be downloaded from the official website of YOLO [50].

Step 4 : Configuration file Once the darknet is built on the machine, prepare the
configuration file the same as shown in the previous section. YOLO detection can also be
used on real-time detection.

Step 5: Training and grabbing final weights Initialize training after following all the
above steps and download the trained weights file and configuration file after completion
of training. Training can be stopped based on the desired loss. This is used to create
object detection.
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Figure 3.9: Flow chart of training process setup for local machine

33



3. Methodology

34



4
Results

The possibility of having two training options was discussed in the previous section. The
training was carried out on a cloud server, and the results are displayed as confusion
matrices, performance metrics and images of predictions. The results also contain the
class of distraction, size of data and other relevant information specific to each of the
trails.

4.1 Trial 1: YOLOv3 tested for a single class of dis-
traction

The confusion matrix for this trial is shown in Fig. 4.1. The columns represent the
actual label of the distraction while the rows depict the label predicted by the algorithm.
To make it easier to observe the data, the true labels are highlighted green in colour
and false labels are red. The dataset was divided into training and test set respectively.
The training set contained . The numbers shown in the confusion matrix are that of
predictions for the test set. The class of distraction trained is drinking (c8). The top
left box contains the number of detections which was correctly identified as drinking and
the number was 197. The bottom left box signifies the cases which were drinking but
predicted otherwise. There were 4 cases. The top right box contains predictions which
were unrelated to drinking but were classified as drinking. Based on all these obtained
values, few metrics which can aid in understanding the behaviour of the algorithm is
tabulated in 4.1. These parameters are calculated based on the true and false predictions
made by the algorithm. As seen from the table 4.1, the accuracy is around 88%. While
some of the other measures like fall out, miss rate and specificity depict contradicting
behaviour compared to high accuracy. To simplify, the algorithm detects every image as
the same class. The results are discussed in detail in the following chapter.

• Class - c8 (drinking), refer to Table 4.3.

• Dataset size used for training - 910 images (more than 80% drinking).

• Algorithm - YOLOv3.

• Training set - 75% of dataset chosen randomly.

• Test set - 25% of dataset chosen randomly.
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Figure 4.1: Confusion matrix for trial 1

Table 4.1: Metrics evaluated for trial 1

Parameters Values(in %)
Accuracy 87.56

False positive rate or fallout 100
False negative rate or miss rate 1.9

Specificity 0

4.2 Trial 2: YOLOv3 tested for multiple classes of
distraction

The trial involves testing the YOLOv3 on multiple classes of distractions. The description
of each class is presented in the table 4.3. The dataset used contained a total of 912 images
around 100 images per class. A total of 25% chosen randomly was kept as a test set. The
confusion matrix is shown in Fig. 4.2. The values are the detection rate in percentage.
The rows of the matrix represent the true/actual label of the image while the column
represent the label detected by the algorithm. The main diagonal of the matrix, which
is also highlighted, depicts the detection scores for each class, and these numbers are
crucial among others in the matrix. The average detection rate per class for this trial is
approximately 46%. The algorithm was trained for 4000 iterations while the average loss
was under 2 at the end of the training process. It can observed from that the predicted
label in each column does not sum to 100 percent. This is because of a parameter called
confidence in the detection framework. The confidence defines the algorithm’s certainty
in identifying a particular class. The confidence value ranges from 0 to 1. When it is set
to a higher value, the algorithm does not make any detection for some cases.
The distractions like c2 (talking on the right-hand side), c3 (texting on the left-hand side),
c6 (reaching behind) and c8 (drinking) show higher detection rates over 50%. Whereas
classes like c0 (safe driving), c4 (texting on right-hand side) and c5 (adjusting radio)
recorded low scores of detection. It is also evident from the confusion matrix that, c6
(reaching behind) and c7 (hair and makeup) were the most miss-classified classes. The
final detections for the different classes are shown in Fig. 4.3.
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• Class - All classes of distraction(c0 to c8), refer table (4.3).

• Dataset size used for training - 912 images.

• Test set - 25% of dataset randomly picked (228 images)
.

• Iterations of training - 4000 with avg. loss under 2.

• Single pose dataset.

Table 4.2: Classes of distractions

Classes Description
c0 safe driving
c1 talk left (phone)
c2 talk right (phone)
c3 text left (phone)
c4 text right (phone)
c5 adjust radio
c6 reach behind
c7 hair and makeup
c8 drinking

Figure 4.2: Confusion matrix for trial 2 showing prediction rate
in %
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adjust radio Safe driving

makeup reach behind

Talk left Talk right

Text left Text right

Figure 4.3: Detections of distractions

38



4. Results

4.3 Trial 3: YOLOv3 tested for multiple classes of
distractions for a large dataset

After learning a few indicators from the two trials, namely the size of the dataset and
multiple classes, this trial tries to consolidate the drawbacks from previous trials to achieve
the best possible prediction rate. The trial contains all distractions as shown in 4.3. The
size of the dataset used for training is 6317 images approximating to about 700 images
per class. The test set contains around 1500 images. Another addition to this trial is
multiple poses of distractions, as shown in Fig. 4.5. It becomes easier for the algorithm to
generalize if tested on a completely different dataset, given that it was trained on different
poses. Similar to trial 2, the predictions are depicted in the confusion matrix shown in Fig.
4.4. The rows indicate actual labels and columns indicate predictions by the algorithm.
The highlighted boxes from top left to bottom right indicate the absolute class predictions
for each distraction. After calculating an average of all the values highlighted, the average
prediction rate of all the classes is approximately 88%. By increasing the data for training
by approximately seven times, the average prediction was increased additionally by 42%
roughly. The classes which had a prediction rate of over 90% were c2 (talking on left
hand), c3 (texting with left hand), c5 (adjusting radio), c7 (hair and makeup) and c8
(drinking). Safe driving(c0) recorded the lowest prediction rate of 81.5%. Most of the miss
classifications were under 10%, except for few. c1(talking with left hand) had 16.6% of the
data miss classified as c7(hair and makeup). While c6(reach behind) had 12.4% recognized
incorrectly as c7 (hair and makeup). The algorithm was trained for 9000 iterations with
an average loss under 2 at the end of the training.

• Class - All classes of distraction(c0 to c8), refer table (4.3).

• Dataset size used for training - 6317 images.

• Test set - 25% of dataset randomly picked.

• Different pose of distractions for better generalization.

• Iterations of training - 9000 with avg. loss under 2.

Table 4.3: Classes of distractions

Classes Description
c0 safe driving
c1 talk left (phone)
c2 talk right (phone)
c3 text left (phone)
c4 text right (phone)
c5 adjust radio
c6 reach behind
c7 hair and makeup
c8 drinking
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Figure 4.4: Confusion matrix for trial 3 showing prediction rate
in %
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Safe
Driving Text right

Talk right Text left

Talk left
Adjust
radio

Drinking
Reach
behind

Figure 4.5: Detection of distractions (multiple pose)
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4.4 All the trials in a nutshell
This section aims to compare some important aspects of all the trials. Each trial varied
with class, data size and pose. This section also compares the performance of the algorithm
in each trial.

Variables Trial 1 Trial 2 Trial 3
Classes 1 9 9

Images trained 910 912 6317
Avg. prediction per class 87 44 88

Pose single single multiple
Algorithm YOLOv3 YOLOv3 YOLOv3
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Discussion

The results obtained from all the trials are interesting and requires an examination to
interpret the findings. Each trial was intended to check the behaviour of the algorithm
considering variations in data size, classes and other hyper-parameters. Since the trials
are different from each other, they will be discussed separately to bring them into context.

5.1 Trial 1: YOLOv3 tested for a single class of dis-
traction

The trial was intended to get familiar with the working of the YOLO algorithm and
identify one class of distraction correctly. Hence it was initially trained majorly for one
class of distraction. The confusion matrix in Fig. 4.1 depicts the prediction rate for the
class, drinking (c8). The test set contained a total of 225 images which approximately
amounts to 25% of the training set. However, out of the test set, 24 images were not
drinking, and the remaining 201 were drinking. This small sample of non-drinking images
was included in the test set to verify if the algorithm not only succeeds in identifying
drinking images but the non-drinking images as well.
The algorithm was successful in identifying almost all of the drinking images except for
4. But, the images which were unrelated to drinking were also classified as drinking.
These values can be referred from Fig. 4.1. As seen from the table 4.1 the algorithm
promises good values. Even though it is capable of identifying almost all the drinking
images correctly, it is susceptible. It fails to classify non-drinking images correctly. Upon
examination, it was found out that such results occur due to training imbalance [51].
Training imbalance occurs when data is not equally distributed in all the classes. Although
few images were labelled for non-drinking and included in the training, this was insufficient.
The parameters evaluated from the confusion matrix is shown in 4.1. As discussed earlier,
this classification is imbalanced, and since most of the images which were trained are
drinking images, the algorithm boasts of high accuracy. But this may not be a good metric
to evaluate this trial and often be misleading in binary classification. This algorithm
failed to identify all non-drinking images, and this is reflected in the false positive rate or
fallout. This means that the algorithm identifies everything that is fed to it as drinking.
It is not ideal to have an algorithm which performs in such a manner as it is not robust.
To make it more robust, it is necessary to balance the training data or have multiple
classes of data.
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5.2 Trial 2: YOLOv3 tested for multiple classes of
distraction

Trial 2 is intended for predicting multiple classes of distractions and with a relatively
lower number of the dataset for training. Around 100 images of every distraction were
used which contained different individuals. The perspective of image for all individuals is
the same and detections are shown in 4.3. This low number of the dataset is intended to
observe the detections given the design of the architecture of YOLO. To recap, YOLO is
designed based on the regression problem where the image pixels are transformed into
bounding boxes along with confidence scores for classes. This makes it faster with mean
average precision scores higher than most of the other object detection algorithms [40].
For these reasons, it was interesting to find the predictions for a low amount of data.
Although it is a widely known fact that neural networks are image hungry for learning,
there is no absolute rule on the number of images needed to achieve the desired accuracy.
This is a trial and error method and often depends on the problem definition.
As mentioned in the results, the average prediction per class is approximately is 46%.
Even though each class of data contained approximately the same amount of data, the
prediction scores do not reflect the same. The classes which involve distinct actions or
objects have relatively higher prediction scores. In the case of c1, c2, c3, c4 and c8, it is
explicitly evident that mobile phone and water bottle were involved in this distraction.
Since the labelling of images was accurately performed, the algorithm learnt to distinguish
these classes better. However, there are some anomalies to be examined here. In the
case of c0 (safe driving), where both the hands-on steering wheel defines the class, some
detections suggested the driver was involved with using phone or reaching behind. The
miss classification of safe driving for texting may be because, in some images, the hand
holding the phone was close to the steering wheel. The same applies to being identified as
reaching behind instead of safe driving where the individual was looking behind while
both the hands were on the wheel. Similarly, for the class c7 (hair and makeup), the
distraction is wrongly identified as talking on the right side of the phone. This is due to
the similarity in the posture of talking on the phone and individuals using the right hand
to adjust hair. In some cases, it is challenging to come to the reasoning for a particular
miss classification. For c8 (drinking), it is identified as reach behind even though these
postures are totally unrelated. The same can be observed in c4(texting on right hand)
which is miss classified for reaching behind and hair & makeup.
Almost all of the miss-classifications can be attributed to a low number of training data
even though the goal of the trial was not to achieve a specific level of prediction rate. It
was interesting to find the learning capacity of the algorithm with fewer images. The
algorithm was subjected to 4000 iterations of training and 280 epochs. The result of
the trial makes it imperative to train with a larger dataset to see the difference in the
prediction rate.
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5.3 Trial 3: YOLOv3 tested for multiple classes of
distraction

Trial 3 is comprehensive to the amount of data, multiple pose and modifications done to
the configuration file to aid better training. Almost all of the data available was labelled
for training while aiming for a high prediction rate. The dataset contains multiple poses
of individuals engaged in distractions. This helps the algorithm to learn better, especially
with the classes of distraction which involves using mobile phone with left and right hands.
To recap the results for the trial, the average prediction rate of all the classes is around
88%. c8 (drinking) was the class with the best prediction score. A small percentage of
around 3% of the drinking class was wrongly identified as c7 (hair and makeup). This
was maybe due to the similarity in postures of drinking and reaching for hair. Similarly,
c4(texting with right hand), c1(talking with left hand) also had miss classifications with
c7 (hair and makeup) for the same possible reasons. But for other few classes, the wrong
predictions are hard to clarify because of no possible relation with the posture. For
example, c2 (talking on the right side) has no probable similarity to c7 (hair and makeup).
In the case of c0 (safe driving), the miss classified predictions as c4 (texting with right
hand) may be due to the closeness of the right hand to the steering wheel.
This trial showed that more data yields better result but fails to answer some anomalies
with the miss classifications. Although the algorithm performs well on this dataset but
having a forethought of a generalised algorithm should be put to the test on a different
dataset to check the robustness.

5.4 Comparing results with related work
As mentioned previously, the machine intelligence group at AUC provided one of the
earliest distraction detecting framework. The methodology used by them is different
compared to this work as they segment each distraction distinctly and use a different CNN
to train each of these segments. The final detection is based on the weights obtained from
all the segments. Although this yielded an accuracy above 90 percent, it proved to be
computationally heavy, and they proposed a lighter version which brought the accuracy
to around 85 percent compared to prediction rate per class of 88 percent obtained here.
The method proposed in this work follows a holistic approach of treating distractions as a
whole and uses a more advanced algorithm which unifies the detection process by a single
CNN. This made the training process easier and fast. This work provides an alternative
for training on a cloud for those lacking competent hardware on a local machine. The
intended application for AUC was to use it as a real-time system in semi-automated
vehicles and hence demanded high accuracy. The intention of this work is different, where
its use is to only help in the automatic annotation of secondary tasks in driving data.

45



5. Discussion

5.5 Limitations
The limitations of this work are dependent on some of the performance constraints
generally observed in CNNs, along with some of the limitations observed in this work.
CNNs perform well when its capabilities are utilised appropriately. But, some of their
inevitable limitations are the failure in classification with varying pose or contrast. CNNs
learn better for the pose they are trained with and usually fail to perform with a different
pose, lighting or backgrounds. For example, the weight file of trial 2 would have failed to
identify the change in the pose, as shown in figure 4.5. Hence, to have a generalised model,
it needs to be trained across multiple poses and colour contrast ( hue, saturation and
exposure). This sometimes makes it expensive to get the data and annotate. Although a
minor fix can be done with image transformations that may reduce the quality of data
available in the image.
The work was initially intended to perform on the data available at SAFER. SAFER
contained naturalistic driving data categorised and annotated into several classes of
distractions. This data could not be used for training due to hardware limitations of the
local machine and confidentiality in extracting the data out of the FOT rooms at SAFER.
Hence, a different dataset was used, which was similar. As discussed above, variations in
the data sets result in poor generalisation.
The training of CNNs requires powerful GPU which can be accelerated with CUDA. It
requires a lot of time to train on the CPU. Hence, the training was performed on a cloud
virtual machine. But this comes with some limitations as well. The cloud has limited
time for training, and if the training goes idle for a while, then the model will be ejected
out of the server. The training could approximately run for 10-12 hours on a cloud which
was sufficient to arrive at the desired loss. But, when we use to start increasing the size
of data for training, it will take longer time and training on cloud becomes difficult.

5.6 Future work
The future work can start with working on the data available at SAFER. The data at
SAFER include videos or images which are grayscale. The concept of transfer learning
can be applied to this data, where we use the pre-trained weights on a new dataset. Apart
from this, to make the algorithm more robust and generalised, more data is needed along
with competent hardware making the training faster. An alternative methodology can be
implemented where, instead of identifying distraction as a whole, each distraction can be
broken down into segments. This segmented approach can help identify specific objects
or gestures of a distraction which can help the algorithm learn better, and the problem
of detection becomes easier. Since this work intends to make the manual annotation of
secondary task engagement in naturalistic driving data automatic, it can be tested on the
same after having a generalised model. However, this might require validation between
manual and automatic annotation.
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Distracted driving as a result of secondary task engagement is one of the reasons for fatal
accidents. One of the factors influencing this behaviour is due to the emergence of mobile
phones and interaction with the infotainment system in the vehicle. Advancements in
computer vision have led to algorithms capable of detecting objects in images or videos.
To automatically detect these distractions, a convolutional neural network named YOLO
(You only look once) was used to identify distractions. The data was available from
Machine intelligence group at the American University of Cairo (AUC) on request, and
this data was based on distractions categorised by StateFarm’s dataset used for an object
detection competition on Kaggle. The distractions were subdivided into nine classes
viz; safe driving, texting with a left hand, texting with a right hand, talking with a
left hand, talking with a right hand, adjusting a radio, drinking, hair & makeup and
reaching behind. These images were used to train the YOLO algorithm so that it can
recognise the pattern of distractions and could be later validated with testing. The images
which were used for training were labelled by specifying the coordinates in the image
containing the distraction. The training was carried out on a cloud virtual machine.
Alternatively, the possibility of training on the local machine was also considered, but it
was not preferred for reasons related to hardware capabilities available. The weights file
was obtained after training along with a configuration file. The configuration file helped
in setting up or changing certain parameters which aided in the better training process.
An object detection framework was built, which could identify the distractions in the
images using the weights file available after training. Several trials were conducted to
check the behaviour of the algorithm, and it was modified with each trial to get better
prediction rates and efforts were made to make it robust.
Trial 1 was intended to identify only one distraction (drinking). Since it was trained
majorly on one class (drinking), the training imbalance made the algorithm to identify
everything given to it as drinking. Whereas trial 2 was trained for multiple classes of
distractions, but the data used for training was comparatively low. This was done to
understand the traditional attribute of convolutional neural networks requiring more data
to achieve high accuracy. It was interesting to find out with an average of around 100
images per class; the algorithm achieved an average prediction rate of 44%. This trial
can be used to extrapolate the amount of data required to achieve higher prediction rate.
Following trial 2, the final trial showed a higher prediction rate of 88% per class when
compared to trial 2. This was achieved by using a larger size of training data and to aid
efficient learning, and it contained multiple poses of all the distractions. The algorithm
can be used to detect secondary tasks from naturalistic driving data available at SAFER
provided it is trained on them.
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