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Prediction of High-Speed Planing Hull Resistance and Running Attitude
A Numerical Study Using Computational Fluid Dynamics
DAVID FRISK, LINDA TEGEHALL
Department of Shipping and Marine Technology
Chalmers University of Technology

Abstract
Accurate predictions of the resistance and running attitude are key steps in the
process of hull design and manufacturing. The predictions have traditionally relied
on model testing, but this technique is both expensive and time consuming. In
this study, the performance of CFD simulations of planing hulls is evaluated us-
ing two commercial software: ANSYS FLUENT, developed by ANSYS, Inc., and
STAR-CCM+, developed by CD-adapco. This was done by predicting the steady
resistance, sinkage and trim angle of one semi-planing and one planing hull in calm,
unrestricted water. The Reynolds averaged Navier-Stokes equations with the SST
k-ω turbulence model was used along with the volume of fluid method to describe
the two-phase flow of water and air around the hull. Furthermore, a two degrees
of freedom solver was used together with dynamic mesh techniques to describe the
fluid-structure interaction. The simulations were performed with both fixed and free
sinkage and trim to make careful comparisons of the software and with experimental
data.

The results from the fixed sinkage and trim simulations of the planing hull in
FLUENT and STAR-CCM+ show a good consistency. However, there is a sig-
nificant difference in the pressure resistance obtained from the two codes that could
not be explained.

The free sinkage and trim simulations were mainly conducted in STAR-CCM+ due
to problems with obtaining a stable solution in FLUENT. Froude numbers between
0.447 and 1.79 were simulated and the results follow the same trends as what is seen
in the experimental data. The calculated resistance, sinkage and trim angle show
good correspondence to experimental data in the planing region, where the errors
of the predicted values are below 10%.

Keywords: Computational fluid dynamics (CFD), planing hull, resistance, sink-
age, trim, fluid-structure interaction (FSI), ANSYS FLUENT, CD-adapco STAR-
CCM+, Reynolds averaged Navier-Stokes equations (RANS), Volume of fluid (VOF).
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1
Introduction

Hull design is a field of engineering that has been developed for hundreds of years.
Today, the main focus is to meet the contract speed requirements with minimum fuel
consumption. It is important to make an accurate prediction of the hull resistance
to be able to choose an appropriate engine power of the propulsion unit. It is also
of interest to investigate the running attitude of the hull to get desirable seakeeping
properties.

Traditionally, the hull resistance and running attitude have been determined by
performing experiments on down scaled model hulls in towing tanks. These experi-
ments have proved to predict the behaviour of the full scale hull very well, but the
method is time consuming, expensive and only applicable to the tested model. A
more universal method for hull performance predictions is to use computational fluid
dynamics (CFD) which is a branch of computer simulations where the behaviour of
a system involving fluid flow is analysed using numerical methods.

There are well established methods for CFD simulations of displacement hulls and
the results predict the behaviour of the hull with high accuracy. Resistance pre-
dictions of planing hulls are more difficult, and a lot of today’s research is focused
on improving CFD methods for planing hulls. In contrast to displacement hulls,
which are supported by hydrostatic forces acting on the hull, planing hulls utilize
hydrodynamic forces from the water to reduce the resistance and thereby be able to
reach high speeds with relatively low fuel consumption.

This study is done in cooperation with Swede Ship Marine AB which is a company
that designs and manufactures high speed planing vessels such as rescue vessels,
pilot boats, coast guard vessels and navy vessels. If Swede Ship could make use of
CFD in their hull development, they could improve their vessel design process and
reduce the production time and cost.

1.1 Background
Hull development has traditionally relied on model scale experiments in towing
tanks. Instead of doing these experiments, empirical models based on regression
analysis of experimental data have been developed to predict the behaviour based
on the characteristics of the hull shape. Two widely used empirical models are that
of Holtrop and Mennen [1], used for displacement hulls, and that of Savitsky [2],

1



1. Introduction

used for planing hulls. The main drawback with these empirical models is that they
are restricted to simple hull shapes which are similar to the hulls used to develop
the models.

During the last decades, several numerical studies on planing hulls have been per-
formed. Brizzolara and Serra [3] compared CFD simulations of planing hulls with
the Savitsky method. The flow was modelled with the RANS equations and the
standard k-ε model was used to model the turbulence. The VOF method was used
to resolve the free surface. It was found that the hull resistance from the CFD
simulations differed in average 10% from the experimental results. This was lower
than the error of the Savitsky method, and the study showed the potential of CFD
simulations.

In order to find the running attitude of a vessel, its motion must be included in the
simulation. For this purpose, methods for coupling the fluid flow and body motions
have been developed. Azcueta [4] implemented a method in 2001 where the inter-
action between the hull and the fluid was modelled. The turbulence was modelled
with the RANS equations and the standard k-ε model, and the free surface was cap-
tured with a VOF method. The method was validated for a Series 60 Hull, which is
a well-known displacement hull used for simulation benchmarking, and the results
were compared with experimental data. The total resistance was underpredicted by
5.9% and the sinkage and trim were 8.2% and 6.0% lower than the experimental
results respectively.

Recent studies show that CFD simulations of displacement hulls have been made
with a precision that start to approach that of towing tank tests. At the Workshop
on Numerical Ship Hydrodynamics in Gothenburg 2010 [5, pp. 1–16], 33 partici-
pating groups performed simulations of three large displacement ships. The results
from all simulations show that the mean error of the resistance predictions, in com-
parison to towing tank experiments, was only 0.1% with a standard deviation of
2.1%. The sinkage and trim predictions were less accurate, for the higher speeds
the mean errors were around 4%.

CFD simulation of planing hulls is more challenging in comparison to displacement
hulls, and in general the accuracy of the predictions is lower. The viscous forces from
the flow around a planing hull are strongly dependent on the wet surface of the hull,
which in turn depends on the position in the water. It is therefore crucial to predict
how a planing hull behaves in water before adequate resistance estimations can be
made. [6] Also, in the higher speed range, nonlinear effects such as breaking waves
and water sprays become more important. However, as the computer power steadily
increases and better models are developed, the results from numerical simulations
of planing hulls are continuously improved. [7] The results from recent studies [8,
9] have shown that CFD simulations of planing hulls can yield results that deviate
from experimental data by less than 10%.
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1.2 Purpose and objectives
The purpose of this study is to evaluate how accurate CFD is using commercially
available software, and if these can fully or partly replace towing tank tests in planing
hull design. This is done by calculating the resistance, sinkage and trim angle of
a high speed planing hull, whereupon the results are compared with experimental
data. In this study, the simulations have been performed using two of the most
common general purpose CFD software, ANSYS FLUENT, developed by ANSYS,
Inc., and STAR-CCM+, developed by CD-adapco.

1.3 Demarcations
The focus of this study is on the stationary behaviour of planing hulls moving in
calm water at a constant speed. The vessel is limited to heave and pitch motions.
An economical evaluation of the method is not included.

1.4 Research questions
The following questions are addressed in this report.

• How accurately can the resistance and running attitude of a planing hull be
predicted using CFD simulations?

• Do the CFD simulations yield any additional information that is not obtained
from model testing?

• Are there any differences in the results obtained from FLUENT and
STAR-CCM+?

1.5 Method
A flow chart outlining the methodology of the CFD simulations is presented in
Figure 1.1. The strategies differ in FLUENT and STAR-CCM+, and are based
on guidelines for hull simulations provided by each software developer. The work
starts with defining the computational domain required to perform the analysis, and
then the computational meshes are generated. When appropriate models have been
chosen in the model definitions step and the boundary conditions have been set, the
solution can be initiated. The computational domain is the same for FLUENT and
STAR-CCM+, while the mesh generation, model definitions, boundary conditions
and solution steps are done separately. When the results are obtained, they are
analysed in the post processing step. These steps are made in an iterative process
where the results are evaluated and further simulations are performed.
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Start

Computational
domain definition

Mesh generation

Model definitions

Boundary conditions

Solution

Post processing

End

FLUENT STAR-CCM+

Figure 1.1: Work flow of the CFD simulations.

1.6 Report structure
The report is organized in the following way. In Chapter 2, the theory behind
planing hulls and the different types of resistance forces that are acting on the hull
are explained. In the same chapter the mathematical models governing the fluids,
the fluid interface and the vessel motion are presented. The numerical methods used
for treating these equations are described in Chapter 3. Chapter 4 describes how the
CFD simulations were performed and in Chapter 5, the results are presented and
discussed. Finally, the conclusions are presented in Chapter 6 and recommendations
for future work are given in Chapter 7.

4



2
Theory

This chapter aims to provide the theoretical basis for understanding the remainder
of the report. It starts with a section introducing the basics of naval architecture
related to planing hulls, and continues with describing the mathematical models
used in the simulation of a hull in motion.

2.1 Planing hull theory
In Figure 2.1, some of the characteristic parts of a planing hull are highlighted. The
bow and stern are the front and back of the vessel and the transom is the vertical
surface located at the stern. The spray rails and lifting rails are used to guide the
water flow along the hull in order to obtain the desired behaviour of the vessel when
moving through the water.

Lifting rail

Spray rail

Transom

Bow
Stern

Figure 2.1: Characteristic parts of a hull.

In naval architecture, the properties of a hull can be characterized by certain mea-
surements shown in Figure 2.2. The measurements used are the overall length, LOA,
length between perpendiculars, LPP , and the draughts at the forward and aft per-
pendiculars, TFP and TAP . The aft perpendicular (AP) is a point on the vertical
transom, and the forward perpendicular (FP) is the point where the waterline in-
tersects the keel in the front.

When the vessel is in motion, its position can be related to that of zero speed by
measuring the change in vertical position of these perpendiculars. This change is
known as the sinkage, s, which is defined as positive if the elevation of the perpen-
dicular has increased. The trim angle, θ, is the angle of rotation around the y-axis
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2. Theory

in comparison to the position at zero speed, and a positive trim angle means that
the bow has moved up in relation to the aft. Moreover, LW and AW denote the
wetted length and the wetted area of the hull. The volume of the water displaced
by the hull is denoted ∇.

Waterline

LP P

LOA

Base lineTF PTAP

x

z

⊗
y

Figure 2.2: Characteristic hull measurements.

2.1.1 Vessel resistance
The resistance of a vessel moving through calm, unrestricted water can be decom-
posed into components. One common way is to divide the resistance into a pressure
resistance and a friction resistance. Another frequently used decomposition is to use
viscous resistance and wave resistance. [10, pp. 13–16]

Viscous resistance arises due to shear forces when the vessel moves through the
surrounding water and air. The contribution to the viscous resistance from the air
is strongly dependent on the aerodynamic properties of the vessel, but it normally
constitutes a minor part of the total resistance. Wave resistance is due to generation
of water waves and water spray. A more intense wave generation and spray means
that more energy is transferred from the hull to the water and thereby the resistance
increases.

The total resistance coefficient is a dimensionless quantity defined as

CT = Rtot
1
2ρU

2
hullAW0

, (2.1)

where Rtot is the total resistance, ρ is the density of the water, Uhull is the hull speed
and AW0 is the wetted area at rest. This coefficient is used to characterize the total
resistance and to compare the performance of different hulls.

2.1.2 Hull induced waves
A small object moving through calm water will induce a wake pattern, known as
the Kelvin wake pattern, which is illustrated in Figure 2.3. The intensity of the
waves reflects the amount of energy that is continuously transferred from the object
to the water. It can be shown that the angle between the object’s trajectory and
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the wave fronts, the Kelvin angle, is around 19.47◦ regardless of the speed of the
object. The wake pattern behind a vessel can be approximated with the Kelvin wake
pattern, even though a hull has many wave-generating features causing overlapping
and interfering wave systems. [10, pp. 24–30]

Moving object

19.47◦

Wave crest
Wave trough

Figure 2.3: Kelvin wake pattern behind a moving object. [10, pp. 24–30]

2.1.3 Planing hull characteristics
At zero speed, the weight of a vessel is supported only by hydrostatic forces acting
on the hull. If the speed increases, hydrodynamic forces will arise due to water that
is accelerated away from the hull causing a reactionary force. When a hull is said
to be planing, the hydrodynamic forces play a major role in supporting the weight
of the vessel while the hydrostatic forces are of little importance. This requires that
the vessel reaches a certain speed where the amount of water that is accelerated
downwards by the hull is large enough. [11, pp. 342–389]

A common measure used to characterize the resistance and wave pattern around
a hull is the dimensionless Froude number, which relates inertial forces to external
forces. It is defined as

Fn = Uhull√
Lg
, (2.2)

where L is a characteristic hull length and g is the gravitational acceleration. In this
report, all Froude numbers are based on the length between perpendiculars at zero
speed. A common value of the Froude number which marks the transition region
from non-planing to planing conditions is Fn = 1.0 [11, p. 342], but other values
are used in the literature since the phenomenon has no strict definition.

Planing hulls are designed to enhance the hydrodynamic forces acting in the ver-
tical direction in order to reach planing. Theoretically, a flat underside provides
a larger hydrodynamic lift compared to a so called v-shaped underside. However,
planing hulls usually have v-shaped undersides with purpose to reduce the slamming
in rough seas. To prevent the flow along the hull from bending outwards due to the
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v-shape, lifting rails are used to guide the flow backwards and thereby increase the
hydrodynamic pressure under the hull. Spray rails can be used on the hull sides
to increase the lift force by bending the water spray downwards. [10, pp. 175–181]
Furthermore, it is important that the water separates from the hull at the transom
in order to avoid sub-atmospheric pressures that could lead to instabilities. [12] This
can be achieved by using a sharp edge at the transom where the water is supposed
to detach from the hull.

The same hull as in Figure 2.1 and 2.2 is shown in a front view in Figure 2.4. It
can be seen that it has a v-shaped underside and is equipped with lifting rails and
spray rails which are characteristic features of a planing hull.

y

z

�
x

Figure 2.4: A planing hull in front view.

2.1.4 Towing tank tests
When designing a vessel, the properties of the hull are traditionally tested at an
early stage by constructing a smaller model which can be used in experiments.
These experiments can be performed in open water, but to reduce the sources of
errors, they are often carried out in large tanks known as towing tanks. In a towing
tank, the hull is towed through the water while measurements are conducted.

2.1.4.1 Model test scaling

When towing tank tests have been carried out on a model, the results must be scaled
properly in order to apply to a hull in full scale. To achieve adequate scaling results,
the model and the full scale hull must be geometrically similar and the relevant
dimensionless numbers should be preserved. For a planing hull, the dimensionless
numbers characterising the physics of the flow are the Froude number, the Reynolds
number and the Weber number. The Froude number, as defined in equation (2.2),
describes the effect of gravity on the water surface. The Reynolds number relates
inertial forces to viscous forces, and is defined as

Rn = UhullL

ν
, (2.3)
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where ν is the kinematic viscosity. The Weber number relates inertial forces to
forces due to surface tension, and is defined as

Wn = ρU2
hullL

σ
, (2.4)

where σ is the surface tension.

A dilemma related to scaling is the inability to satisfy the conservation of these
three dimensionless numbers simultaneously. As can be seen from the definitions
of the three dimensionless numbers, a model scale hull with shorter length must
have a lower speed to preserve the Froude number but a higher speed to preserve
the Reynolds and Weber numbers. The established solution to this problem is to
use the same Froude number in the model tests and to account for the different
Reynolds numbers in the scaling process. The difference in Weber numbers between
model scale and full scale causes errors in the predictions of water spray, foaming
and wave pattern, but it has been concluded that this has little influence on the
resistance prediction of the full scale hull. [10, pp. 10–13]

2.2 Turbulence
When a hull is moving through water at high speed, the flow around the hull is
turbulent. In this section, the governing equations of turbulent flows are presented
and turbulence modelling is explained.

2.2.1 Turbulent flow
Turbulence has no physical definition, but it is characterized as a three-dimensional,
irregular flow where turbulent kinetic energy is dissipated from the largest to the
smallest turbulent scales. On the smallest turbulent scales, known as the Kol-
mogorov scales, the energy is dissipated into heat due to viscous forces. Since
turbulence is a dissipative phenomenon, energy must be continuously supplied in
order to maintain a turbulent flow.

The motion of a viscous fluid is governed by the Navier-Stokes equations, which
are valid both for turbulent and laminar flow. For an incompressible, Newtonian
fluid in three dimensions under the influence of an external gravitational field, the
Navier-Stokes equations read

∂Ui
∂xi

= 0,

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

+ gi.

(2.5)

Here, the equations are formulated using tensor notation. The indices i and j in
the Navier-Stokes equations run over the spatial coordinates x, y and z. In these
equations, Ui is the velocity in dimension i, xi is the spatial coordinate in dimension
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i, t is time, ρ is the density, P is the pressure, ν is the kinematic viscosity and gi is
the gravitational acceleration.

Analytical solutions to the Navier-Stokes equations only exist for a limited num-
ber of simple cases such as laminar flow between flat plates. For turbulent flows
in engineering applications, analytical solutions do not exist and the Navier-Stokes
equations must be treated numerically. If they are solved using direct numerical
simulation (DNS), the velocity field of the flow is obtained. However, since tur-
bulence occurs on a wide range of time and length scales, DNS requires very high
temporal and spatial resolutions to capture all the details of the flow. Thus, DNS
is very computationally expensive and time consuming which limits the method to
special applications such as academic research or simulation of simple flows.

2.2.2 Turbulence modelling
The most common way of treating turbulence is to use turbulence models in which
the turbulent features of the flow are not resolved in time. By performing Reynolds
decomposition, the instantaneous velocity and pressure can be decomposed as

Ui = Ui + ui,
P = P + p,

(2.6)

where Ui and P denote the time averaged quantities while ui and p are the fluc-
tuating components of the velocities and the pressure. By inserting the Reynolds
decomposition into the Navier-Stokes equations given in equation 2.5, the Reynolds
averaged Navier-Stokes (RANS) equations are obtained. These are written as

∂Ui
∂xi

= 0,

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

− ∂uiuj
∂xj

+ gi.

(2.7)

It can be noted that the RANS equations are very similar to the Navier-Stokes
equations except for the additional term including uiuj, referred to as the Reynolds
stress tensor. If the Reynolds stress term is modelled, the RANS equations describe
the time-averaged flow quantities which requires substantially less computational
resources in comparison to DNS.

A common approach for modelling the Reynolds stress tensor of the RANS equa-
tions is to use the Boussinesq approximation. In this assumption, the Reynolds
stress tensor is modelled as a diffusion term by introducing a turbulent viscosity, νt,
according to

− uiuj = νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
− 2

3kδij. (2.8)

In this equation, δij is the Kronecker delta which assumes a value of 1 if i = j and
0 otherwise, and k is the turbulent kinetic energy defined as

k = 1
2uiui. (2.9)
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By using a model to describe how the turbulent viscosity depends on the flow, the
RANS equations can be solved. The so called two-equation turbulence models, such
as the k-ε model and the k-ω model, use two additional transport equations to
describe the turbulent viscosity. They are referred to as complete models since they
allow the turbulent velocity and length scales to be described independently. [13]

2.2.2.1 The standard k-ε model

In the standard k-ε model, the transport equations for the turbulent kinetic en-
ergy and its dissipation, ε, are used to obtain the turbulent viscosity. It has been
described by Launder et al. [14], and the model equations are

∂k

∂t
+ ∂

∂xi

(
kUi

)
= ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
+ Pk − ε,

∂ε

∂t
+ ∂

∂xi

(
εUi

)
= ∂

∂xj

[(
ν + νt

σε

)
∂ε

∂xj

]
+ ε

k
(Cε1Pk − Cε2ε) ,

νt = Cµ
k2

ε
,

(2.10)

where σk, σε, Cε1, Cε2 and Cµ are model constants and Pk is the production of
turbulent kinetic energy. The latter is defined as

Pk = −uiuj
∂Ui
∂xj

(2.11)

and is modelled using the Boussinesq approximation.

The standard k-ε model is robust and gives good predictions for free flows with small
pressure gradients. It is based on the assumption that the flow is fully turbulent
which limits its applicability to high Reynolds number flows. [15] Over time, it has
been observed that the standard k-ε model cannot be used to describe the wake
behind a moving hull in a satisfactory manner. [10, p. 135]

2.2.2.2 The k-ω model

In the k-ω model described by Wilcox [15], the transport equations for the turbulent
kinetic energy and its specific dissipation, ω, are used in a similar way as for the
standard k-ε model. The specific dissipation is related to the dissipation according
to

ω ∝ ε

k
. (2.12)

The model equations for k and ω are
∂k

∂t
+ ∂

∂xi

(
kUi

)
= ∂

∂xj

[(
ν + νt

σωk

)
∂k

∂xj

]
+ Pk − β∗kω,

∂ω

∂t
+ ∂

∂xi

(
ωUi

)
= ∂

∂xj

[(
ν + νt

σω

)
∂ω

∂xj

]
+ ω

k
(Cω1Pk − Cω2kω) ,

νt = k

ω
,

(2.13)
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where β∗, σωk , σω, Cω1 and Cω2 are model constants.

The k-ω model has the advantage that it is also valid close to walls and in regions
of low turbulence. [16, pp. 121–122] Thus, it is valid also in the low turbulent
Reynolds number region close to walls, meaning that the transport equations can
be used in the whole flow domain. A drawback with the k-ω model is that the
results are sensitive to the choice of boundary conditions and initial conditions.

2.2.2.3 The SST k-ω model

In order to make use of the collective advantages of the k-ε and k-ω models, Menter
[17] developed the shear stress transport (SST) model by combining the two models
into one using blending functions. In this hybrid model, the k-ω model is used in the
boundary layer while the k-ε model, formulated on k-ω form, is used in the free flow.

The SST k-ω model has shown good performance for many types of complex flows,
such as in flows with adverse pressure gradients and separating flows, where the
k-ε or the k-ω models have given results that differ significantly from experimental
data. It has been recognized for its good overall performance [18] and it is the most
commonly used turbulence model for simulations of ship hydrodynamics. [19, p. 7]

2.2.3 Boundary layers
When a fluid flows along a surface, shear stresses give rise to a boundary layer in
the vicinity of the surface. The structure of a boundary layer near the edge of a
flat plate is illustrated in Figure 2.5, where the incident flow has a uniform velocity
profile with velocity U0. When the flow reaches the plate, a laminar boundary layer
starts to grow at the surface. After some distance, the boundary layer goes into
a transition region after which a turbulent boundary layer is developed. The flow
in the inner part of the turbulent boundary layer is laminar, and the turbulence
increases further away from the wall. [20, pp. 464–475]

U0 U(y)

Laminar
boundary layer

Transition
region

Turbulent
boundary layer

Viscous sub-layer
Buffer sub-layer

Fully turbulent
sub-layer

y

Figure 2.5: Schematic illustration of a boundary layer at a flat plate. [20, pp.
464–475]
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To characterize the flow near a wall, a dimensionless wall distance is often intro-
duced. It is defined as

y+ = u∗y

ν
, (2.14)

where y is the distance to the wall and u∗ is a friction velocity. The friction velocity
is defined as

u∗ =
√
τw
ρ
, (2.15)

where τw is the wall shear stress,

τw = ρν
∂U

∂y

∣∣∣∣∣
y=0

. (2.16)

In the boundary layer, the gradients of the flow variables in the wall-normal direc-
tion are generally very large in comparison to those of the free flow. This implies
that a high spatial resolution is required by the solution method in order to capture
the effects near the wall. A common alternative method used to circumvent the
requirement of a high spatial resolution is to use wall functions, which are empirical
models used to estimate the flow variables near walls. Wall functions can also be
applied when the turbulence model used in a simulation is not valid close to the
wall, which for example is the case for the standard k-ε model. [16, pp. 128–140]
Although wall functions are undesired in computational ship hydrodynamics due to
deviations for some types of flow, they are often used for numerical reasons. [10, pp.
152–154]

Standard wall functions are based on the assumption that the boundary layer can be
described as a flat plate boundary layer. This means that the time-averaged velocity
can be expressed as a function of the dimensionless wall distance. In the viscous
sub-layer, it can be shown that the velocity parallel to the wall is proportional to
y+. In the fully turbulent sub-layer, the velocity follows the logarithmic law of
the wall, meaning that the velocity is proportional to the natural logarithm of y+.
Between these sub-layers, in the buffer sub-layer, there is a transition from linear to
logarithmic y+ dependence. In order for a wall function to work properly, it should
be used all the way to the fully turbulent layer which corresponds to a value of y+

above 30. The wall functions also estimate the turbulence quantities near the walls.
[16, pp. 128–140]

2.3 Free water surface
In order to simulate a hull moving in water, models are needed to resolve the interface
between the water and air. There are different two-phase models available that either
tracks the surface directly or tracks the different phases and then reconstructs the
interface. One example is the level-set method, where all molecules of one phase
are marked and then tracked in the fluid flow. The most frequently used method to
capture the free surface in ship hydrodynamics is the volume of fluid (VOF) method
[5, pp. 5–9]. In the VOF method, the different phases are tracked. [10, pp. 151–152]
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2.3.1 The volume of fluid method
In the VOF method, each phase is marked with a colour function, γ, which is the
volume fraction of one of the phases. If only one phase is present, meaning that γ is
either 0 or 1, the ordinary Navier-Stokes equations, see equation (2.5), are solved. If
0 < γ < 1, there is an interface present and the properties of the phases are averaged
in order to get a single set of equations. The average density and viscosity are

ρ = γρ1 + (1− γ)ρ2,
ν = γν1 + (1− γ)ν2.

(2.17)

Then, a modified set of the Navier-Stokes equations can be used for the averaged
fluid properties,

∂Ui
∂xi

= 0,

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

+ gi + Si,s.

(2.18)

This formulation of the Navier-Stokes equations contains an additional source term,
Si,s, accounting for the momentum exchange across the interface due to surface
tension forces. This surface tension force has to be modelled correctly which can be
a problem. The surface is captured by solving a transport equation for the colour
function,

∂γ

∂t
+ Ui

∂γ

∂xi
= 0. (2.19)

As mentioned in Section 2.1.1, the free surface waves affect the forces on the hull.
Therefore, it is important to get an accurate and stable solution of equation (2.19).

The VOF method is conceptually simple and relatively accurate but the solution
techniques may be diffusive. It is not as robust and accurate as the level-set method,
but it is less computationally demanding. [21]

2.4 Fluid-structure interaction
In order to simulate the dynamic behaviour of a hull before reaching the equilibrium
position, the fluid-structure interaction (FSI), between the hull and the fluids has to
be taken into account. This is done by solving the equations of motion and rotation
of the vessel under the influence of the forces and moments from the surrounding
fluids and gravity. The number of directions the body is allowed to translate and
rotate in is called the number of degrees of freedom (DOF).

2.4.1 Rigid body motion
A vessel can be approximated as a rigid body which can move in three dimensions
and rotate around three axes, see Figure 2.6. The translations of a vessel along the
x, y and z axes are often referred to as surge, sway and heave motions, respectively,
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while the rotations around the same axes are termed roll, pitch and yaw motions.
Accordingly, the sinkage is affected by heave motion while the trim angle is related
to pitch motion.

x

θx

yθy

z

θz

Figure 2.6: Coordinate system showing the 6 degrees of freedom of a rigid body.
These consist of translation along and rotation around three axes in the x, y and z
directions.

For a rigid body, the translational motion of the centre of gravity is described by
Newton’s second law,

m
d ~Ub
dt

= ~F , (2.20)

where m is the mass, ~Ub is the velocity and ~F is the sum of forces acting on the
body. The rotation of the body, expressed in body coordinates, is described by
Euler’s equations,

Md~Ω
dt

+ ~Ω× (M · ~Ω) = ~τ , (2.21)

where ~Ω is the angular velocity of the body and ~τ is the resultant torque acting on
the body. Furthermore,M is a tensor of the moments of inertia and it is expanded
into

M =

Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

 . (2.22)

2.4.2 Dynamic hull simulations
Under most circumstances, a hull moving with constant speed will reach a steady
position and orientation with respect to the free surface. [10, pp. 152–154] When
such an equilibrium position is expected in a simulation, a 6 DOF solver can be
implemented in the solution process as shown in Figure 2.7. When the motions and
rotations have ended and the final position is reached, the net forces and moments
acting on the hull are zero.
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Initial position

Solve equa-
tions of flow

Solve equations of
motion (6 DOF)

Rigid body
motion converged?

Final position

No

Yes

Figure 2.7: Iterative procedure of a hull simulation used to describe the fluid-
structure interaction.

2.5 Non-dimensional coefficients
For a more relevant comparison of the pressure and shear stress on a surface, these
quantities can be scaled by the dynamic pressure of the free flow to obtain dimen-
sionless numbers. The pressure coefficient is defined as

CP = P − P∞
1
2ρU

2
hull

, (2.23)

where P∞ is the undisturbed free stream pressure. Similarly, the skin friction coef-
ficient is defined as

Cf = τw
1
2ρU

2
hull

, (2.24)

where τw is the wall shear stress.
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Numerical methods

In this chapter, the numerical methods used for treating the mathematical models
introduced in Chapter 2 are described. In some cases, FLUENT and STAR-CCM+
use different formulations and in these cases both methods are presented.

3.1 The finite volume method
The finite volume method (FVM), is a numerical method of discretizing a continu-
ous partial differential equation (PDE), into a set of algebraic equations. The first
step of the discretization is to divide the computational domain into a finite number
of volumes, forming what is called a mesh or a grid. Next, the PDE is integrated in
each volume by using the divergence theorem, yielding an algebraic equation for each
cell. In the centres of the cells, cell-averaged values of the flow variables are stored
in so called nodes. This implies that the spatial resolution of the solution is limited
by the cell size since the flow variables do not vary inside a cell. [22, pp. 115–118]
The FVM is conservative, meaning that the flux leaving a cell through one of its
boundaries is equal to the flux entering the adjacent cell through the same boundary.
This property makes it advantageous for problems in fluid dynamics. [16, pp. 32–33]

A stationary transport equation involving diffusion and convection of a general flow
variable, φ, can be written as

ρUi
∂φ

∂xi
= ∂

∂xi

(
Γ ∂φ
∂xi

)
+ S(φ), (3.1)

where Γ is the diffusivity and S is a source term which may depend on φ. It can
be noted that the equations in Chapter 2 governing the transport of Ui, k, ε, ω and
γ are all written on this form. By using the FVM, this equation can be written on
discrete form as

aPφP =
∑
nb

anbφnb + SU , (3.2)

where
aP =

∑
nb

anb − SP . (3.3)

In these equations, where the summations run over all the nearest neighbours of
each cell, φP is the value of the flow variable in the present cell and φnb are the
values of the flow variable in the neighbouring cells. SU and SP are the constant
and flow variable depending parts of the source term, respectively. Furthermore, aP
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is the discretization coefficient associated to the present cell, anb are discretization
coefficients describing the interaction with its neighbouring cells. The discretization
coefficients depend on the discretization schemes used to approximate the values
of the flow variables on the cell boundaries, also known as cell faces. By using
appropriate discretization schemes to determine the coefficients of equation (3.2), a
set of algebraic equations for the cell values is obtained. [22, pp. 115–118]

3.2 Spatial discretization schemes
The convection and diffusion terms in equation (3.1) are discretized using different
numerical schemes that estimate the face values of the flow variables. Most often,
diffusion terms are discretized by using a central differencing scheme where the face
values are calculated by interpolation between the closest cells. In order to dis-
cretize the convection terms, the flow direction has to be taken into account. The
simplest way is to let the face value between two cells be equal to the value of the
first upstream cell which is done in the first order upwind scheme. In the second
order upwind scheme, the face value is calculated from the two closest upwind cells.
[22, pp. 134–178]

It is usually recommended to start a numerical solution process with lower order
schemes, such as the first order upwind scheme, since they are very stable. However,
the low accuracy of these schemes can lead to a high degree of unphysical diffusion
in the solution [23], known as numerical diffusion. When the flow field has started
to settle, higher order schemes should therefore be used to obtain a more physically
correct result. The second order upwind scheme is often considered as a suitable
discretization scheme since it exhibits a good balance between numerical accuracy
and stability. [24]

3.2.1 VOF discretization schemes
The main problem related to the VOF method is to discretize the convection term
in the transport equation for the colour function in order to get a sharp interface.
The scheme has to be accurate and at the same time bounded because the colour
function, γ, has to be between 0 and 1. Lower order numerical schemes are bounded
but will smear out the interface due to numerical diffusion while higher order schemes
are more accurate but less stable. A combination of higher and lower order schemes
is often used like in HRIC and the Compressive schemes used in STAR-CCM+ and
FLUENT respectively.

3.2.1.1 HRIC scheme

The high resolution interface capturing scheme (HRIC), described by Muzaferija et
al. [25], uses a combination of upwind and downwind interpolation. The blending
of the schemes in each cell is a function of the volume fraction distribution over
the neighbouring cells. The value of the flow variable is then corrected by the local
value of the Courant number which is a measure of how much of one fluid that is
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available in the donor cell. This is done in order to prevent that no more fluid flows
out of a cell in one time step than what was available in the previous time step. In
order to prevent that the interface becomes aligned with the numerical grid, another
correction is introduced to account for the relative position of the free surface to the
cell face. This is done by calculating the angle between the normal to the interface
and the cell face normal.

3.2.1.2 Compressive scheme

The Compressive scheme is a discretization scheme where the numerical order of
accuracy can be varied by using a so called slope limiter in the range between 0 and
2. For low values of the slope limiter, first and second order schemes are used. For
values above 1, higher order schemes are incorporated. [26, pp. 467–468]

3.3 Temporal discretization schemes
For transient problems, the transport equation must also be discretized in time.
This is done by integrating the PDE over a time step ∆t in addition to the spatial
discretization. In order to solve this integrated equation, the cell values of the flow
variables must be evaluated at a certain time.

Implicit time integration means that the flow variables are evaluated at the future
time, t + ∆t. Since these are not known in the current time step, implicit time
integration requires iteration. In comparison to explicit time integration, where the
flow variables are evaluated at the current time so that iteration is avoided, implicit
time integration is more computationally expensive. On the other hand, implicit
time integration is unconditionally stable, meaning that it is stable for all time step
sizes. [22, pp. 243–248]

3.4 Pressure-velocity coupling
The Navier-Stokes equations, as written in equation (2.5), contain one continuity
equation and three momentum equations, if a three dimensional system is consid-
ered. There are four unknown variables in these equations, the pressure and the three
velocity components. The problem is that there is no equation for the pressure, so
the continuity equation must be used as an indirect equation for the pressure. This
is achieved by using a pressure-velocity coupling, which can be either segregated or
coupled. The properties of these two groups of algorithms will be described briefly,
a more thorough explanation has been given by Versteeg and Malalasekera [22, pp.
179–211].

The semi-implicit method for pressure linked equations (SIMPLE) is a segregated
algorithm that solves each equation separately. First, a pressure is assumed and the
velocities are calculated from the momentum equations. If the continuity equation
is not satisfied by these velocities, the pressure is modified and the velocities are
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calculated again.

With a coupled algorithm, the Navier-Stokes equations are solved together. Coupled
algorithms are suitable when the computational mesh has a poor quality, and they
allow larger time steps than segregated algorithms.

3.5 Dynamic meshing

To be able to handle motion, the mesh structure has to change dynamically with the
moving object. There are different methods for the dynamic movement of the mesh
and it is done differently in FLUENT and STAR-CCM+. The two that are most
suitable for hull simulations are the diffusion-based smoothing method in FLUENT
and the overset mesh with mesh rotation and translation in STAR-CCM+.

In Figure 3.1, the diffusion-based smoothing method and the overset method are
illustrated around a tilted square in a two-dimensional domain. The concepts of the
two methods are described in the following two sections.

(a) Diffusion-based smoothing. (b) Overset method.

Figure 3.1: Schematic illustrations of dynamic meshes around a tilted square.

3.5.1 Diffusion-based smoothing
In FLUENT, dynamic meshing can be incorporated using smoothing methdos where
the cells are moved with a deforming boundary while the number of cells and their
connectivity remain unchanged. Smoothing is suitable for relatively small boundary
deformations, while larger deformations may require generation of new cells in order
to maintain a high quality mesh.

One smoothing method is the diffusion-based smoothing, where the motion of the
cells is modelled as a diffusive process. The diffusion equation for the mesh motion
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is
∂

∂xj

(
Γm

∂Ui
∂xj

)
= 0, (3.4)

where Γm is a mesh diffusivity and ~U is the velocity field of the mesh. The mesh
diffusivity is calculated from

Γm = 1
dα
, (3.5)

where d is a normalized boundary distance and α is a diffusion parameter ranging
from 0 to 2. With a low diffusion parameter, the boundary motion diffuses uniformly
throughout the mesh, while a high value means that most of the mesh motion takes
place far away from the moving boundaries. [27, pp. 608–613]

3.5.2 Overset method
The overset method in STAR-CCM+ uses two overlapping meshes, one for the mov-
ing part and one for the stationary background. The moving part, referred to as the
overset mesh, uses the mesh rotation and translation method where the fluid mesh
is replaced with a rigid body mesh. All cells maintain their shape and the mesh
motion is described by a displacement vector and rotation angles. In the case when
having a solid that interacts with the fluid, the position of the mesh is determined
by solving the equations of the motion and rotation of the body.

The background mesh is stationary and exchanges information with the moving
mesh in the following way. First, the cells around the interface of the overset mesh
are identified and labelled as donor cells. Then the cells in the background closest
to the donor cells are identified and set as acceptor cells. These cells have to form
a continuous layer of cells around the overset mesh. The background cells that are
completely covered by the overset region are inactivated. The donor and acceptor
cells transfer information between the meshes. Each acceptor cell has one or more
donor cells. Choosing the donor cells can be done differently, the method used in
this study is linear interpolation. The advantage with the overset method is that
only a certain part of the mesh is moving without requirement for altering the
grid topology. A drawback is that the interpolation between the meshes can cause
numerical errors. [28, pp. 2662–2704]

3.6 Convergence criteria
To be able to decide if a solution has reached a desirable level of convergence it is
useful to monitor the residuals of the flow variables in each iteration. A residual is
a measure of the imbalance between the left and right hand sides of a discretized
transport equation. An unscaled residual, Rφ, of a solution can thereby be obtained
by calculating the sum of the residuals in all cells according to

Rφ =
N∑
i=1

∣∣∣∣∣∑
nb

anbφnb + SU − aPφP
∣∣∣∣∣ , (3.6)
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where N is the total number of cells.

The value of this residual can vary between different variables. In order to compare
the residuals and judge the convergence, they must be related to something. This
can be done by scaling them with an appropriate factor to make the residuals into
dimensionless numbers. This scaling is done differently in FLUENT and STAR-
CCM+. [16]

In FLUENT [27, pp. 1540–1541], the residuals are scaled by a characteristic flow
rate of the variable φ in the domain. This yields a globally scaled residual, defined
as

Rφ,s = Rφ

N∑
i=1
|aPφP |

. (3.7)

In STAR-CCM+ [28, pp. 7178–7179], the root mean square residual is calculated,

Rrms =

√√√√ 1
N

N∑
i=1

R2
φ, (3.8)

where the square root of the squared residuals in all cells are summed up and divided
by the number of cells. To be able to compare the residuals, Rrms is scaled with a
normalization value to get the present value,

Rpres = Rrms

Rnorm

. (3.9)

The normalization value, Rnorm, is often taken as the maximum of Rrms of the first
m iterations. By default, m is equal to five. As seen in the equations above the
initial guess affects how much the residuals can decrease.

Besides looking at the residuals, the mass, momentum and energy imbalance in
each cell can be checked. It is also important to monitor the solution of important
variables to see if they reach a steady value. In hull simulations, the resistance,
sinkage and trim angle are monitored until they oscillate with low amplitude around
a steady value.

3.7 Grid dependence
When a continuous equation is discretized using a finite number of computational
cells and the set of equations are solved iteratively, numerical errors may arise. In
order to draw any reliable conclusions from the results of a CFD computation, this
numerical error has to be estimated.

The numerical uncertainty is defined as

EN =
√
E2
I + E2

D, (3.10)
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where EI is the iterative uncertainty and ED is the discretization uncertainty. If the
equations have converged below a properly chosen tolerance, it may be assumed that
the iterative uncertainty is negligible. This means that the discretization uncertainty
remains to be estimated, which can be done with a grid dependence study.

3.7.1 The grid convergence index procedure
A common method used for grid dependence studies is described in detail by Eça
and Hoekstra [29], who used the grid convergence index (GCI) method. In the GCI
method, a set of systematically varied grids is used to estimate how the numerical
error depends on the grid resolution. The first step is to use generalized Richardson
extrapolation in order to estimate the discretization error according to

δRE = Si − S0 = qhri + ... ≈ qhri , (3.11)

where higher order terms are neglected and their effects are assumed to be incorpo-
rated in the leading term. In equation (3.11), Si is the solution on grid i, S0 is the
extrapolated solution for an infinite grid density, q is a constant, hi is a characteristic
cell length of grid i and r is the observed order of accuracy of the numerical method
used in the calculations.

The values of S0, q and r can be determined using the least squares method for
three or more solutions. The least squares method is used to minimise the square
root of the squares of the residuals of equation (3.11), in other words the method is
used to find values of S0, q and r which minimise the function

f(S0, q, r) =
√∑

i

(Si − (S0 + qhri ))
2. (3.12)

The next step in the GCI method is to describe the discretization uncertainty based
on the results from the Richardson extrapolation. The discretization uncertainty is
expressed as

ED = FS |δRE| , (3.13)
where FS is a factor of safety. Depending on the nature of the convergence of the
solutions, different expressions for the discretization uncertainty and thereby the
numerical uncertainty are used. The numerical uncertainty is then normalized with
the asymptotic value, S0, which makes it easy to compare different properties.

A minimum of three different meshes are required in order to estimate the parameters
of equation (3.12). It is recommended [30, p. 4] that the step size hi of the grids is
varied with a factor of

√
2 to get an appropriate variation. The refinement ratio in

relation to the finest grid can be expressed as

rr = hi
h1
, (3.14)

where h1 is the step size of the finest mesh. For an unstructured mesh [31], the
refinement ratio can instead be obtained from the cube root of the fraction of the
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cell counts,

rr = 3

√
N1

Ni

, (3.15)

where N1 and Ni are the total number of cells in grid 1 and grid i, respectively.
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4
CFD simulations

In this chapter, the methodology used in the CFD analysis is described. The pro-
cedure follows the steps in Figure 1.1, including computational domain definition,
mesh generation, model definitions and properties, boundary conditions, solution
and post-processing. At the end, a section presenting the simulated operating con-
ditions is included.

4.1 Computational domain definition

A large domain was created in order to avoid effects from the domain boundaries to
affect the flow near the hull. The Kelvin wake pattern, presented in Section 2.1.2,
was used to estimate the required width of the domain to avoid wave reflections
from the boundaries. Since only the dynamic sinkage and trim angle were studied,
a symmetry plane was defined along the longitudinal axis of the hull and only half
the hull was included in the domain. In Figure 4.1, the computational domain is
illustrated and its dimensions are expressed in terms of the overall hull length, LOA.
These dimensions agree well with the minimum recommendations of ITTC [24].

5
2LOA

1LOA
2LOA4LOA

2LOA

Figure 4.1: Dimensions of the computational domain.

The geometry of the hull was provided as a computer-aided design (CAD) model.
After the hull geometry had been imported to the software, it was rotated and
translated in order to obtain suitable initial values of the sinkage and trim angle.
This reduced the simulation time substantially since an initial position far from the
equilibrium position would require a long simulation time before the hull reaches
equilibrium. By subtracting the hull geometry from the rest of the domain, the do-
main of the fluid flow was established. The origin was positioned at the undisturbed
free surface level and horizontally aligned with the centre of gravity of the hull
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4.2 Mesh generation

To capture the important flow phenomena in the simulations, the mesh density was
focused on certain regions of the domain. First, a fine mesh was used on the hull sur-
face and prism layers were created along the hull to resolve the boundary layer and
to obtain correct shear stresses on the hull. The prism layers were constructed with
a total thickness corresponding to the estimated boundary layer thickness, and the
height of the first cell layer was set to get a proper value of y+. Secondly, to resolve
the free surface accurately, a high mesh density was used in the region around the
free surface where the hull induced wakes were expected to be present. To prevent
smearing of the free surface in front of the hull, a uniform cell height was used at
the free surface. Outside these regions, the mesh was coarser.

The mesh used in FLUENT was created using ANSYS Meshing. It was divided
into two regions; one inner region of unstructured tetrahedral cells in a cuboid
around the hull, and one outer region of structured hexahedral cells. This mesh
structure utilizes the flexibility of unstructured cells near the hull, while the number
of cells could be kept low with a structured mesh in the periphery of the domain.
The interface between the structured and the unstructured regions was made non-
conformal, meaning that the cell faces do not match at the interface, to keep the
cell count low. In Figure 4.2, the structure of the FLUENT mesh is illustrated.

(a) Overview. (b) Symmetry plane.

(c) Prism layers. (d) Rail.

Figure 4.2: Schematic illustrations of the FLUENT mesh structure. (a) shows
an overview of the mesh and (b) shows the mesh on the symmetry plane with the
inner region of tetrahedral elements and the outer region of hexahedral elements.
(c) shows the prism layers at the hull on the symmetry plane and (d) shows the
triangular surface mesh at a rail on the hull.
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The mesh constructed in STAR-CCM+ was divided into one stationary background
region and one moving overset region close to the hull. Both parts were meshed with
trimmed, predominantly hexahedral cells with local refinements at the free surface
and the wake. Since the whole overset region sinks and trims, thicker refinement
zones around the free surface at the overlap were needed in order to maintain a
uniform cell height in front of the hull, which is seen in Figure 4.3b. Care had to be
taken so that the cells in the overlapping region were of the same size and that they
formed a continuous layer around the overset region. In Figure 4.3, the structure of
the STAR-CCM+ mesh is illustrated.

(a) Overview.

Overset regionOverlap

(b) Symmetry plane.

(c) Prism layers. (d) Rail.

Figure 4.3: Schematic illustrations of the STAR-CCM+ mesh structure. (a) shows
an overview of the mesh and (b) shows the mesh on the symmetry plane with the
overset region and the background mesh. (c) shows the prism layers at the hull on
the symmetry plane and (d) shows the surface mesh at a rail on the hull.

4.3 Model definitions and properties
This section describes the mathematical models and numerical methods used in the
CFD simulations.

4.3.1 Mathematical models
Based on the theoretical background presented in Chapter 2, appropriate models
were chosen for the simulations. These models were used for describing the two-
phase flow and the interaction between the flow and the hull.
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4.3.1.1 Two-phase flow models

The turbulence was modelled using the RANS equations with the SST k-ω tur-
bulence model. Wall functions were used in order to avoid resolving the whole
boundary layer. In FLUENT, blended wall functions were used, and the all y+ wall
treatment was used in STAR-CCM+. Both these methods use a blend of low and
high y+ wall functions and are suitable for a wide range of y+ values. The first layer
thickness was set to obtain a y+ value around 100.

The free surface was modelled and resolved with the VOF method. The fluid prop-
erties were set to be the same as in the model experiments that were used to validate
the results. Both the air and water were assumed to be incompressible.

4.3.1.2 Hull motion

To enable the 6 DOF solver to solve the equations of motion and rotation, the mass
and the moments of the inertia were specified. The moments of inertia were esti-
mated using a flat plate with the same outer dimensions as the hull. Since only
the heave and pitch motions of the hull were simulated, the 6 DOF solver of the
software was limited to 2 DOF. This was done by only allowing translational motion
along the z-axis and rotational motion around the y-axis. To account for the pulling
mechanism used in a towing tank, an additional force had to be included in the 6
DOF solver as this towing force induces an additional torque around the centre of
mass. It was assumed that the pulling mechanism exerted a horizontal force on the
hull, meaning that the towing force had no components in the y- and z-directions.
When the hull is towed at constant speed, the towing force magnitude is thus equal
to the total resistance of the hull. Therefore, a force with the same magnitude as
the resistance but with opposite direction was applied in the towing point of the
hull in each time step.

In FLUENT, the towing force was incorporated using a user defined function (UDF)
which looped through all cell faces on the hull and summarized the friction and
pressure forces acting in the horizontal direction. When the total force was known,
the resulting torque could be calculated from the trim angle and the distance between
the towing point and the centre of gravity. This torque was applied in the UDF of
the 6 DOF solver. In STAR-CCM+, the horizontal component of the resistance was
reported using a field function that calculates the friction and pressure forces on the
hull surface. This force was then applied in the towing point as an external force.

4.3.2 Numerical methods
After the mathematical models had been chosen, numerical methods were selected
in the software. When choosing spatial discretization schemes, the second order
upwind scheme was chosen for all convection terms except for the volume fraction
equation, where the compressive scheme was used in FLUENT and the HRIC scheme
was used in STAR-CCM+. The diffusion terms were discretized with the central
differencing scheme. Since the steady behaviour of the hull was simulated and tem-
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poral accuracy was not important, the first order implicit scheme was chosen in the
temporal discretization. For the pressure-velocity coupling, the SIMPLE algorithm
was used.

The mesh motion in FLUENT was modelled using diffusion-based smoothing with a
diffusion parameter of 1.5. To stabilize the fluid-structure interaction, the solution
stabilization option was enabled. In STAR-CCM+, the overset mesh method was
used.

4.4 Boundary conditions

The boundaries of the computational domain are illustrated in Figure 4.4. The
symmetry plane as well as the top, side and bottom of the domain were prescribed
with symmetry boundary conditions, and the hull was set to a wall with no-slip.

Air inlet

Water
inlet

Outlet

Top

Bottom

Symmetry plane

Side

Figure 4.4: Boundaries of the computational domain.

At the inlet, located in front of the hull, the velocity of the incident air and water
was set to the hull speed that was simulated. The turbulent flow variables were set
by specifying values of the turbulent intensity and turbulent viscosity ratio. The
outlet, located behind the hull, was set to a pressure outlet.

The location of the free surface was defined using the open channel flow model in
FLUENT, and in STAR-CCM+ the level of the free surface was set with a coordi-
nate and a normal vector. The static pressure at the inlet and outlet boundaries
could thereby be obtained from the free surface location by specifying an atmo-
spheric reference pressure in a point located above the free surface.

An undesired phenomenon that is often observed in hull simulations is a thin layer
of air in the first cell layers at the hull surface. This air layer, which affects the
shear stresses on the hull, emerges from the region where the free surface hits the
hull. It is not observed in experiments, and any air layer forming in the first cell
layers at the hull should therefore be removed. In FLUENT, a UDF was used to
loop through the prism layer adjacent to the hull while the volume fraction of air
was set to 0 if it was below 0.3. In STAR-CCM+ a sink term was added to the
transport equation for the volume fraction. The sink term was applied in the cells
closest to the hull where the volume fraction of air was below 0.3.
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4.5 Solution
The inlet boundary conditions were used to initialize the flow field. Although a
steady state solution was expected, transient simulations were run to enable mesh
motion and increase the robustness of the solution. The iterative solution procedure
was first run with a fixed sinkage and trim in order to prevent large motions of the
hull when the flow field was developed from the initial condition. When the hull
was released, the solution was run until the sinkage, trim angle and forces acting
on the hull had stabilized around constant values. Since these measured values kept
oscillating with relatively small amplitudes around the equilibrium values, the sim-
ulation was continued for some time in order to sample enough data for accurate
predictions. The sampled data was processed by calculating the average values and
the corresponding standard errors. By doing this, confidence intervals for the esti-
mations could be determined. The methods used for the data analysis are described
in Appendix A.

4.6 Post-processing
When results had been obtained from a simulation, they were analysed and com-
pared and new simulations were set up. In this iterative procedure, appropriate
settings for the simulations were found. Grid dependence studies were conducted in
order to estimate the numerical uncertainty.

4.7 Simulated operating conditions
The CFD simulations were performed on two different hulls – the hull R/V ATHENA,
hereafter referred to as the Athena hull, and a hull designed by Swede Ship, referred
to as the Swede Ship hull.

4.7.1 Athena hull
The Athena hull was chosen because experimental data from model tests was avail-
able. Therefore, the models and setup used in the CFD simulations could be vali-
dated. The Athena hull is a large semi-planing hull with a full scale LPP of 46.9m.
In the simulations, which were only performed using STAR-CCM+, a 1:8.556 scale
model was used. Since the hull does not trim a lot the tow force was neglected.

A grid dependence study was conducted at a Froude number of 0.545 which corre-
sponds to a velocity of 7.78 knots and a length between perpendiculars of 5.48m.
There were some uncertainties in the exact position of the centre of gravity of the
hull, both for the Athena and the Swede Ship hull. Therefore two cases, CG1 and
CG2, with different positions of the centre of gravity were simulated for Athena in
order to get an idea of how sensitive the results are to the position of centre of grav-
ity. Figure 4.5 shows the outline of the hull with the location of the two different
centres of gravity used for the simulations. The dimensions of the Athena hull are
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found in Table 4.1 and the fluid properties used in the simulations are presented in
Table 4.2.

• CG2
• CG1 Waterline

x

z

⊗
y

Figure 4.5: Sketch of the Athena hull showing the two different centres of gravity,
CG1 and CG2, used in the simulations.

Table 4.1: Hull dimensions of R/V Athena. A model scale with scaling factor
1:8.556 was used in the simulations. Two different centres of gravity were simulated,
CG1 and CG2.

Description Symbol Value
Length between perpendiculars LPP 46.9m
Volume displacement ∇ 257.5m3

Longitudinal CG from AP, CG1 LCG 20.16m
Longitudinal CG from AP, CG2 LCG 17.97m
Vertical CG, CG1 V CG 2.396m
Vertical CG, CG2 V CG 0.684m

Table 4.2: Fluid properties used in the simulations of the Athena hull.

Description Symbol Value
Atmospheric pressure at water surface Patm 101325Pa
Density of water ρw 998.83 kg/m3

Viscosity of water νw 8.8871×10−4 m2/s
Density of air ρa 1.18415 kg/m3

Viscosity of air νa 1.85508×10−5 m2/s

4.7.2 Swede Ship hull
The Swede Ship hull is a planing hull with an LPP of 13.5m. The simulations
were conducted in full scale, and the hull dimensions and fluid properties used in
the simulations are found in Table 4.3 and Table 4.4. A more detailed table with
properties is presented in Appendix C.
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Table 4.3: Properties and dimensions of the Swede Ship hull at a water density of
1025.87 kg/m3 and a shell plating thickness of 8.00mm.

Description Symbol Value
Length between perpendiculars LPP 13.500m
Breadth waterline BWL 4.157m
Volume displacement ∇ 22.8m3

Longitudinal CG from AP LCB 4.921m
Vertical CG V CG 1.9m
Vertical CB V CB 0.6785m

Table 4.4: Fluid properties used in the simulations of the Swede Ship hull.

Description Symbol Value
Atmospheric pressure at water surface Patm 101325Pa
Density of water ρw 1025.87 kg/m3

Viscosity of water νw 1.188×10−6 m2/s
Density of air ρa 1.225 kg/m3

Viscosity of air νa 1.461×10−5 m2/s

The simulations of the Swede Ship hull were performed both with fixed and free
sinkage and trim. The purpose of the fixed sinkage and trim simulations was to ob-
tain a detailed comparison of the results from FLUENT and STAR-CCM+. These
simulations were conducted at a Froude number of 1.68 with a sinkage at LPP/2
of 0.685m and a trim angle of 3.19 ◦ that were determined from a free sinkage and
trim simulation in STAR-CCM+.

In the simulations with free sinkage and trim, the Swede Ship hull was simulated
with a centre of gravity and a centre of buoyancy as shown in Figure 4.6. The centre
of gravity was provided in the hull data, and the towing point was stated to be in
the centre of buoyancy at zero speed. In order to find the centre of buoyancy, the
hull data was used to position the hull in its zero speed position, and then the centre
of mass of the displaced volume was calculated. Due to some uncertainties in the
exact position of the centre of gravity in the vertical direction, one simulation was
performed where it was shifted 0.1m up. The results for the two cases, CG1 and
CG2, were compared in order to evaluate if, and how much, the uncertain position
of the centre of gravity affects the results.

•CG

•
CB
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Figure 4.6: Sketch of the Swede Ship hull showing the centre of gravity (CG) and
the centre of buoyancy (CB) at zero speed.

32



4. CFD simulations

The free sinkage and trim simulations were conducted at Froude numbers ranging
from 0.447 to 1.79, corresponding to velocities of 10 knots to 40 knots. A summary
of the simulated cases is shown in Table 4.5 and Table 4.6. After the final results
were obtained, they were compared with experimental data.

Table 4.5: Simulated cases for the Swede Ship hull with fixed sinkage and trim.

Fn Velocity [knots]
Mesh study, FLUENT 1.68 37.5
FUENT 1.68 37.5
STAR-CCM+ 1.68 37.5

Table 4.6: Simulated cases for the Swede Ship hull with free sinkage and trim.

Fn Velocity [knots]
Mesh Study, STAR-CCM+ 1.68 37.5
STAR-CCM+, CG1 1.68 37.5
STAR-CCM+, CG2 1.68 37.5
STAR-CCM+ 1.79 40.0
STAR-CCM+ 1.68 37.5
STAR-CCM+ 1.57 35.0
STAR-CCM+ 1.34 30.0
STAR-CCM+ 1.12 25.0
STAR-CCM+ 0.894 20.0
STAR-CCM+ 0.671 15.0
STAR-CCM+ 0.447 10.0
FLUENT 1.68 37.5
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5
Results and discussion

This chapter presents the results from the CFD simulations performed as described
in Chapter 4. The results are divided into three parts: free sinkage and trim sim-
ulations of the Athena hull, fixed sinkage and trim simulations of the Swede Ship
hull and free sinkage and trim simulations of the Swede Ship hull.

5.1 Athena hull
In the following sections the results from the simulations in STAR-CCM+ of the
Athena hull with free sinkage and trim are presented and compared with experimen-
tal data. Two cases, CG1 and CG2, with different locations of the centre of gravity
were simulated. The simulations were performed at a Froude number of 0.545. First
the grid dependence study is presented and then the comparison between experi-
mental data and the calculated properties is presented and discussed.

5.1.1 Grid dependence study
The grid dependence study was carried out for CG1. The grid was systematically
refined in steps resulting in six different meshes. The number of cells for the coarsest
mesh was 0.287 million and the finest mesh had 11.9 million cells. The number of
cells for all meshes is presented in Table D.1 in Appendix D. The convergence of the
total resistance coefficient was studied and the results are presented in Figure 5.1.
It shows that the second finest grid with 7.10 million cells is a good compromise
between numerical accuracy and computational effort. This mesh has a numerical
uncertainty of 1.3% and was used to simulate CG2.
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Figure 5.1: Convergence of the total resistance coefficient with grid refinement for
the free sinkage and trim simulations of the Athena hull performed in STAR-CCM+
at Fn = 0.545. The full circle represents the grid used for simulating CG2.

5.1.2 Calculated properties
The computed properties for the two cases are presented and compared with exper-
imental data in Table 5.1. It is seen that the results from the simulation of CG1
give a lower sinkage and trim angle and underpredict the resistance compared to
the experimental results. The results from CG2 give a sinkage that is closer to the
experimental value but the trim angle is larger and the resistance is overpredicted.
The results indicate that the chosen models and setup are appropriate.

Table 5.1: Experimental and calculated properties of the Athena hull with free
sinkage and trim at Fn = 0.545.

Experiment CG1 CG2
Resistance [N] 244.52 229.14 ± 0.01 255.39 ± 0.22
Error -6.31% 4.25%
Sinkage [m] -0.0105 -0.00874 ± 0.00010 -0.00968 ± 0.00017
Error -16.56% -4.44%
Trim angle [◦] 1.35 1.26 ± 0.00 1.50 ± 0.00
Error -6.76% 10.05%

Athena is a semi-planing hull, and as seen in Table 5.1 the sinkage and trim angle
are very small. A much higher mesh density is needed than what was used in these
simulations to be able to obtain the exact position of the hull. Figure 5.2 shows the
volume fraction of air around the hull at the symmetry plane.
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Figure 5.2: Volume fraction of air at the symmetry plane of the Athena hull at
Fn = 0.545.

It is seen in the results that the position of the centre of gravity affects the calculated
resistance, sinkage and trim. Another reason to why the calculated values differ from
the experimental values is that the towing force was neglected. This implies that
it is important to know exactly how the experiments were performed in order to
obtain accurate and reliable results.

37



5. Results and discussion

5.2 Swede Ship hull, fixed sinkage and trim
The following sections present the results from the simulations with fixed sinkage
and trim for the Swede Ship hull. The hull speed was set to 37.5 knots, correspond-
ing to a Froude number of 1.68, and the sinkage at LPP/2 and trim angle were
0.685m and 3.19◦, respectively. After a presentation of the grid dependence study,
the calculated volume fraction distribution, pressure coefficient, skin friction coeffi-
cient, dimensionless wall distance and free surface pattern are visualized. At the end,
the calculated forces acting on the hull and the wetted area and length are presented.

When cross sections are used to present the results, they have been constructed
from planes as illustrated in Figure 5.3. According to this figure, two longitudinal
cross sections run along the hull surface at y/LPP = 0.0037 and y/LPP = 0.037, two
longitudinal cross sections are placed outside the hull at y/LPP = 0.30 and y/LPP =
0.37, and two transverse cross sections run across the hull at x/LPP = −0.22 and
x/LPP = −0.15.

Symmetry
y/LP P = 0.0037
y/LP P = 0.037

y/LP P = 0.30
y/LP P = 0.37

x/LP P = −0.22
x/LP P = −0.15

•
O

x

y

⊗
z

Figure 5.3: Cross sections at different y-coordinates used in the illustrations of the
results. The origin of the computational domain is marked by O, and its position is
in level with the undisturbed free surface.

5.2.1 Grid dependence study
Four meshes with a cell count ranging from 4.28 million to 24.2 million cells were used
in the grid dependence study conducted in Fluent. In Table D.2 in Appendix D,
the number of cells in each mesh are presented. The calculated total resistance
coefficients for these meshes are presented in Figure 5.4. The second finest mesh
with 16.9 million cells and a numerical uncertainty of 1.7% was chosen for further
analysis. In STAR-CCM+, a mesh with 18.4 million cells was selected based on a
grid dependence study for free sinkage and trim. Consequently, the meshes used in
the following comparison of the results in FLUENT and STAR-CCM+ have similar
cell counts.
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Figure 5.4: Convergence of the total resistance coefficient with grid refinement for
the fixed sinkage and trim simulations of the Swede Ship hull performed in FLUENT
at Fn = 1.68. The full circle represents the grid used in the further analysis.

5.2.2 Volume fraction of air at the hull
In Figure 5.5, contour plots of the volume fraction of air on the hull are presented.
The differences between the results obtained in FLUENT and STAR-CCM+ are
found where the free surface hits the hull. In particular, the region around the
symmetry plane shows large differences. The air at the symmetry in both cases and
at the rails in STAR-CCM+ is due to that the air that hits the hull at the free
surface is dragged down along the hull. This phenomenon is prevented by removing
air from cells which has a volume fraction of water higher than 0.7. As seen in
the contour plots, more air could be removed, but then some realistic air might be
removed and the sides of the hull can get unrealistically wet. The areas with volume
fraction of air around 0.7 in the left picture might be due to splashing water. The
area that is completely covered by water has the same shape in the two cases.

Volume fraction of air, γair
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Figure 5.5: Contour plots of the volume fraction of air on the hull for the fixed
sinkage and trim simulations at Fn = 1.68.
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5.2.3 Pressure coefficient
Figure 5.6 shows contour plots of the pressure coefficient on the hull. The results
from FLUENT and STAR-CCM+ agree very well, and no apparent differences can
be identified. A spot of significantly higher pressure is observed where the free
surface hits the second innermost rail on the hull.

Pressure coefficient, CP
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Figure 5.6: Contour plots of the pressure coefficient on the hull for the fixed sinkage
and trim simulations at Fn = 1.68.

In Figure 5.7, longitudinal cross sections of the pressure coefficient on the hull are
shown. In these plots, the similarity between the results is very clear – the curves
barely differ from each other in the two cross sections.
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(a) y/LPP = 0.0037.
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(b) y/LPP = 0.037.

Figure 5.7: Longitudinal cross sections of the pressure coefficient on the hull for
the fixed sinkage and trim simulations at Fn = 1.68.

In Figure 5.8, transverse cross sections of the pressure coefficient on the hull are
shown. It can be observed that the pressure predicted by FLUENT is higher in
the outer region of the hull around the lifting rails. The origin of this difference is
not known, but it indicates that the regions around the lifting rails require special
attention.
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(a) x/LPP = −0.22.
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Figure 5.8: Transverse cross sections of the pressure coefficient on the hull for the
fixed sinkage and trim simulations at Fn = 1.68.

5.2.4 Skin friction coefficient
In Figure 5.9, contour plots of the skin friction coefficient on the hull are shown. In
general, the skin friction in the region where the free surface hits the hull is more
diffuse in FLUENT and the results from STAR-CCM+ show a more sharp increase
in the shear stress. When comparing these contour plots to those of the volume
fraction in Figure 5.5, it can be noted that the shear stress is highly correlated to
the volume fraction distribution on the hull.
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Figure 5.9: Contour plots of the skin friction coefficient on the hull for the fixed
sinkage and trim simulations at Fn = 1.68.

Figure 5.10 shows the skin friction coefficient on two longitudinal cross sections of
the hull. The cross section at y/LPP = 0.0037, just at the symmetry plane, shows
the relatively large difference between FLUENT and STAR-CCM+ in the front of
the hull. Further away from the symmetry plane, at y/LPP =0.037m, the results
are similar.
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(a) y/LPP = 0.0037.

−0.4 −0.2 0 0.2 0.4
0

1

2

3

4
x 10

−3

C
f

x/LPP

 

 
FLUENT
STAR-CCM+

(b) y/LPP = 0.037.

Figure 5.10: Longitudinal cross sections of the skin friction coefficient on the hull
for the fixed sinkage and trim simulations at Fn = 1.68.

5.2.5 Dimensionless wall distance
Figure 5.11 shows contour plots of the dimensionless wall distance at the hull. Since
the regions of air were not taken into account when choosing the first layer thickness
of the prism layers, the y+ values are not close to the target value of 100 where air
flows at the hull. However, since the air resistance constitutes a very small part of
the total friction resistance, this deviation is of little importance.

Dimensionless wall distance, y+
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Figure 5.11: Contour plots of the dimensionless wall distance on the hull for the
fixed sinkage and trim simulations at Fn = 1.68.
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5.2.6 Free surface wave pattern
In Figure 5.12, the dimensionless height of the free surface is shown. The free surface
is defined as the interface between water and air where the volume fractions are 0.5.
The wake patterns predicted by FLUENT and STAR-CCM+ are similar, but the
result obtained in STAR-CCM+ shows more details near the hull. This is probably
because of a higher mesh density around the hull in STAR-CCM+, where more
effort was put into the construction of an appropriate mesh in this region.

Dimensionless free surface height, z/LP P
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Figure 5.12: Contour plots of the dimensionless free surface height for the fixed
sinkage and trim simulations at Fn = 1.68. z/LPP = 0 is the height of the undis-
turbed free surface.

Figure 5.13 shows longitudinal cross sections of the free surface height outside the
hull. In these figures it is clearer that the mesh created in STAR-CCM+ captures
more of the waves and the splashing close to the hull. Further away from the hull,
the results are similar.
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Figure 5.13: Cross sections of the dimensionless free surface height at Fn = 1.68.
z/LPP = 0 is the height of the undisturbed free surface.

5.2.7 Calculated properties
The calculated properties are presented in Table 5.2. It shows that there is a signif-
icant difference in the calculated pressure force between the two simulations. The
value obtained in FLUENT is 13% higher than the value from STAR-CCM+. From
the comparisons of the pressure coefficient in Section 5.2.3, this difference stems
from the sides of the hull around the lifting rails. Due to this difference, the total
resistance prediction differs by 8.0%. Apart from the pressure resistance, the results
from FLUENT and STAR-CCM+ show good correspondence.

Table 5.2: Calculated properties of the Swede Ship hull with fixed sinkage at
LPP/2 and trim angle of 0.685m and 3.19◦, respectively, at Fn = 1.68.

STAR-CCM+ FLUENT Difference
Pressure resistance [N] 17606 ± 1 19962 ± 1 13%
Friction resistance [N] 11057 ± 2 10991 ± 0 -0.60%
Total resistance [N] 28663 ± 2 30954 ± 1 8.0%
Lift force [N] 217760 ± 20 220400 ± 10 1.2%
Wetted area [m2] 30.31 ± 0.00 29.76 ± 0.00 -1.8%
Wetted length [m2] 9.45 ± 0.00 9.37 ± 0.00 -0.85%

According to Larsson and Raven [10, p. 154], the pressure resistance is sensitive
to the mesh density. When the meshes used in FLUENT and STAR-CCM+ were
compared, no clear differences in terms of cell size could be identified at the rails.
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5.3 Swede Ship hull, free sinkage and trim
The following sections present the results from the simulations with free sinkage
and trim for the Swede Ship hull, which were mainly conducted in STAR-CCM+.
First, the grid dependence study for Fn = 1.68 is presented and then the results
from the simulations with two different positions of centre of gravity are compared.
Then, the results from the calculations of the Froude number dependencies of the
resistance, sinkage, trim angle, wetted area and wetted length are compared with
experimental data. Results from FLUENT were only obtained for one speed due to
problems with the simulations, which are discussed in the end of this chapter.

5.3.1 Grid dependence study
Five different meshes with the number of cells ranging between 0.989 million and 38.2
million cells were used in the study, the number of cells of each mesh are presented in
Table D.3 in Appendix D. The results for the total resistance coefficient are presented
in Figure 5.14a. Figure 5.14b shows the difference in calculated values compared
to the finest mesh which is mesh number 1. CT converges to an asymptotic value
and the differences between the meshes are small. The results for sinkage and trim
angle are presented in Figure 5.15 and Figure 5.16. Here, the convergence is not as
clear as for the total resistance coefficient and the differences between the meshes
are larger, especially for the trim angle.
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(a) Total resistance coefficient.
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Figure 5.14: Convergence of the total resistance coefficient with grid refinement
for the free sinkage and trim simulations of the Swede Ship hull performed in
STAR-CCM+ at Fn = 1.68. The calculated values for each mesh are compared
to the densest mesh which is mesh 1.
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(a) Sinkage.
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Figure 5.15: Convergence of the sinkage with grid refinement for the free sinkage
and trim simulations of the Swede Ship hull performed in STAR-CCM+ at Fn =
1.68. The calculated values for each mesh are compared to the densest mesh which
is mesh 1.
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Figure 5.16: Convergence of the trim angle with grid refinement for the free
sinkage and trim simulations of the Swede Ship hull performed in STAR-CCM+ at
Fn = 1.68. The calculated values for each mesh are compared to the densest mesh
which is mesh 1.

The second finest grid with 18.4 million cells has a numerical uncertainty of 0.13%
and was used for the simulations of fixed sinkage and trim and for the comparison
with a shifted centre of gravity. Mesh number 3 has a numerical uncertainty of
0.19% and was used for the simulations with different Froude numbers.
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5.3.2 Centre of gravity sensitivity analysis
The centre of gravity was shifted 0.1m up compared to the original position, CG1.
The simulation of CG2 was performed at Fn = 1.68 and mesh number 2 was used.
The results are summarized in Table 5.3 and it is seen that there are differences in
trim angle and wetted length while the other differences are small.

Table 5.3: Calculated properties of the Swede Ship hull with free sinkage and trim
at Fn = 1.68.

CG1 CG2 Difference
Total resistance [N] 30640 ± 7 30404 ± 73 -0.77%
Lift force [N] 229380 ± 20 227880 ± 600 -0.56%
Sinkage Lpp/2 [m] 0.676 ± 0.005 0.684 ± 0.190 -0.98%
Trim angle[◦] -3.52 ± 0.00 -3.31 ± 0.02 -5.7%
Wetted area [m2] 30.61 ± 0.01 30.82 ± 0.08 -0.70%
Wetted length [m] 9.20 ± 0.01 10.1 ± 0.4 9.8%

This indicates that the results are not very sensitive to vertical translations of the
centre of gravity. Nevertheless, accurate predictions require a precise specification
of the centre of gravity.

5.3.3 Calculated properties
The Froude number simulations were conducted in STAR-CCM+, where the third
mesh from the grid dependence study for free sinkage and trim with 5.64 million
cells was used. One simulation was conducted in FLUENT for Fn = 1.68, where the
mesh with 16.9 million cells from the fixed sinkage and trim simulations was used.
In Figure 5.17-5.21, the results for total resistance, sinkage, trim angle, wetted area
and wetted length obtained with CFD are compared to the values from experimental
fluid dynamics (EFD).

The results for the total hull resistance are shown in Figure 5.17. It is seen that
the calculated results follows the experimental values and that the error is between
-8.2% and 6.5% for STAR-CCM+. The resistance is overpredicted in the transition
region around Fn = 1 and underpredicted in the planing region. In FLUENT, the
resistance is closer to the experimental value, the error is -1.1%.
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Figure 5.17: Computational and experimental results for the Froude number de-
pendency of the total resistance for the Swede Ship hull with free sinkage and trim.

The calculated and experimental sinkage values at LPP/2 are compared in Fig-
ure 5.18. It is seen that the CFD-simulations in STAR-CCM+ give a higher sinkage
for all Froude numbers. This may be due to that the assumption of a horizontal
towing force is not valid. The agreement is better in the planing region where the
error is around a few percent. In FLUENT, the sinkage is underpredicted by 6.6%.
When looking at the error it should be noted that the values for the lower Froude
numbers are misleading since the sinkage is approaching zero. The error becomes
larger due to the small values of the sinkage. It is better to look at Figure 5.18a
where it is seen that the differences are not that large.
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(a) Sinkage at LPP/2.
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Figure 5.18: Computational and experimental results for the Froude number de-
pendency of the sinkage for the Swede Ship hull with free sinkage and trim.
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In Figure 5.19, the results for the trim angle are presented. Here, the agreement
is also good in the planing region where the error is between -3.5% and 2.3% for
STAR-CCM+. The trim angle obtained from FLUENT is underpredicted by 12%.
There is a large difference in the transition region where the calculated trim angle
is much higher than what was measured in the experiments.
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(a) Trim angle.
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Figure 5.19: Computational and experimental results for the Froude number de-
pendency of the trim angle for the Swede Ship hull with free sinkage and trim.

In Figure 5.20 and Figure 5.21, the wetted area and wetted length are shown. The
wetted area obtained from the CFD-simulations is in general lower than the experi-
mental values. However, it is hard to make reliable measurements of the wetted area.
Therefore, no conclusions can be drawn from these results. The wetted length agrees
very well with the experimental data, which indicates that the running attitude is
correct.
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(a) Wetted area.
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Figure 5.20: Computational and experimental results for the Froude number de-
pendency of the wetted area for the Swede Ship hull with free sinkage and trim.
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(a) Wetted length.
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Figure 5.21: Computational and experimental results for the Froude number de-
pendency of the wetted length for the Swede Ship hull with free sinkage and trim.

Overall, the trends in the results are the same for the calculated and experimental
values. The position of the hull in terms of sinkage and trim angle is best predicted
in the higher Froude number range. In this range the resistance is underpredicted.
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5.3.4 Free surface wave pattern
In Figure 5.22, contour plots of the free surface height at three different Froude
numbers are shown. These have been chosen so that the first, Fn = 0.447, is in
the displacement region, the second, Fn = 0.894 is in the transition region and the
third, Fn = 1.68, is in the planing region.
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Figure 5.22: Contour plots of the dimensionless free surface height for the free
sinkage and trim simulations obtained in STAR-CCM+ at Fn = 0.447, Fn = 0.894
and Fn = 1.68.

51



5. Results and discussion

The plots in Figure 5.22 illustrate the behaviour of the hull that was presented in the
results in Section 5.3.3. The sinkage and trim angle are low in the displacing region
and are then increased significantly in the transition region. In the planing region,
the trim angle decreases and the sinkage is almost constant. The hull resistance is
both seen in the running attitude and the wave pattern behind the hull. As seen in
Figure 5.22, the wave pattern is more intense in the transition region which means
that more energy is transferred from the hull to the water. This indicates that the
resistance is high, which is confirmed in Figure 5.17.

5.3.5 FLUENT simulations of free sinkage and trim
When simulating free sinkage and trim in Fluent, an equilibrium position of the
hull was hard to obtain. This was because of unphysical motion of the free surface
around the hull which was observed when the time step was not small enough.
This behaviour of the free surface is illustrated in Figure 5.23, which shows the
dimensionless free surface height at Fn = 1.68.

(a) Hull moving downwards. (b) Hull moving upwards.
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Figure 5.23: Dimensionless free surface height around the free hull at Fn = 1.68
showing the unphysical dislocation of the free surface when the hull moves down-
wards and upwards.

When the hull moved downwards, as in the first picture, the free surface around the
hull moved downwards, causing an additional acceleration directed downwards. In
opposite, when the hull moved upwards as in the second picture, the free surface
moved upwards. In other words, the free surface moved with the dynamic mesh.
This motion of the free surface caused the hull to oscillate with increasing amplitude
instead of stabilizing in an equilibrium position.

It is not clear why this behaviour was observed. The only solution that was found
to circumvent the problem was to reduce the time step in the simulation. A com-
prehensive investigation of the simulation setup should be conducted in order to
analyse the cause of the problem.
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6
Conclusion

CFD simulations can provide data that is difficult to obtain from experiments, for
example streamlines around the hull and detailed distributions of the forces acting
on the hull. Therefore, CFD can be used by shipyards in order to make improve-
ments and corrections at an early stage in the design process. Whether CFD can
replace towing tank tests or not, is not only a matter of the accuracy of the results.
In addition, the simulations must either be faster or cost less than a corresponding
experimental analysis.

The results from the CFD simulations of free sinkage and trim obtained in STAR-
CCM+ are similar to the behaviour that is seen in the experimental data. The
resistance is underpredicted in the planing region, at Froude numbers higher than
1.3, and the results deviate by 6.1% to 8.2%. The sinkage is overpredicted for all
Froude numbers, but is closer to the experimental data in the planing region where
the difference is between 0.33% to 9.7%. The trim angle was hard to predict in the
transition region of Froude numbers around 1, where it is overpredicted by up to
32%. In the planing region the agreement is better and the deviation is between
-3.5% and 2.3%. The wetted area shows a large deviation in the planing area, con-
sidering the agreement with the running attitude. However, the wetted length shows
a better correspondence to the experimental values. The accuracy of the results is
in line with earlier studies of planing hulls.

The results obtained in the simulations of fixed sinkage and trim in FLUENT and
STAR-CCM+ are in good agreement. However, there is a difference in pressure re-
sistance which probably originates from the sides of the hull, where a higher pressure
is predicted by FLUENT. This leads to a higher total resistance, which is interesting
since the results from STAR-CCM+ show that the resistance is underpredicted at
a similar running attitude. In FLUENT, only one free sinkage and trim simula-
tion could be performed due to problems with free surface dislocation during mesh
motion. Compared to the results from STAR-CCM+, the calculated resistance is
closer to the experimental values whereas the sinkage and trim angle deviate more.
It would be valuable to obtain results for other Froude numbers from FLUENT to
be able to compare the methods and models used in the software.
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7
Future work

Future work should focus on a detailed investigation on the mesh distribution close
to the hull to make sure that all the important features, like wave breaking and
spray, are captured. Grid dependence studies can be done to study the influence
of first layer cell height and the number of cells in the prism layer on the results.
Moreover, grid dependence studies should be done for all Froude numbers to get an
optimal mesh that captures the important phenomena in each case. It would also
be of interest to examine the difference in pressure resistance between the results
from FLUENT and STAR-CCM+.
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A
Data analysis

This chapter gives a brief explanation of the method used to analyse the sampled
data obtained from the converged solutions. In particular, the treatment of correla-
tion of the data is described.

Consider a variable A, sampled with M measurements Ai. The average of A is
estimated with

A = 1
M

M∑
i=1

Ai. (A.1)

To quantify the certainty of the estimate of the average, the standard error of A can
be estimated. The standard error is the standard deviation of the estimate of the
average of A. If the values Ai are uncorrelated, meaning that the sample values are
randomly distributed, the standard error of A is estimated with

SEA =
√

1
M

(
A2 − A2)

. (A.2)

If, instead, the data is correlated, the standard error of A will be underestimated if
equation (A.2) is used. This is handled by introducing a statistical inefficiency, s,
which relates the number of samples to the number of independent samples. The
statistical inefficiency is thus a measure of the degree of correlation of the data, and
it can, for example, be determined from the block averaging method described by
Flyvbjerg and Petersen [32].

The standard error of A can then be estimated from

SEA =
√
s

M

(
A2 − A2)

. (A.3)

By using the equations (A.1) and (A.3), a confidence interval for A can be expressed
as

A = A± SEA = 1
M

M∑
i=1

Ai ±
√
s

M

(
A2 − A2)

, (A.4)

where the real value of A lies within this interval with a probability of 68%. [33,
pp. 202-220]
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B
Athena hull data

Table B.1: Hull dimensions of R/V Athena. A model scale with scaling factor
1:8.556 was used in the simulations.

Description Symbol Value
Length overall LOA 50.29m
Length on designed waterline LWL 46.9m
Length between perpendiculars LPP 46.9m
Volume displacement ∇ 257.5m3

Displacement ∆ 260 t
Longitudinal C.G.1 from AP, CG1 LCG 20.16m
Longitudinal C.G. from AP, CG2 LCG 17.97m
Vertical C.G., CG1 V CG 2.396m
Vertical C.G., CG2 V CG 0.684m

Table B.2: Fluid properties used in the simulations for the Athena hull.

Description Symbol Value
Atmospheric pressure at water surface Patm 101325Pa
Density of water ρw 998.83 kg/m3

Viscosity of water νw 8.8871×10−4 m2/s
Density of air ρa 1.18415 kg/m3

Viscosity of air νa 1.85508×10−5 m2/s

1Centre of gravity
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C
Swede Ship hull data

Table C.1: Dimensions of the Swede Ship hull.

Description Symbol Value
Length overall LOA 15.066m
Length on designed waterline LWL 13.339m
Length between perpendiculars LPP 13.500m
Breadth moulded B 4.017m
Breadth waterline BWL 4.157m
Depth to 1st deck D 2.800m
Draught at LPP/2 T 0.859m
Draught at FP TFP 0.739m
Draught at AP TAP 0.979m
Trim (pos. aft) t 0.240m

Table C.2: Properties of the Swede Ship hull at a water density of 1025.87 kg/m3

and a shell plating thickness of 8.00mm.

Description Symbol Value
Volume displacement ∇ 22.8m3

Displacement ∆ 23.4 t
Prismatic coefficient CP 0.6524
Block coefficient CB 0.4739
Block coefficient based on LWL CBLW 0.4796
Midship section coefficient CM 0.7263
Longitudinal C.B.1 from LPP/2 LCB -1.829m
Longitudinal C.B. from LPP/2 LCB -13.551% of LPP
Longitudinal C.B. from AP LCB 4.921m
Vertical C.B. V CB 0.6785m
Vertical C.G. 2 V CG 1.9m
Wetted surface AW 53.44m2

1Centre of buoyancy
2Centre of gravity
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C. Swede Ship hull data

Table C.3: Fluid properties used in the simulations of the Swede Ship hull.

Description Symbol Value
Atmospheric pressure at water surface Patm 101325Pa
Density of water ρw 1025.87 kg/m3

Viscosity of water νw 1.188×10−6 m2/s
Density of air ρa 1.225 kg/m3

Viscosity of air νa 1.461×10−5 m2/s
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D
Grid dependence studies

Table D.1: Number of cells in the meshes used in the grid dependence study of
the Athena hull with free sinkage and trim at Fn = 0.545.

Mesh number Number of cells
1 9 707 015
2 6 857 898
3 3 666 827
4 2 200 832
5 1 159 375
6 642 787
7 313 091

Table D.2: Number of cells in the meshes used in the grid dependence study of
the Swede Ship hull with fixed sinkage and trim at Fn = 1.68.

Mesh number Number of cells
1 24 210 619
2 16 899 832
3 7 087 964
4 4 280 596

Table D.3: Number of cells in the meshes used in the grid dependence study of
the Swede Ship hull with free sinkage and trim at Fn = 1.68.

Mesh number Number of cells
1 38 159 812
2 18 397 409
3 5 642 194
4 2 284 421
5 989 457
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