
Investigation of high performance config-
urations on the Evolved Packet Gateway

Master’s thesis in Computer science and engineering

TSIGABU MEBRAHTU BIRHANU

GEORGIOS CHATZIADAM

Department of Computer Science and Engineering

Chalmers University of Technology

University of Gothenburg

Gothenburg, Sweden 2020

Master’s thesis 2020

Investigation of high performance con�gurations on
the Evolved Packet Gateway

TSIGABU MEBRAHTU BIRHANU
GEORGIOS CHATZIADAM

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Investigation of high performance con�gurations on the Evolved Packet Gateway

TSIGABU MEBRAHTU BIRHANU
GEORGIOS CHATZIADAM

© TSIGABU MEBRAHTU BIRHANU AND GEORGIOS CHATZIADAM, 2020.

Supervisor: Romaric Duvignau, Computer Science and Engineering Department
Supervisor: Ivan Walulya, Computer Science and Engineering Department
Advisor: Patrik Nyman, Ericsson AB
Examiner: Philippas Tsigas, Computer Science and Engineering Department

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2020

iii

Abstract

Modern servers today are based on multi-socket motherboards to increase their power
and performance �gures. These setups provide CPU interconnection through a high
speed bus. If processes on one CPU need access to memory or devices local to another
CPU, they need to traverse this bus and this adds a delay to the execution time. This
is where the concept of Non-Uniform Memory Access (NUMA) presents as a solution.
Every socket with its local memory is considered a node, that is locked and processes
are not allowed to migrate. This means that loading instructions has low latency, but
they can also access the main memory connected to the other NUMA nodes at a given
penalty cost. The latest CPUs such as the EPYC series from AMD are using this concept
even within the processor module, and there is no possibility to avoid taking into ac-
count NUMA aspects.

There has been a plethora of benchmarks to analyze the impact of NUMA node archi-
tecture on di�erent processors. In this work, we have used the Packet Gateway of the
Evolved Packet Core (EPC) as a test case to investigate the e�ectiveness of NUMA archi-
tecture on Intel processors on a virtual large-scale distributed production system with
high performance requirements. On the virtualization setups, di�erent CPU pining and
deployment strategies are used, while Packet Per Second (pps) is the preferred perfor-
mance indicator in systems like the Evolved Packet Gateway (EPG). We further describe
and analyze di�erent scenarios, combining CPU pinning and process placement, within
the virtual machines running the EPG.

Keywords: NUMA, EPG, Computer Science, engineering, project, thesis.

iv

Acknowledgements

We would �rst like to thank our examiner Philippas Tsigas and our supervisors Romaric
Duvignau and Ivan Walulya of the Computer Science and Engineering Department at
Chalmers University of Technology. Their door has always been open for us when we
ran into a trouble spot or had questions about our work, and their support and guidance
was of extreme importance for the completion of this project.

We would also like to thank our supervisor at Ericsson, Patrik Nyman, who assisted
us in all stages of our research and made us feel like home by always checking in on us
and being very immediate in his responses and actions. The technical experts involved
in this project: Oscar Leijon, Jonas Hemlin, Patrik Hermansson and Devakumar Kannan
provided critical support and are undoubtedly an important part of it.

Finally, we want to express our gratitude to our families for their continuous encourage-
ment and support throughout our years of study and through the process of researching
and completing this thesis. This accomplishment would not have been possible without
them.

Tsigabu Mebrahtu Birhanu and Georgios Chatziadam, Gothenburg, January 2020

vi

Contents

1 Introduction 2
1.1 Background . 2
1.2 Motivation . 3
1.3 Aim . 3
1.4 Challenges . 4

2 Background 5
2.1 The Evolved Packet Core . 5

2.1.1 The Home Subscriber Server . 5
2.1.2 The Mobility Management Entity 6
2.1.3 Evolved Packet Gateway . 6
2.1.4 EPC as a Distributed System . 7

2.2 Non-Uniform Memory Access . 8
2.3 Related Work . 10

3 Methodology 12
3.1 Studied Hardware . 12

3.1.1 Intel Skylake . 12
3.2 Tra�c Modeling using the Dallas Tool 13
3.3 Baseline Con�guration (NUMA-aware) 14
3.4 Virtualization . 16

3.4.1 vEPG deployment using VIRTIO 17
3.4.2 vEPG deployment with 8vCPUs UP on each NUMA node 19
3.4.3 vEPG deployment with 2CP and 2UP VMs 22
3.4.4 vEPG deployment with 2CP and 1UP VMs 23
3.4.5 vEPG deployment with 1CP and 2UPs VMs 24
3.4.6 vEPG deployment with 1CP and 1UP VMs 24

4 Results 26
4.1 Evaluation . 26
4.2 Baseline Con�guration on SSR . 27
4.3 Virtualization . 29

4.3.1 vEPG deployment with 8vCPU UP on each NUMA node 32
4.3.2 vEPG deployment with 3CP and 2UP VMs 33
4.3.3 vEPG deployment with 2CP and 3UP VMs 34
4.3.4 vEPG deployment with 2CP and 2UP VMs 34

viii

Contents

4.3.5 vEPG deployment with 2CP and 1UP VMs 35
4.3.6 vEPG deployment with 1CP and 2UP VMs 36
4.3.7 vEPG deployment with 1CP and 1UP VMs 36

4.4 Discussion . 37

5 Conclusion 42
5.1 Conclusion . 42
5.2 Future Work . 42

5.2.1 AMD EPYC . 43

Bibliography 44

List of Figures I

List of Tables II

1

1
Introduction

The transition of current mobile broadband networks to 5G along with the variety of
connected Internet of Things (IoT) devices and the increase in bandwidth available for
end users, introduce a new challenge for the underlying system responsible for handling
the tra�c. The amount of data being transferred will only continue to grow in the future
and there is an obvious need for more capable servers in order to meet this evolution.
This project is an evaluation of the possible con�gurations of modern hardware, aiming
to identify the components that could be used to optimize future mobile infrastructure
systems in the pursuit of performance.

In this chapter, we want to describe the purpose of this thesis work and its signi�cance.
We shall go through some background information regarding the system that we work
on, our motivation, and the overall aim of this thesis work. We provide some general
information about the EPC’s architecture, components and functions, while presenting
the goals and impacts of the present work.

1.1 Background

EPC is part of the mobile broadband network, connecting base stations to the IP back-
bone and providing cellular-speci�c processing of tra�c [1]. This framework is a critical
network component that provides converged voice and data on a 4G network. In a 4G
EPC, network functions are not grouped to a single network node as in a traditional or
hierarchical centralized network like 2G or 3G, but they are distributed to provide con-
nectivity where it is needed. The design of this split architecture focuses on increasing
the e�ciency, scalability and elasticity of the system.

One of the main components of EPC is the Packet Gateway (PG) which acts as an inter-
face between the Radio Access Network (RAN) and other IP based packet data networks.
The Evolved Packet Gateway (EPG), Ericsson’s instantiation of the PG, supports Smart
Services Cards (SSCs), Line cards and Switch cards. The SSCs provide modularity func-
tions such as control handling, user packet handling, and tunneling. The line cards pro-
vide connectivity to external physical interfaces, while the switch cards provide routing,
alarm management, and packet switching functionalities.

Generally, EPG provides core function of the EPC such as session management. Session
management is the process of establishing and managing user sessions between the UE
and an Access Point Name (APN) network. This includes activating, deactivating, and

2

1. Introduction

modifying IP addresses.

1.2 Motivation

During the last decades mobile networks have been growing rapidly with the introduc-
tion of new technologies such as 5G networks, smart end devices and advanced applica-
tions. All those changes challenge mobile operators and network equipment providers
to deliver the best service for their customers. The EPG is one of the main EPC com-
ponents that is used for this purpose, and it is responsible to forward and control the
tra�c that the network can process. The upcoming increase of the tra�c in the next
generation of networks, entails challenging research questions, related to the ability of
the current system to be capable of functioning successfully in the future. In order to
identify the hardware components that could provide a certain boost to the system, we
need to investigate which ones have the biggest impact and what is the potential for
future improvements.

The concept investigated in this thesis work is the impact of NUMA-aware con�gu-
rations and variety of CPU-pinning con�gurations within a virtual EPG deployment.

As the placement of main memory relative to the system cores plays a great role on
the performance of the system, we have used di�erent hardware con�gurations to in-
vestigate the overall packet per second processing capacity of the EPG. The packets
per second is the main metric which we used as the best performance indicator of the
EPG con�guration. To analyze the pps processing capacity of each con�guration, the
EPG node uses smart cards that are installed on a Smart Service Router platform. The
smart service cards use Intel-based server processors. In this thesis work [2], the e�ect
of NUMA-aware and Uniform Memory Access (UMA) con�guration is investigated on
both the SSR and Commercial o�-the-shelf (COTS) platforms.

1.3 Aim

Currently, a large number of requests from user equipments are processed by the EPG
to connect to the internet using packet switching technology. The number of user sub-
scriptions allowed to get the service depends on the packet processing capacity of the
EPG. Considering all the other components of the EPC provide full services, the EPG
is responsible for assigning IP addresses and interacting with the external packet based
networks. At a time, a large number of subscriptions may rise from user equipment (UE)
and more packets may be dropped if the processing capacity of the EPG is bottlenecked
or if the processes are overloaded.

The packet per second processing capacity of the EPG is a�ected by the con�guration
and type of processor on the platform used for the EPG deployment. Di�erent vendors
use various processor versions with diverse processing performance and con�gurations.
The NUMA and UMA (Uniform Memory Access) memory placement architectures are

3

1. Introduction

the two main con�gurations of the EPG discussed in this work. These con�gurations
a�ect the overall performance of the system. In this thesis work, the impact of NUMA-
aware and UMA con�gurations of the EPG are evaluated on the SSR and COTS hardware.
The main aim of this thesis is to investigate high performance con�gurations using Intel
processors on both these platforms, and identify the components with the most signi�-
cant overall e�ects.

1.4 Challenges

Working on such a project on a well de�ned system in a big enterprise, we expect to
meet a number of obstacles.

• The experimentation on CPU pinning can only be executed on a virtual environ-
ment, which means testing on smaller scale hardware and comparing the statistics
between the scenarios instead of actual metrics.

4

2
Background

This chapter provides detailed background information and a description of some com-
ponents used in this project. Since EPG is one of the main components of EPC, a detailed
description of EPC and its sub components are discussed in the �rst section. Next, EPC
as a distributed system and the role of the load balancer to distribute tra�c is analysed.
In addition, this chapter provides some background information about some proces-
sors, NUMA concepts and our main objective of investigating the performance of all the
con�gurations. Finally, this chapter provides a related work section that speci�es the
connection of this thesis work with other studies.

2.1 The Evolved Packet Core

EPC is one of the main components of the Universal Mobile Telecommunications Sys-
tem (UMTS) network. It is a framework for providing converged voice and data on a 4G
Long-Term Evolution (LTE) network [2]. On the LTE, EPC is sandwiched between the
Radio Access Network and the packet switch based external data networks. Requests
coming from User Equipment (UE) to access a communication channel using packet
switching and their replays are passed through the EPC. Since EPC is an all IP based
network, it does not support traditional circuit switched connections that were still par-
tially supported until 3G. The basic architecture of EPC is shown in Figure 2.1.

Figure 2.1 shows the basic architecture of the Evolved Packet System (EPS) when the
User Equipment (UE) is connected to the EPC. The Evolved NodeB (eNodeB) is the
base station for Long LTE radio access network. The EPC contains at least four net-
work elements that provide di�erent functions. The dotted line shows control signals
which allow independent scaling of control and user plane functions [3]. This includes
EPC components like Home Subscriber Server (HSS) and Mobility Management Entity
(MME). Both the Service Gateway (SGW) and the Packet Gateway (PGW) nodes are parts
of the EPG where both of them have di�erent functions. To have a good understandings
of the EPC, it is important to describe the function of each component.

2.1.1 The Home Subscriber Server
The HSS is a database that stores and controls information about user sessions and sub-
scription related activities. It manages user data and pro�le information for users who

5

2. Background

HSS

MME

PDN GW

Serv GW

External
Networks

LTE

eNB

S6a

S11

S1-MME

SGi

S5/S8

S1-U

Figure 2.1: Basic EPC architecture for LTE.

are accessing over the LTE RAN [2]. It also controls other functions like session estab-
lishment, roaming, user Authentication and Access Authorization (AAA), and mutual
network-terminal authentication function services.

2.1.2 The Mobility Management Entity
The MME server is responsible almost exclusively for the control plane related functions
of the EPC. It handles signaling related tasks like user subscription management, session
management, handovers, mobility and security of control plane functions. A handover
is the process where one can get full network access while moving from one network
to another and keeping the same IP connectivity. The purpose of doing handovers is to
make the attachment from one network to another completely transparent for the user.
Therefore, the user always stays connected no matter which network he is using.

As it is shown in Figure 2.1, the MME is linked through the S6a interface to HSS which
contains all the database user subscription information [2]. The MME �rst collects user’s
subscription and data authentication information for registering in the network.

2.1.3 Evolved Packet Gateway
EPG is a gateway for the EPC to interact with the external IP-based networks. All in-
coming and outgoing IP packets pass through this gateway using the SGi interface. As
it is shown in Figure 2.1, the SGW and PGW are connected over an interface either S5
or S8. If the user is roaming to connect to home networks, S5 interface is used to create
a connection between the service gateway and the evolved packet gateway. If the user
is roaming to attach to the visited LTE, S8 interface is used instead [3].

The Evolved Packet Gateway provides functions like IP address allocation, charging,
packet �ltering and policy-based control of user-speci�c IP �ows. It also has a key role

6

2. Background

in providing Quality of Service (QoS) for end-user IP services. Since an external data
network is identi�ed by an APN, the PGW will select privileged sessions to connect to
the external Packet Data Network (PDN) servers on the basis of which APN the end user
wants to connect to.

The Service Gateway

The SGW is the part of the EPG that deals more with session forwarding functions. It is
a point of interconnection between the RAN and EPC that transports tra�c from user
equipment to the external network through PG. The IP packets �owing to and from
the mobile devices are handled by the user plane service gateway and evolved packet
gateway nodes [3]. If there is an access request that comes from the user equipment
through the Evolved nodeB (eNodeB), the SGW is responsible to forward the service to
the PGW node based on the privilege signal sent from MME.

Packet Gateway

The Packet Gateway (PGW) is the part of the EPG which provides connectivity to ex-
ternal networks and allocates an IP address to the UE. The PGW uses interfaces S5/S8
to connect towards the SGW and SGi to connect with an external network. Its job is to
route, upload and download user plane data packets between the external IP networks
and UE.

An important role of the PGW is performing Packet Inspection and Service Classi�-
cation (PISC) by enforcing Policy and Charging Control (PCC) rules. When an event is
triggered, the PGW also sends a report to Policy and Charging Rules Function (PCRF).
PCRF is a software component in the node that operates at the network layer and is used
to determine policy rules in multimedia networks. Some events are always reported,
while others PCRF can choose to subscribe to report. Based on the triggered events, the
PCRF can create, update or delete the PCC rules.

2.1.4 EPC as a Distributed System
The implementation of a single software instance of any element of the EPC, such as
the MME or the SGW can become congested under heavy tra�c and the hardware re-
sources could limit the capabilities of the software. The sensible solution is splitting the
incoming load between a number of identical instances of the individual component,
thus deploying the entire EPC as a distributed system. Depending on the amount of
tra�c, it is possible to spawn new duplicates of EPC components as clusters. This elas-
ticity is proven more capable to handle �uctuating demands, without wasting resources
[4].

In Figure 2.2 we show the structure of the clusters with various instances of the same
EPC components. The load balancer is responsible for distributing the tra�c between
the cluster’s members and the synchronization of the duplicates is achieved either by
copying their status in others, or by using shared storage [4].

7

2. Background

HSS

Internet

SGW

MME

PGW

Control Plane
Data Plane

Load Balancer

VNF Replica

Data Store

UE

eNodeB

Figure 2.2: Distributed EPC [4].

In a 5G network, EPG has Control Plane (CP) and User plane (UP) functions that are
�exible to deploy and can scale the CP and UP functions independently. The CP makes
decisions about where tra�c is to be sent, from the underlying data plane that forwards
the payload tra�c to the selected destination. It deals more with session management,
alarm management and routing information. On the other hand, the UP deals more with
packet processing, routing and inspection functions. On 3G and 4G network, the CP and
UP functions are merged together in the EPG.

2.2 Non-Uniform Memory Access

NUMA is an architecture that is widely used in high-end servers and computing systems
today due to its performance and scalability [5]. Multiprocessor systems have introduced
challenges for compilers and run-time systems when it comes to shared memory and its
contention1.

Whenever there is con�ict over access to shared resources as memory, disk or cache,
buses or external network devices, we are facing contention. A resource experiencing
ongoing contention can be described as "oversubscribed". Processors are currently so ca-
pable that they require directly attached memory on their socket, because remote access
from another socket leads to additional latency overhead and contention of the Quick-
Path Interconnect (QPI) which sits between the sockets. Since 2017 in Xeon Skylake-SP
platforms, the QPI has been replaced by the Ultra Path Interconnect (UPI).

A basic NUMA architecture is shown in Figure 2.3, where each physical core is allowed
to access the memory that is connected to it. Every core inside the NUMA node has
its own cache memory. Di�erent processors have di�erent cache placement and access
level strategy. Most NUMA nodes today have Level1 (L1), Level2 (L2) and Level3 (L3)

1Contention: Competition for resources.

8

2. Background

caches where L1 cache is only allowed to be accessed by one core, L2 is accessed by two
neighboring cores and L3 can be accessed by all the cores in the same NUMA node.

Processor

Cache

Processor

Cache

Processor

Cache

Processor

Cache

Memory

Memory

Memory

Memory

BUS

Figure 2.3: Basic NUMA Architecture.

It is important to properly place data in order to increase the bandwidth and minimize
the memory latency [6] of each NUMA node. The two most important points for man-
aging the performance of NUMA shared memory architecture are processor a�nity and
data placement [6]. In processor a�nity, each process is restricted to be executed under
a speci�c number of nearest CPUs, and for the data placement, each process is assigned
to access a memory location connected to the NUMA node where the process is pined.

Generally, di�erent operating systems have di�erent ways of managing NUMA archi-
tecture, but there are many strategies used by the di�erent operating systems to manage
di�erent NUMA con�gurations. Some of them are described below:

• Heuristic memory placement of applications
In this approach, if the operating system is numa-aware, it is possible to enable and
disable the con�gurations during compile time with a kernel parameter. Here, the
operating system determines the memory characteristics from the �rmware and it
can adjust its internal operation to match to the memory con�guration. This ap-
proach tries to place applications inside their local node and the memory from this
local node is to be preferred as default storage. If possible, all memory requested by
a process will be allocated from the local node to avoid the use of context switch-
ing.

• Special NUMA con�guration for applications
This approach provides con�guration option for applications to change the default
assumptions of memory placement policy by the operator. In this approach, it is
possible to establish NUMA con�guration policy for all applications using com-
mand line tools without modifying the code.

9

2. Background

• Ignore the di�erence
This is an initial approach which allows software and the operating system to run
without any modi�cation to the original con�guration. Since this approach treats
everything as equal regarding performance between con�gurations, the operating
system is not aware of any nodes. Therefore, the performance is not optimal and
will likely be di�erent each time the application runs since the con�guration will
change on boot-up.

2.3 Related Work

Since performance of a system is mainly a�ected by latency, bandwidth and available of
cores, a large amount of research has been invested in comparing and analyzing per-
formance. Awasthi et al. [7], Cho and Jin [8] and Dybdahl and Stenstrom[9], have
discussed optimizing data placement in last-level shared Non-Uniform Cache Access
(NUCA) caches.

Awasthi et al. [10], developed a relevant approach to manage data placement on memory
system with multiple Memory Controllers (MC). Their placement strategy is incorpo-
rated more on the queuing delay at the MC, the DRAM access latency and the communi-
cation distance and latency between the core and MC. From the methodologies they have
used to investigate best data placement, they have got an e�cient thread’s data place-
ment by modifying the default operating system’s frame allocation algorithm. From this
placement, they found 6.5% improvement when pages are assigned by �rst touch data
placement algorithm and 8.9% when pages are allowed to migrate across memory con-
trollers. This approach di�ers from ours in the way that, they are concerned more about
the frame allocation algorithm, while ours impacts on network performance in large dis-
tributed systems.

As many processes in the same processor share a common cache, the issues of memory
management and process mapping are becoming critical [11], [12]. Molka et al. [13]
investigated a benchmark for main memory and cache identi�cation to �nd out the fun-
damental performance property for both Intel and AMD x86_64 architectures in terms
of latency and bandwidth. For both architectures they used a NUMA memory layout.
Based on their identi�cation, although the size of the L2 cache for the AMD architecture
is large, it gave almost the same performance result with L3 cache bandwidth that scales
better with the core count on the Intel system. The transfer rate between the socket in
Intel architecture is also four times better than the transfer rate between the two dies in
the AMD architecture [13].

Oltan Majo and Thomas R. Gross.[11] show that, if the allocation of physical memory
and the structure of memory system is not managed well, the operating system will fail
to obtain good performance on the system. From their point of view, if the memory
allocation in the system is balanced, then local scheduling provides large performance
bene�ts. If the memory allocation con�guration of the system is not balanced, then map-

10

2. Background

ping given by the maximum-local scheme needs to be modi�ed, otherwise it is known
to cause performance degradation even with relative to default scheduling. Therefore,
if the distraction of system memory is not fair to all the processors, then mapping pro-
cesses can lead to severe cache contention.

Hackenberg et al. [14] also did a comparison on Cache Architectures and Coherency Pro-
tocols on x86-64 Mediocre Symmetric Multiprocessing (SMP) Systems. This benchmark
is done to get an e�ective in-depth comparison for the multilevel memory subsystem of
dual-socket SMP systems based on the quad-core processors AMD Opteron 2384 (Shang-
hai) and Intel Xeon X5570 (Nehalem) [14]. To the best of the authors’ result, the AMD’s
cache coherency protocol provides the expected performance advantage over the Intel’s
Nehalem processor for accessing modi�ed cache lines for remote processor.

Blagodurov et al. [15], presented Contention Management on Multicore Systems. The
main focus of their work was to investigate why contention-aware schedulers that are
targeted to work on UMA are failing to work in NUMA, and to �nd an algorithm that
can work on NUMA as scheduling contention-aware control. Based on the author’s ex-
perimental result, one reason why contention-aware schedulers fail to work in NUMA,
is that if one process that is computing for Last Level Cache (LLC) is migrated from one
core to other core in di�erent NUMA node, the process will still compute to get access
for memory controller with the previous processes that were in the same core. The al-
gorithm they have devised to solve this problem is Distributed Intensity NUMA Online
(DINO) which prevents thread migration, or if the tread is migrated, the memory of this
thread should also be migrated to the memory where this thread’s core is connected.
The evaluation of their algorithm shows that, moving thread’s memory to the location
where the thread is migrated is not a su�cient solution, but it is better to prevent un-
necessary migrations.

Qazi et al. [1] proposed a new architecture for EPC called PEPC. On their implementa-
tion, they used the Net-Bricks platform which allows to run multiple PEPC slices within
the same process. Their results show a throughput improvement 3-7 times higher than
a comparable software EPCs that is implemented in the industry, and 10 times higher
throughput than a popular open-source implementation. This paper work relates to ours
in the way that, its main objective is also to increase the processing performance of the
EPG but, our work focuses more on the EPG instead of EPC.

In general, all the above articles are related to our work, due to their focus on the impact
of memory management, CPU pinning and NUMA architectures. This thesis focuses
more on investigating the impact of the NUMA concept and various con�gurations on
high-performance virtually deployed distributed systems, such as EPG, which is the test
case for our experiments and benchmarks. The scalability of the Packet Gateway will be
put to the test during the upcoming 5G era more than the other EPC components, and
it is essential to identify the factors that could a�ect its performance.

11

3
Methodology

This chapter focuses on hardware and software methodologies used to evaluate the
packet processing capacity of each NUMA con�guration. The NUMA-aware and deacti-
vated NUMA-awareness con�gurations on the Intel processors, and the di�erent vEPG
deployments with more CPU pinning scenarios are discussed in detail.

We proceed with system level testing to �nd the packet-per-second processing capacity
of the EPG. System level testing is a testing technique that is used to determine whether
the integrated and complete software satis�es the system requirements or not. The pur-
pose of this test is to evaluate the system’s compliance with the speci�ed requirements
[16]. In our case, the test case used to test the EPG at system level is a payload test case.
We want to evaluate the packet per second processing capacity of the EPG at system
level with one payload test case chosen from the available pool. Taking this as a base-
line, we run a test for a NUMA-aware and a NUMA-unaware con�guration on the SSR
and virtual EPG (vEPG).

3.1 Studied Hardware

In this project the main processor product we used to run the EPG with di�erent con-
�gurations is from the Intel Xeon series. These processors are installed on the smart
service cards that are insulated under the SSR platform.

3.1.1 Intel Skylake
Skylake is the code name given for the project implemented in the 6th generation of
Intel Core micro-architecture that delivers a record level of performance and battery life
in many computing cases [17]. It is designed to meet a demanding set of requirements
for various power performance points. Skylake also introduces a new technology called
Intel Software Guard Extensions (IntelSGX), in which application developers can create
secure code to encrypt memory so that no one can not modify or disclose it. The Skylake
memory solution has an e�cient and �exible system memory controller. This controller
enables the processor to use Skylake System-on-Chip (SoC) on multilevel platforms us-
ing di�erent Double Data Rate (DDR) technology.

Skylake’s fabric is an extended development of the successful ring topology that is in-
troduced in the Sandy Bridge generation [17]. It has a built-in last-level cache, that is
designed to provide high memory bandwidth from di�erent memory source. Introduc-

12

3. Methodology

ing eDRAM-based memory-side cache is a main signi�cant change in Skylake’s memory
hierarchy.

3.2 Tra�c Modeling using the Dallas Tool

Dallas is a distributed system tool, developed by Ericsson, that can easily be scaled up
to meet di�erent load testing requirements. Dallas can simulate up to millions of sub-
scribers, and simulate UEs and the radio network in the packet core network testing.
From the system testing point of view, Dallas can be used for stability testing by run-
ning tra�c for a long time, robustness testing by running di�erent tra�c models and
by performing di�erent types of failures, and capacity testing by running speci�c tra�c
models to measure the performance of the system. In this thesis work, Dallas is used as
a capacity or payload testing tool.

Before sending any tra�c, Dallas �rst sends a signal to the node to get information
about the memory and CPU utilization of the node. Then, it starts sending tra�c to the
node based on the status of the latter. In Figure 3.1, the Dallas testing platform sends
a command to generate tra�c that is forwarded to EPG starting from a small number
of subscribers. The command sent to the node contains the number of sessions and
rate as main parameters. From the total number of sessions, rate number of session are
sent in every second. Then, the waiting time of Dallas before sampling the payload
processing capacity of the EPG is calculated as sessions/rate + 5 seconds. If the wait-
ing time expires, Dallas starts the sampling process which counts the number of packets
processed and measures the CPU utilization of the EPG. If the CPU load has not reached
its peak point, Dallas increases the tra�c repeatedly with batches on new subscriptions
until the EPG reaches its peak CPU utilization.

Finally, it calculates the average Packets Per Second (pps) handled by the EPG, which is
our main metric, and stores the results in a log �le. The reason we use pps as our main
metric is because, the system is mostly loaded by handling packet headers. There is no
Deep Packet Inspection (DPI) in the process and the system is more than capable to cope
with large packets, so the size of the packets is not our main concern.

Dallas will stop sending tra�c if the following conditions are not met:

• Average packet per second loss:
During the execution of the test case, a required drop for each test case is set to
some constant value. This value is used to compare with the drop ratio which is
calculated as packets/1million on the test script. If the drop ratio is greater than the
required threshold, Dallas stops sending tra�c, otherwise it can continue sending
tra�c with following iterations by keeping the other conditions such as number
of iterations, peak CPU and number of bearer connections (stable).

13

3. Methodology

• Number of iterations:
The maximum number of iterations Dallas can send as tra�c to the node, is set
to 11 iterations. This means that if there is not any crash or failure of the node
to pass the other constraints, Dallas can increase the injection rate up to 11 times
with di�erent number of sessions to the node, and then terminate the connection.

• Peak CPU:
The maximum value of the peak CPU is set to 100%. If the CPU reaches 100% as
an average between all cores in any iteration, Dallas stops sending tra�c to the
node and collects the �nal result for that iteration.

• Bearer connections
Bearer connections refers to the number of sessions that are created safely or
deleted if the number of sessions are greater than the quantity set by the tool.
If the node fails to pass one of these conditions, Dallas tries for the second time
by sending tra�c again while lowering the number of sessions to some a number
which is multiplied with a constant multiplier that is initially set on the test script.
If the node still fails to pass the above conditions, it stops sending tra�c and out-
puts the result to the log �le at that iteration. If the node ful�lls all the conditions,
Dallas continues sending tra�c to the node by multiplying the number of sessions
by the constant multiplier 1.02 for SSR or 1.1 for the vEPG.

Dallas EPG

Switch

Figure 3.1: Tra�c �ow between Dallas and EPG.

3.3 Baseline Con�guration (NUMA-aware)

The default con�guration of the EPG is NUMA-aware. Processes are allowed to access
speci�c memory locations connected directly to the NUMA node they are running on.
Based on their application, the processes are classi�ed in three groups. We call them
a-processes, b-processes and c-processes. A-processes are used to forward the packets,
b-processes to distribute the coming packets to a-processes, and c-processes are used
to control the communication between them. Figures 3.2 and 3.3 show a NUMA-aware
con�guration of the EPG on SSC1 and SSC3 cards respectively.

14

3. Methodology

B0 A A

B1 A A

NUMA 0

B2 A A

B3 A A

B4 A A

B5 A A

NUMA 1

B6 A A

B7 A A

QPI

Figure 3.2: NUMA-aware EPG Con�guration for SSC1.

The SSC3 card architecture follows the same concept in a 4-socket motherboard. As
shown in �gure 3.3 we have one NUMA node for every socket and it contains 4 b-
processes. Every CPU model has 14 physical cores and 28 threads, for a total of 112
processes across the whole motherboard. The operating system installed on both the
SSC1 and SSC3 cards is x86_64 architecture GNU/Linux. Both these cards are installed
on the Smart Service Router (SSR) platform.

The b-processes can only distribute packets to the a-processes sharing the same NUMA
node. In the SSR platform, b-processes have dedicated groups of a-processes under their
command, and by default are not allowed to use a-processes belonging to another group.
This means that for the SSC1 card, there is only one b-process per 5 a-processes in a
group as it shown in Figure 3.2. This b-process is allowed to send the packets to these
a-processes. In the SSC3 card, there are two b-processes and 9 a-processes in a group,
in which the two b-processes can distribute the packets among the 9 a-processes. In the
vEPG, this feature does not exist and the only bound is the node.

15

3. Methodology

B0 A A

B1 A A

NUMA 0

B2 A A

B3 A A

B4 A A

B5 A A

NUMA 1

B6 A A

B7 A A

B8 A A

B9 A A

NUMA 2

B10 A A

B11 A A

B12 A A

B13 A A

NUMA 3

B14 A A

B15 A A

QPIs

Figure 3.3: NUMA-aware EPG Con�guration for SSC3.

For the case of Uniform Memory Access (UMA) con�guration, the NUMA-awareness for
both the SSC1 shown in Figure 3.2 and SSC3 shown in Figure 3.3 is deactivated. This
means b-processes are free to send the packets to any of the a-processes on the card and
there is no dedicated memory location for speci�c cores. It is the responsibility of the
scheduler to assign which process should use which memory region.

3.4 Virtualization

Virtualization is the process of creating a virtual version of an entity, including but not
limited to virtual computing, storage and networking resources. As the SSR platform is
hard coded for a speci�c CPU pinning con�guration, enabling and disabling the CPU
pinning on the EPG source code doesn’t bring any change. To investigate di�erent re-
sults from di�erent CPU pinning strategies, virtualization is the preferred option as it
gives us the freedom to pin CPUs to di�erent NUMA nodes and group them. To virtual-
ize the EPG, Virtual I/O (VIRTIO) and Single Root I/O (SRIO) interfaces are used in both
Intel servers.

As mentioned previously, our work continued on the vEPG, which can only be deployed
on SSC1 cards. This means that we proceed with a smaller scale platform but with a
dedicated node for our experiments only. We deployed on one SSC card only, so that we
can manipulate the CPU pinning con�guration.

16

3. Methodology

VM

NIC

NIC

HOST

(a) VM deployment in host.

Interface

b-process

a-process

a-process

a-process
VM

(b) VM function.

Figure 3.4: V-EPG in physical hosts.

Figure 3.4a shows, the way EPG Virtual Machine (VMs) are deployed in a host. A VM is
an emulation of a computer system where a physical computer can be partitioned into
several software based VMs. A VM can run its own OS and applications, contain speci�c
number of CPU cores, dedicated RAM, hard disk and Network Interface Card (NIC). The
physical Network Interface c-processess (NICs) can be split into smaller virtual ones,
and dedicate each of them on one VM. Currently it is possible to simulate up to 64 NICs
on one physical. Figure 3.4b shows a simpli�ed way, the role of the b-processes and
a-processes in the VM. The b-processes receive the tasks (packets) and forward them to
the a-processes for processing. Currently each a-process is pinned to a speci�c core and
the amount of available a-processes is equally distributed to them. For every b-process,
there is a speci�c pool of a-processes that are allowed to access the memory connected
to them, and this is how they form a NUMA node in SSC1 and SSC3.

On the SSC1 we have 32 vCPUs available and on the SSC3 there are 112 vCPUs, but
not all of them are allocated by the a-b-c-processes. Since we cannot alter the number
of free vCPUs on SSC1 and SSC3 on SSR, we will do that in the vEPG where we have
the freedom to change the NUMA placement. On the vEPG, we will consider di�erent
CPU pinning, so that the b-processes are assigned to a core automatically. We will try a
larger number of b-processes in a NUMA node in order to evaluate if those processes are
a bottleneck while distributing the packets to the a-processes, and a larger number of
a-processes by utilizing the free vCPUs. Eventually the main purpose of all this tests on
con�gurations is to identify which parameters have the biggest impact on performance
and why.

3.4.1 vEPG deployment using VIRTIO
The deployment of vEPG in Cloud Execution Environment (CEE) with OpenStack for
a lab using VIRTIO interface is shown in Figure 3.5. OpenStack is a cloud computing
operating system that is used to deploy virtual machines and other instances to control
di�erent tasks for building and managing public and private cloud-computing platforms
[18]. The OpenStack is responsible for controlling the visualization process. The VM
that is used to deploy vEPG has 48 vCPUs with two sockets and one NUMA node on

17

3. Methodology

each socket. It is x86 architecture with GNU/Linux hyper-threaded enabled. Since there
are only 48 vCPUs on the host machine, the total number of vCPUs on all the VMs com-
bined, should not exceed that number.

Openstack

NM
RP

 Host HW (x86)

NM
RP PP PP LB LB CP CP CP

TOR
(Switch)

External IP Networks

BGW
(Router)

CEE VM(vSSC) VM(vSSC) VM(vSSC) VM(vSSC)VM(vSSC)VM(RP)VM(vRP) VM(vLC) VM(vLC)
Cloud
Infrastructure

vNIC vNIC vNIC vNIC vNIC vNIC vNIC vNIC vNIC

vSwitch Hypervisor

pNIC

Figure 3.5: vEPG virtualization using VIRTIO interface.

The deployment process starts by generating a Heat Orchestration Template (HOT) �le
using a python script HOT �le generator. Orchestration is the process of creating one
or more virtual machine at a time. Next the image is downloaded using the Virtual De-
ployment Package (VDP) to the glance from any EPG build. Glance is component that
provide services to the OpenStack. Using this service, a user can register, discover, and
retrieve virtual machine images for use in the OpenStack environment. The images that
are deployed using the OpenStack image service can be stored in di�erent locations like
OpenStack object storage, �le system and other distributed �le systems [18]. Then, the
�avors are created and the HOT template is executed to generate and create the Open-
stack resources. Flavors are de�ned on the con�guration �le to set the vCPU, memory,
and storage capacity of the virtual machines. During the deployment process, vCPUs,
Disk and main memory of the VMs are created based on the de�nition of the �avors on
the con�guration �le.

The deployment of vEPG from the default con�guration �le is shown in Figure 3.5. Here,
nine VMs are created with 2 of them used for Payload Processing (PP), 3 of them used as
CP, 2 of them as Route Processing (RP) and two of them as a Line Cards (LCs). Line cards
are used to send the out-going packet from the EPG to the PDN servers or the in-going
packets from the EPG to the UE devices. The RPs are used to manage and facilitate the
communication between the VMs. The default deployment con�guration, assigns 6vC-
PUs for the control and user plane VMs. In each of the user plane vCPUs, one of them
is used as a-process, one as a b-process and 4 of the are left for the background process
of the VM.

Deploying vEPG using VIRTIO interface is simple and �exible to change the VM con-

18

3. Methodology

�guration. It is possible to change the number of CPs or UPs from one role to another
and to pin the CPU to di�erent NUMA nodes. But, since the hypervisor process creates
a Virtual Switch (vSwitch) from the Top Of Rack (TOR) physical switch, it slows the
tra�c that is forwarded to the b-processes. The bandwidth of the vSwitch is limited to
process a maximum of 10 Gbps, and the tra�c that passes through this vSwitch can not
overload the a-processes of the VMs to reach their max CPU utilization. Even if this
virtualization is is not recommended to test EPG at a system level, we decided and pro-
ceeded with testing our di�erent con�gurations by using 50% average CPU utilization
as the reference point, by continuing to send the same number of sessions and rate for
all the con�gurations.

Since our main metric is packets per second for comparing the performance of each con-
�guration based on CPU utilization, we selected a test case that works with �xed CPU
utilization. By �xed CPU utilization, we mean that Dallas stops sending tra�c to the
node if its CPU utilization reaches between +2% or -2% of the speci�ed utilization per-
centage. The test case we use was designed to work with a �xed CPU utilization of 27%
using 2CPs and 2UPs with some constant initial sessions. This means that Dallas stops
sending tra�c if the CPU utilization of the node reaches a value between 25% and 29%
in any of the iterations.

Therefore, since the default test script con�guration of this test case does not match with
our requirement, we changed all the parameters of the test script and the conditions to
match our desired 50% �xed CPU utilization.

3.4.2 vEPG deployment with 8vCPUs UP on each NUMA node
For our customized default con�guration with 8vCPUs VMs, the setup is presented in
Figure 3.6. Every square represents one vCPU on the VMs. The reason we chose earlier
to proceed with 8vCPU VMs is because of the number of a-processes in smaller scale
deployments. As we mentioned before, 6vCPU deployment UP instances have one b-
processes and one a-processes deployed on each socket, which does not allow splitting
a-processes of a single user plane between NUMA nodes.

If we check the properties of the host, we are presented with the NUMA nodes and
the IDs of the processes they include. This gives us the ability to map the location of
every thread. We can see the instances deployed and the vCPUs they contain, and also
identify the b-process and a-process threads. In this test case, we identify where every
VM is running and manually change the IDs of the processes it uses to customize the
topology. By changing all the vCPUs a VM uses, we are able to practically move it wher-
ever we want in the system. We are basically telling the VM which vCPUs to use. This is
going to be our new baseline for all the rest of the con�gurations. Every VM is deployed
on a speci�c NUMA node (socket) with 1 CP and 1 UP on socket 0, and 1 CP and 1 UP
on socket 1.

19

3. Methodology

C B

CP1

UP2

NUMA 0

QPI

A A C B

CP2

UP1

NUMA 1

A A

Figure 3.6: vEPD deployment with 8vCPUs on UPs (result 4.3).

The user plane VMs have 1 c-process, 1 b-process and 2 a-processes. The c-process is
a sibling of the �rst UP a-processes and the b-processes is a sibling of the second UP
a-processes. This deployment achieved better performance because the VMs with a-
processes do not exchange data between sockets and work independently.

CPU Pinning Scenarios

Following the test on NUMA-awareness in the system, we want to experiment with the
deployment of the Virtual Machines. The virtualization allows us to experiment with
CPU pinning, something that was not possible in the SSR platforms as it is hard coded.
The performance degradation in NUMA-unaware systems is mainly a result of processes
requesting memory from non-local sockets, thus having to traverse the QPI bus. This
method adds latency to the run-time of the process.

There are a variety of combinations we could test with CPU pinning, but we will pro-
ceed with the following scenarios for this con�guration, since according to our research
these introduce the most major diversities in the system and performance.

Pinning a-processes to another NUMA-node

In this con�guration, the a-processes of each user plane VMs are separated from the rest
of the vCPUs and are pinned to the other NUMA node. By default, one a-process of each
UP is a sibling of c-process and the other a-process is also a sibling of the b-process. On
this scenario, both the a-processes for both the user plane VMs are migrated to the other
NUMA node as shown in Figure 3.7.

C

A

CP1

UP1

NUMA 0

QPIB

A C

A

CP2

UP2

NUMA 1

A

B

Figure 3.7: A-processes on separate NUMA node (result 4.4).

20

3. Methodology

The purpose of this scenario is to evaluate the con�guration of two a-processes when
they are con�gured as sibling processes, by separating them from the rest of the vCPUs
of the VM. Since the b-processes of each user plane VM is in a di�erent NUMA node
than the a-processes, communication implies traversing the QPI to distribute the pack-
ets to the a-processes, and this may cause a performance degradation with respect to
the baseline con�guration in section 3.4.2. Even if the two a-processes are siblings, the
result of this con�guration may result in high performance degradation compared to the
baseline con�guration, as the latency to distribute the packets is worse than the baseline
con�gurations.

Pinning b-processes and one a-processes to other NUMA-node

In the con�guration shown in Figure 3.8, we want to test how forcing the b-processes
and one a-processes of the UP to work with the QPI bottleneck will a�ect the �nal re-
sults. On this scenario, the sibling b-processes and one a-processes of each UP VMs are
separated and pinned to the other NUMA node from the rest of the vCPUs. Therefore,
the latency between the the b-processes and one a-processes remains the same as the
default con�guration since they are pinned as sibling process to the other NUMA node,
but the latency between the b-processes and the other a-processes as well as the latency
between the a-processes will increase as they are in di�erent NUMA nodes.

C

B

CP1

UP1

NUMA 0

QPIA

A C

B

CP2

UP2

NUMA 1

A

A

Figure 3.8: One b-process and one a-process on separate NUMA node (result 4.4).

The task of the UPs is the most CPU-intensive in the system and we expect a signi�cant
amount of negative impact and packet loss and the overall performance of this conjuga-
tion may be worse than all the pinning scenarios and the default con�guration in section
3.4.2

vEPG deployment with 3CP and 2UP VMs

Figure 3.9 is used to describe the VM setups for the default 6vCPU con�guration. When
the EPG is deployed on a virtual machine, the default con�guration on the 48core host
creates 5 VMs, where 3 of them are Control Plane and 2 them User Plane instances. Each
VM though has 6 vCPUs available as shown in Figure 3.9. In a 6core User Plane VMs,
one vCPU is used as a-process, one vCPU as c-process and b-process and the rest are
used for line cards.

21

3. Methodology

B A

B A

CP1

UP1

CP2

CP3

UP2

NUMA 0 NUMA 1

QPI

Figure 3.9: vEPG deployment with 3CPs and 2UPs (result 4.5).

On this deployment, two control plane and one user plane VMs are deployed on the �rst
NUMA node and one control plane and one user plane VMs are deployed on the second
NUMA node. This deployment is not e�cient based on the usage of vCPUs, memory and
a hard disk of the host machine. Since control plane VMs are not that much overloaded
to give routing information for the user plane VMs, deploying three CPs on one NUMA
node is almost a waste of resources.

vEPG deployment with 2CP and 3UP VMs

Figure 3.10, shows a vEPG deployment with 2 control plane and 3 user plane VMs with
6 vCPUs each. This deployment is the modi�ed version of the 3CP and 2UP deployment
con�guration. There are two user plane and one control plane VMs on the �rst NUMA
node and one control plane and two user plane VMs on the second NUMA node.

B A

B A

B A

UP2

UP3

CP2

CP1

UP1

NUMA 1NUMA 0

QPI

Figure 3.10: vEPG deployment with 2CPs and 3UPs (result 4.6).

The main objective of this deployment is, to compare with the default 6vCPU con�gu-
ration, and we found that this deployment is better than the one in section 3.4.2, due to
this deployment having more user plane VMs than control plane VMs. Since packet for-
warding and processing burden is more on the user plane VMs than on the control plane
VMs, having more user plane VM is a good option to avoid overloading the b-processes
and a-processes.

3.4.3 vEPG deployment with 2CP and 2UP VMs
For this deployment, the con�guration �le is changed to deploy two control plane VMs
in the �rst NUMA node with 6vCPUs each and two user plane VMs on the second NUMA
node with 8vCPUs each as shown in Figure 3.11. In this deployment, we want to separate
the Control Plane VMs from the User Plane. The communication between the control
plane and user plane implies traversing the QPI but the the communication between user

22

3. Methodology

planes does not traverse the QPI as they are on the same NUMA node. Since communi-
cation between control plane and user plane VMs is more intensive than communication
between user plane VMs, this con�guration impacts the performance negatively more
than the default con�guration in section 3.4.2.

C BCP1 UP1

NUMA 0

QPI
A A

C BCP2 UP2

NUMA 1

A A

Figure 3.11: vEPG deployment by separating CP and UP VMs (result 4.7).

On this con�guration, there are a total of two b-processes and four a-processes on the
same NUMA node. Even if it is easy for the line cards to distribute the packets to the
b-processes on the same NUMA node and there is less latency between the user plane
VMs, the signaling communication between the control plane VMs and the user VMs
are more costy. This con�guration showed slight performance degradation compared to
the default con�guration, since all signals for communication traverse the QPI.

3.4.4 vEPG deployment with 2CP and 1UP VMs
This deployment is almost the same as the deployment in section 3.4.3 as shown in Fig-
ure 3.12. This con�guration creates 2 control plane VMs on the the �rst NUMA node
with 6vCPUs each and one user plane on the other NUMA node with 16vCPUs. The user
plane has 16vCPUs out of which 2 of them are b-processes, 9 of them a-processes and
one c-process. This deployment saves the memory and hard disk of the host machine
that was allocated for the second user plane by the �avors as in section 3.4.3.

C B
CP1

UP1

NUMA 0

QPI B A

A A A AA A
CP2

NUMA 1

A A

Figure 3.12: vEPG deployment with 2CPs and 1UP (result 4.8).

The objective of this con�guration is to evaluate the EPG by deploying one user plane to
use most of the vCPUs as a-processes and compare with the default con�guration that
deploys two user planes. On the default con�guration in section 3.4.2 and in section
3.4.3, out of the total 16vCPUs on the user plane VMs, only 4 vCPUs are assigned as
a-processes and 4 vCPUs as line cards. But, this deployment assigns 9 vCPUs as a-
processes as it only uses 4 vCPUs for line cards. This con�guration performed better
than the default con�guration since there are 5 more a-processes than the 2 user plane

23

3. Methodology

VMs deployment, but there might be more packet drops as the signaling communication
between the control plane and user plane VMs traverses the QPI.

3.4.5 vEPG deployment with 1CP and 2UPs VMs
This con�guration deploys one control plane with 12vCPUs on the �rst NUMA node and
two user planes with 16vCPUs on the second NUMA node as shown in Figure 3.13. Each
user plane VM has 1 c-process, 1 b-process and 2 a-processes. On this con�guration one
control plane is used to send the routing information for both user plane instances. This
con�guration saves memory and hard disk on the host machine that was allocated for
the other control plane VM during the 2 control plane con�gurations.

C B

CP1

UP1

NUMA 0

QPI
A A

C BUP2

NUMA 1

A A

Figure 3.13: vEPG deployment with 1CP and 2UPs (result 4.9).

The objective of this con�guration is to evaluate the EPG with a single control plane
instance. Even if there are 12vCPUs on the control plane VM, the performance of the
EPG may not increase by adding more vCPUs to a control plane, since these VMs are
not overloaded by signaling packets. In this con�guration it is not e�cient to control
both user plane instances using one control plane. Therefore, the CPU utilization of
this con�guration is much worse than the baseline con�guration, as there may be more
packet drops on the cards due to routing errors.

3.4.6 vEPG deployment with 1CP and 1UP VMs
This con�guration deploys the control plane VM with 12vCPUs in the �rst NUMA node
and the user plane VM with 16vCPUs in the second NUMA node as shown in Figure 3.14.
This con�guration saves almost 50% of the memory and hard disk that was allocated for
the control plane and user plane VMs during the baseline con�guration. The user plane
has 16vCPUs out of which 2 are b-processes, 9 of them are a-processes and one c-process
as in the Figure 3.4.6.

24

3. Methodology

C B
CP1 UP1

NUMA 0

QPI B A

A A A AA A

NUMA 1

A A

Figure 3.14: vEPG deployment with 1CP and 1UP (result 4.10).

This deployment is almost the same as the deployment in section 3.4.4, but this con�g-
uration saves the memory and hard disk of the host machine that was allocated for the
other control plane VM on the baseline con�guration, since it deploys with only one
control plane. Since the signaling communication is only between the one control plane
and one user plane VMs, the result is almost the same as the con�guration in section
3.4.4.

25

4
Results

In this chapter, the performance assessment of the di�erent con�gurations discussed in
the methodology chapter is presented in depth. First the results for the baseline con�gu-
rations on the SSR platform with Intel processors for both NUMA-aware and deactivated
NUMA-awareness con�gurations are discussed. Next, the results for the di�erent con-
�gurations that deploy EPG virtually (vSSR) are explained.

Finally, there is a discussion section based on the comparison of the results of all con-
�gurations. For the purpose of non-disclosure of sensitive information, all the actual
packet-per-second values processed by each con�guration are not revealed. On the y-
axis percentage is used to compare the result of each con�guration in relation to the
baseline con�guration on all the tables.

4.1 Evaluation

In this thesis work, the average CPU utilization is the main metric of comparing perfor-
mance between di�erent con�gurations. A con�guration with lower CPU utilization is
considered more e�cient for the same load. On the SSR, 100% is the target CPU Utiliza-
tion to identify and evaluate the impact of NUMA-aware and NUMA-unaware con�g-
urations on the EPG. On the virtualized deployments, 50% is taken as a target average
CPU utilization, even for the baseline con�guration. The average CPU utilization of
each con�guration on the �nal iteration is compared with the average CPU utilization
of the baseline on that iteration for the same number of sessions. Then, the average
CPU utilization di�erence between the baseline and any con�guration is considered as
performance improvement or degradation.

During the Dallas simulations, extensive and detailed logs are generated for the perfor-
mance of each con�guration tested. Comparing between these outputs is based on the
main metrics provided by the tool and the ones that have been used in this study are
listed bellow:

Sessions

As mentioned previously, the amount of sessions is directly connected to the number of
simulated users connected to the system. There is a stable ratio between sessions and
number of packages simulated, thus it cannot be revealed. Their number is increased in
every iteration to achieve the desired load (sessions).

26

4. Results

Packets per Second

The main metric of every simulation is the amount of packets the gateway can handle
before its breaking point is reached.

Throughput

EPG’s throughput allows further investigation based on its bandwidth and can add great
value on a stress test. Since the size of packets in the simulations varies and because the
EPG is more than capable of withstanding loads higher than the ones achieved in our
tests, we present this result without relying on it for performance evaluation. Focusing
on processing the package headers was of greater importance than the package context,
and the system bottleneck we are studying.

CPU Utilization

At any given step of a simulation the percentage of CPU utilization is known. It is a reli-
able representation of the e�ciency of the con�guration and reveals the real bottleneck
of the system in every occasion. Two �elds relative to CPU utilization are presented in
the result tables. The average CPU reveals the utilization percentage on a stable state
for that given load, while peak CPU is the value documented on the breaking point.

Packets dropped per million

It is essential for the deployed EPG to meet a high robustness and reliability level. In
order to maintain QoS the threshold for acceptable packet drop is kept low. This is the
reason that this number is also taken into account for the success or failure of a test.
Dallas has the ability to take measurements on both sides of the gateway because it acts
both as the sender and receiver of the payload. Keeping record of the sent and received
tra�c allows for easy calculation of the amount of discarded packets.

4.2 Baseline Con�guration on SSR

The test results for NUMA-aware con�gurations on SSC3 cards when the CPU reaches
its peak point, are presented in Table 4.1. On the SSR platform, every con�guration is
tested twice to verify its stability. As shown in Table 4.1, an amount of X packets is
processed in the �nal iteration of the �rst test. The number of sessions sent to the node
on both tests is identical. The same for the second test, the EPG processed 0.09% more
packets per second over the �rst test. For the NUMA-aware con�guration, Dallas ini-
tially sent 2,500,000 sessions to the EPG node on both tests. At this point, the peak CPU
of the node was 83% for both tests. For every following iteration, Dallas multiplies the
number of sessions sent to the node by a factor of 1.02 until the node fails to pass the
conditions discussed in section 3.2.

Figure 4.1 shows the test result for the NUMA aware con�guration on the SSC3 cards.
The relationship between session and pps is plotted on 4.1a, where the number of ses-
sions are shown on the x-axis as an independent variable and pps on the y-axis with

27

4. Results

relative values. Even if the packets per second are hidden to not reveal the real data on
the y-axis, it is clear that the processing capacity of this con�guration is increasing as
the number of sessions increases.

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
2987700 baseline baseline 90% 99% baseline 11
2987700 +0.092% +0.07% 90% 99% +50% 11

Table 4.1: NUMA-Awareness processing result using Intel processor on SSCs.

In every iteration, Dallas collects the average number of pps, average number of dropped
packets per million (ppm) and peak CPU utilization of each iteration. If the node passes
the conditions discussed on the Methodology Chapter section 3.2, Dallas continues to
send tra�c to the node by multiplying the number of sessions with the constant multi-
plier 1.02 as shown in Figure 4.1a and Figure 4.1b, until the node fails to pass the condi-
tions. For the test results shown in Figure 4.1c, the drop ratio is almost stable before the
peak CPU reaches its peak point, but the dropped ppm raises rapidly when the number
of sessions is increased to a number that makes the CPU reach 100%. At this iteration,
Dallas stopped sending tra�c to the node since the a-processes are overloaded and the
drop ratio is increased dramatically. Finally, all the processing capacity results of the
EPG when the CPU of the node reaches its peak point are stored in a log �le.

2.5 2.6 2.7 2.8 2.9 3 3.1
·106

0.82

0.85

0.88

0.91

0.94

0.97

1

Number of Sessions

Pa
ck

et
sp

er
Se

co
nd

(a) pps with number of sessions.

85 90 95 100

0.82

0.85

0.88

0.91

0.94

0.97

1

CPU Utilization

Pa
ck

et
sp

er
Se

co
nd

(b) pps with CPU utilization.

80 85 90 95 100
10−4

10−3

10−2

10−1

100

CPU Utilization

D
ro

p
Pa

ck
et

sP
er

M
ill

io
n

(p
pm

)

(c) Drop ppm with CPU utilization.

Figure 4.1: Baseline con�guration results on SSR.

28

4. Results

To determine the packet-per-second processing capacity of the EPG without NUMA-
awareness, we have deactivated the NUMA-aware con�guration of the EPG. As the re-
sults show in Table 4.2, the peak CPU reaches 100% in the �rst iteration for both tests.
When Dallas sends tra�c to the node with initial number of sessions at 2.7M, the peak
CPU and the average CPU utilization on both tests reaches 100% automatically. This
means, both the b-processes and a-processes are overloaded and there are more pack-
ets lost per million as shown in Table 4.2. Dallas sends tra�c with a lower number of
sessions less than the previous iteration to give a second chance to the node, but still
the peak CPU is 100%. Therefore, if the node failed to process the required packets per
second, Dallas stopped sending tra�c, as the node drops a high number of packets per
second. For the second deactivated NUMA-awareness test, almost the same result is
produced as shown in Table 4.2

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
2382400 baseline baseline 100% 100% baseline 2
2382400 -0.13% -0.17% 100% 100% +24% 2

Table 4.2: Deactivated NUMA-Awareness processing result using Intel processor.

4.3 Virtualization

As discussed in section 3.4, the virtualization which deploys the EPG in a virtual environ-
ment and the di�erent results for the vEPG using di�erent con�gurations are presented
here. The bar chart in Figure 4.2 shows the relationship between number of sessions and
packet-per-second processing capacity of the node for the di�erent con�gurations. The
blue and red color bar charts represent the number of sessions and packet-per-second
processing capacity of each con�guration on the last iteration. Dallas sends a �xed num-
ber of packets per second in one session with the same number of sessions for all the
con�gurations.

For every con�guration, 3.2 x 105 sessions are sent in the �rst iteration but each con-
�guration processed di�erent number of pps. For every con�guration, the number of
sessions for the next iteration is multiplied by a constant number 1.1. As it is shown
in the Figure 4.2, there are 7 con�gurations which are named in the x-axis. Each name
represents one of the con�guration we discussed in the methodology chapter. The name
"baseline" refers to the baseline con�guration we have discussed in section 3.4.2. The
name "3cp2up" refers to the con�guration discussed in section 3.4.2 with 3 control plane
and 2 user plane VMs. The name "2cp2up" refers to the con�guration discussed in sec-
tion 3.4.3 that deploys the two control plane VMs in the same NUMA node and the two
user plane VMs in the second NUMA node. The names "2cp1up", "1cp2up", "1cp1up",
and "3cp2up" refers to the con�gurations discussed in section 3.4.4, section 3.4.5, section
3.4.6, and section 4.5 respectively. The names in Figure 4.3 and Figure 4.4 also refer to
the di�erent con�gurations discussed in the methodology chapter.

Looking at the results in Figure 4.3, we observe that each con�guration processed dif-
ferent amount of packets per second when the average CPU utilization of each con�g-

29

4. Results

3cp
2U

P
2cp

3u
p
1cp

2u
p
2cp

2u
p
1cp

1u
p
2cp

1u
p

bas
eli

ne

0.2

0.4

0.6

0.8

1

pp
s&

se
ss

io
ns

sessions
pps

Figure 4.2: Maximum packets per second results for all con�guration.

uration reaches its breaking point. The result of each con�guration is plotted with dif-
ferent shape and color. As shown in Figure 4.3 with the square shape and red color, the
baseline con�guration reaches an average CPU utilization of 20.2% in the �rst iteration
and 49.3% in the last iteration. In Figure 4.3, the plot for the 2cp1up and 1cp1up con-
�gurations overlapped since both these con�gurations reached the same average CPU
utilization on their �rst and last iterations, as it is shown in the chart in Figure 4.2. But,
the con�guration with 2cp1up processed more packet than the 1cp1up con�guration.
The same case with the 2cp2up and 1cp2up con�gurations, as they are overlapped on
the plot, since both these con�guration reach almost the same average CPU utilization
on their �rst and last iterations.

30

4. Results

10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

CPU utilization

Pa
ck

et
sp

er
Se

co
nd

baseline

2cp3up

2cp2up

2cp1up

1cp2up

1cp1up

3cp2up

Figure 4.3: Packets per second with CPU utilization.

The relationship between average CPU utilization and packets per million dropped are
shown in Figure 4.4. The drops are either on the vSwitch or on the di�erent VM cards.
Since the bandwidth of the vSwitch is 10Gbps, there are more packet drops on the
vSwitch if the bandwidth of the EPG is greater than 8Gbps. There are also more packet
drops on the VM cards if the number of sessions sent to the node and the placement
of VMs is not con�gured correctly. As shown in Figure 4.4, there is a threshold level
that limits drops packet per million a node can drop to continue to the next iteration.
The threshold is set to 2000 packets per million. If a con�guration drops more than 2000
packets per million in one iteration, Dallas stops sending tra�c to the node and this drop
is recorded as the �nal step of this con�guration. The packet-per-second processing ca-
pacity, average CPU utilization and total packet drops per million of each con�guration
are discussed in details in the following sections.

31

4. Results

5 10 15 20 25 30 35 40 45 50 55
10−6

10−5

10−4

10−3

10−2

10−1

100

CPU utilization %

dr
op

pp
m

baseline
2cp3up
2cp2up
2cp1up
1cp2up
1cp1up
3cp2up

Threshold

Figure 4.4: drop packets per million vs CPU utilization.

4.3.1 vEPG deployment with 8vCPU UP on each NUMA node
The result for the deployment presented in section 3.4.2 with a total of 8vCPUs in each
user plane VM is shown in Table 4.3. Since memory and vCPUs of each VM are de�ned
in the con�guration �le during the deployment process, deactivating the NUMA-aware
con�guration in virtualization does not a�ect the performance of the EPG. To check this
condition, we run a test by deactivating the NUMA-aware con�guration of the EPG,
and the result is almost the same as shown in Table 4.3 for both the NUMA and UMA
con�gurations. Therefore, since the rest of the CPU pinning scenarios and di�erent con-
�gurations of the virtualization are tested based on the NUMA-aware con�gurations of
the EPG, we have taken the NUMA-aware result shown in Table 4.3 as our baseline.

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
NUMA 754600 baseline baseline 49.3% 55% baseline 10
UMA 754600 -0.13% -0.17% 48.5% 54% +24.04% 10

Table 4.3: Results for scenario 3.6.

The packet-per-second processing capacity and number of sessions on the last iteration
of this con�guration is shown in the bar chart Figure 4.2 with the name baseline. This
baseline con�guration processed some amount of packets when the number of session
are 754600. The relationship between CPU utilization and packet-per-second processing
capacity of the node on this con�guration is shown in Figure 4.3. In Figure 4.3, the pps
processing of the node increases linearly as the average CPU utilization increases. When
the average CPU utilization of the EPG reaches the target 50% CPU utilization as shown

32

4. Results

in Figure 4.3 with the name "baseline", Dallas stopped sending tra�c to the node. Figure
4.4 with square shape and red color, shows the total packet-per-million drops of the
node in each iteration. For the �rst �ve iterations, the packet loss was very small and
the node was stable, but when the average CPU utilization of the CPU becomes greater
than 40%, the drop ratio increases to high packet loss. This is because, the vSwitch we
have discussed in section 3.4 is becoming a bottleneck. Therefore, when the bandwidth
of the node approaches the 8Gbps mark, there are more packets dropped on the vSwitch.

CPU Pinning Scenarios

On the baseline con�guration, two pinning scenarios are tested. The results for the
pinning scenarios discussed in section 3.8 and 3.7 are shown in Table 4.4. For pinning
one b-process and one a-process to another NUMA node, the average CPU utilization
reaches the target CPU when the number of sessions reached 515,400 in the 6th iteration.
For the second scenario pinning the two a-processes to the other NUMA node as sibling
processes, the average CPU of the node reaches the target CPU when the number of
sessions is 468,500 in the 5th iteration. Pinning of one b-process and one a-process on
another NUMA node processed more packets than pinning two a-processes. This shows
that it is better to pair one b-process and one a-process as sibling processes so that the
latency to send the packet to the a-process is relatively small and they might use the
same cache memory.

Sessions pps Gbps avg CP peak
CPU

drop
ppm

iter.

1A&1B 515400 -0.03% -0.12% 49.4% 53% +91.03% 6
2A 468500 -0.02% baseline 48.1% 51% baseline 5

Table 4.4: Results for scenarios 3.8 and 3.7 respectively.

4.3.2 vEPG deployment with 3CP and 2UP VMs
For the deployment we discussed in section 3.4.2, the result is shown in Table 4.5. This
con�guration stopped at iteration 3 when the average CPU utilization of the node reached
the target CPU 50%. The average CPU utilization of this con�guration reaches the target
CPU early in iteration 3, since there is a small number of b-processes and a-processes as
discussed in section 3.4.2. This deployment processed 0.07 percent less packets than the
baseline con�guration as shown in Table 4.5, when the target CPU is set to 50% .

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
387200 -0.02% baseline 48.7% 50% +38506% 3

Table 4.5: Results for scenario 3.9.

The pps processing capacity and sessions of this con�guration on the last iteration is
shown in the bar chart Figure 4.2 with the name 3cp2up. The average CPU utilization of

33

4. Results

this con�guration reaches 40.1% early.The packet-per-second processing of the con�gu-
ration increases almost linearly as the average CPU utilization increases, until it reaches
the target CPU shown in Figure 4.3 with triangle shape and green color. The drop ratio
also increases for every next iteration as shown in Figure 4.4 with the triangle shape
and green color. Since there are only two a-processes in the user plane VMs, they are
overloaded as the number of sessions increases in every iteration and the drop ratio also
increases.

4.3.3 vEPG deployment with 2CP and 3UP VMs
The following Table 4.6, contains the results for the vEPG deployment with 2 control
plane and 3 user plane VMs. As we have discussed in section 3.4.2, the main objec-
tive of this con�guration is to increase the b-processes and a-processes by deploying 3
user plane VMs instead of 2 user plane VM in section 3.4.2. This deployment stopped
early at iteration 4 and processed more packets than the deployment in section 3.4.2, but
this con�guration processed less packets per second than the baseline con�guration by
5.59% as shown in Table 4.6. Finally, this con�guration stopped in the 4th iteration with-
out reaching the target CPU when the average CPU utilization reached 37.4%, which is
27.80% performance degradation from the baseline con�guration. The relationship be-
tween the average CPU utilization and packets per second of this con�guration is shown
in Figure 4.3 with the square shape and black color.

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
425900 -5.95% -6% 37.4% 40% +4374440% 4

Table 4.6: Results for scenario 3.10.

On the 4th iteration, Dallas stopped sending tra�c to the node since there are more
packets dropped as shown in Figure 4.4 with square shape and black color. On this
con�guration, there are more packet drops as the number of sessions is increasing in
every iteration, and the 2 control plane VMs are not able to route all the packets, because
the a-processes are overloaded. The packets per second processed and the number of
sessions of this con�guration is shown in the bar chart shown in Figure 4.2 with the
name 2cp3up. The pps processing capacity of the node was increasing linearly as the
number of sessions increases. But, the pps processing capacity of the node fails to be
linear when the number of sessions are 3.9 x 105 as more packets are dropped during
that iteration.

4.3.4 vEPG deployment with 2CP and 2UP VMs
The result for the vEPG deployment we discussed in section 3.4.3 with both the user
plane VMs on the �rst NUMA node and the control plane VMs on the second NUMA
node is shown in Table 4.7. The main objective of this con�guration is to see the im-
pact of separating the control VMs from the user plane VMs between the NUMA nodes.
The packets per second processing capacity and number of session on the last iteration

34

4. Results

of this con�guration is shown in the bar chart shown in Figure 4.2. This con�guration
processed 1.97 percent less packets than the baseline con�guration when the number of
sessions is 515,400 on the last iteration.

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
515400 -1.97% -2.03% 34.8% 39% +25321% 6

Table 4.7: Result for scenario 3.11.

The relationship between average CPU utilization and packet-per-second processing ca-
pacity of this con�guration is shown in Figure 4.3 with the name "2cp2up". The aver-
age CPU utilization of this con�guration reaches 12% in the �rst iteration and 34.8% in
the last iteration. As shown in Figure 4.2, this con�guration has almost the same CPU
utilization with the 1cp2up con�guration. The packet-per-million drop count of this
con�guration was below the threshold before the average CPU utilization reaches 31.5%
as it shown in Figure 4.4, but this con�guration drops almost 25321% more packets per
million than the baseline con�guration when the number of sessions is 515,400.

4.3.5 vEPG deployment with 2CP and 1UP VMs
Table 4.8, shows the result at the 9th iteration for the vEPG deployment with two con-
trol plane VMs on the �rst NUMA node and one user plane VM on the second NUMA
node as we discussed in section 3.4.4. This deployment processed 4.93% less packets per
second than the baseline con�guration when the CPU utilization of this con�guration
reaches 26% in the last iteration. Since this deployment has more a-processes than the
deployment in section 3.4.3 and has more control plane VMs than the user plane VMs,
it processes more packets than the con�guration in section 3.4.3.

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
686000 -4.39% -2.29% 26% 28% 9868% 9

Table 4.8: Result for scenario 3.12.

The packet-per-second processing capacity and number of sessions of this con�guration
on the last iteration is shown on the bar chart in Figure 4.2 with the name "2cp1up". This
con�guration processed some packets when the number of sessions is 686,000 on the
last iteration. The packet-per-second processing capacity of the node increases as the
average CPU utilization increases as in the Figure 4.3. This con�guration reaches 12%
average CPU utilization when the number of sessions is 320,000 in the �rst iteration and
26% when the number of sessions is 686,000 in the last iteration. As shown in Figure 4.4,
the dropped packets per million of this con�guration was running below the threshold
level until iteration 7, but it raises above the threshold level in the 8th iteration. The
pps processing capacity of this con�guration is saved as the last iteration since no more
iterations are performed.

35

4. Results

4.3.6 vEPG deployment with 1CP and 2UP VMs
The result of the vEPG deployment with one control plane on the �rst NUMA node and
two control plane VMs on the second NUMA node is shown in Table 4.9. This con�gura-
tion stopped in the 6th iteration at an average CPU utilization of 35% when the number
of sessions is 515,400. The result of this con�guration is almost the same as the result
of the con�guration we discussed in section 3.4.3, but this con�guration uses only one
user plane VM with more a-processes and b-processes instead of two UPs as in the con-
�guration on section 3.4.3.

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
515400 -3.34% -3.43% 35% 38% +39158% 6

Table 4.9: Result for scenario 3.13.

The bar chart in Figure 4.2 with the name "1cp2up", shows the pps processing capacity
and number of sessions of this con�guration. This con�guration processed 3.34% less
packets than the baseline con�guration when the number of sessions is 515,400 in the
last iteration. The pps processing capacity of this con�guration increases as the average
CPU utilization increases as shown in Figure 4.3 with the name "1cp2up". The packets
per million dropped in this con�guration are below the threshold level until it reaches
iteration 5. At iteration 6, the pps processed by the node raise above the threshold level
as shown in Figure 4.4 with a name "1cp2up". The result of this con�guration shows that
having two CP VMs with two UP VMs like the con�guration we discussed in section
3.4.3, is the same as having one CP VM for two UP VMs in this con�guration. These two
con�gurations have almost the same pps processing capacity with the same average CPU
utilization as shown in Figure 4.3 with the names "2cp2up" and "1cu2up".

4.3.7 vEPG deployment with 1CP and 1UP VMs
For the con�guration discussed in section 3.4.6, the result is shown in Table 4.10. This
con�guration processed 15.82% less packets at an average CPU utilization of 26% when
the number of sessions is 686,000 in the last iteration. This con�guration drops 8577%
more packets per million. The packets per second processed on the node increase almost
linearly until the 8th iteration is reached, but falling rapidly after iteration 8 as there is
high packet drop in the 9th iteration.

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
686000 -15.82% -14.79% 26% 28% +8577% 9

Table 4.10: Result for scenario 3.14.

The packets per second processed and the number of sessions in the last iteration of this
con�guration is shown in the bar chart in Figure 4.2 with the name "1cp1up". The average

36

4. Results

CPU utilization of this con�guration reaches 12% in the �rst iteration and 26% in the last
iteration. As shown in Figure 4.3, the average CPU utilization of this con�guration is
almost overlapping with the 2cp1up con�guration as both of them reached the same
average CPU utilization in almost all of the iterations. This con�guration dropped more
packets than the 2cp1up con�guration as shown in Figure 4.4.

4.4 Discussion

As discussed in section 2.2, the di�erence in average CPU utilization between the NUMA-
aware and deactivated NUMA-aware con�guration on the SSC3 (SSR platform) is not
determined as the peak CPU of the node for the deactivated NUMA-aware con�gura-
tion reached 100% early. To compare the CPU load of the baseline con�gurations with
the deactivated NUMA-aware con�guration, we made a test by lowering number of ses-
sions for both con�gurations. We lowered the number of sessions to 1.5M for the �rst
iteration, which means that Dallas starts sending 1,500,000 sessions to the node on the
�rst iteration and multiply it by a factor of 1.02 for the next iteration until the peak CPU
reaches 100%, or stop when it runs for 11 iterations without failure.

For this number of sessions, the node is stable for both the NUMA-aware and deacti-
vated NUMA-aware con�gurations. Both con�gurations run for 11 iterations without
failure as shown in Table 4.11. From Table 4.11, it is clear 3450% more packets per mil-
lion are dropped on the deactivated NUMA-aware con�guration than the NUMA aware-
con�guration. This shows that even if the b-processes and a-processes of the node are
able to handle this number of sessions as NUMA-aware con�gurations, there may ex-
ist packet loss due to cache misses as the b-processes have no speci�ed a-processes to
distribute the packets like the NUMA-aware con�guration. The CPU utilization of the
node for both con�guration increases almost linearly as the number of session increases
in Figure 4.5.

Sessions pps Gbps avg CPU peak CPU drop ppm iter.
NUMA 1865100 baseline baseline 62.8% 65% baseline 11
UMA 1865100 0.02% +0.12% 87% 91% +3450% 11

Table 4.11: NUMA-aware and UMA con�gurations results for less number of sessions.

In the 11th iteration, the average CPU utilization of the NUMA-aware con�guration
reaches 62.8% when the number of sessions sent from Dallas is 1,865,100. At this itera-
tion the average CPU utilization of the node for the deactivated NUMA-aware con�gu-
ration reaches 87.0% for the same number of sessions as the NUMA-aware con�guration.
This means that the NUMA-aware con�guration processed this number of sessions at an
average CPU utilization of 62.8% while the deactivated NUMA-aware con�guration pro-
cessed the same amount at an average CPU utilization of 87%. We observed performance
degradation of almost 24.2% on the node when the NUMA-awareness is deactivated.

37

4. Results

1.2 1.4 1.5 1.6 1.7 1.8 1.9
·106

40

60

80

100

Number of Sessions

CP
U

ut
ili

za
tio

n

numa
uma

Figure 4.5: packets per second with number of sessions.

Virtualization

Since we presented the results of each con�guration on virtualization in section 4.3, the
results for the di�erent con�gurations are discussed and compared in this section.

The result for the baseline and all other con�gurations are shown in Table 4.12. The
baseline runs for 10 iterations and is our reference for the rest of the con�gurations. The
result of every con�guration on its breaking point is compared with the baseline on that
iteration with the same number of sessions.

In the Table 4.12, the column perf(+/-) is used to indicate the performance improvement
or degradation in reference with the average CPU utilization of the baseline con�gu-
ration. The CPU utilization is compared with the iteration at which the con�guration
stopped. For example, for the con�guration 3cp2up, it stopped at iteration number 3, the
CPU utilization of this con�guration is compared with the baseline con�guration at iter-
ation 3. The column sessions, specify the number of sessions sent on each iteration. The
number of sessions sent is equal for all the con�gurations on each iteration. The "iter"
column, indicates the iteration at which the node failed to process the required packets,
meaning the iteration at which Dallas stopped sending tra�c to the node because of the
node failing to pass one of the condition discussed in section 3.2 or may have reached
the target CPU.

As discussed in section 4.3.1, deactivating NUMA-awareness con�guration on virtual-
ization does not a�ect the performance of the node. Therefore the CPU utilization dif-
ference between the NUMA-aware and deactivated NUMA-aware con�gurations is 0.8%,
which is almost the same result, except there are more packet drops in the NUMA-aware

38

4. Results

con�guration than in the deactivated NUMA-aware.

For the con�guration in which we pinned one b-process and one a-process, the average
CPU utilization reaches the target CPU at iteration number 6, while the average CPU
utilization of the baseline con�guration reaches 33.1% for the same number of sessions
at the same iteration. This shows a performance degradation of 16.4% on this con�gu-
ration than the baseline con�guration.

The same for the con�guration in which we pinned two a-processes, the average CPU
utilization reaches (48.1%) on the target CPU at iteration 5, while the CPU utilization
of the baseline con�guration at this iteration is 30% for the same number of sessions
(468,500) (Table 4.12). Therefore, there is 18.1% performance degradation on this con�g-
uration than the baseline con�guration.

Con�g Sessions pps Gbps avg
CPU

peak
CPU

drop
ppm

Stops
@iter.

perf
(+/-)

Baseline 754600 baseline 11.49 49.3% 55% baseline 10
UMA 754600 -0.13% -0.17% 48.5% 54% +24.04% 10 + 0.8%
baseline 515400 baseline baseline 33.1% 37% baseline 6
pinn.B&1A 515400 -0.03% -0.12% 49.4% 53% +91.03% 6 -16.4%
baseline 468500 baseline baseline 30.0% 34% baseline 5
pinn.2A 468500 -0.02% baseline 48.1% 51% baseline 5 -18.1%
baseline 387200 baseline baseline 25.0% 28% baseline 3
3cp2up 387200 -0.02% baseline 48.7% 50% +38506% 3 -23.7%
baseline 425900 baseline baseline 27% 31% baseline 4
2cp3up 425900 -5.95% -6% 37.4% 40% +4374440% 4 -10.4%
baseline 515400 baseline baseline 33.1% 37% baseline 6
2cp2up 515400 -1.97% -2.03% 34.8% 39% +25321% 6 -1.7%
baseline 686000 baseline baseline 44.7% 50% baseline 9
2cp1up 686000 -4.39% -2.29% 26% 28% 9868% 9 +18.7%
baseline 515400 baseline baseline 33.1% 37% baseline 6
1cp2up 515400 -3.34% -3.43% 35% 38% +39158% 6 -1.9 %
baseline 686000 baseline baseline 44.7% 50% baseline 9
1cp1up 686000 -15.82% -14.7% 26% 28% +8577% 9 +18.7%

Table 4.12: Results for the di�erent scenarios relative to the baseline’s iteration.

The average CPU utilization of the 6vCPUs default deployment con�guration with 3CP
and 2UP VMs reaches the target CPU at iteration number 3 when the number of sessions
is 387,200 while the average CPU utilization of the baseline con�guration is at 25% for
the same number of sessions. On this con�guration, there are only two b-processes and
two a-processes which are half of the number of b-processes and a-processes in the base-
line con�guration. As a result, there is 23.7% performance degradation than the baseline
con�guration.

39

4. Results

The same for the con�guration using 2CP and 3UP VMs with 6vCPUs each, the av-
erage CPU utilization reached 37.4% at iteration 4 while the average CPU utilization of
the baseline con�guration at that iteration is 27%. As discussed in section 4.3.3, this con-
�guration stopped without reaching the target CPU utilization due to more packet drops
on the control plane cards as there are less control plane VMs than user plane VMs. This
con�guration is better than the 3CP and 2UP deployment con�guration but there is still
10.4% performance degradation compared with the baseline con�guration.

The average CPU utilization of the con�guration with two CP VMs on the �rst NUMA
node and two UP VMs on the second NUMA node, as discussed in section 3.4.3 stopped
at 34.8% CPU utilization without reaching the target CPU. Dallas stopped sending tra�c
to the node before the bandwidth of the node reaches the maximum bandwidth of the
vSwitch. This shows that the vSwitch can forward tra�c to the node, but due to more
packet drops on the node, the test is terminated without reaching the target CPU at it-
eration 6.

In this iteration, the CPU utilization of the baseline con�guration is 33.1% as shown
in Table 4.12. Since both the control plane and user plane VMs are on di�erent NUMA
nodes, the node dropped more packets as the communication between control plane and
user plane VMs is by traversing the QPI. As a result, there is 1.7% performance degrada-
tion on this con�guration compared to the baseline con�guration.

For the con�guration with 2cp1up, the average CPU utilization reached 26% when the
number of sessions are 686K at iteration 9. For the same number of sessions, the CPU
utilization of the baseline con�guration reached 44.7% on the same iteration. As we dis-
cussed in section 3.4.4, this con�guration has 9 a-processes and 2 b-processes on one UP
VM. Therefore, this con�guration has better CPU utilization of 18.7% over the baseline
con�guration as shown in Table 4.12.

For the deployment we discussed in section 3.4.5, the average CPU utilization stopped
at an average CPU utilization of 35% without reaching the target CPU. This con�gura-
tion gave almost the same result as the 2cp2up con�guration. Both these con�guration
stopped at iteration 6 when the number of sessions are 515,400. In terms of resource
usage, this con�guration uses half of the resources of the host machine that is used for
control plane VMs on the 2cp2up con�guration we discussed in section 3.4.3. This con-
�guration has 1.9% CPU performance degradation than the baseline con�guration.

The last con�guration that presented better results than the baseline con�guration is
the deployment we discussed in section 3.4.6. The average CPU utilization of this con-
�guration stopped at 26% when the number of sessions is 686,000 as shown in Table 4.12.
For the same number of session and at the same iteration, the average CPU utilization
of the baseline con�guration reaches 44.7%. The result of this con�guration is the same
as the result of the con�guration we discussed in section 4.3.5.

40

4. Results

Summary of this chapter
On this chapter, we assessed and discussed the results of di�erent con�guration on the
SSR platform and virtualization. We used average CPU utilization as our comparison
metrics for all the con�gurations. Since CPU utilization and and packets per second
count of a con�guration is linearly proportional, it is known a con�guration with better
CPU utilization will process mare packets than a con�guration with worse CPU uti-
lization for the same number of sessions. On the SSR platform, we run a test for the
NUMA-aware and deactivated NUMA-aware con�guration. As we have discussed in
section 4.4, there is 24.4% performance degradation on the NUMA-unaware con�gura-
tion than the NUMA-aware con�guration.

On the virtualization, we used 50% average CPU utilization as a target CPU utilization
as the bandwidth of the vSwitch is limited to some constant value. From all the con-
�gurations, Both the 1cp1up and 2cp1up con�gurations showed 18.7% CPU utilization
performance improvement over the baseline con�guration. This con�guration uses one
CP VM instead of two as the 2cp1up con�guration. Therefore, this con�guration saves
the memory and hard disk of the host machine that was used by one control plane VM on
the 2cp1up con�guration. But, the 2cp1up con�guration processed 3.1377 percent more
packets per second than the 1cp1up con�guration and has 72.4119 percent less packets
per million drop ratio than the 1cp1up con�guration. Therefore, based on average CPU
utilization the 2cp1up con�guration is the most e�cient con�guration than all the con-
�gurations we have tested so far.

41

5
Conclusion

This chapter is a general conclusion of the thesis work. We divided the chapter into two
sections. In the �rst section we conclude the work of this thesis in short, and in the
future work section we discuss about a future study that could follow our concept and
focus on the latest AMD server processors.

5.1 Conclusion

In this project, we have shown the impact of NUMA and UMA con�gurations of the EPG
on the SSR routers using Intel server processors. The results presented lead to the fact
that deactivating NUMA-awareness shows a 24% average CPU utilization degradation
than the NUMA-aware con�gurations. Furthermore, we have deployed the EPG virtually
to investigate the impact of di�erent deployment and pinning scenarios on the virtual-
ized SSR using the VIRTIO virtualization technology. On the virtualization, we have
shown that deactivated NUMA-aware con�gurations do not a�ect the performance of
the EPG, because the memory of the VMs is de�ned on the con�guration �le during the
orchestration process.

As we have discussed in section 4.4, we have taken the con�guration described in sec-
tion 3.4.2 as a baseline to evaluate the rest of the con�gurations. As shown in Table 4.12,
both the con�gurations with 2cp1up and 1cp1up have 18.7% CPU average utilization
improvement over the baseline con�guration and are the most e�cient con�gurations
of the ones tested in this study. Based on packet-per-second processing capacity and
packets dropped, the con�guration with 2cp1up is better than the 1cpu1up con�gura-
tion, and we can state in con�dence that this con�guration showed higher e�ciency of
CPU utilization on the virtualization among all con�gurations.

5.2 Future Work

During this project, we experimented with Intel-processor servers and designed our test
scenarios based on the diversity we could achieve and the variety of performance results
we could produce. In our initial plan we also wanted to work on the newly acquired AMD
EPYC series processors and the servers based on them. Since AMD EPYC has 8 NUMA
nodes, it is possible to test more con�guration than we did on the virtual environment.
By the time of �nishing this study we did not have the opportunity to achieve that goal,
because of the availability of those systems and the time-plan of this work. This goal

42

5. Conclusion

could be achieved in a future study, because the AMD’s unique architecture is of great
interest regarding NUMA con�gurations as shown in the next section.

5.2.1 AMD EPYC
All AMD EPYC processors are composed of four eight-core Zeppelin dies. Thus, a dual
socket EPYC setup is in fact a virtual octa-socket NUMA system. This topology is ideal
in applications with many independently working threads such as small VMs, which is
the case for the EPC. This processor is a System-on-Chip processor with up to 32 Zen
cores per SoC [19] which allows "hyperthreading" concept so that each module, can pro-
vide up to 64 threads.

This processor has two sockets that are connected with a PCI-Express (PCIe). EPYC
processors support both single and dual-socket motherboards, and each EPYC processor
provides 8 memory channels and 128 PCIe 3.0 lanes for each socket. Each die in an EPYC
module, contains four memory channels, 8 physical cores, one NUMA node and 4 PCIes
as shown in Figure 5.1.

Socket 1Socket 0

QPI

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Figure 5.1: AMD EPYC architecture.

Looking at the architecture presented on the �gure above, it is clear that there is a sig-
ni�cant number of possible combinations and con�gurations that can be the subject of
a future study. The freedom given by the virtual deployment displays potential on cus-
tomized setups, and it would be really interesting to investigate the performance of these
processors and the behaviour of their "internal NUMA nodes".

43

Bibliography

[1] Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker, “A high
performance packet core for next generation cellular networks”, in Proceedings of
the Conference of the ACM Special Interest Group on Data Communication, ser. SIG-
COMM ’17, Los Angeles, USA, 2017, pp. 348–361.

[2] P. Lescuyer and T. Lucidarme, Evolved packet system (EPS): the LTE and SAE evo-
lution of 3G UMTS. John Wiley & Sons, 2008.

[3] M. Olsson, S. Rommer, C. Mulligan, S. Sultana, and L. Frid, SAE and the Evolved
Packet Core: Driving the mobile broadband revolution. Academic Press, 2009.

[4] P. Satapathy, J. Dave, P. Naik, and M. Vutukuru, “Performance comparison of state
synchronization techniques in a distributed lte epc”, in 2017 IEEE Conference on
Network Function Virtualization and Software De�ned Networks (NFV-SDN), Nov.
2017, pp. 1–7.

[5] Y. Liu, Y. Zhu, X. Li, Z. Ni, T. Liu, Y. Chen, and J. Wu, “Simnuma: Simulating numa-
architecture multiprocessor systems e�ciently”, in 2013 International Conference
on Parallel and Distributed Systems, IEEE, 2013, pp. 341–348.

[6] C. Lameter et al., “Numa (non-uniform memory access): An overview.”, vol. 11,
no. 7, p. 40, 2013.

[7] M. Awasthi, K. Sudan, R. Balasubramonian, and J. Carter, “Dynamic hardware-
assisted software-controlled page placement to manage capacity allocation and
sharing within large caches”, in 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, IEEE, 2009, pp. 250–261.

[8] S. Cho and L. Jin, “Managing distributed, shared l2 caches through os-level page
allocation”, in 2006 39th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO’06), IEEE, 2006, pp. 455–468.

[9] H. Dybdahl and P. Stenstrom, “An adaptive shared/private nuca cache partitioning
scheme for chip multiprocessors”, in 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, IEEE, 2007, pp. 2–12.

[10] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian, and A. Davis, “Managing
data placement in memory systems with multiple memory controllers”, Interna-
tional Journal of Parallel Programming, vol. 40, no. 1, pp. 57–83, 2012.

[11] Z. Majo and T. R. Gross, “Memory management in numa multicore systems: Trapped
between cache contention and interconnect overhead”, SIGPLAN Not., vol. 46,
no. 11, pp. 11–20, Jun. 2011, issn: 0362-1340.doi:10.1145/2076022.1993481.
[Online]. Available: http://doi.acm.org/10.1145/2076022.
1993481.

[12] K. Harzallah and K. C. Sevcik, “Evaluating memory system performance of a large-
scale numa multiprocessor”, in MASCOTS, 1994.

44

https://doi.org/10.1145/2076022.1993481
http://doi.acm.org/10.1145/2076022.1993481
http://doi.acm.org/10.1145/2076022.1993481

Bibliography

[13] D. Molka, D. Hackenberg, and R. Schöne, “Main memory and cache performance
of intel sandy bridge and amd bulldozer”, Jun. 2014. doi: 10.1145/2618128.
2618129.

[14] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing cache architectures and
coherency protocols on x86-64 multicore smp systems”, in 2009 42ndAnnual IEEE/ACM
International Symposium on Microarchitecture (MICRO), IEEE, 2009, pp. 413–422.

[15] S. Blagodurov, S. Zhuravlev, A. Fedorova, and A. Kamali, “A case for numa-aware
contention management on multicore systems”, in Proceedings of the 19th interna-
tional conference on Parallel architectures and compilation techniques, ACM, 2010,
pp. 557–558.

[16] M. S. Reorda, Z. Peng, and M. Violante, System-level test and validation of hard-
ware/software systems. Springer Science & Business Media, 2006, vol. 17.

[17] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar, L. Rappoport, E.
Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation intel core: New microarchi-
tecture code-named skylake”, IEEE Micro, vol. 37, no. 2, pp. 52–62, 2017.

[18] K. Jackson, C. Bunch, and E. Sigler, OpenStack cloud computing cookbook. Packt
Publishing Ltd, 2015.

[19] X. Guo, Best Practice Guide – AMD EPYC, http://www.prace-ri.eu/
best-practice-guide-amd-epyc/, 2018.

45

https://doi.org/10.1145/2618128.2618129
https://doi.org/10.1145/2618128.2618129
http://www.prace-ri.eu/best-practice-guide-amd-epyc/
http://www.prace-ri.eu/best-practice-guide-amd-epyc/

List of Figures

2.1 Basic EPC architecture for LTE. 6
2.2 Distributed EPC [4]. 8
2.3 Basic NUMA Architecture. 9

3.1 Tra�c �ow between Dallas and EPG. 14
3.2 NUMA-aware EPG Con�guration for SSC1. 15
3.3 NUMA-aware EPG Con�guration for SSC3. 16
3.4 V-EPG in physical hosts. 17
3.5 vEPG virtualization using VIRTIO interface. 18
3.6 vEPD deployment with 8vCPUs on UPs (result 4.3). 20
3.7 A-processes on separate NUMA node (result 4.4). 20
3.8 One b-process and one a-process on separate NUMA node (result 4.4). . . 21
3.9 vEPG deployment with 3CPs and 2UPs (result 4.5). 22
3.10 vEPG deployment with 2CPs and 3UPs (result 4.6). 22
3.11 vEPG deployment by separating CP and UP VMs (result 4.7). 23
3.12 vEPG deployment with 2CPs and 1UP (result 4.8). 23
3.13 vEPG deployment with 1CP and 2UPs (result 4.9). 24
3.14 vEPG deployment with 1CP and 1UP (result 4.10). 25

4.1 Baseline con�guration results on SSR. 28
4.2 Maximum packets per second results for all con�guration. 30
4.3 Packets per second with CPU utilization. 31
4.4 drop packets per million vs CPU utilization. 32
4.5 packets per second with number of sessions. 38

5.1 AMD EPYC architecture. 43

I

List of Tables

4.1 NUMA-Awareness processing result using Intel processor on SSCs. . . . 28
4.2 Deactivated NUMA-Awareness processing result using Intel processor. . 29
4.3 Results for scenario 3.6. 32
4.4 Results for scenarios 3.8 and 3.7 respectively. 33
4.5 Results for scenario 3.9. 33
4.6 Results for scenario 3.10. 34
4.7 Result for scenario 3.11. 35
4.8 Result for scenario 3.12. 35
4.9 Result for scenario 3.13. 36
4.10 Result for scenario 3.14. 36
4.11 NUMA-aware and UMA con�gurations results for less number of ses-

sions. 37
4.12 Results for the di�erent scenarios relative to the baseline’s iteration. . . 39

II

List of Abbreviations

AAA Authentication and Access Authorization
CEE Cloud Execution Environment
CP Control Plane
DDR Double Data Rate
DINO Distributed Intensity NUMA Online
eNodeB Evolved NodeB
EPC Evolved Packet Core
EPG Evolved Packet Gateway
EPS Evolved Packet System
HOT Heat Orchestration Template
HSS Home Subscriber Serve
IntelSGX Intel Software Guard Extensions
IP Internet Protocol
LC Line Card
LLC Last Level Cache
LTE Long-Term Evolution
MME) Mobility Management Entity
NIC Network Interface Card
NUMA Non-Uniform Memory Access
PCC Policy and Charging Control
PCIe Peripheral Component Interconnect-Express
PCRF Policy and Charging Rules Function
PG Packet Gateway
PGW PDN Gateway
PISC Packet Inspection and Service Classi�cation
PP Payload Processing
QoS Quality of Service

I

List of Tables

QPI QuickPath Interconnect
RAN Radio Access Network
RP Route Processing
SGW Service Gateway
SoC System-on-Chip
SSC Smart Service Card
SSR Smart Service Router
UE User Equipment
UMTS Universal Mobile Telecommunications System
UP User Plane
UPI Ultra Path Interconnect
vCPUs virtual CPUs
VDP Virtual Deployment Packag
vEPG virtual EPG
VIRTIO Virtual I/O
VM Virtual Machine

II

	Introduction
	Background
	Motivation
	Aim
	Challenges

	Background
	The Evolved Packet Core
	The Home Subscriber Server
	The Mobility Management Entity
	Evolved Packet Gateway
	EPC as a Distributed System

	Non-Uniform Memory Access
	Related Work

	Methodology
	Studied Hardware
	Intel Skylake

	Traffic Modeling using the Dallas Tool
	Baseline Configuration (NUMA-aware)
	Virtualization
	vEPG deployment using VIRTIO
	vEPG deployment with 8vCPUs UP on each NUMA node
	vEPG deployment with 2CP and 2UP VMs
	vEPG deployment with 2CP and 1UP VMs
	vEPG deployment with 1CP and 2UPs VMs
	vEPG deployment with 1CP and 1UP VMs

	Results
	Evaluation
	Baseline Configuration on SSR
	Virtualization
	vEPG deployment with 8vCPU UP on each NUMA node
	vEPG deployment with 3CP and 2UP VMs
	vEPG deployment with 2CP and 3UP VMs
	vEPG deployment with 2CP and 2UP VMs
	vEPG deployment with 2CP and 1UP VMs
	vEPG deployment with 1CP and 2UP VMs
	vEPG deployment with 1CP and 1UP VMs

	Discussion

	Conclusion
	Conclusion
	Future Work
	AMD EPYC

	Bibliography
	List of Figures
	List of Tables

