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Abstract

We investigate the problem of allocating communication paths in the interconnect
network within radio base stations (RBS). With the enlargement of RBSs to accom-
modate the growing capacity requirements there is a need to automate the allocation.
The problem is modelled as the Unsplittable Flow Problem and several algorithms de-
scribed in the literature in the area are evaluated against the speci�c circumstances.
An evaluation framework is designed and a few algorithms including shortest path and
branch-and-cut based are implemented. Based on the frame work measurements, one
can give some recommendations on when the di�erent algorithms may be appropriate
and the strengths and weaknesses for each. Interestingly, our evaluation results do not
show improvements in solution quality for the well-known branch-and-cut algorithms.
We note that the framework can be easily extended to evaluate many new algorithms
and compare the existing algorithms on real and syntactic data.
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ABBREVIATIONS

COIN-OR The Computational Infrastructure for Operations Research

DIP Decomposition in Integer Programming

EDP Edge Disjoint Paths

HetNet Heterogenous Network

ILP Integer Linear Programming/Integer Linear Program

IP Integer Programming

ISP Internet Service Provider

LP Linear Programming/Linear Program

LTE Long Term Evolution

MCFP Multi-Commodity Flow Problem

MCPF Minimum Capacity Path First

MDP Maximum Disjoint Paths

MSPF Minimum Shortest Path First

OD Origin-Destination

ODIMCFP Origin-Destination Integer Multi-Commodity Flow Problem

RBS - Radio Base Station

RE Radio Equipment

REC Radio Equipment Controller

RMP Restricted Master Problem

SEC Subtour Elimination Constraint

SSP Simple Shortest Path

TDMA Time Division Multiple Access

TSP Traveling Salesperson Problem

UFP Unsplittable Flow Problem

3



DEFINITIONS

Arc A link between two nodes in a Graph

Capacity Number of timeslots available on an arc in the network.

Channel - A path through an RBS interconnect network with a certain reserved capac-
ity.

Column generation A solution technique for solving LPs by generating variables in
the formulation that is potentially nonzero.

Competitive ratio A bound on the di�erence between an online algorithm and some
optimal o�ine algortihm.

Cuts See Cutting planes.

Cutting planes Inequalities added to a LP relaxation in order to obtain a result closer
to the solution of the ILP.

Degree The degree of a node in a network is the number of arcs from/to that node.
To distinguish the arcs from a node from the arcs to a node, sometimes outdegree
and indegree is used. In our case, in- and outdegree is the same and we refer to it
simply as degree.

Dual For every LP, called the primal problem, the duality theory of linear program-
ming says there is a dual problem, an alternative formulation but with the same
optimal value. For a maximization problem the dual is a minimization problem
and vice versa. If one knows a �nite optimal solution to the primal problem, the
complementary slackness theorem allows one to �nd the optimal solution to the
dual problem by solving a system of equations. For each constraint in the primal
problem there is a variable in the dual problem. Hence one can talk of the dual
variable associated with a constraint in the primal formulation.

Greedy algorithm A greedy algorithm makes choices based on some local optimum,
hoping that doing whats best right now also leads to the optimal solution in the
long run. A key characteristic of a greedy algorithm is that it does not change its
decisions once they have been made.

Integer Linear Programming Similar to LP but with added constraints that the vari-
ables are integer.

Linear Programming Linear programming is a way of modelling a problem as an
optimization of a linear function subject to a set of linear constraints.

LP relaxation A simpli�ed version of an ILP where the integer constraints have been
removed, resulting in a LP.

Maximum degree The maximum degree of all the nodes in the network.
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NP-Complete An NP-Complete problem is a decision problem where it is believed to
be impossible to �nd a polynomial time algorithm capable of solving it optimally.

NP-Hard An NP-Hard problem is any problem that is at least as hard as an NP-
Complete problem, meaning that if you can e�ciently solve the NP-Hard problem
then you can also e�ciently solve NP-Complete problems.

O�ine algorithm An o�ine algorithm receives the complete set of request at once and
can take all requests into account when making its decisions.

Online algorithm An online algorithm receives requests one at a time and must process
the requests in that order, only taking into account the current request and the
decisions in the past.

Path A path is a series of arcs, without circles, that connects one node to another.

Request A request for a path with a certain capacity between an origin and a destination
node.

Requested capacity The capacity needed on each arc in a path in order to service a
request.

Site Geographic place where an RBS in located.
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1. Introduction

Mobile data communication had a tremendous growth during the last years and it is
expected to further increase at exponential rate in the coming decade [14]. The increased
use of smartphones, tablets and ultra-light laptops have been the driving factors so far.
A forecast by Ericsson, a world-leading provider of telecommunications equipment, is
that there will be 50 billion connected devices in the world by year 2020 [15]. Hand-
held devices and laptops are only a part of this number, other examples of devices that
will be connected are televisions, vehicles and utility meters for all kinds of applications.
Machine-to-machine communication is also believed to grow as more devices and services
collaborate to make life more comfortable.

To meet the increasing demand it is necessary to increase the capacity of the mobile
communication networks. More speci�cally it is necessary to increase the capacity on
the outer-most links of the network. This link has a Radio Base Station (RBS) in one
end, connected to the network backbone, and a user device such as a cell phone in the
other end. The RBS communicates with the user devices by radio signals. Increasing
the capacity is done by using advanced technologies, such as the Advanced Long Term
Evolution (LTE-Advanced) [29], by extending the infrastructure with more radio base
stations and by upgrading existing RBSs. The capacity can be increased by introducing
more advanced modulation techniques and by using a larger frequency bandwidth for
the carrier. However, advanced modulation techniques can only increase the data rate
during good radio conditions, usually not obtainable anywhere but close to the antenna.
It is also di�cult to increase the capacity by using a larger frequency bandwidth since
building a radio with large bandwidth is hard. Operators may also be limited by that
they do not have the bandwidth as a continuous band which means that the carriers can
not be contiguous. A large capacity increase thus requires installation of more radios.
[24]

The greatest need for more bandwidth is in so called hot-spots, places of limited area
where there are many users at the same time, such as train stations, airports, malls and
large o�ces. A good approach for increasing the capacity is thus to install micro- or pico
cells in hot-spots. These cells are basically low power radios with a much smaller range
than those radios that are used for the macro cell which provides the basic coverage over
a large area. The micro and pico cells can either be RBSs by themselves or be connected
to an existing RBS, becoming a part of it. Having a single radio in an RBS may not be
very cost e�cient for an operator. Therefore, a good solution is to have a single RBS
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comprising of a few radios with large range covering di�erent sectors of the macro cell
and a number of micro and pico cells within the macro cell providing extra coverage and
capacity in areas that requires it. This solution with multiple access networks is called a
heterogeneous network or a HetNet [16].

An example of an RBS with many low power radios is in large towers with several
hundred storeys. Typically there are many radios throughout the tower providing a
high capacity on all �oors while the equipment for controlling all the radios is placed
in the basement. This also re�ects the conceptual model of an RBS. In one end are
the antennas and the equipment for generating radio signals. These are grouped into a
Radio Equipment (RE) unit and each RBS may have many REs. The other end consists
of one or several Radio Equipment Controllers (REC). A REC, as the name suggests,
controls a number of REs. It manages user calls, handles signal processing and pass
data onto the mobile network backbone. A REC has a limit for how many REs it can
manage, so for a large RBS with many high capacity REs several RECs will be needed.
The RECs and REs are connected with a network consisting of cables and switches, the
interconnect network. Each RE is managed by a few speci�c RECs, typically one or two,
and it is necessary to have a path with guaranteed bandwidth between each pair of RE
and its corresponding REC. Therefore it is necessary to set up virtual circuits over the
interconnect network. Each link on the network has a limited bandwidth capacity and
each virtual circuit will have a certain requested bandwidth. For a su�ciently large and
complex interconnect network, deciding how to allocate the requested paths, which will
also be called requests, is a non trivial problem.

1.1 Interconnect model

We describe the key terms and concepts that are needed for describing the studied prob-
lem. This section consider a model of the interconnect network and the policies that
govern its allocation are described. The interested reader can �nd more information
about mobile communication technology in [32], as well as in [34] which also provides
further details about increasing the capacity in the networks through a technology called
LTE-Advanced. For theoretical and practical insights into commonly used network mod-
els, such as those used in this work, we refer the readers to [3].

In order to describe the problem further it is necessary to understand the character-
istics of the interconnect network. Figure 1.1 shows an abstraction of an RBS with an
interconnect network connecting RECs and REs. The RECs are usually located in the
same place while the REs may be distributed over a large area. The network infrastruc-
ture consists of copper cables, optical �bers and in large networks also switches. Each
link in the network uses a Time Division Multiple Access (TDMA) protocol and has a
certain capacity, or bandwidth, that is measured in the number of time-slots on the link.
Thus, all time-slots over all links carry the same amount of data but a high bandwidth
link has more time-slots than a link with less bandwidth. Point-to-point channels are set
up over these links to connect speci�c pairs of RECs and REs and each channel requires
a certain amount of bandwidth on each link along its path. For each channel from a
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REC to an RE there is also a matching channel in the opposite direction, which may
require a di�erent capacity and can be allocated on a di�erent path. Both link capacities
and requested capacity of a channel are variable but it may be assumed that the highest
requested capacity is lower than or equal to the smallest arc capacity. This is sometimes
referred to as the no-bottleneck constraint [12]. The channels are semi-static, meaning
that once set up they will not be changed or removed as long as no failure occurs or
unless maintenance or recon�guration is necessary, for example due to installation of
new hardware. User telephone calls are routed through these channels and a take down
of a channel can thus result in many disconnected calls. The channels may be set up
both one at a time, such as after maintenance or after installation of a new RE, or many
at once as could be the case when a new RBS is taken into operation or after a major
capacity upgrade. [24]

In addition there exist the possibility that one may want to shift the available re-
sources between di�erent areas as part of normal operations. One reason for doing that
is that the demand in a particular area can vary signi�cantly between di�erent points in
time and this can then be used in order to reduce the number of hardware units necessary.
One example of this can be that one has more resources in an o�ce complex during o�ce
hours and then shift the resources to a residence area in the afternoon. This can lead to
savings in terms of space, costs and energy consumption.[24] In all these cases there may
already be existing channels that preferably should not be a�ected by the new channels
since it is not desired to break any existing calls.

Since each REC can manage several REs, the number of REs is usually higher than
the number of RECs in an RBS. The total number of units and the complexity of the
interconnect network depend on the size of the RBS. A small RBS may consist of a single
or a handful of REs and a single REC while the interconnect network is just a simple
star, ring or chain connecting all REs to the REC. In such a network there may only be a
single path available for each requested channel. An RBS with more RECs and REs may
have a more advanced interconnect network where there are multiple paths to choose
from for all channels. The increasing capacity requirements in the future may necessitate
even larger RBSs. For such interconnect networks it will be necessary to have algorithms
that can decide how to allocate the channels.

1.2 Purpose

The purpose of this thesis work is to �nd and evaluate several algorithms that can be
used for automatic allocation of the interconnect resources in a future radio base station.
In current radio base stations the interconnect networks are small enough so that there
is no need for an algorithm for �nding good channel allocations, it can easily be done by
hand. Since the number of di�erent variations of topologies is small the con�gurations
can be hard coded. For the larger and more advanced interconnect networks that are
expected in the future it will be more di�cult to set up the channels in a way that
e�ciently uses the available capacities. The increasing amount of di�erent topologies
will also make it impractical for hard coded con�gurations. In addition there is the
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Figure 1.1: An interconnect network. REs are typically cascaded or in rings and RECs
may have several paths to the REs to choose from.

possibility of a failure of one of the links connecting the nodes in the network. The
tra�c over the channels allocated on such a link will be disturbed and the channels must
be reallocated to functioning links as fast as possible in order to provide service again.
Thus the development of an allocation-algorithm that automatically maps requests to
the available links in an e�cient way without exceeding any capacity constraints is highly
motivated.

1.3 Problem De�nition

The main goal of the allocation algorithms is to �nd paths with su�cient capacities for
all required channels to be allocated concurrently. There may also be additional goals
such as minimizing latency, congestion, and energy consumption or allocating redundant
paths with as few common links as possible that can be switched to in case of link failures.
Depending on di�erent policies the importance of the di�erent goals may vary.

The main problem that this thesis investigates is what kind of algorithms that are
most suitable for automating allocation in the RBS interconnect network. The suitability
is evaluated based on the execution speed of the algorithms, how well they manage to
allocate the requests and how hard they are to implement. We also investigate under
which assumptions and problem characteristics those algorithms are suitable. We try
to �nd if and how the relative performance of the algorithms depend on the size and
connectivity of the topology and on the request set.

To perform the evaluations a framework where the algorithms can be implemented
and evaluated is needed. Thus, as part of the contribution of this thesis, an evaluation
framework is developed. Within this framework we de�ne a set of measurements that
are used to evaluate the implementations of the algorithms.
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1.4 Method

The search for suitable algorithms is based on literature studies where a large number
of articles about similar allocation problems have been surveyed. During the research
suitable algorithms were identi�ed based on how well their constraints and goals matched
the RBS allocation problem.

The evaluation framework will evaluate the implementions of the algorithms both
with �xed and randomly generated topologies and requests. The evaluation framework
has been developed with an iterative pair programming process. A few algorithms with
di�erent approaches to solve the problem have then been implemented and evaluated
with the help of the evaluation framework. The evaluations are based on results from a
set of test scenarios.

1.5 Scope and limitations

The result of the thesis work is a recommendation of algorithms that can be used de-
pending on the size and connectivity of the topology and on di�erent policies. Both
greedy and optimal algorithms are evaluated within our framework in order to �nd their
suitability to the problem. We investigate a number of di�erent variations of greedy
algorithms where heuristics are used to guide the algorithms. The evaluation is based
more on the measured performance rather than the theoretical worst case performance.
The optimization goals that are investigated are primarily to maximize the number of
serviced requests or the total allocated capacity while minimizing latency.

The exact topologies of the interconnect networks of the future are not yet �nalized.
Those proposed are still relatively small and simple and does not provide the full di�cul-
ties that future topologies will do. Therefore we do not limit ourselves to only topologies
that are typical for future RBS systems. Experimental evaluations of the algorithms both
include such graphs as well as some more general topologies. The randomly generated
topologies of larger sizes are used in the evaluation in order to accentuate the di�erences
in the relative performance of the algorithm implementations.

The algorithms are developed to run on desktop computers and not for actual use in
an RBS system. This means that the choice of implementation language, resource limits
and other constraints in the real system are not taken into account. While we aim for
reasonable e�ciency in the implementation of the algorithms, obtaining the best possible
performance is not one of the goals of this thesis.

1.6 Structure of the report

The rest of this report is structured as follows. Chapter 2 further de�nes the problem
and describes the previous work in the �eld. In Chapter 3 the algorithms selected for
further analysis are described in detail. Chapter 4 describes the evaluation framework
developed as well as the test cases used in the computational testing of the algorithms.
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The results of these tests are presented in Chapter 5. We continue to discuss the results
and their implication in Chapter 6, and �nally present our conclusions in Chapter 7.

11



2. Theoretical Framework and

Previous Work

The problem described in the previous chapter, and variations thereof, has been studied in
the literature under several di�erent names. Among them are Unsplittable Flow Problem
(UFP) [27], Origin-Destination Integer Multi-Commodity Flow Problem(ODIMCFP) [9],
Virtual Circuit Routing and Call Admission Control and Routing (CAC). These problems
have a wide range of applications such as railroad scheduling, routing and admission in
telecommunication networks, airline scheduling and transportation of commodities.

The multi-commodity �ow problem (MCFP) is a network �ow problem where there is
more than one kind of �ow. Each kind of �ow is called a commodity and each �ow should
be routed through a network where the arcs have limited capacities. For each commodity
there are source nodes with a certain supply of the commodity and sink nodes with a
certain demand. A book frequently referenced to by research papers about the MCFP is
[3], written by Ahuja, Magnanti and Orlin.

UFP and ODIMCFP are variants of the basic MCFP. Here we are restricted to only
one source node for each commodity, called origin. There are also one or more sink
nodes, called destination nodes. In addition there is also the constraint that the �ow
of a commodity between an origin and a destination node cannot be split over multiple
paths.

In the Interconnect allocation setting we refer to the commodities as requests. A
request corresponds to a request for a path with a certain capacity between an origin
and a destination node.

2.1 Variations of the UFP

Several di�erent variations of UFP optimization problems exist with di�erent constraints
and objective functions. These include uniform or variable link and requested capacities.
There may also be a single source and multiple destinations or many Origin-Destination
pairs (OD-pairs). The goal in the UFP may be to maximize the total �ow or the number
of satis�ed OD-pairs. There may also be an associated bene�t with each OD-pair, a cost
for using each arc or both of these at the same time. Then, a secondary goal may be to
minimize the cost or maximize the bene�t. Another goal is to keep congestion as low as
possible or, if the requested capacity of all OD-pairs can not be allocated simultaneously,
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routing all requests in as few rounds as possible. The later is only possible if the requests
are not permanent.

Algorithms can be used either online or o�ine. O�ine algorithms have information
about all requests in advance and try to consider all requests at once to �nd an optimal,
or near optimal solution. Online algorithms consider each request individually at the
time it arrives, without information about future requests. They must decide whether to
allocate or reject a request depending on what is likely to be best in the end. Obviously
an online algorithm for UFP cannot be optimal in the general case, since the result of
an online algorithm depends on the order the requests arrive in.

2.2 Hardness

The Maximum Disjoint Paths problem (MDP) is a special case of the UFP where both
arc capacities and the requested capacities equal one. Then, each arc can only be part
of the path of a single request. The goal of the MDP is to �nd the maximum number of
requests that can be allocated simultaneously. The decision version of MDP, the Edge
Disjoint Paths problem (EDP), is proved by Karp [25] to be NP-complete. Thus the UFP
is also NP-complete and there is no hope for �nding an e�cient, that is polynomial time,
algorithm that solves it to optimality unless P = NP . Therefore the main research in
the area has been focused in two di�erent directions.

The �rst has been aimed at developing e�cient approximation algorithms with good
approximation bounds and competitive ratios. Often these algorithms are supposed to
�nd a subset of requests that gives the highest total pro�t, such as in call admission
where as many calls as possible should be routed simultaneously. This means that a
call may be denied because it is expected that if it is set up it may block many other
future calls. Some of these algorithms can be suitable in applications that work online,
where there is no knowledge of future requests. The downside is of course that requests
may be discarded even though they would be allocated in an optimal solution. In [26]
Kleinberg shows that an O(

√
m)-approximation for the EDP problem exists and in [11]

Baveja and Srinivasan shows that this bound also holds for the UFP if the no-bottleneck
constraint holds, that is that the highest requested capacity is at most as high as the
smallest capacity of an arc.

The second direction of research has been to use branch and bound algorithms to
search for an optimal solution. Since the problem is NP-complete the search space is
far too large to be searched exhaustively for anything but very small instances. The
researchers have therefore focused on using methods such as column generation, cutting
planes, LP relaxation and heuristics as well as other techniques and combinations of
these to reduce the search space. This has resulted in a large increase of the size of the
problem instances that can be e�ciently solved to optimality.

To see the combinatorial explosion that makes an exhaustive search infeasible we
can �rst consider the problem of selecting which requests that should be allocated. If
we have r requests, each request can either be in the solution or not, thus we have 2r

possible subsets of requests that should be considered. Then we also have the problem
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of �nding which paths that should be used. A simple upper bound for all possible paths
of a single request starting at a speci�c node would be to consider the maximum degree
δ of an undirected graph and the length of the longest path that can be found. The
maximum degree is the highest number of arcs connected to a node in the graph. At
each node there will be a branching step for the next hop that have up to δ − 1 paths
to choose from. The longest path can at most visit all nodes once. Thus for a graph
with n nodes and a maximum degree of δ an upper bound is O((δ − 1)n). Next, these
paths should be combined for all the requests. With the simpli�cation that all active
requests can be allocated independently the combination of all the paths of ra requests is
O(((δ − 1)n)ra)=O((δ − 1)nra). Then we should also consider that there are 2r di�erent
subsets of requests. Finally we can mention that δ is higher or equal to three for all
graphs that are more complicated than a line or ring. Thus for a problem instance with
only a couple of tens of nodes and requests it is easy to see that it would be infeasible to
use a naive searching algorithm.

2.3 Previous work

In this section we give a sample of the previous work in the area. It covers both the
directions of research that was previously mentioned and shows some of the results that
have been achieved. Since the amount of research in this area is vast this survey is in no
way extensive. The mentioned sources investigate problems that are the same or very
similar to our interconnect allocation problem. However, for many of them there are
small di�erences that make the algorithms they use unsuitable for our problem. Much
of the previous work is based on linear programming and other optimization techniques.
Describing these is out of the scope of this thesis, instead we refer to [13] for a good
introduction to the area.

2.3.1 Maximum allocated capacity

In [27] Kolman and Scheideler investigates online and o�ine algorithms for the UFP
with the objective to maximize the requested capacity of the allocated requests. They
introduce a new graph parameter called the �ow number F that is a fundamental part of
their analysis. A graph with better communication properties has a smaller �ow number,
for example a line has F = θ(n) and a mesh has F = θ(

√
n). A simple greedy algorithm

that has an approximation ratio of O(F ) in o�ine settings with directed graphs is given
and they show that this is essentially the best possible without any further constraints
of the problem. For graphs where all arcs have a capacity of at least logF they give
another greedy algorithm with approximation ratio O(logF ). A third greedy algorithm
gives a

√
m-approximation for graphs without the no-bottleneck constraint. In the online

setting two greedy algorithms, one where allocated paths can be canceled and one where
they can not, are given with competitive ratios of O(F ).
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2.3.2 Weighted UFP

Guruswami et al. investigates Edge-Disjoint Paths and several related problems including
UFP with pro�ts [23]. They prove that the EDP on directed graphs is NP-hard to
approximate within a factor of m1/2−ε for any ε > 0 where m is the number of arcs in
the graph. In UFP with pro�ts, each request is assigned a pro�t and the objective is to
maximize the pro�t of the allocated request set. Since the UFP is a generalization of
EDP approximation algorithms for UFP can only be at most as good as for EDP. They
also give a simple greedy o�ine algorithm that iteratively �nds the shortest paths for
the requests and allocates them one by one by taking the request that use the least total
capacity �rst. In section 3.3 this algorithm will be further explained and evaluated.

Baveja and Srinivasan [11] studies the UFP where all requests have a weight, similarly
to the pro�t in [7]. The objective is to maximize the total weight of all accepted requests.
They formulate the problem as an integer programming (IP) multicommodity �ow prob-
lem and relax the integer constraints so that it is possible to allocate only a fraction of
the requested capacity of a request. This gives an LP-relaxation of the problem that
can be solved in polynomial time. By using randomization the fractional solution of the
LP-relaxation is rounded to an integer solution. A number of di�erent versions of the
problem is studied and several bounds are given for di�erent graph types. For the UFP
on general graphs an O(

√
m) approximation is given as well as an O(d) approximation

where d is the length of the longest �ow path between two nodes.
Azar and Regev gives in [7, 8] a number of strongly polynomial algorithms for the

UFP with pro�ts. The algorithms are simple and are based on splitting the requests in
two sets, one with large and one with small requested capacities. Then the sets are sorted
in a certain order and requests are allocated one by one as long as they ful�ll certain
constraints. The set that gives the highest pro�t is chosen as the �nal solution. The
algorithms address the classical UFP (where the no-bottleneck constraint apply, i.e. no
requested capacity exceeds any arc capacity), the extended UFP (no limits on requested
or arc capacities) and the bounded UFP (where requested capacity is at most 1/K of
the minimum arc capacity for some K). For the classical UFP an O(

√
m) approximation

is given which is the same as for the previously best known approximation algorithms.
For the other two variants similar results that equal or exceed the previously best known
approximations are shown.

Another approximation algorithm for the weighted UFP in undirected graphs is pre-
sented by Chekuri et al. in [12]. They model the problem as an ILP and the algorithm
they propose is based on the solution of an LP relaxation of that ILP. In this solution
the �ow of each commodity may be split in several paths. For each commodity up to one
of these paths is randomly selected for allocation. The next step is to sort the commodi-
ties in order of descending requested capacity. Finally, in this order, the commodities
are allocated one by one unless the allocation of a commodity would result in a viola-
tion of a capacity constraint. In this case the violating commodity is simply discarded.
This of course means that commodities that are allocated in an optimal solution may
be discarded. However, assuming the no-bottleneck constraint applies, the algorithm
still obtains an O(δα−1log2n) approximation ratio, where δ is the maximum degree (the
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maximum number of arcs out of a node), α is the expansion (which is related to the
connectivity of the graph) and n is the number of vertices in the graph. The authors
also investigate a number of variations of the problem with di�erent constraints such as
uniform capacities and bounded capacity requests.

2.3.3 Maximum number of requests

Awerbuch et al. [6] prove several lower bounds on the competitive ratio of the online
admission control and routing problem where the goal is to accept as many requests
as possible. For a (n + 1) ∗ (n + 1) mesh with any deterministic online algorithm they
show a lower bound on the competitive ratio of Ω(

√
n). They also show that the lower

bound for any greedy online admission control and routing algorithm in the case of a
general topology with n nodes is Ω(n). The authors continue the development of the
algorithms �rst presented in [5] focusing on heuristics to improve the performance in
practice, even though it may weaken the theoretical competitive ratio. In addition they
present algorithms for the case when the requests are not permanent but have a �nite
duration.

2.3.4 Minimum Cost Multicommodity Flow

Barnhart et al. investigates the problem of Integer Multicommodity Flow Problems [10].
In their formulation they have a cost for assigning each commodity to an arc. The goal
is to �nd the �ow that minimizes the cost. The algorithm they design is a variant of
branch-and-price, a common algorithm for solving large Integer Linear Programs (ILP)
through a combination of column generation and branching. In [9] Barnhard et al. further
develops this algorithm to include cuts. One problem with the earlier branch-and-price
algorithm arises from the symmetry inherent in the problem. If one commodity, that
in the linear programming (LP) solution is split among several paths, is forced to one
path the result can be that another commodity is split instead. This is avoided in the
algorithm by adding specialized cutting planes to the formulation and re-optimizing. This
forces the LP to choose which of the commodities that should be rerouted and according
to the authors this is more e�cient than leaving that choice to the branching part of the
algorithm. This algorithm is further described in chapter 3.6.

Peinhardt [30] investigates a similar problem for routing in �ber optic networks. He
formulates an integer multicommodity �ow problem with node capacities where �ows
can be split in integral units. The objective is to maximize the �ow sent while at the
same time minimizing a cost. A parameter is used to balance the importance of the two
objectives. He gives a few di�erent LP formulations of the problem based on di�erent
variables as well as a nonlinear program formulation. A subgradient method, using the
non-LP formulation, and a branch-and-cut method, using one of the LP formulations,
are investigated and compared. The branch-and-cut method proves to perform better
on the set of graphs that are used. Peinhardt also gives a nice survey over a variety of
multicommodity �ow problems and related work in the area.
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2.3.5 Other variations

Suri et.al. [33] propose a new algorithm for routing bandwidth-guaranteed �ows dynami-
cally in ISP (Internet Service Provider) networks by using tra�c pro�les. A tra�c pro�le
is in this case the expected amount of requested bandwidth between each pair of source
and destination nodes. Based on these requests they �rst solve a fractional multicom-
modity �ow by using an LP-solver. This pre-processing step produces a reduced graph
for each pro�le including which arcs it can be allocated on and how much capacity it
may use. Guided by this, requests can either be rejected or allocated online by a simple
shortest path algorithm depending on whether its pro�le has enough capacity left. Com-
putationally this method is fairly cheap, the expensive part is to solve the LP but still
this is much cheaper than many other algorithms using branch-and-bound techniques or
other more advanced methods. This pro�le based method is most suitable when there
are many small requests for each source-destination pair and when the tra�c patterns
are predictable or known in advance.

In [21] Gendron et al. survey a number of models and algorithms for multicommodity
capacitated network design problems. In this problem there is not only a cost for rout-
ing requests but there is also the possibility to install additional facilities on the arcs,
installing new facilities can increase the capacity but comes with a cost as well. Requests
have a requested capacity just like in the UFP, however the �ows can be split. The ob-
jective is to �nd an optimal routing and installation of facilities that satis�es all requests
while minimizing the cost. Thus this is more of a network design problem than a pure
allocation problem. They mainly survey simplex-based cutting plane and lagrangian
relaxation approaches and conclude that to solve di�cult and large-scale instances a
combination of these methods as well as heuristics will probably yield the best results.
A similar network design problem is investigated by Saniee and Bienstock in [31]. They
formulate a mixed integer program that is solved by a combination of pre-processing
heuristics, cutting-planes, branching and rounding.
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3. Algorithms

In this chapter we present a number of algorithms that have been evaluated in this
thesis. The algorithms are described at a high level to give an understanding of how they
work without going into implementation details. For each algorithm some theoretical
re�ections of what can be expected from it is also given. The algorithms described in
this chapter are summarized in table 3.1 and computational performances are given in
chapter 5. However, we shall �rst de�ne the problem model and state simpli�cations
that have been made compared to the RBS interconnect allocation problem.

Table 3.1: Summary of the algorithms de-
scribed in this chapter.

Online Greedy Optimal
SSP Yes Yes No
MSPF No Yes No
MCPF No Yes No
DIP-Cut No No Yes*

DIP-Price No No Yes*

BPC No No Yes*
*

Provided an answer is returned before the

time limit.

3.1 Model

Let G = {V,A} be a graph with n = |V | nodes and m = |A| directed arcs. Each arc a
in A represents a contiguous block of time slots on an actual link in the RBS network
and has a corresponding capacity c(a). Let R be a set of requests and for each request
r let s(r) denote the source node, d(r) denote the destination node and u(r) denote the
requested capacity of the request. In a real RBS environment each requests consists of
one downlink request from the REC to the RE and one uplink request from the RE to
the REC. Any of these two requests can of course not exist without the other since then
communication would only be in one direction. However, we have made a simpli�cation
and ignored this rule so that all the requests are independent of each other.
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3.2 Simple Shortest Path

The Simple Shortest Path (SSP) algorithm is the simplest algorithm imaginable for
solving the above described problem. It is a greedy online algorithm, meaning that it
considers each request in isolation and once a path has been allocated for a request it
will never be changed. The requests are handled in the order they arrive. The algorithm
is described in the pseudocode and text below.

Algorithm 3.2.1: shortest_path(G,R)

allocated← ∅
for each r ∈ R
do if ∃sp(r, allocated,G)
then allocated← allocated+ {r, sp(r, allocated,G)}

return (allocated)

Here sp(r, allocated,G) gives the shortest path for r in G with remaining capacity
on all arcs, with regard to the allocations in allocated, greater or equal to the requested
capacity u(r). For each request the SSP algorithm allocates the shortest path available
with su�cient remaining capacity. If no such path is found then the request is discarded.
Of course this can give arbitrary bad results in the worst case. Suri et al. describes the
following example [33]. Consider a request set of n+1 requests, all requests have separate
source nodes S0 to Sn but a common destination node D. The �rst request, from S0,
has a requested capacity of n and all other requests have requested capacities of 1. If
this request set and the graph in �gure 3.1 is given to SSP the �rst request would be
allocated on S0− > C− > D which would block all other requests. An optimal solution
would allocate the �rst request on the longer path and then all other requests could be
allocated as well[33].

On the other hand SSP is expected to be fast, for each request only a shortest path
algorithm is performed and this can be done quickly using well known algorithms. In the
case where the length of each arc is one a simple breadth �rst search is su�cient to �nd
the shortest path. The only complication is the need to consider the capacity constraints
of the arcs. This can easily be done by preprocessing the graph to only include arcs with
su�cient capacity to carry the request or by modifying the breadth �rst algorithm to
perform the check during the search. In either way, a breadth �rst search algorithm have
a time complexity of O(n+m) since in the worst case it must visit each node and each
arc once. The total time complexity of SSP is thus O(|R|(n+m)).

An o�ine variation of SSP could be to sort all the requests by their requested capacity
before SSP is run. If requests with small requested capacity comes �rst more requests
can be expected to be allocated while if requests with high requested capacity comes �rst
the small requests can hopefully be allocated on the remaining arc capacities in the end.
These o�ine variations have not been implemented and evaluated in this thesis.
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Figure 3.1: A concentrator topology showing the non-optimality of SSP [33].

3.3 Minimum Shortest Path First and Minimum Capacity

Path First

A variation of the shortest path algorithm is the Minimum Shortest Path First (MSPF)
algorithm. This greedy algorithm requires information about all requests at once and is
therefore an o�ine algorithm.

Algorithm 3.3.1: Minimum_shortest_path_first(G,R)

allocated← ∅
repeat

P ← ∅
for each r ∈ R
do if ∃sp(r, allocated,G)
then P ← P + {r, sp(r, allocated,G)}
else R← R− r

sort P according to length
for each p ∈ P
do if p can be allocated

then

{
allocated← allocated+ p
R← R− r

else break
until R = ∅
return (allocated)

The basic building block is again the breadth �rst search but here the shortest path
of all requests are computed at the same time. The results are then sorted according to
length, shortest lengths �rst, and the requests are allocated until the �rst request that
cannot be allocated with the preceding requests is encountered. This happens when the
remaining capacity of an arc in the previously calculated path is lower than the requested
capacity of the request. At that point the algorithm starts over and recomputes the
shortest paths of all the remaining requests, taking into account the existing allocations.
If no path can be found for a request it is discarded.

MSPF would still not �nd the optimal solution in the example of �gure 3.1 and it
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is not guaranteed to be better than SSP in any speci�c case. However, it might be
expected that short paths will have a smaller impact on the overall capacity of the graph
and that this would result in that more requests can be allocated. This depend on the
requested capacity of the requests. If for example the requests with short paths have
high requested capacity while those with longer paths have small requested capacities
the impact of allocating the former may be high.

Instead of only sorting according to length, another variation of MSPF is to sort by
the total arc capacity that would be used if a path is allocated. We call this algorithm the
Minimum Capacity Path First (MCPF) algorithm and it is also described in [23]. The
total used capacity of a path equals its requested capacity multiplied with its length. If
this measure is used when sorting it can be expected that more requests can be allocated
since the capacity of the graph is decreased as slowly as possible. As a result requests
with high requested capacity and long paths will be less prioritized.

In the worst case all the shortest paths must be recalculated after each allocated
request and in this case the shortest path algorithm will be run |R|(|R| + 1)/2 times.
Thus the time complexity of MSPF and MCPF is O(|R|2(n+m)).

3.4 Naive Branch and Bound

If a computer with unlimited resources was available it would be possible to use a naive
branch and bound algorithm that more or less �nds and tries all possible combinations
of request allocations. A simple bounding procedure is to use the value of the �rst
feasible solution as an upper bound for the rest of the search. If a branch can only
lead to a solution with a lower bound higher than the upper bound this branch can be
pruned. Without going into further details about the implementation we can mention
that we designed and implemented two depth �rst versions of a naive branch and bound
algorithm. One version tries to maximize the number of requests that can be allocated
and the other one tries to maximize the requested capacity of the allocated requests. The
purposes of these are to see for how large graphs and request sets they could be feasible
to use. However, as mentioned in section 2.2 it is easy to see that a problem instance
larger than very small should be infeasible.

3.5 The DIP Framework

Decomposition in Integer Programming (DIP) is an open source framework with the
intention to decrease the e�ort needed to implement decomposition based branch and
bound algorithms for solving integer programs[17]. The framework takes care of much
of the details of the algorithms but still allows the user to customize various parts of
the algorithms such as the branching or solving of the subproblems. The framework
allows one to easily change between di�erent solving methods such as branch-and-cut
and branch-and-price-and-cut. In this thesis these algorithms have been evaluated and
will be explained in the following two sections.
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Using DIP one can signi�cantly shorten the time to develop a �rst working prototype
of an algorithm while still allowing considerate customizations and optimizations when
needed. DIP is built upon and part of the Computational Infrastructure for Operations
Research (COIN-OR) project, a project that aims for providing open source libraries
and frameworks for developing algorithms in the area of operations research. COIN-OR
includes for instance CLP, a linear program solver, CGL a cut generator library as well
as common utility functions and data structures. For a deeper understanding of DIP and
the theory behind see [19] and [18].

3.5.1 Branch and Cut

Branch and cut is a variation of branch and bound applied to integer programming.
There are several variations of branch-and-cut but commonly an LP relaxation is solved
at each node in the search tree, giving a lower bound on the value of the optimal solution.
In order to obtain a stronger bound the relaxation is strengthened by �nding inequalities,
called cuts, that should be satis�ed by an integer solution but are violated by the optimal
solution of the LP relaxation. Generating cuts can be done in several ways which is
described in more detail in [28]. One approach uses a problem speci�c separator routine,
when a solution to the relaxation has been found the separator routine is applied in order
to identify a violated inequality. This can be used when the number of constraints in
a problem formulation is exponential in the problem size. It is then possible to leave
out many of the constraints and use the separator routine to dynamically generate only
those that are violated. An often given example of this is the Traveling Salesperson
Problem (TSP) where the goal is to �nd the shortest tour that visits all nodes exactly
once in a weighted graph. In the integer program formulation of TSP one have the
constraint that for each node only two edges are used in a solution. This is not enough
so the integer formulation also includes a number of Subtour Elimination Constraints
(SEC), these constraints enforce that there must be only one tour in the graph. The
problem is that we need one such constraint for each subset of nodes and we therefore
have exponentially many constraints. The solution is to leave out the SECs and after
solving the LP relaxation identify the o�ending subtours and add only those SECs that
prevents them.

It is also possible to use branch-and-cut without a problem speci�c separator routine.
Using general families of inequalities such as Gomory cuts and Knapsack cuts one can
improve the bound in general cases and this is the approach used in our branch-and-

22



bound algorithm, DIP-cut.

Algorithm 3.5.1: DIP-cut(ILP )

n← 1
po ← InitialFormulation(ILP )
P ← {p0}
z̄ ← max_value
z0 ← min_value
while P 6= ∅

do



pi ← select problem from P
P ← P − pi
repeat{
{xi, zi} ← Solve(pi)
pi ← pi + FindCuts(pi, xi)

until no more cuts found
if zi < z̄

then



if xi ∈ Z l

then


z̄ ← zi
xb ← xi
P ← {pj ∈ P |zj < z̄}

else for each suitable branch variable v ∈ pi

do


pn+1 ← pi + {v = 0}, zn+1 ← zi
pn+2 ← pi + {v = 1}, zn+2 ← zi
P ← P + pn+1 + pn+2

n← n+ 2
return (xb)

Here z̄ is the value of the objective function in the currently best solution xb and
therefore an upper bound on the optimal value, zj is the optimal value of the solution xj
to the LP relaxation of problem j. The basic algorithm selects a problem pi to solve from
the pool of potential nodes. It solves the linear relaxation of pi and tries to identify one
or more violated cuts. If any cuts are found, they are added to the formulation and the
process is repeated until no more cuts can be found. If the last solution is integer and
the value is less than the previous best value, a better solution has been found. In this
case all potential nodes with lower bound higher than zi can be discarded. If the value is
less but the solution is fractional the algorithm branches on some variables, forcing them
to 0 and 1. The resulting problems are added to the pool of problems and the process is
repeated until there are no problems left or a timeout is reached.

The algorithm is applied to the ILP formulation of the UFP instance.
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minimize
∑
r∈R

∑
a∈A

x
var(a,r) +

∑
r∈R

(u(r) + C)dr

subject to∑
i∈en(k,r) xi −

∑
j∈ex(k,r) xj + f(k, r)dr = f(k, r), ∀k ∈ V,∀r ∈ R∑

r∈R u(r)x
var(a,r) ≤ c(a), ∀a ∈ A

x
var(a,r) ∈ [0, 1], ∀a ∈ A,∀r ∈ R

where

f(k, r) =


−1, if k = s(r)

1, if k = d(r)
0, otherwise

Each variable stand for a combination of arc and request. They represent the decision
to allocate the request on the speci�c arc. In addition to the arcs present in the graph,
one dummy arc is added for each request, going from its source to its destination with
unlimited capacity, represented in the formulation as the variable dr. The dummy arcs
represents the choice to reject a request, and enable the algorithm to return a solution
even in the case when not all requests can be allocated simultaneously. These dummy
arcs are given a high cost C so that the algorithm only use these arcs if there is no
better solution. In order to prioritize requests with higher requested capacity, u(r) is
also added to the cost of a dummy arc. en(k, r) and ex(k, r) denote the variables that
represent allocating request r to the arcs entering and exiting node k. var(a, r) denotes
the variables that represent using arc a for request r.

While this algorithm does signi�cantly more work than the SSP or MSPF, it should
still be a considerable improvement over the simple branch-and-bound since the LP
relaxation gives a much better bound. However, the amount of work depends highly on
the structure of the problem, and in a problem that requires a lot of branching this could
still quickly grow beyond what can be e�ciently solved. By limiting the time available
for the algorithm it is possible to �nd solutions in some cases, even though they are not
proven optimal. This may happen if there are still nodes left to explore in the search
tree when the time limit is reached, but an integral solution has been found during the
search. In these cases one can use the lower bounds of the remaining nodes to give a
bound on how far from optimal the solution is. In our case we set the time limit to 30
minutes.

3.5.2 Branch and Price and Cut

Another approach to solving large integer programs is branch-and-price. Branch-and-
price is similar to branch-and-cut but instead of generating inequalities (rows in the ILP
formulation) one generates nonzero variables (columns in the ILP formulation) [10]. The
main observation in branch-and-price is that in any solution, most of the variables in
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the ILP formulation is zero, and will not a�ect any of the constraints. This means that
we can leave those variables at zero and still get the same result. It is not obvious how
to come up with the variables that should be part of the solution. The variables are
identi�ed by �nding negative reduced costs, calculated with help of the duals to the
master problem. The identi�ed variables can then be added to the basis and the result
reoptimized.

DIP supports this form of algorithm in the integrated form called branch-price-cut.
Here pricing and cutting are used together in order to obtain stronger bounds. The pric-
ing is based on a decomposition where some of the constraints are used as subproblems, in
our case the conservation of �ow constraints. The rest of the constraints form the master
problem. The algorithm �rst solves the master problem obtaining both a solution as well
as the values of the dual variables. It then alternates between solving the subproblems
using the dual information for improving variables and generating cuts from the solution.
If neither of the approaches gives any new information the branching takes place. Since
this is a very simple decomposition without any specialized solvers for the subproblems,
it is possible that the added work will only slow down the performance compared to the
branch-and-cut algorithm. But using DIP the workload to implement the branch-and-
price-and-cut algorithm given a branch-and-cut implementation is so small we decided
to investigate it anyway.

3.6 Branch and Price and Cut for Integer Multicommodity

Flow

There exists specialized versions of branch-and-price where one do not have to know of
all the variables in the formulation. This is achieved by starting with a small subset of
the variables, called the restricted master problem(RMP), and generating variables that
could improve the solution when needed. This is called delayed column generation. The
trick lies in identifying good variables without explicitly looking at them all.

Barnhart et al. uses this approach together with cut generation in [9]. In the al-
gorithm presented by Barnhart two alternative ILP formulations are used, the node-arc
formulation and the path formulation. The description below shows the path based for-
mulation and is adapted to our speci�c needs, for the original version we refer the reader
to [9]. In the path formulation, each path a request may use through the network is
represented as a variable. Here P (r) represents all such path variables for request r, and
p(a, r) represents all path variables for request r using arc a. In the same way as before
we add dummy arcs to ensure that the instance is feasible.
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minimize
∑
r∈R

 ∑
i∈P (r)

pi

+ (u(r) + C)dr

subject to ∑
r∈R

∑
i∈p(a,r) u(r)pi ≤ c(a), ∀a ∈ A(∑

i∈P (r) pi

)
+ dr = 1, ∀r ∈ R

pi ∈ [0, 1], ∀r ∈ R,∀i ∈ P (r)

The two formulations are equivalent except that the path formulation trades fewer
constraints for a larger number of variables. In the path formulation we have one variable
for each path between a request's source and destination. Now we do not need the �ow
conservation constraint since it is implied by our use of path variables. We instead have
a constraint that says that the sum of all path variables for a request is one, ensuring
together with the integrality constraint that each request only uses one path.

In each node of the search tree the current RPM is �rst optimized and a set of
duals −πra and ρr are obtained, corresponding to the capacity constraints and the single
path constraints. From the duals the reduced cost of each column can be calculated as
c̄rp =

∑
a∈A(1 + πra)− ρr. Finding the smallest reduced costs for a request r is then easy

using a suitable shortest path algorithm in the network where the arcs have costs 1 +πra.
If the cost of the path for request r is smaller than ρr then we have found a possibly
improving path. The reduced problem is then augmented with the improving paths and
the problem is re-optimized repeatedly until no more improving paths can be identi�ed.
In a branch-and-price algorithm this is the termination condition of the price stage, and
if the solution is not integral the next step is to branch.

One issue to consider with branch-and-price is that some branching strategies may
destroy the structure of the pricing problem, leading to more complex pricing strategies.
Barnhart avoids this by branching on the variables in the arc-node formulation instead
of branching on the path variables, in each branch a set of arcs are forbidden for a
commodity. Which arc sets to forbid is selected by choosing the commodity with highest
requested capacity among those with fractional values, and then choosing the two paths
with highest fractions. The paths are followed to the node where they diverge from each
other and all arcs leading out of that node is divided into two sets, each including an arc
used by one of the paths. As Barnhart et al. describes in [9], this branching alone can lead
to poor performance due to the symmetry inherent in the problem. If one commodity is
forced to use only one path, another may be split instead. The problem is relieved by
using cuts in addition to the pricing. Whenever the pricing phase terminates, an attempt
to �nd cuts is performed. The generated cuts are of type lifted cover inequalities, LCIs,
which limits the number of requests using a particular arc. A discussion of how to
generate the cuts is beyond the scope of this report, for more information see [22]. The
cuts are found in the arc-node formulation but can easily be translated to the path
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formulation. If any cut is found the resulting problem is reoptimized. First when no
more cuts can be found the branching commence.
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4. Evaluation Framework

In order to evaluate algorithms we developed an evaluation framework in C++. The
objectives for this application were that it should be fairly easy to implement an algorithm
in it and use the framework to test the algorithm. It should give measurements of how
well an algorithm performs and it should be possible to let the algorithms be tested
on a large number of di�erent problem instances. In this chapter we �rst describe the
functionality of the evaluation framework, then we give an overview of the design of it
and �nally we describe the test scenarios that we have used to evaluate the algorithms.

4.1 Functionality

The evaluation framework is controlled by an ini-�le that allows a user to set up a range
of di�erent test scenarios for the implemented algorithms. To execute an algorithm a
problem instance consisting of a graph and a request set should �rst be created. A graph
can be acquired by reading it from an XML-�le, by using a hard coded graph or by letting
the program generate a graph. A request set can be generated or, if a graph is read from
an XML-�le, it can also be read from a matching XML-�le. Then the problem instance
is solved by a set of algorithms, which algorithms that should be used is also speci�ed in
the ini-�le. The result of each algorithm is displayed at the command line. The amount
of information displayed at the command line can be adjusted from the ini-�le. This
program �ow is illustrated in �gure 4.1.

When a graph is generated you specify how many nodes and arcs it should contain
and you also specify in what range the arc capacities should be. The default behaviour
when generating a graph, is to add one node at a time by randomly selecting which of the
previously added nodes it should be connected to. When all nodes are added we have a
tree structure. The next step is to, for all the remaining arcs, randomly select two nodes
and connect them by the arc. Each arc is also given a capacity randomly chosen within
the speci�ed capacity range. The arcs are directed, but since we assume that all links
are symmetrical duplex links, for each arc added, an identical arc is also added between
the same nodes but in the opposite direction. Figure 4.2 shows an example graph that
was generated.

It is also possible to generate a graph that is somewhat more similar to the RBS
interconnect network. In this case the number of desired RECs and REs is speci�ed.
First the RECs and any extra arcs are added just like before. Next, the REs are added
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Figure 4.1: The program �ow of the evaluation framework.

one by one by randomly selecting a previously added REC or RE. If the selected node is
a REC an arc is just added between them. If on the other hand the selected node is an
RE, a chain of REs is created out from the connected REC.

A request set is generated by, for the speci�ed number of requests, randomly select-
ing two nodes where one becomes the source node and one the destination node. The
requested capacity is also randomly chosen within a speci�ed range. In the case of the
graphs with RECs and REs all requests are set up between a REC-node and an RE-node.
To simulate that paths in both directions should be allocated each generated request can
be mirrored so that there is a pair of identical requests with the only di�erence that
they have swapped the source and destination nodes. However, when the algorithms are
allocating requests there is no rule that forces either both or none of the paths in a pair
to be allocated.
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Figure 4.2: An example of a generated graph with 10 nodes and 15 arcs. The numbers
specify the capacities of the arcs. The arcs are directed but doubled with one arc in each
direction so the real number of arcs is 30.

When an algorithm has been run on a problem instance it returns data structures
with information about how it has allocated the requests. If desired, this information
can be displayed. The program also makes a number of measurements of each solution in
order to give numerical results that can be easily compared. The measurements include:

• the time it took for the algorithm to �nd the solution

• the number of requests allocated

• the total allocated capacity

• the total arc capacity used

• the number of arcs used

• the average load on the arcs

• the total number of jumps

• the length of the longest path.

The most interesting numbers to look at are the number of requests and the total
allocated capacity since these re�ect how much that has been allocated. The other
measurements are most interesting when comparing solutions that have similar results
on the number of requests and total allocated capacity.

The evaluation framework can be con�gured to create and test many problem in-
stances in sequence. For each graph multiple request sets to test with can be generated,
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or read, and it is also possible to read and generate many di�erent graphs. All instances
are solved by the desired algorithms and the output can be used to analyse and evaluate
the algorithms.

4.2 Design

The evaluation framework can roughly be divided into three di�erent parts plus external
code as shown in �gure 4.3. First is the main program that handles the reading of
parameters, generation or reading of graphs and requests, the execution of algorithms
and the collection and printing of data. To read input parameters we have used an open
source library called SimpleIni that is used to read parameters from an ini-�le [2]. The
XML-�les that have been used are based on �les supplied by Ericsson. The XML parsers
for these �les are also from Ericsson, but adapted to construct a model for our evaluation
framework. The parsers are built using the open source library Expat [1].

Figure 4.3: A rough division of the design of the evaluation framework.

The second part is an internal model of a network and requests along with utility
functions for manipulating and viewing this model. Nodes and arcs are represented in
data structures linked together with pointers. Arcs also have information about their
timeslots in order to keep track of their available capacity.

The third part consists of the algorithms. This part is object oriented so that it
is fairly easy to implement new algorithms and run them in the evaluation framework.
New algorithms should be subclasses of a base algorithm class and implement certain
methods in order to be executable in the framework. The algorithms are given one
problem instance at a time and return data structures containing information about how
the requests have been allocated.
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4.3 Test scenarios

To evaluate the algorithms the evaluation framework has been used to create a number of
scenarios, or problem instances. Since SSP, MSPF and MCPF are greedy algorithms that
run in polynomial time these algorithms are capable of handling problems of much larger
size compared to what is feasible for DIP-Cut. Therefore a number of test scenarios were
made to compare these three algorithms separately. Then a number of test scenarios have
also been used to test all algorithms, including DIP-Cut. These include both randomly
generated graphs and �xed graphs with both �xed and random requests. All scenarios
are described below and the results are presented in the next chapter. Of course there are
many more problem settings other than those described here that could be interesting
to evaluate but due to the limited time we decided not to add any more test scenarios.

For the greedy algorithms eighteen di�erent scenarios were made. All are randomly
generated graphs with random requests. For all scenarios the arc capacities are randomly
chosen between eight and sixteen for each arc. The requested capacities are randomly
chosen between one to eight which means that the no-bottleneck constraint holds. For
each scenario a graph is �rst generated, then ten di�erent request sets are generated.
The mean values of the results from each scenario are used in order to get a more robust
result.

The di�erent scenarios can be divided into a number of groups. Nine di�erent classes
of graphs are generated and for each class two types of request sets are generated. The
�rst, scenario 1 to 9, has an abundance of requests where only a fraction of all the requests
can be allocated simultaneously. The second, scenario 11 to 19, has a more suitable
number of requests where all or almost all requests can be allocated simultaneously. The
nine graph classes can be grouped in three groups of di�erent sizes. There is a small
class with only 10 nodes, a medium class with 50 nodes and a large class with 500 nodes.
For each class the number of arcs also vary in three steps. The idea is that these tests
should show the di�erences between the algorithms when applied to di�erent classes of
problem instances. A summary of the scenarios is presented in table 4.1.

Table 4.1: Graphs in scenario 1-19 have arc capacities of 8-16. Requested capacities are
1-8.

Scenario nodes arcs average degree requests
Scenario 1 / 11 10 15 3 80 / 20
Scenario 2 / 12 10 20 4 80 / 30
Scenario 3 / 13 10 25 5 80 / 40
Scenario 4 / 14 50 75 3 1000 / 50
Scenario 5 / 15 50 100 4 1000 / 100
Scenario 6 / 16 50 250 10 1000 / 400
Scenario 7 / 17 500 750 3 10000 / 300
Scenario 8 / 18 500 1000 4 10000 / 500
Scenario 9 / 19 500 2500 10 10000 / 3000
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To further investigate the performance of the greedy algorithms a number of addi-
tional tests are created where the number of nodes, the number of requests and the
average degree are systematically varied according to table 4.2. All are randomly gen-
erated graphs with random requests. For all the combinations the arc capacities are
randomly chosen between eight and sixteen for each arc. The requested capacities are
randomly chosen between one to eight which means that the no-bottleneck constraint
holds. For each combination a graph is �rst generated, then �ve di�erent request sets
are generated. The mean values of the results from each combination are used in order
to get a more robust result.

Table 4.2: Graphs in the performance scenarios have arc capacities of 8-16. Requested
capacities are 1-8.

Nodes 10 50 100 150 200 250 300 350 400 450 500
Requests 10 20 40 80 160 320 640 1500 3000 4500 6000 7500 9000 10000
Average degree 2 3 4

To evaluate the DIP algorithms additional scenarios are used. Again random graphs
and request sets are used but the sizes of these are considerably smaller compared to
those previously described. The random scenarios, 21 to 25, are summarized in table
4.3. In addition, nineteen �xed topologies, supplied by Ericsson, representing di�erent
con�gurations of RBS interconnect networks are used. These graphs are both used with
�xed request sets from XML-�les, also from Ericsson, as well as randomly generated
requests. In the �xed request sets the requested capacity is one for all requests and in
the generated request sets the requested capacity range from one to eight. For the �xed
requests there is no point of running the scenarios more than once for each algorithm
since the problem instances does not change. The generated requests in scenario 51 to
69 are generated in pairs with one request in each direction but with equal requested
capacities. Table 4.4 shows the scenarios with the graphs from Ericsson. Scenario 31 to
49 correspond to the �xed request sets and scenario 51 to 69 use random requests. Even
though some rows may look identical in the table there are topological di�erences in the
graphs.

Table 4.3: Requests in 21-25 have a requested capacity of 1 to 8.

Scenario nodes arcs average degree requests
Scenario 21 5 8 3.2 30
Scenario 22 5 8 3.2 40
Scenario 23 20 32 3.2 30
Scenario 24 20 32 3.2 40
Scenario 25 40 64 3.2 50

During early tests of the DIP algorithms they were observed to have di�culties with
some problem instances. In some cases they ran for a long time without �nding a solution
and eventually they allocated so much memory so that the program was stopped. To
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Table 4.4: Graphs in scenario 31 to 69 have arc capacities set to 16. Requests in 31 to
49 have requested capacity of 1 and in 51 to 69 the requested capacity is 1 to 8.

Scenario nodes arcs average degree requests
Scenario 31 / 51 16 18 2.25 96 / 20
Scenario 32 / 52 16 18 2.25 96 / 34
Scenario 33 / 53 28 30 2.14 128 / 26
Scenario 34 / 54 16 16 2 88 / 20
Scenario 35 / 55 16 16 2 96 / 30
Scenario 36 / 56 28 16 2 128 / 30
Scenario 37 / 57 16 15 1.88 56 / 20
Scenario 38 / 58 16 15 1.88 72 / 34
Scenario 39 / 59 28 27 1.93 84 / 20
Scenario 40 / 60 24 29 2.42 128 / 30
Scenario 41 / 61 24 29 2.42 96 / 30
Scenario 42 / 62 24 29 2.42 160 / 34
Scenario 43 / 63 24 30 2.5 128 / 30
Scenario 44 / 64 24 30 2.5 128 / 30
Scenario 45 / 65 24 30 2.5 256 / 40
Scenario 46 / 66 24 31 2.58 128 / 34
Scenario 47 / 67 24 31 2.58 128 / 30
Scenario 48 / 68 24 31 2.58 256 / 40
Scenario 49 / 69 144 158 2.19 294 / 50
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deal with this a time limit of 30 minutes has been added so that if the DIP algorithms
are not �nished within this limit they are aborted. In many, but not all, cases feasible
solutions that are not proven to be optimal are found within this time limit. In the early
tests the DIP-Price-and-Cut algorithm was also found to be much slower than DIP-Cut
and when solutions were obtained DIP-Cut reached the same result in less time. Due
to the time it takes to run all scenarios multiple times it was decided not to include
DIP-Price-and-Cut in the test scenarios.

For some request sets in some scenarios the DIP algorithms causes the program to
crash. Whether this is due to bugs in the DIP framework or in the adaptations between
the evaluation framework and DIP we do not know. To deal with this problem, and the
problem that DIP-Cut sometimes times out before it has found a feasible solution, the
test scenarios that su�ers from this have been rerun until ten feasible solutions have been
found.
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5. Results

In this chapter the results obtained from the di�erent test scenarios described in the
previous chapter are presented. The tests have been performed on 32-bit Windows work-
stations with 2 GB of memory and an Intel Core i5-520 CPU at 2.40 GHz. We begin
with a discussion of the measurements used followed by the results grouped in sections
for the di�erent groups of scenarios.

5.1 Selection of Measurements

The measurements we have used were chosen either because they were related to the
objective function of our algorithms or related to how e�ciently the allocated requests
are using the available capacity.

5.1.1 Allocated Capacity vs Number of Requests

In the case when not all requests can be allocated simultaneously the allocated capacity
or the number of allocated requests are probably the most important measurements that
can be used to compare di�erent algorithms. Which of the measurements to use is not
obvious and no general answer exists for all cases. If the number of requests is prioritized
it can be expected that an RBS will have a better coverage. On the other hand, if
allocated capacity is prioritized, the RBS should be able to serve more users and give
higher bandwidths.

This trade o� between bandwidth and coverage is a choice the operators should make
and it can vary between di�erent sites. In either way, both goals are possible to express
in an algorithm for UFP with pro�ts by a suitable selection of pro�ts. When optimizing
the number of requests the pro�t for each request is simply one and when optimizing
for maximum allocated capacity a suitable choice of pro�ts is the requested capacity of
each request. It is also possible that a completely di�erent prioritization can be used by
giving each request an arbitrary pro�t depending on its importance.

5.1.2 Comparing solution e�ciency

While the total allocated capacity and number of requests are obvious measurements of
the solution quality the relevance of the other measurements appears when comparing
solution e�ciency. This is mainly applicable when di�erent solutions have the same
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number of allocated requests and amount of allocated capacity. Then, the number of
used arcs, used arc capacity and total number of jumps can be seen as values for how
e�ciently the requests have been allocated. A lower number of used arcs means that
some links in a network can be shut o� and energy can be saved. A higher amount
of used arc capacity means that there might be less options if more requests should be
allocated in the future as well as a greater energy consumption. The number of jumps is
similar but also says something about the latency that can be expected for the requests.
If certain latency bounds should be followed the length of the longest path is also of
interest. Which of these measurements that are most important is hard to say anything
about and can probably di�er in di�erent situations. However, we found that the average
number of jumps re�ected the used arc capacity as well as it said something about the
expected latencies and therefore we were satis�ed with only presenting this measure in
the results.

5.1.3 Measuring algorithm execution time

When measuring the time used by the algorithms we have deliberately chosen to take
a crude wall clock measurement. This is in part because of the inherent di�culty of
accurately measuring time in a complex operating system that at any time has many
di�erent tasks running but it is also a re�ection of the importance the exact measurement
has. As Ahuja et al. writes in [3] the running time measured depends on many factors
including such as choice of language and compiler, the skill of the programmer, the test
environment and especially other programs and processes competing for the same CPU.

To address this issue Ahuja et al. present an alternative to measuring CPU time.
They argue that performance should instead be measured by counting representative
operations. The operations should be selected so that they take a constant time, not
depending on the problem size, to complete and in such a way that if one knows how
many such operations that are performed the CPU time required may be estimated. This
has several advantages as Ahuja et al. points out. Since representative operations that are
fundamental to the algorithm are counted the measure is more independent of language,
style and the workload of the computer. It is also possible to compare measurements
run on di�erent computers with di�erent computing capabilities more easily. In the case
of the greedy shortest path based algorithms we chose to count the number of iterations
over the request sets as well as the number of arcs scanned as this gives a good indication
of how much work that is done.

5.2 Scenario 1 - 9

Figure 5.1 shows results from scenario 1 to 9. Recall that these scenarios have an abun-
dance of requests and only test the three greedy algorithms SSP, MSPF and MCPF. The
results of MSPF and MCPF are divided by the result of SSP so that the graphs show
the relative performance of the algorithms for each scenario.

Figure 5.1a shows the relation of the total number of requests that each algorithm
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could allocate. Summed over all the scenarios SSP could allocate 19 percent of all
requests, MSPF managed 30 percent and MCPF 34 percent. As can be seen in the graph
the performance of MSPF ranges from 10 to 100 percent more requests compared to SSP
while MCPF manages to allocate 10 to 200 percent more requests. Especially in scenario
4, 5, 7, and 8 MSPF and MCPF show a great improvement compared to SSP. These
scenarios have a relatively large number of nodes but a low connectivity.

If we sum the requested capacity of all allocated requests we get what we call the total
allocated capacity. The relative performance of the three greedy algorithms in terms of
total allocated capacity is shown in �gure 5.1b. As can be seen MSPF has 10 to 100
percent more and MCPF has 2 to 50 percent more than SSP. This re�ects the result of
the number of requests but also that MCPF chooses requests with low requested capacity.

A third measurement, see �gure 5.1c, is the average number of jumps per request.
This re�ects the average path length of the allocated requests. Shorter paths are of course
better since this reduces latency and required capacity. Compared to SSP, MCPF is 15
to 30 percent better while MSPF is 15 to 50 percent better. The greatest di�erences are
again in scenario 4, 5, 7 and 8 which helps to explain how MSPF and MCPF can allocate
more requests and more total allocated capacity.

The average execution times for the di�erent algorithms and scenarios found in ta-
ble 5.1d show that the algorithms can handle fairly large problem instances before the
execution times are noticeable. Only for scenario 7 to 9 MSPF and MCPF begin to
take time while SSP still �nishes within seconds. To get a better view of the di�erences
in execution time consider �gure 5.1e and 5.1f. Figure 5.1e shows the number of itera-
tions each algorithm runs. Recall that SSP run one iteration by de�nition while MSPF
and MCPF recalculate the shortest paths of all remaining requests as soon as they en-
counter a request that can not be allocated with its currently calculated path. Each
such recalculation is one iteration. For the small graphs about eight iterations is needed
by MSPF and MCPF. This increases up to 140 and 100 iterations respectively for the
largest problem instance. MSPF continuously has the highest number of iterations.

During the breadth �rst search for �nding the shortest paths the algorithms inves-
tigates arcs to see if they should be followed or not. Figure 5.1f shows how many such
investigations that are performed. Again we see that MSPF performs more such inves-
tigations than MCPF although the di�erence is comparatively small. Compared to SSP
both the other algorithms perform between four times more investigations, for scenario
1, to almost four hundred times more for scenario 7. The billions of investigations that
are made for scenario 9 explains why the execution times for even the greedy algorithms
begin to grow.

5.3 Scenario 11-19

Scenario 11 to 19 are identical to scenario 1 to 9 except that the number of requests
are decreased to a level where most requests can be expected to be allocated. In these
settings SSP manages to allocate 92 percent of all requests summed over all scenarios,
MSPF reaches 94 percent and MCPF 91 percent.
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Figure 5.2a shows the number of allocated requests and as can be seen the large
di�erences between the algorithms seen in �gure 5.1a are no longer present. MSPF is
still slightly better than SSP by 0.5 to 6 percent. MCPF on the other hand is now only
better in two scenarios and have otherwise up to 2 percent fewer allocated requests.

Similar results are achieved for the total allocated capacity in �gure 5.2b. MSPF is
a few percent better than SSP but MCPF is in most cases a few percent worse. From

(a) Relative amount of allocated requests.
(b) Relative amount of total allocated capac-
ity.

(c) Relative average path lengths of the allo-
cated requests.

Scenario SSP MSPF MCPF
1

< 1s

< 1s < 1s
2
3
4
5
6 2 s 2 s
7 2 min 2 min
8 4 min 3 min
9 4 s 14 min 8 min

(d) Average execution times.

(e) Average number of iterations performed. (f) Average number of arcs investigated.

Figure 5.1: Results from scenario 1 to 9.
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�gure 5.2c the path lengths of MSPF and MCPF are fairly equal, about 5 to 15 percent
shorter compared to SSP. The execution times are found in �gure 5.2d. Since there are
less requests to process the execution times are faster compared to scenario 1 to 9 but the
relative e�ciency of the algorithms remain. This is also re�ected by the required number
of iterations for MSPF and MCPF as seen in �gure 5.2e. The large di�erence between
SSP and the other algorithms in investigated arcs, �gure 5.2f, is however decreased
considerably.

5.4 Scenario 21-25

In scenario 21 to 25, and the remaining scenarios, the DIP-Cut algorithm is also evaluated
and compared to the three greedy algorithms. Out of all the requests in scenarios 21
to 25 SSP allocates 77 percent, MSPF 79 percent, MCPF 80 percent and DIP-Cut 84
percent. From �gure 5.3 it is clear that DIP-cut gives the best solutions with more
allocated requests and larger total allocated capacity. MSPF and MCPF show results
similar to scenario 11 to 19 although MCPF allocates more requests than SSP, this may
be because the quota of requests that can be allocated is slightly lower in scenario 11 to
19. The average number of jumps per request for DIP-Cut is a few percent lower than
for SSP but not as low as for MSPF and MCPF.

For these relatively small graphs the greedy algorithms �nish in less than a second,
DIP however requires a lot more time as can be seen in �gure 5.3d. The times displayed
are average times over ten repetitions where DIP-Cut found a solution. It should be
noted however that there are four di�erent outcomes of DIP-Cut as described in the list
below. The number of times each outcome occurred in the test scenarios is summarized
in �gure 5.3e.

DIP-Cut outcomes

Optimal E�cient cuts can be found and almost no branching is necessary. An optimal
solution is found within the time limit, often in less than a second. Sometimes the
problem requires more branching and a solution is then given after a few seconds
or minutes.

Suboptimal For some problem instances �nding e�cient cuts is hard and a lot of
branching is needed. A feasible solution can sometimes be found but it is not
proven to be optimal. When the time limit is reached the best such solution is
given.

Timeout Some problem instances are too hard. The algorithm times out before a
feasible solution is found. In these cases the scenario is rerun with a new request
set.

Crash Something causes the program to crash and no solution is obtained. The scenario
is rerun with a new request set.
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(a) Relative amount of allocated requests.
(b) Relative amount of total allocated capac-
ity.

(c) Relative average path lengths of the allo-
cated requests.

Scenario SSP MSPF MCPF
11

< 1s
< 1s < 1s

12
13
14
15
16
17
18 3 s 2 s
19 3 s 3 min 1 min

(d) Average execution times.

(e) Average number of iterations performed. (f) Average number of arcs investigated.

Figure 5.2: Results from scenario 11 to 19.

5.5 Scenario 31-49

In scenario 31 to 49 �xed topologies with �xed request sets provided by Ericsson are
used. The request sets are designed so that it should be possible to allocate all requests.
Therefore, in all but one of the scenarios, all algorithms can allocate all the requests.
In most of these scenarios the same solutions are obtained but in some scenarios there
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(a) Relative amount of allocated requests.
(b) Relative amount of total allocated capac-
ity.

(c) Relative average path lengths of the allo-
cated requests.

Scenario SSP, MSPF, DIP-Cut
MCPF

21

< 1 s

< 1 s
22 41 s
23 7 min
24 22 min
25 15 min

(d) Average execution times.

Scenario Total runs Optimal Suboptimal Timeout Crash
21 10 10 0 0 0
22 14 10 0 0 4
23 11 8 2 0 1
24 15 3 7 4 1
25 15 6 4 4 1

(e) Outcomes of DIP-Cut.

Figure 5.3: Results from scenario 21 to 25.

are di�erences between the solutions given by the di�erent algorithms. DIP-Cut proves
to solve all the scenarios to optimality while the solutions of the greedy algorithms are
somewhat worse in some of the scenarios. Since all requests are allocated it is not very
interesting to see the number of allocated requests or total allocated capacity. Instead �g-
ure 5.4 only shows results for the average number of jumps per request and the maximum
length of a path.

As can be observed in 5.4a the algorithms perform equally well in most of the scenarios
but there are several scenarios where SSP gives a solution with unnecessarily long paths.
MSPF and MCPF show identical results for all scenarios and are often, but not always,
as good as DIP-Cut. The reason for that DIP-Cut has a higher average jumps per request
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in scenario 36 is that DIP-Cut manages to allocate all the 128 requests which forces it
to choose somewhat longer paths. SSP, MSPF and MCPF only manages to allocate 112,
120 and 120 requests respectively. Despite this DIP-Cut still has the shortest maximum
path length in the scenario as can be seen in �gure 5.4b. Looking at the other scenarios
as well it is clear that DIP-Cut gives the best results in all scenarios while MSPF and
MCPF keep up in all but two scenarios.

For scenario 31 to 49 DIP-Cut had no problems with �nding optimal solutions and
it never timed out or crashed. The time required for the greedy algorithms is less than
a second for all scenarios since the problem instances are not very big. DIP-Cut also
manages most scenarios in less than a second except for the largest scenario which requires
just above one second. However, it also requires 17 seconds to translate the problem from
our model to the model used by DIP.

(a) Relative average path lengths of the allo-
cated requests.

(b) Relative lengths of the longest paths in
each solution.

Figure 5.4: Results from scenario 31 to 49.

5.6 Scenario 51-69

Recall that in scenario 51 to 69 the same graphs are used as in scenario 31 to 49 but
this time ten request sets are randomly generated for each graph. This means that all
requests may not be satis�able at the same time but the number of requests is set so that
it should be possible to allocate most requests simultaneously. The total percentages of
allocated requests over all scenarios are 79.0 for SSP, 80.0 for MSPF, 81.5 for MCPF and
83.0 for DIP-Cut.

The results in �gure 5.5 again show that the greedy algorithms gives solutions of less
quality compared to DIP-Cut. In �gure 5.5a DIP-Cut has allocated up to 15 percent
more requests than SSP, MCPF follows tightly in most scenarios and MSPF is in most
scenarios better than SSP. Looking at total allocated capacity in �gure 5.5b MCPF lose
performance even compared to SSP. MSPF is in most cases better or almost as good as
SSP but in general not as good as DIP-Cut. Since DIP-Cut allocates more requests and
more total allocated capacity it is not strange it does not have the lowest average number
of jumps per request. It is however still lower than SSP and almost in line with MCPF.
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From the times and outcomes given in �gures 5.5d and 5.5e we see as usual that the
greedy algorithms gives their solutions in a fraction of a second. DIP-Cut is also �nished
within a second or two in most scenarios. The exceptions are scenario 65 and 69. In
65 one request set caused the algorithm to execute for a few minutes and for another
the algorithm found no solution. The other request sets were �nished within seconds.
For scenario 69 DIP-Cut had two solutions not proven to be optimal which means that
the algorithm was aborted after 30 minutes. There were also request sets for which no
solutions were found and which caused the program to crash. The optimal solutions were
typically found within a few seconds. However, in one case it took a few minutes and in
another the optimal solution was found just before the algorithm was going to abort.

(a) Relative amount of allocated requests.
(b) Relative amount of total allocated capac-
ity.

(c) Relative average path lengths of the allo-
cated requests.

Scenario SSP, MSPF, DIP-Cut
MCPF

51-54, 57, 59, 60,

< 1 s

< 1 s
62-64, 66-68
55, 58, 61 2 s

56 7 s
65 40 s
69 10 min

(d) Average execution times.

Scenario Total runs Optimal Suboptimal Timeout Crash
51-64, 66-68 10 10 0 0 0

65 11 10 0 1 0
69 18 8 2 6 2

(e) Outcomes of DIP-Cut.

Figure 5.5: Results from scenario 51 to 69.
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5.7 Performance scenarios

Figure 5.6 and 5.7 shows contour graphs of the number of arcs investigated by the three
greedy algorithms when both the number of nodes and the number of requests are varying.
The tests have been repeated on graphs with average degrees of two, three and four.
Again there is a large di�erence between SSP and the other greedy algorithms and it is
also clear that MSPF investigates more arcs than MCPF. For MSPF and MCPF it is clear
that both the number of nodes as well as the number of requests have an impact on the
performance. In the case of SSP the number of nodes grows more important as the degree
increases. The di�erence between MSPF and MCPF varies a lot, for some combinations
of values MSPF investigates as much as 80-90 percent more arcs than MCPF but for
other combinations the di�erence is negligible.

(a) Investigated arcs for SSP with degree 2. (b) Investigated arcs for SSP with degree 3.

(c) Investigated arcs for SSP with degree 4.

Figure 5.6: Results from the performance scenarios for SSP.
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(a) Investigated arcs for MSPF with degree 2. (b) Investigated arcs for MCPF with degree 2.

(c) Investigated arcs for MSPF with degree 3. (d) Investigated arcs for MCPF with degree 3.

(e) Investigated arcs for MSPF with degree 4. (f) Investigated arcs for MCPF with degree 4.

Figure 5.7: Results from the performance scenarios for MSPF and MCPF.
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5.8 Exhaustive Algorithms

Finally a few notes about the performance of the exhaustive algorithms is in place. As
expected the naive branching algorithms that were developed can only �nd solutions in
a feasible time for the very smallest problem instances. For example, an instance with
only ten nodes, �fteen arcs and �ve requests can take several minutes to solve while all
the other algorithms, even DIP-Price-and-Cut, are �nished in less than a second.
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6. Discussion

In this chapter we will discuss what the results mean and how relevant they are to the
problem we are trying to solve. We begin with discussing our evaluation framework and
then continue with the impact of the structures of graphs and request sets. Then pros
and cons of di�erent algorithms will be considered. We will also describe some of the
problems encountered and how the work was a�ected by these.

6.1 Evaluation Framework

A large part of the work was put into creating the framework for evaluating the algorithms
described in chapter 4. When the algorithms were implemented the development of the
framework proved well worth the e�ort. One key functionality of the framework is the
ability to de�ne the input data and run several di�erent algorithms on it, comparing their
results. Utilising the framework we could easily construct a few algorithms and compare
their solutions on the same set of input data. We will discuss the impact of input data
further below.

The framework also helped automate the task of generating random test data. The
generation code could possibly be extended to help test the algorithms on more spe-
cialized graphs, with a more de�ned structure or generate request sets with a particular
pattern or distribution. With help of the framework, testing a new algorithm and com-
paring it to the existing solutions is simpli�ed. As soon as the algorithm is implemented
it can be run on the exact same input data as in the earlier tests, giving a comparable
result. The old algorithms can also easily be tested on new topologies and on real data
when available.

Thus the framework should be useful in the future, potentially saving time and e�ort
as new topologies and algorithms are developed and evaluated.

6.2 Impact of graph and request set structure

It is always possible to construct graphs and request sets where greedy algorithms can
perform very well or very poor, as an example recall the concentrator topology in �gure
3.1. By using di�erent random graphs and request sets we have tried to see how the
algorithms behave in a general case and we have also tested graphs provided by Ericsson
to see how the structure of the graphs a�ects the performance. The greatest di�erences
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that we have seen come from when there is an abundance of requests which the o�ine
algorithms can take advantage of but this will be discussed later.

We have not seen any clear di�erences in the results between the random graphs and
the �xed graphs with random requests. Instead di�erences can mainly be seen between
the individual scenarios. When comparing scenario 4, 5, 7, and 8 with the other scenarios
in 1 to 9 we see that MSPF and MCPF allocates many more requests and has a larger
total allocated capacity than SSP. These graphs are relatively large with many nodes but
with a low connectivity which causes SSP to allocate some requests with very long paths
that block capacity that could be better utilized by other requests. MSPF and MCPF
instead bene�t from that they can choose requests with short paths. As seen in scenario
6 and 9 this bene�t is somewhat decreased as the connectivity increases since then SSP
will �nd shorter paths for the requests.

For some of the graphs with �xed request sets, scenario 31 to 49, there is only one way
to allocate each request. In most of the others, there are multiple ways but a shortest
path algorithm is su�cient to �nd the best allocation. However, there are instances such
as scenario 36 where the greedy algorithms fail to allocate all requests and other instances
such as scenario 45 where SSP allocates paths of unnecessarily long lengths. The reason
for this is often that there are multiple equally short paths but if the wrong paths are
chosen some arcs are �lled which causes other requests to be forced to take longer paths
or to be completely blocked. A di�erent order of the requests would in many cases solve
the problem and even SSP could then get the optimal solution. However, no speci�c
ordering gives the best solution in all cases.

Figure 6.1 shows the graph of scenario 36 where none of the greedy algorithms man-
aged to allocate all the 128 requests. There is one request with one in requested capacity
from each REC to each RE and the initial order of the requests is REC1-RE1A1, REC2-
RE1A1, REC3-RE1A1, REC4-RE1A1, REC1-RE1A2 and so on for each RE. Since our
algorithms consider arcs in order they will always check port 1 before port 2. The opti-
mal way is to only let the requests from REC1 and REC2 go over the arc between REC1
and REC2. This is however not detected by the greedy algorithms which will start to
allocate some of the requests from REC3 and REC4 over this arc. Eventually this causes
requests from REC1 and REC2 to be blocked. Interesting to note is that if the breadth
�rst search algorithm used by the greedy algorithms had investigated the arcs in opposite
order, so that REC3 and REC4 checked the arc on port 2 �rst, all the greedy algorithms
would have managed to allocate all the requests. This is not true in general but it shows
how speci�c structures and characteristics of the problems, if they hold for all instances,
can be utilized to improve the algorithms.

Comparing scenarios 51 to 69, the �xed graphs with random requests, shows that for
some graphs the results are very similar for all algorithms while for others the results
di�er more. We believe that this is due to di�erent kinds of bottlenecks that occur. Some
bottlenecks limit all algorithms about the same while other bottlenecks can be used more
e�ciently by DIP. In scenario 57 to 59 each request only has a single possible path to be
allocated on, in these cases the di�erence in the results comes from which of the requests
that were allocated.
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Figure 6.1: Graph used in scenario 36 where the greedy algorithms fail to allocate all
requests.

As we saw in �gure 6.1 the topology mainly consists of a network of RECs and then
the REs are connected in chains out from one or several RECs. The random graphs that
have been generated and used in the test scenarios does not have this structure. Even if
the evaluation tool is capable of generating random REC networks and adding chains of
REs we decided not to do so since we wanted to see how the algorithms behave in a more
general setting and felt that the scenarios with the �xed graphs with random request
would be su�cient to cover those test scenarios.

6.3 Impact of the number of nodes, requests and the degree

In this section the results of the performance scenarios are discussed. It is not surprising
that increasing the number of requests or the size of the graph causes the algorithms to
investigate more arcs.

If we look at the increase of investigated arcs between the di�erent degrees we can see
that for SSP this increase is fairly even when going from degree two to three compared
to when going from three to four. For the o�ine algorithms the increase is instead much
larger for the �rst than the second step. When the degree is increased then so is the
number of possible paths for the requests. For a degree of two there are in general very
few paths, perhaps only one or two. When the degree is increased to three the graph
becomes much more connected and there will be many more possible paths. For the
o�ine algorithms this means that a lot of requests, even though they are eventually
discarded, are kept for more iterations than previously. Thus there is a drastic increase
of investigated arcs for the o�ine algorithms when going from degree two to three. Since
SSP only looks for a shortest path for each request once the increase is not equally
drastic. The smaller impact of the jump from degree three to four for o�ine algorithms
is probably related to that even though the number of paths for each request is increased
this does not lead to the same increase in iterations as more requests are allocated in
each iteration of the algorithm.
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Looking at the results from the SSP algorithm the curves of the graphs are much
steeper than those for MSPF and MCPF, at least when the number of requests is more
than around one thousand. The reason for this is that as soon as the SSP algorithm has
�lled up a graph it will quickly �nd that the rest of the requests can not be allocated.
Very little work will then be done for the discarded requests. The o�ine algorithms on
the other hand may calculate the shortest paths for all the requests multiple times, even
for those that later will be discarded. Thus the workload is always increasing with the
number of requests even though no additional requests can be allocated.

6.4 Choice of algorithms

As we have described earlier there are many di�erent algorithms for UFP in the literature,
but not all are suitable for the concrete problem at hand. Many algorithms are designed
with an infeasible amount of requests in mind, meaning that it is expected that not all
of them will be allocated. The problem of deciding which request to allocate, sometimes
called call admission, is therefore of great importance in these algorithms. An algorithm
without call admission cannot hope to compete since it can be forced to allocate a request
even in situations where it would be bene�ciary to reject it [20]. While we have tested
this scenario as well, one could argue that in the common RBS case all of the requests will
�t. If they do not there has probably been a mistake or error that should be corrected
by an operator.

Many of the approximation algorithms are shortest path algorithms with some sort
of criteria for which requests to accept. Such an algorithm may only outperform a greedy
algorithm by actually excluding a request. If that is not necessary then one cannot hope
for an improvement. In some cases this could lead to worse performance compared to
the greedy algorithms, for example when all requests �t given that a path that does not
ful�l such a criteria is used. Most of the algorithms are also concerned with guaranteeing
the worst case performance. This means that several of the algorithms divide the set of
requests into several parts, and only allocate the best set. This is clearly unsuitable since
it guarantees that some requests will be rejected, no matter what.

The algorithm chosen for the RBS interconnect allocation problem should thus be
one that aims to allocate all requests. The questions are if it should be an online or
o�ine algorithm and if it can be greedy or should use some more advanced technique
such as branch-and-cut.

6.5 Online vs O�ine algorithms

As we have seen in our results there is a clear advantage of using an o�ine algorithm
over an online, at least in some scenarios. An o�ine algorithm can take advantage of
the fact that it can consider more than one request at a time. The largest di�erences
appeared in scenario 1 to 9 where there were many more requests than it was possible to
allocate. Recall that MCPF had 200 percent more requests compared to SSP in scenario
7 and MSPF had 100 percent more allocated capacity than SSP. The reason for this is
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that the o�ine algorithms can pick requests that are as pro�table as possible while the
online SSP algorithm has to allocate or reject requests one by one in the order they come
no matter how pro�table they are. Thus SSP allocates long paths that consumes a lot of
capacity while MSPF choose the shortest paths �rst. MCPF minimizes the used capacity
so that short paths and requests with low requested capacity are allocated �rst.

It is not surprising to see that MCPF in scenario 1 to 9 manages to allocate the highest
number of requests since it for each allocated request leaves as much arc capacity left
as possible for the following requests. Less obvious is that MSPF achieves the highest
amount of allocated capacity. We believe that this is because MCPF �rst allocates
all the requests with short paths and low requested capacity so when it reaches the
requests with higher requested capacity these are forced to take longer paths. As a result
the remaining capacity is quickly consumed by unnecessarily long paths leading to less
allocated capacity. This is also re�ected by the measure of Average Jumps per Request

where MSPF have shorter paths than MCPF.
When there is a more balanced amount of requests the advantage of o�ine algorithms

is much smaller and as we saw in scenario 11 to 19 all the three greedy algorithms perform
more equal. There was only up to a 6 percent increase and down to a 2 percent decrease
in allocated requests for MSPF and MCPF compared to SSP. For the amount of allocated
capacity MSPF had up to 9 percent more and MCPF had down to 5 percent less than SSP.
Thus MCPF is not even better than SSP in this setting, probably due to the same reason
for which it previously lacked behind MSPF in allocated capacity. When comparing with
scenario 51 to 69 we see that MCPF manages to allocate more requests than both MSPF
and SSP but usually a lower amount of allocated capacity. The results from scenario 31
to 49, the �xed graphs with corresponding request sets, show that when all requests can
be allocated, apart from scenario 36, there is not much di�erence between SSP, MSPF
and MCPF. In some cases the o�ine algorithms manages to allocate the requests over
shorter paths but there are exceptions, as in scenario 34, where the opposite holds.

As previously mentioned, in the RBS setting there will not be an abundance of
requests. Instead all requests are supposed to be allocated which means that we do not
expect a great advantage for an o�ine algorithm. The question is then if all requests
will be known in advance or not and this question does not have a de�nite answer. The
answer can depend on both how far into the future you look as well as which RBS you are
looking at. In some cases, the requests will be known in advance and it would be trivial
to make this information known to the algorithms. In other cases the requests arrive at
di�erent times but one could choose to collect all requests before allocating the �rst one.
It is also possible that all the requests will not be known in advance but instead arrive
one by one, in this case it may not be obvious when all requests have arrived. A possible
solution is to set a time limit on how long to wait for new requests before processing
them but this could in theory deteriorate to an online algorithm if the time limit is too
short, while introducing too large or unnecessary delays if it is set too long. In the case
of MSPF and MCPF, if requests would be processed one by one in the order they come,
they would simply give the same solutions as SSP would. Thus o�ine algorithms that
deteriorate into online algorithms when requests comes with delays may not be such a
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bad alternative. Then, in the worst case they are as bad as online algorithms while in
the best case they can use their o�ine advantages.

6.6 Greedy vs Branch-and-Cut

The results clearly show that the greedy algorithms does not reach all the way up to
the optimal solutions obtained by DIP-Cut. For the random graphs in scenario 21 to
25 DIP-Cut allocates about 6 to 15 percent more requests compared to SSP and similar
results hold for the allocated capacity. MSPF gives in general better results than SSP but
there is still a 3 to 9 percent increase for DIP-Cut. When it comes to the average number
of jumps MSPF gives shorter paths than DIP-Cut. However, DIP-Cut will always use
the smallest total number of jumps possible for the allocated requests and the reason for
that MSPF is better in this measure is that it has allocated less requests and capacity
which then could use shorter paths. For scenario 51 to 69, the �xed graphs with random
requests, similar results are obtained. A few di�erences are that in some scenarios all
algorithms are more equal and that MSPF often perform almost as good as DIP-Cut.

In many of the scenarios DIP-Cut gives solutions in less than a second and in these
cases it is easy to conclude that DIP-Cut is the better algorithm to use. An observation
regarding the execution time is that when the greedy algorithms have been able to allocate
all requests DIP-Cut has often, but not always, found a solution as well within a few
seconds or minutes, sometimes even for graphs with 100 nodes and 60 requests. The
problem with DIP-Cut is of course that it does not always give a solution within a
reasonable time frame for some combinations of graphs and request sets. It is especially
for large graphs where all requests can not be allocated simultaneously that DIP-Cut
frequently times out or crashes.

6.7 Branch-and-cut implementation and potential

Our original plan included implementing the branch-and-price-and-cut algorithm de-
scribed in chapter 3.6. Much time was spent understanding the algorithms and the
implementation details. We quickly came to the conclusion that an implementation from
ground up was out of the question, implementing an LP solver is a complex activity and
obtaining good performance requires both a good grasp on all the technical details as
well as a lot of �ne tuning. Several frameworks suitable for branch-and-price-and-cut
algorithms where investigated and DIP was selected for use in the development. Unfor-
tunately it was found too late that DIP makes certain assumptions regarding branching
that does not hold true for the algorithm. This was also found to be true even in other
frameworks investigated and the time and e�ort necessary to circumvent this assumption
or develop the algorithm without a framework was deemed to high. Instead we decided to
use DIP with the algorithms DIP-Cut and DIP-Price-and-Cut, as described in chapter 3.

It is hard to say for certain what makes DIP-Cut time out without a solution. How-
ever, one problem with the algorithm is that the formulation grows very rapidly with the
number of requests and arcs. It is possible that the branch-and-price-and-cut algorithm
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described in chapter 3.6 could help alleviate this by using the path formulation together
with column generation. On the other hand, if we compare the size of the networks
and request sets used to test their algorithm in [9] with our scenarios we see that they
are approximately the same sizes. They get fairly similar results as we got from using
DIP-Cut, where an optimal solution is obtained in less than ten seconds in the majority
of the cases, with a few timeouts with solutions that are not proven optimal as well as
one case where their algorithm was not able to �nd any solution. While it is hard to
compare their results directly with ours, it could indicate that the performances of the
two algorithms are similar, and that the improvements from using their algorithm would
not be substantial.

Further development of the branch-and-price-and-cut can only be done by diving
deeper into the vast area that is operation research, especially ILP. While much work
have been done in the area, it is a highly specialized �eld and even though many theo-
retical results are available there are many implementation decisions to be made when
implementing the algorithms. Without in-depth knowledge it can be hard to make the
necessary trade-o�s and come up with the necessary improvements. The algorithm is also
tremendously more complex than the simpler alternatives, leading to drastically larger
development costs as well as making testing and veri�cation signi�cantly more di�cult.

6.8 Alternatives

An alternative to design, implement and �ne tune a specialized ILP solver could be to
use commercial, general ILP solvers such as CPLEX. As we have stated several times
before, producing a state-of-the-art ILP solver is a huge task that requires both a lot of
technical know-how as well as resources. There are a lot of tricks and optimizations, from
presolving to clever ways to generate cuts. This can lead to situations where the general
solvers may outperform the specialized ones just because the specialization looses all those
general optimizations. This was the case in the experiments performed by Alvelos in [4]
where he found that using CPLEX as a general ILP solver outperformed the specialized
algorithms he developed.

Another alternative could be to use several algorithms. You could let them all solve
the problem simultaneously and then use the best solution or let them solve the problem
one by one until a satisfying solution is obtained. Since SSP is the fastest algorithm, at
least of the ones that are evaluated in this thesis, a good approach could be to use it �rst
and if it fails to allocate all requests another algorithm could be used. First, a slightly
more complicated algorithm such as MSPF could be tried and if also this fails a complex
algorithm such as DIP-Cut could be used. If still no solution with all requests is found
within reasonable time it might be best to use one of the non-optimal solutions found so
far.

As for SSP, di�erent results may also be obtained simply by handling the requests
in di�erent orders. So if some requests were not allocated in one solution, reallocating
everything, starting by allocating the ones that were previously not allocated or just
handling the requests in a di�erent order, could potentially solve many instances where
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SSP otherwise fail to allocate all requests.
It is also possible that there are other heuristics that can improve the algorithms and

give good solutions for all instances that show up in practice. These heuristics could for
example take advantage of di�erent structures that are frequently present in the network
topologies and request sets. However, since we have not investigated any such heuristics
we can not say much about them.
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7. Conclusions

In this thesis we have modelled the problem of allocating paths between RECs and REs in
an RBS interconnect network as the Unsplittable Flow Problem. The main contribution is
the development of a framework for implementing and evaluating suitable algorithms for
this problem. Within this framework it is possible to generate random graphs and random
requests as well as load prede�ned graph and request sets from XML. All implemented
algorithms can then be tested on the same instances. The result can be analysed by
the evaluation framework which provides a set of algorithm independent measurements
of the quality of the solution. The results in this thesis are based on randomized test
sets. This is partly due to the lack of de�ned future topologies and partly because of
the simplicity of the topologies that are actually de�ned in the present. The di�erences
of the algorithms in these topologies are in most cases negligible. The randomized test
data is therefore used in order to help accentuate the di�erences that exists between
the algorithms. When additional test data is available this framework can be used to
evaluate the algorithms further as well as facilitate comparisons between new algorithms
developed in the future.

UFP is NP-Hard and previously several non-greedy approximation algorithms have
been proposed that can give a solution with some guarantee within a reasonable time
frame. The major problem with the approximation algorithms are that they focus on the
worst case and that can lead to poor performance in other cases, when requests that could
have been allocated are rejected instead. The approximation algorithms investigated in
this thesis do not reject requests and are based on breadth �rst search. Another algorithm
investigated in this thesis is instead based on branch-and-cut and aims for �nding the
optimal solution. This algorithm naturally takes much more time and cannot hope to
compete with the approximation algorithms in terms of the problem size that can be
handled. Instead it can give an optimal solution or, if the time is too short for an
optimal solution to be found, it either gives a solution with a measure on how far from
optimal it is or it gives no solution at all.

Given the results described in the earlier chapters we see that the algorithms described
in this report, SSP, MSPF, MCPF and DIP-Cut, are all capable of solving the problem
but their performance di�ers depending on the characteristics of the given problem in-
stance. SSP is suitable when it is expected that nearly all requests can be allocated. It is
also the only one of the implemented algorithms that can be used when the requests need
to be allocated online. MSPF is preferable to SSP if we know all requests in advance. It
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has the best performance compared to the other algorithms when there is an abundance
of requests and the objective is to maximize the total allocated capacity. Similary the
performance of MCPF is also good when there are more requests than can be allocated
and when the objective is to maximize the number of allocated requests. DIP-Cut is
mostly suitable only for small instances. If all requests can be allocated it can often
solve problems of moderate size. The objective function can be designed in many ways
to change how it should optimize the solution, whether it is to maximize the number of
requests, the allocated capacity or something else.

As we can see no single algorithm performs the best under all conditions. Though no
algorithm can guarantee an optimal solution to all instances in a reasonable time frame,
it is clear that in many instances, the choice of algorithm does not a�ect the outcome
at all. In many cases the time taken by DIP-Cut to solve the problem to optimality
is just negligibly longer than the time taken by the other algorithms. Still, in some
relatively small instances DIP-Cut times out and that is clearly not desirable in the �nal
algorithm. Hence for DIP-Cut to become a feasible alternative one needs to develop it
further or alternatively combine it with a simpler backup algorithm for the cases when it
fails to deliver in a reasonable time. On the other hand, SSP is the simplest, fastest and
cheapest algorithm. In many cases its performance is comparable to the others', but in
some cases it falls way behind. MSPF seems to be a good compromise between SSP and
DIP-Cut. It is almost as fast as SSP while still achieving better results most of the time.
At the same time it is considerably easier to implement than DIP-Cut. Therefore if any
recommendations should be made, out of the algorithms we have evaluated, we would
recommend MSPF to be used for the automatic request allocation. However, this is not
a clear cut decision and is subject to change with new requirements and priorities.
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