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Göteborg, Sweden 2012





Abstract

The Similarity Renormalization Group (SRG) flow equation is explored for sys-
tems of two and three spinless bosons in a momentum-space partial-wave basis. The
two- and three-body binding energies as well as the phaseshifts are used to gauge
that the transformation is unitary and to study how well the SRG decouples high-
and low-energy physics. I consider four different potentials with different charac-
teristics: Two simplified nucleon potentials and two inter-atomic helium potentials
(a soft-core potential and the state-of-the-art LM2M2 potential that is fitted to a
wealth of experimental data). An initial three-body force is included for two of these
potentials. Even with only two-body terms in the initial hamiltonian, SRG induced
many-body forces are shown to arise during the transformation. These induced
forces are computed for the three-body system and their evolution is studied as a
function of the flow parameter. In all cases the SRG transformed potentials display
greatly improved decoupling. This is achieved with a three-body binding-energy
deviation of less than 0.1% in all cases except for the soft-core helium potential.

Sammanfattning

Egenskaperna för flödesekvationen Similarity Renormalization Group (SRG) un-
dersöks för tv̊a och tre partiklar i en partiell-v̊ag-bas i momentrummet. Bindningse-
nergin för tv̊a och tre partiklar samt fasskiften att bekräfta att transformationen är
unitär och för att undersöka i vilken utsträckning SRG-transformationen separerar
hög- och l̊ag-energifysik. Jag betraktar fyra olika potentialer med olika egenskaper:
Tv̊a förenklade nukleonpotentialer och tv̊a interatomära heliumpotentialer (en svag,
fenomenologisk potential och LM2M2-potentialen som reproducerar en mängd expe-
rimentell data). En initial trekropparskraft är inkluderad i tv̊a av potentialerna. Jag
visar att även med bara tv̊akropparstermer i den initiala hamiltonianen s̊a induce-
ras flerkropparskrafter av SRG-transformationen. Dessa inducerade krafter beräknas
för trekropparssystem och deras evolution studeras som funktion av flödesparame-
tern. För varje potential jag har arbetat med separeras l̊ag- och högenergifysik i
stor utsträckning. Detta uppn̊as under förutsättningen att bindningsenergin för tre
partiklar inte förändras mer än 0.1% förutom för den svaga, fenomenologiska heli-
umpotentialen.
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1 INTRODUCTION

1 Introduction

Strongly interacting few- and many-body systems are difficult to study since the strong
interaction induces couplings between states in a wide energy range. There exists meth-
ods to decrease this coupling between energy scales, such as renormalization group tech-
niques [1].

One such method is the Similarity Renormalization Group (SRG) [2, 3, 4]. It achieves
this separation of energy scales – decoupling – through a continuous unitary transfor-
mation of the hamiltonian,

Ĥ�s� � Û�s�Ĥ�0�Û ��s�, (1.1)

where s is the flow parameter of the transformation and Û a unitary operator.
In this thesis, I have made a detailed study of the SRG transformation in a momentum-

space partial-wave basis for two and three identical spinless bosons. The decoupling will
cause low-energy observables to only depend on low momentum states, which will re-
duce the size of the matrix-representation of the hamiltonian needed in order to get
converged few-body results. This becomes increasingly important when working with
more particles.

The SRG transformation and its properties in a momentum-space partial-wave basis
has so far not got much attention. The cases of three identical, spinleses bosons in one
dimension [5] and three identical fermions [6] have both been studied with demonstrated
good decoupling properties. It has also been studied using the harmonic oscillator basis
in the no-core shell-model (NCSM) [7, 8]. Therefore it is of interest to see how well it
will perform in the present case of identical, spinless bosons in three dimensions using a
momentum-space partial-wave basis.

I will show results of applying the SRG transformation to several different potentials,
including both nuclear potentials and helium potentials.

The helium potentials studied are a simple gaussian potential and the LM2M2 po-
tential [9]. The gaussian potential is constructed to reproduce the binding energy of the
helium dimer and low-energy scattering parameters. For these calculations temperatures
less than 2 mK are used. The LM2M2 potential was designed to reproduce various exper-
imental data for the second virial coefficient, the viscocity and the thermal conductivity
for several temperatures ranging from 1.47 K to 2500 K [9]. To fit high-energy data,
a more detailed resolution of the potential at short distances is needed, which results
in the need of a strongly repulsive core, a characteristic not present in the everywhere
attractive gaussian potential. One of the goals of this thesis is to see how this difference
between the construction of the gaussian and LM2M2 potential affects the decoupling
behaviour of the SRG transformation.

The low-energy observables I study in this thesis are the two-body and three-body
binding energy, the scattering length and the effective range. As for the SRG equation
I present detailed theoretical derivations of the equations needed to calculate these ob-
servables and describe how I implement and solve them. For the three-body binding
energy I use the Faddeev equation, and for the calculation of the scattering parameters
I use the transition operator.

1



1.1 Specific aim
1 INTRODUCTION

1.1 Specific aim

The main task is to implement and apply the SRG flow equation in a momentum-
space partial-wave basis to a set of potentials. The goal with this is to demonstrate
decoupling, meaning that the high-energy parts of the potential can be ignored when
doing low-energy calculations.

Due to the difficulty of evaluating some of the potentials in a momentum-space
partial-wave basis, another goal has been to be able to do this in a fast and accurate
manner.

1.2 Method

The SRG flow equation is an ordinary differential equation. To solve this I need an
ODE solver. I have choosen to use the general-purpose explicit embedded Runge-Kutta-
Fehlberg method, since the problem is not stiff.

To verify the unitarity of the SRG transformation, I need to calculate some low-
energy two- and three-body observables and make sure the values of these observables
do not depend on the value of the SRG flow parameter. I have choosen to calculate the
two- and three-body binding energy and also the scattering length and effective range
which are two-body observables.

The three-body binding energy is calculated using the Faddeev equation, which is
obtained by rewriting the time-independent Schrödinger equation.

To obtain the scattering parameters scattering length and effective range, I need the
on-shell transition operator for low energies. These values are not trivial to calculate
due to the behaviour of the transition operator for positive energies.

I implement all this in the programming language C, since it is a language for fast
computing with many good available libraries. Particularily, I will use the open-source
library GNU Scientific Library [10].

1.3 Reading guide

Throughout the report, I have used natural units for which Òh � c � 1. This will make
the units for time and length equal. Since energy can be written as Òhω, where the unit
of ω is inverse time, I can use inverse length as a unit of energy. From the relations
E2

� m2c4
� p2c2 I get that energy, mass and momentum all have the same unit. This

means that inverse length will be used as unit for all of these physical quantities.
The report is divided into four parts:

� The first part is the theory, where all the mathematical formulas and relations are
shown and derived.

� The second part is about the implementation and how the equations derived in
the theory part are realised as algorithms in the computer.

� In the third part I present the results for some potentials.

2



1.3 Reading guide
1 INTRODUCTION

� The fourth part contains an analysis of the results, a conclusion and an outlook.

1.3.1 Notation

� Quantum operators are written with a hat, Â

– Two-body potentials are denoted V̂

– Three-body potentials are denoted Û

� Vectors are written in boldface, x

� Unit vectors are written in boldface with a hat, x̂

� Matrices are written with an inverted hat, Ǎ

� Ordinary matrix multiplication is written without an extra symbol, ǍB̌

� When one of the matrices is diagonal, it is written with a star inbetween, Ǎ�B̌

� When one of the matrices is block diagonal, it is written with a star and a letter,

Ǎ
x
� B̌, where x is the non diagonal variable. This will be made clearer in the

implementation part.

� The diagonal of matrix Ǎ is written with an arrow above,
Ð�

A

3



2 QUANTUM FEW-BODY STATES

Part I

Theory

2 Quantum few-body states

A spinless boson has no internal degrees of freedom, so a complete set of states for one
such particle is given by the position eigenstates Sx1e or the momentum eigenstates Sp1e.
A complete set of states for several such particles is simply the tensor product of the one
particle basis states. For example, for two particles, the states Sx1ea Sx2e could be used
as a basis.

2.1 Jacobi coordinates

Jacobi coordinates are a set of coordinates where, instead of using absolute position
vectors for all particles, one uses a center of mass vector and relative coordinates between
the particles. Since there will be no external forces acting upon the collection of particles,
I will have translational invariance, which means that the center of mass location will
be irrelevant. That is why Jacobi coordinates are well suited for this problem – I will
get one vector less. Since each vector is three degrees of freedom, this will reduce the
number of variables by three.

In this report, the Jacobi coordinates in position space for N particles are defined as
follows: The last coordinate vector points to the center of mass of the system, relative
to some origin. For the rest, the n:th coordinate vector points from the center of mass
of the first n particles to the position of the �n � 1�:th particle.

For two identical particles with mass m, there will be one relative coordinate vector
r and a center of mass coordinate vector R, and from the definition it can be seen that
they are related to the absolute positions x1 and x2 of the particles by

r � x2 � x1

R �
1

m �m
�mx1 �mx2� �

�
1

2
�x1 � x2�


�

x1 � R �
1

2
r

x2 � R �
1

2
r
. (2.1)

The momentum coordinates p and P corresponding to r and R respectively, can now
be obtained using the quantum mechanical representation of momentum in the position
space, p � �i ∂∂r [11, p. 54]:

p � � i
∂

∂r
� �i�∂x1

∂r

∂

∂x1
�
∂x2

∂r

∂

∂x2
� �

�
∂x1

∂r
p1 �

∂x2

∂r
p2 �

1

2
�p2 � p1�

P �
∂x1

∂R
p1 �

∂x2

∂R
p2 � p1 � p2


�

p1 �
1

2
P � p

p2 �
1

2
P � p

. (2.2)

4
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where p1 and p2 are the conjugate momenta corresponding to x1 and x2 respectively.
The same can be done for three particles, in which case the Jacobi coordinates will

consist of two relative coordinates, r and s, and the center of mass coordinate R. They
are related to the absolute positions x1 to x3 by

r � x2 � x1

s � x3 �
1

m �m
�mx1 �mx2� �

� x3 �
1

2
�x1 � x2�

R �
1

3
�x1 � x2 � x3�


�

x1 � R �
1

2
r �

1

3
s

x2 � R �
1

2
r �

1

3
s

x3 � R �
2

3
s

. (2.3)

The momentum variables p, q and P corresponding to r, s and R respectively are
obtained in the same way as for two particles, and the result is

p �
1

2
�p2 � p1�

q �
1

3
�2p3 � p2 � p1�

P � p1 � p2 � p3.


�

p1 �
1

3
P � p �

1

2
q

p2 �
1

3
P � p �

1

2
q

p3 �
1

3
P � q

(2.4)

where p1 to p3 are the absolute momenta.
This way to define r, s, p and q corresponds to the configuration in figure 1c. Con-

figuration 1 and 2 can be related to the third:

p�1�
�

1

2
�p3 � p2� � 1

2
�q � p �

1

2
q� � �1

2
p �

3

4
q

q�1�
�

1

3
�2p1 � p3 � p2� � �p �

1

2
q

(2.5a)

p�2�
�

1

2
�p1 � p3� � �1

2
p �

3

4
q

q�2�
�

1

3
�2p2 � p1 � p3� � p �

1

2
q

(2.5b)

As stated earlier, I am not interested in the center of mass coordinate, R in position
space and P in momentum space. P will be constant and R will change linearly with
time, due to the abscence of external forces. This means that I can choose a frame of
reference with origin at the center of mass R and moving alongside it. So I set R � 0
and P � 0, and they can be excluded from calculations.

2.1.1 Normalization

The normalization of the states `rsRSr�s�R�e, is calculated by inserting a complete set
of states1,

1̂ � S d3x1S d3x2S d3x3 Sx1x2x3e `x1x2x3S , (2.6)

1Using the concept of completeness relation [11, p. 19]

5
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(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

Figure 1: Illustration of the three possible configurations for the Jacobi coordinates.

where 1̂ is the identity operator. The integrals are assumed to be over the entire space.
Doing this gives the result

arsRSr�s�R�f � δ3�r � r��δ3�s � s��δ3�R �R��. (2.7)

Important to note is that no scale factor is needed, which makes this definition of the
Jacobi coordinates particularily easy to use.

2.1.2 Kinetic energy

The kinetic energy function TN for N particles, I define from the expression

`p1p2 . . .pN S T̂ Tp�1p�2 . . .p�N f � TN N

M
i�1

δ3�pi � p�i� (2.8a)

TN �

N

Q
i�1

p2
i

2m
. (2.8b)

where pi are the absolute coordinates. For two and three particles described in a Ja-
cobi coordinate basis, Tj – the kinetic energy function in Jacobi coordinates – can be
calculated from eqs. (2.2) and (2.4):

Tj�p,P� � �1
2P � p�2

2m
�
�1

2P � p�2

2m
�

P2

4m
�

p2

m
(2.9)

Tj�p,q,P� � �1
3P � p �

1
2q�2

2m
�
�1

3P � p �
1
2q�2

2m
�
�1

3P � q�2

2m
�

P2

6m
�

p2

m
�

3q2

4m
(2.10)

2.2 Partial-wave basis

To further reduce the number of variables, I use the partial-wave basis in momentum
space. The momentum state Spe can be decomposed as Spe a Sp̂e, where p is the radial

6
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component and p̂ is the direction of the vector. Since I will only use spherically symmetric
potentials this is a particularly useful decomposition, and will reduce the number of
variables further.

A basis for the directional part is the set of SLpMpe states, where Lp and Mp are the

quantum numbers associated with the operators for total angular momentum L̂p and
projected angular momentum L̂z,p respectively. This decomposition using the angular
momentum quantum numbers is what is refered to as the partial-wave basis. The angular
dependencies of these states are given by the spherical harmonics:`θφSLpMpe � YMp

Lp
�θ, φ� (2.11)

The normalization of the states is

apLpMpSp�L�pM �

pf � δ�p � p��p2
δLpL�

p
δMpM �

p
(2.12)

and the overlap with Spe is given by

`pSpLpMpe � δ�SpS � p�
p2

Y
Mp

Lp
�p̂� (2.13)

2.2.1 Symmetrical states

Since the particles under consideration are indistinguishable bosons, the two-body state
must be symmetric, that is, the wave function remains unchanged under the exchange
of two particles. A two-particle state Spe, where p is the relative Jacobi coordinate, will
transform to S�pe when permuting the two particles. This is equivalent to applying the
parity operator [11, p. 251] to the state.

When using the partial-wave basis, applying the permutation operator will trans-
form SpLpMpe to ��1�Lp SpLpMpe [11, p. 255]. For spinless particles, without additional
quantum numbers, only the states with even Lp are allowed bosonic states, since they
are the only states that are symmetric.

2.2.2 Three particles

For three particles, the state of the system will depend on two coordinates, p and q.
Remember that the Jacobi momentum coordinate for the center of mass, P , is irrelevant.
I want to separate the angular dependence from the radial, so I writeSpea Sqe � Spea Sqea Sp̂q̂e . (2.14)

One way to construct a basis for the angular part, is to decompose it further, toSp̂q̂e � Sp̂ea Sq̂e. Then one could use the four quantum numbers Lp, Mp, Lq and Mq. An
alternative way – the way I will do it – is to use the coupled basis with quantum numbers
Lp, Lq, L and M , where L and M are the total angular momenta and the projection of
the total angular momenta respectively. The normalization can then be written

apqLpLqLM Sp�q�L�pL�qL�M �f � δ�p � p��
p2

δ�q � q��
q2

δLpL�

p
δLqL�

q
δLL�δMM � (2.15)
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and the ovelap with Spqe is

`pqSpqLpLqLMe � δ�SpS � p�
p2

δ�SqS � q�
q2

Y
LM
LpLq�p̂,q̂� (2.16)

where Y is the eigenfunction for Lp, Lq, L and M , which exists since the operators L̂p,

L̂q, L̂ and L̂z all commute with each other. The relation between Y and the spherical
harmonics is [12]

Y
LM
LpLq�p̂,q̂� � Lp

Q
Mp��Lp

Lq

Q
Mq��Lq

`LpMpLqMq SLMeYMp

Lp
�p̂�YMq

Lq
�q̂� (2.17)

where the overlaps are the Clebsch-Gordan coefficients.
The angular momenta Lp and Lq must obey

SLp �Lq S B L B Lp �Lq. (2.18)

I will only consider the case L � 0, which means that

Lp � Lq (2.19)

2.2.3 Partially symmetric states for three particles

By requiring that Lp is even, the three-particle states are symmetric in the first two
particles. The states are however not symmetric under exchange of the third particle
with any of the other two. For that reason, the states are called partially symmetric.

These partially symmetric states are used in favor of totally symmetric states since
the former are easy to work with and allows for an easy representation of the two-body
potential.

2.2.4 The Wigner-Eckart theorem

The number of variables is the same for the Jacobi-coordinate basis as for the corre-
sponding partal-wave basis – three for two particles and six for three particles. However,
when evaluating matrix elements of tensor operators in the partial-wave basis one can
employ the Wigner-Eckart theorem. This will reduce the number of integration variables.
The theorem in the two-particle case states that, for spherically symmetric operators,
the values `pLpMpS Â Tp�L�pM �

pf will be independent of Mp and M �

p and diagonal in Lp.
More specifically, it says that

`pLpMpS Â Tp�L�pM �

pf � δLpL�

p
δMpM �

p

`pLpY Â Yp�Lpe»
2Lp � 1

, (2.20)

where the double bar is a reduced matrix element. Since the right hand side is inde-
pendent of Mp and M �

p, the left hand side must be too. For this reason, the quantum
number Mp will be omitted in most cases.
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For a three-particle system the theorem says that the states

`pqLpLqLM S Â Tp�q�L�pL�qL�M �f (2.21)

will be independent of M and M � and diagonal in the quantum number L.
In the two-body case, setting Lp � L

�

p and Mp �M
�

p and summing over Mp I get

Lp

Q
Mp��Lp

`pLpMpS Â Tp�LpMpf � �2Lp � 1� `pLpMpS Â Tp�LpMpf , (2.22)

which will be used later in section 4.1.
Since the potentials will be spherically symmetric, this means that for two particles,

there will only be one non-diagonal variable. For three particles there will be three
non-diagonal variables, since i only consider the case when L � 0 which means that
Lp � Lq.

2.3 Harmonic-oscillator basis

I will mainly use the momentum-space partial-wave basis, but some two-body potentials
will also be evaluated in a harmonic-oscillator (HO) basis for comparison.

The HO-basis states are the eigenvectors of the hamiltonian with an isotropic har-
monic oscillator potential:

Ĥ �
p̂2

2m
�

1

2
mω2r̂2

�
1

2
ω �ξ̂2

p � ξ̂
2
r� (2.23a)

ξ̂r �
Sr̂S
r0

ξ̂p �
Sp̂S
p0

(2.23b)

r0 �

¾
1

mω
p0 �

º
mω �

1

r0
. (2.23c)

r0 is usually called the oscillator length.
The eigenvalues and eigenvectors are

Ĥ SnLMLe � EN SnLMLe (2.24a)

EN � ω �N �
3

2
� (2.24b)

N � 2n �L (2.24c)`rθφSnLMLe �HL�ξr,n�YML
L �θ,φ� (2.24d)arLMLSnL�M �

Lf �HL�ξr,n�δLL�δMLM
�

L
(2.24e)

HL�ξr,n� � CnLξLr e� 1
2
ξ2rL

L� 1
2

n �ξ2
r� (2.24f)

CnL � eiδr�r,n,L�2n�L�1

¿ÁÁÀ �n �L�!n!

r3
0

º
π�2n � 2L � 1�! (2.24g)
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where δr�r,n,L� > R is a phase factor, which I choose to be 0. Lkn�x� are the associated
Laguerre polynomials. YML

L �θ, φ� are the spherical harmonics. The difference between
the harmonic-oscillator basis and the momentum-space partial-wave basis is that p is
replaced by n, but the angular quantum numbers are the same.

In order to evaluate the kinetic energy operator in the harmonic-oscillator basis, I
will need to calculate the overlaps `pθφSnLMLe. To find these, I begin by noting that
the a differential equation can be obtained from eq. (2.23a),

`rS Ĥ Sψe � � 1

2m
∆ψr�r� � 1

2
mω2r2ψr�r� � Eψr�r�. (2.25)

If I instead of applying `rS, applies `pS, and use that `pS r̂ Sψe � i ∂∂p `pSψe, I get

`pS Ĥ Sψe � 1

2m
p2ψp�p� � 1

2
mω2∆pψp�p� � Eψp�p�. (2.26)

Defining ω̃ � 1~�ωm2� and Ẽ � E~�ω2m2� the equation becomes

`pS Ĥ Sψe � � 1

2m
∆ψp�p� � 1

2
mω̃2p2ψp�p� � Ẽψp�p�. (2.27)

This is the same differential equation and I will therefore get the same solution, by
replacing ω with ω̃ and E with Ẽ. So I will get the overlaps `pθφSnLMLe by letting
r0 � p0, ξ � ξp and δr � δp in eq. (2.24d). Note that eq. (2.24b) remains unchanged,
since Ẽ~ω̃ � E~ω. The phase factor, exp�iδp�, I set to ��1�n, since this will make the
kinetic energy operator non-negative.

The kinetic energy operator T̂ is not diagonal in the harmonic-oscillator basis, but
it can be calculated analytically. I start by inserting a complete set of states:

`nLMLS T̂ Tn�L�M �

Lf �Q
L��

Q
M ��

L

Q
L���

Q
M ���

L

S
ª

0
p2 dpS

ª

0
p�2 dp�

� anLMLSpL��M ��

Lf apL��M ��

L T T̂ Tp�L���M ���

L f ap�L���M ���

L Sn�L�M �

Lf . (2.28)

From eq. (2.24e), with p instead of r, I see that the angular parts will only be delta-
functions, and the kinetic energy operator is also diagonal in the angular part. This
means that the overlap is zero unless L � L� and ML � M �

L and the expression in this
case is

`nLMLS T̂ Tn�LMLf � TL�n,n�� � S ª

0
p2 dpH�

L�ξp,n�p2

m
HL�ξp,n�� �

�
p2

0

m
S

ª

0
p2 dpHL�ξp, n�ξ2

pHL�ξp, n��. (2.29)

To simplify this, I use the following recurrence relation for the generalized Laguerre
polynomials [13, eq. 22.7.(29, 31)],

xLL�1~2
n �x� � ��n �L �

1

2
�LL�1~2

n�1 �x��
� �2n �L �

3

2
�LL�1~2

n �x� � �n � 1�LL�1~2
n�1 �x�. (2.30)
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This yields the relation

HL�ξp,n�ξ2
p � ��n �L �

1

2
� CnL
Cn�1,L

HL�ξp,n � 1��
� �2n �L �

3

2
�HL�ξp,n� � �n � 1� CnL

Cn�1,L
HL�ξp,n � 1�. (2.31)

Inserting this, and using the orthonormality of the SnLMLe states the final expression
for the kinetic energy matrix elements is

TL�n,n�� � p2
0

m
���n �L �

1

2
� CnL
Cn�1,L

δn�1,n��

��2n �L �
3

2
� δnn� � �n � 1� CnL

Cn�1,l
δn�1,n�� �

�
p2

0

m

��
¾
n� �n� �L �

1

2
�δn�1,n� � �2n� �L �

3

2
� δnn��

�

¾�n� � 1� �n� �L �
3

2
�δn�1,n�

��
.

(2.32)

3 Types of potentials

An expression for a potential between two particles can be constructed in different ways.
Most of the time approximations need to be done. For example, when solving the equa-
tions of motion for a planet with a moon orbiting a sun, the bodies could be approximated
as point particles with different masses. Another way to construct the potential would
be to do it phenomenologically, that is, make up a potential that works for the specific
case, but not neccessarily for any other cases.

The problem is that maybe not all the physics will be captured by the model. In
the example, the moon will cause tidal effects reshaping the planet, which will affect the
gravitational field. This effecte is not present using point particles. A way to get around
this, is to include in the calculations a three body force.

A three body force is a simultaneous interaction between three bodies that is not
present when only two bodies exist, such as the gravitational effect on the sun of the
tidal effect caused by the moon. The importance of such three-body forces depends on
the model.

In this report, I will consider both two-body and three-body forces.

4 Basis transformations

Frequently the matrix elements of an operator, for example of a potential-energy oper-
ator, need to be converted from one basis to another. In the following subsections I will
show the details for some particular cases that will come in use later.

11



4.1 Partial-wave projection for two particles
4 BASIS TRANSFORMATIONS

4.1 Partial-wave projection for two particles

Assuming that I know the expression for a spherically symmetrical two body potential
in Jacobi momentum coordintes, `pS V̂ Sp�e and I want to calculate `pLpS V̂ Sp�Lpe. Note
that I have omitted the quantum number Mp here since it will be independent of Mp.
In the intermediate calculations, I will need to use the Mp quantum number, so I will
temporary include it below. Using eq. (2.22), I can write

`pLpMpS V̂ Tp�LpMpf � 1

2Lp � 1

Lp

Q
M �

p��Lp

apLpM �

pT V̂ Tp�LpM �

pf �
�

1

2Lp � 1

Lp

Q
M �

p��Lp
S
R3

d3qS
R3

d3q� apLpM �

pSqf `qS V̂ Tq�f aq�Sp�LpM �

pf �
�

1

2Lp � 1

Lp

Q
M �

p��Lp
S

2π

0
dφS

π

0
sin�θ�dθS

2π

0
dφ�S

π

0
sin�θ��dθ�

� Y
M �

p�

Lp
�θ,φ�V �pq̂, p�q̂��YM �

p

Lp
�θ�,φ��

(4.1)

where q̂ � �sin�θ� cos�φ�, sin�θ� sin�φ�, cos�θ��.
To simplify this, the addition theorem for spherical harmonics is used [14, eq. 5.83]:

1

2Lp � 1

l

Q
M �

p��Lp

Y
M �

p�

Lp
�θ,φ�YM �

p

Lp
�θ�,φ�� � 1

4π
PLp�q̂ � q̂��, (4.2)

where Pn�x� are the Legendre polynomials. I will also assume that the potential only
depends on the magnitudes p and p� and the angle between the vectors. This is a safe
assumption since V̂ is assumed to be spherically symmetric.

Since there is no preferred direction, q̂� can be fixed in the direction θ� � 0 and φ� � 0,
yielding a factor 4π from the integration. Furthermore, a rotation around the fixed q̂�

vector will not affect the angle between the vectors or the magnitudes, so the φ integral
will just give a factor of 2π. With the substitution x � cos�θ� and again omitting the
Mp quantum number, the expression becomes

`pLpS V̂ Tp�Lpf � 2πS
1

�1
dxPLp�x�V ��pº1 � x2,0, px� , �0,0, p��� . (4.3)

I will only encounter the case where the potential only depends on Sp � p�S, so I can
write V � V �Sp � p�S�, and the above expression becomes

`pLpS V̂ Tp�Lpf � 2πS
1

�1
dxPLp�x�V �»p2 � p�2 � 2pp�x� . (4.4)

4.2 From position space to partial-wave basis in momentum space for
two particles

In the last section I converted from momentum space to a partial-wave basis in momen-
tum space. If I instead have the potential in position space, `rS V̂ Sr�e, I need to do an
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extra step where I first convert to momentum space via a Fourier transform. Then I can
use the same expression as in the last section to do the last part to partial-wave basis in
momentum space. I will assume that the potential is diagonal in the position basis and
only depends on the magnitude of r, so `rS V̂ Sr�e � Ṽ �SrS�δ3�r � r��.

Converting to momentum space is done as follows,

`pS V̂ Tp�f � S
R3

d3rS
R3

d3r� `pSre `rS V̂ Tr�f ar�Sp�f �
� S

R3
d3r� 1�2π�3~2

exp ��ir � p�� Ṽ �SrS� � 1�2π�3~2
exp �ir � p��� �

�
1�2π�3 S

ª

0
r2 drS

π

0
sin�θ�dθS

2π

0
dφ exp

����ir
�q³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µSp � p�S cos�θ����� Ṽ �r� �

�
1�2π�2 S

ª

0
r2 drS

π

0
sin�θ�dθ exp�irq cos�θ��Ṽ �r� �

�
1�2π�2 S

ª

0
r2 drṼ �r� �exp�irq cos�θ��

�irq
	π

0

�

�
1

2π2q
S

ª

0
drrṼ �r��exp�irq� � exp��irq�

2i
� �

�
1

2qπ2 S
ª

0
dr sin�rq�rṼ �r� � � r � qx

dr � q dx
¡ �

�
1

2π2 S
ª

0
dx sin�q2x�qxV �qx� � V �q� � V �Sp � p�S�.

(4.5)

Inserting this in eq. (4.4), I get

`pLpS V̂ Tp�Lpf � 1

π
S

1

�1
dtPLp�t�S ª

0
dx

� sin�x�p2
� p�2 � 2pp�t��x»p2 � p�2 � 2pp�tṼ �x»p2 � p�2 � 2pp�t�. (4.6)

4.3 Partial-wave projection for three particles

In this section I will do the same thing as in the last section, but for a three body
potential instead. Assuming I have the expression for `pqS Û Sp�q�e and I want to evaluate
the spherically symmetric potential Û in partial-wave basis, then I can write

`pqLpLq S Û Tp�q�L�pL�qf � SR3
d3pS

R3
d3qS

R3
d3p�S

R3
d3q�

� `pqLpLq Spqe Ũ�p,q,p�,q�� ap�q�Sp�q�L�pL�qf , (4.7)

where I have written Ũ to distinguish the function given in momentum space from the
function given in partial-wave basis. Using eq. (2.16) and using spherical coordinates for
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the four volume integrations, this becomes

U�p,q,Lp,Lq,L,M,p�,q�,L�p,L
�

q,L
�,M �� �

� S
2π

0
dφ1S

π

0
sin�θ1�dθ1S

2π

0
dφ2S

π

0
sin�θ2�dθ2

� S
2π

0
dφ3S

π

0
sin�θ3�dθ3S

2π

0
dφ4S

π

0
sin�θ4�dθ4

�Y
LM�

LpLq �p̂�φ1, θ1�, q̂�φ2, θ2��YL�M �

L�

pL
�

q
�p̂��φ3, θ3�, q̂��φ4, θ4��

� Ũ�p�p, φ1, θ1�,q�q, φ2, θ2�,p��p�, φ3, θ3�,q��q�, θ4, φ4��.
(4.8)

As stated in section 2.2.2, I will only consider the case L � 0. The two angular
momenta Lp and Lq will then be equal.

Assuming L � 0 allows for a simplification of eq. (4.8). Using eq. (2.17) with L �M �

0 and eq. (4.2) (the addition theorem) and the relations [13, eq. 27.9.1]

`LpMpLqMq SLpLq00e � δLpLqδMp,�Mq

��1�Lp�Mp»
2Lp � 1

(4.9)

and [11, eq. 3.6.38]

Y
�Mp

Lp
�p̂� � ��1�MpY

Mp�

Lp
�p̂� (4.10)

I get the expression

Y
00
LpLp�â, b̂� � ��1�Lp»2Lp � 1

4π
PLp�â � b̂�, (4.11)

where Pn�x� are the Legendre polynomials. Furthermore I do a change of variables in
the θ variables, doing ti � cos�θi�. So at this point I have

U�p,q,Lp,p�,q�,L�p� � »�2Lp � 1��2L�p � 1�
16π2

� S
1

�1
dt1S

1

�1
dt2S

2π

0
dφ1S

2π

0
dφ2

� PLp�¼�1 � t21��1 � t22� cos�φ1 � φ2� � t1t2�
� S

1

�1
dt3S

1

�1
dt4S

2π

0
dφ3S

2π

0
dφ4

� PL�

p
�¼�1 � t23��1 � t24� cos�φ3 � φ4� � t3t4�

� Ũ�p�p, φ1, t1�,q�q, φ2, t2�,p��p�, φ3, t3�,q��q�, t4, φ4��.

(4.12)

Since Lp must be even – see section 2.2.3 – I omitted the term ��1�Lp�L�

p .
Just like in the two particle case, I can fix one of the vectors in the positive z direction.

I choose to fix the p vector. This gives a factor of 4π. The function Ũ will also only
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depend on the magnitudes of the vectors and the angles between them, so I can instead
write Ũ as

Ũ � Ũ�p,q,p�,q�,p̂ � p̂�,q̂ � q̂�,p̂ � q̂,p̂� � q̂�,p̂ � q̂�,p̂� � q̂�. (4.13)

Introducing the definitions,

Sij �
¼�1 � t2i ��1 � t2j� cos�φi � φj� � titj (4.14a)

S̃ij �
¼�1 � t2i ��1 � t2j� cos�φi� � titj , (4.14b)

the expression is

U�p,q,Lp,p�,q�,L�p� �
�

»�2Lp � 1��2L�p � 1�
4π

S
1

�1
dt2PLp�t2�S 1

�1
dt3S

1

�1
dt4S

2π

0
dφ4

� S
2π

0
dφ3PL�

p
�S34�S 2π

0
dφ2Ũ�p,q,p�,q�,t3,S24,t2,S34,t4,S23�.

(4.15)

Thus, the φ variables only appear in Sij , and there only as the difference between two
different φ variables. So I can for example set φ4 � 0 and multiply with 2π instead. In
the end I get the expression

U�p,q,Lp,p�,q�,L�p� �
�

»�2Lp � 1��2L�p � 1�
2

S
1

�1
dt2PLp�t2�S 1

�1
dt3S

1

�1
dt4S

2π

0
dφ3

� PL�

p
�S̃34�S 2π

0
dφ2Ũ�p,q,p�,q�,t3,S̃24,t2,S̃34,t4,S23�.

(4.16)

In the special case of a potential only depending on �p � p��2 and �q � q��2, the
expression can be simplified further. In this case Ũ only depends on the angle between
p and p� and the angle between q and q�. This means that the dependencies of Ũ are

Ũ � Ũ�p,q,p�,q�,t3,S̃24�. (4.17)

Thus, Ũ is independent of φ3, and the only dependence of φ3 is in one of the Legendre
polynomials. The integration can be performed analytically, and I am left with four
integrals:

U�p,q,Lp,p�,q�,L�p� � »�2Lp � 1��2L�p � 1�
2

S
1

�1
dt2PLp�t2�S 1

�1
dt3S

1

�1
dt4

� S
2π

0
dφ2Ũ�p,q,p�,q�,t3,S̃24�S 2π

0
dφ3PL�

p
�S̃34�. (4.18)
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4.4 From position space to harmonic-oscillator basis for two particles

Here I will consider the case of expressing a local, spherically symmetric potential given
in position space in a harmonic-oscillator basis. Local and spherically symmetric means
that `rS V̂ Tr�f � V �SrS�δ3�r � r��. (4.19)

Using the results from section 2.3, I get

`nLS V̂ Tn�L�f � S
R3

d3r `nLSreV �SrS� arSn�L�f �
�Q
L��

S
ª

0
r2 dr anLSrL��fV �r� arL��Sn�L�f �

� δLL� S
ª

0
r2 drHL�ξr,n�V �r�HL�ξr,n��.

(4.20)

5 Few-body Observables

5.1 The transition operator for two particles

The transition operator t̂E is used in the context of elastic scattering, to describe the
behaviour of a particle with energy E when it scatters against a local potential. For
example, the matrix elements `pS t̂E Sp�e determines the differential cross section. The
specific case I will assume here is that of two identical spinless bosons scattering from
each other. For more information about the transition operator, see chapter 7 in Modern
Quantum Mechanics by Sakurai [11].

The transition operator t̂E , depending on the incident energy E � p2
0~m � T �p0�, is

defined through the relation

t̂E � V̂ � V̂ ��E � iε�1̂ � T̂ ��1
t̂E . (5.1)

The iε is introduced to avoid the singularity that otherwise would be present. It is only
neccessary for the case E A 0 – which I will consider here – since otherwise there will not
be any singularity.

By using the partial-wave basis I can turn this into a matrix equation. Due to the
Wigner-Eckart theorem, I have

`pLpMpS t̂E Tp�L�pM �

pf � tLpE�p, p��δLpL�

p
δMpM �

p
. (5.2)

The equation for tLpE is then

tLpE�p, p�� � VLp�p, p�� � S
p��

p��2 dp��VLp�p, p����T �p0� � T �p��� � iε��1
tLpE�p��, p��. (5.3)

To eliminate the iε, I use the identity [14]

S
x

dx
f�x�

g�x� � iε � P Sx dx
f�x�
g�x� � iπSx dxf�x�δ�g�x��, (5.4)
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where the P denotes that it is a principal value integral. In this case it will result in

tLpE�p, p�� � VLp�p, p�� �
A³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

P S
p��

p��2 dp��
VLp�p, p���tLpE�p��, p��

T �p0� � T �p��� �

�

B³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
iπS

p��

p��2 dp��VLp�p, p���tLpE�p��, p��δ�T �p0� � T �p���� .
(5.5)

The delta function in term B is evaluated using the formula [14]

δ�g�x�� � Q
�x0Sg�x0��0�

δ�x � x0�
g��x0� . (5.6)

There is one zero, p�� � p0, so the term B is

B � iπp2
0VLp�p, p0�tLpE�p0, p

�� m
2p0

. (5.7)

The term A is handled by adding and subtracting p2
0VLp�p, p0�tLpE�p0, p

�� to the numer-
ator,

A �

C³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
S
p��

dp��
VLp�p, p���tLpE�p��, p��p��2 � VLp�p, p0�tLpE�p0, p

��p2
0

T �p0� � T �p��� �

� p2
0VLp�p, p0�tLpE�p0, p

��
D³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

P S
p��

dp��

T �p0� � T �p��� .
(5.8)

The first integral is no longer a principal value integral since the pole is canceled by
the numerator. That means that the term C can be integrated numerically as it is, as
long as the point p0 is not included in the quadrature. The integral D can be solved
analytically. To evaluate the integral C, I will use a quadrature over the interval �0, pm�,
where pm A p0 is called the cut off momenta. So when calculating D, I need to use the
same limits of integration. I will use the relation

P S
x0�L

x0�L

dx

x � x0
� 0 (5.9)
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to remove the principal value prescription. Using that, I get

D �mP S
pm

0

dp��

p2
0 � p

��2
�
m

2p0
P S

pm

0
dp�� � 1

p0 � p��
�

1

p0 � p��
� �

�
m

2p0

������
�0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

P S
2p0

0

dp��

p0 � p��
�S

pm

2p0

dp��

p0 � p��
� � log�p0 � p

����p��
�pm

p��
�0

������ �

�
m

2p0
�� � log�Sp0 � p

��S��p��
�pm

p��
�2p0

� log�p0 � pm� � log�p0�� �
m

2p0
log �pm � p0

pm � p0
�

(5.10)

Collecting all the terms, I have

tLpE�p, p�� � VLp�p, p�� �A �B �

� VLp�p, p�� �C � p2
0VLp�p, p0�tLpE�p0, p

��D �B �

� VLp�p, p���
� S

p��

dp��
VLp�p, p���tLpE�p��, p��p��2 � VLp�p, p0�tLpE�p0, p

��p2
0

T �p0� � T �p��� �

�
mp0

2
VLp�p, p0�tLpE�p0, p

�� �log �pm � p0

pm � p0
� � iπ� .

(5.11)

This constitutes an integral equation. The integral will be discretized, which will
result in a matrix equation that will be solved for ťLpE . The implementation of this is
presented in section 10.

Since it is elastic scattering, the energy of the particle will be the same before and
after the scattering process. Therefore, I am only interested in the elements where p � p�.
Also, p should be equal to p0, since E is the energy for the particle that scatters.

5.2 The permutation operators

I define the permutation operator P̂ij as the operator that interchange the states of
particle i and particle j. For example,

P̂12 Sψ1ea Sψ2e � Sψ2ea Sψ1e . (5.12)

An operator Âa 1̂ acting on the first particle will then obey

P̂12�Âa 1̂�P̂�1
12 � 1̂a Â. (5.13)

Note that P̂ �1
ij � P̂ij .

Furthermore, since I have a system of identical bosons, the permutation of any two
particles will yield the same state, due to the symmetrization postulate.

An identity that will be needed later is

P̂12P̂12P̂23P̂12 � P̂13P̂23. (5.14)
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This can be seen by applying the permutation operators to a state Sψ1ψ2ψ3e:
P̂12P̂12P̂23P̂12 Sψ1ψ2ψ3e � P̂12P̂12P̂23 Sψ2ψ1ψ3e �

� P̂12P̂12 Sψ2ψ3ψ1e � P̂12 Sψ3ψ2ψ1e �
� Sψ2ψ3ψ1e (5.15a)

P̂13P̂23 Sψ1ψ2ψ3e � P̂13 Sψ1ψ3ψ2e � Sψ2ψ3ψ1e . (5.15b)

5.2.1 Two-body potentials acting on three-body states

In a three-body system of distinguishable, each pair of particles can have a different
two-body potential. I work with identical particles so each two-body potential will be
the same. In the Jacobi basis for three particles, there are two relative coordinates, r
and s. I can number the particles, in the same way as in section 2.1, so that r points
from particle one to particle two, and s points to particle three from the center of mass
of the first two particles. The third particle is called the odd one.

In the Jacobi basis, the two-body potential between the first two particles is easy to
express,

`rsS V̂3 Tr�s�f � V3�r, r��δ3�s � s��. (5.16)

The index 3 is to indicate that the third particle is the odd one. I will also need
expressions for V̂1 and V̂2.

Given a state for the three particles, Sψ1ψ2ψ3e, where Sψie is the state for particle i,
then V̂3 acting on the state Sψ1ψ2ψ3e will be the same as V̂2 acting on the state Sψ2ψ3ψ1e,
since the state Sψ3e in both cases is the odd one. It appears to be two possibilities here
though: V̂2 could just as well act on the state Sψ1ψ3ψ2e, and the state Sψ3e would still
be in the odd position. For bosons it would indeed not matter, but when dealing with
fermions, this last case would give a minus sign since �1,3,2� is an odd permutation of�1,2,3�. So for generality, I choose the first case.

Using the permutation operators defined in section 5.2, I can write

V̂1 Sψ1ψ2ψ3e � �P̂23P̂12��1V̂3P̂23P̂12 Sψ1ψ2ψ3e � P̂12P̂23V̂3 Sψ2ψ3ψ1e (5.17a)

V̂2 Sψ1ψ2ψ3e � �P̂23P̂13��1V̂3P̂23P̂13 Sψ1ψ2ψ3e � P̂13P̂23V̂3 Sψ3ψ1ψ2e . (5.17b)

Note that the inverse permutations are needed in order to return the state to the same
configuration as before.

A symmetric wave function, SΨe, remains the same after applying a permutation
operator to it, that is, P̂ij SΨe � SΨe. By replacing Sψ1ψ2ψ3e in the above equation by the
symmetric state SΨe, I get

V̂1 SΨe � P̂12P̂23V̂3 SΨe (5.18a)

V̂2 SΨe � P̂13P̂23V̂3 SΨe . (5.18b)
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This means that�V̂1 � V̂2 � V̂3� SΨe � �P̂12P̂23V̂3 � P̂13P̂23V̂3 � V̂3� SΨe �
� �P̂12P̂23 � P̂13P̂23 � 1̂� V̂3 SΨe � �1̂ � P̂ �V̂3 SΨe , (5.19)

where I defined the important P̂ operator

P̂ � P̂12P̂23 � P̂13P̂23. (5.20)

From section 2.2.3, I showed that permuting the first two particles in a partial-wave
basis will give the same state. This means that

P̂12 SpqLpe � SpqLpe . (5.21)

Using the identity

P̂13P̂23 � P̂12P̂12P̂23P̂12 (5.22)

The two terms in eq. (5.20) are equal in the partial-wave basis, since

`pqLpS P̂13P̂23 Tp�q�L�pf � `pqLpS P̂12P̂12P̂23P̂12 Tp�q�L�pf � `pqLpS P̂12P̂23 Tp�q�L�pf . (5.23)

5.3 Binding energy

The binding energy E @ 0 is calculated from the time-independent Schrödinger equation,

Ĥ Sψe � �T̂ � V̂ � Sψe � E Sψe . (5.24)

In the computer implementation, operators will be matrices and the Schrödinger equation
can be seen as an eigenvalue problem for the matrix representations of the operators.
However, solving eq. (5.24) directly is not always the best alternative. In this section I
will derive the different forms of the Schrödinger equation that I will use.

So the problem of finding the binding energy can be decomposed into two tasks.
First, one must choose a formulation of the Schrödinger equation and compute the
matrix that will appear in the corresponding matrix equation. The second task will be
to solve the eigenvalue equation using an appropriate algorithm. In the following I will
concentrate on the first task of finding a good formulation. The different algorithms I
use are described later in section 9.2.

5.3.1 Two particles in a partial-wave basis

One problem, which exists when using the partial-wave basis, is that the kinetic energy
operator T̂ will be diagonal. This means that a Dirac delta will appear in the equation,
and that can not be discretized. To get around this, I do

�V̂ � T̂ � Sψe � E Sψe Ô� V̂ Sψe � �E1̂ � T̂ � Sψe Ô�
Ô� Sψe � �E1̂ � T̂ ��1V̂ Sψe � Ĝ0�E�V̂ Sψe � K̂1�E� Sψe (5.25)
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where Ĝ0�E� � �E1̂� T̂ ��1 is the free propagator of the system and K̂1�E� is the kernel
operator. Here I assumed that I can take the inverse of the operator �E1̂ � T̂ �. This is
not a problem for bound states since E @ 0 and the kinetic energy is always positive.

In this form, it is not an issue that T̂ is diagonal, since it will only appear under an
integral sign, which will cancel the Dirac delta. The problem is now to find E @ 0 such
that the kernel operator K̂1�E� has eigenvalue 1.

5.3.2 Two particles in a harmonic-oscillator basis

In the harmonic-oscillator basis I do not have the difficulty with Dirac delta functions,
since I neither have a continuous basis, nor is T̂ diagonal. This means that the hamilto-
nian Ĥ can be diagonalized directly. I can also use the same method as in the partial-wave
basis, solving K̂1�E� Sψe � Sψe. This means that the two methods can be compared.

One could argue that instead of finding E such that K̂1�E� has eigenvalue 1, I could
define

K̂2�E� � 1

E
�V̂ � T̂ � (5.26)

and find E such that K̂2�E� has eigenvalue 1 instead. Theoretically it is just as good, but
as will be seen in the implementation part, this equation is not well suited for computer
implementation.

5.3.3 Three particles in a partial-wave basis

To calculate the binding energy of a three-particle bound state, I will use the Faddeev
equation, which I will derive here.

The general hamiltonian for three identical bosons is

Ĥ � T̂ �

3

Q
i�1

V̂i � Û , (5.27)

where V̂i is the potential between the other two particles, so V̂1 is the two-body interaction
between particles two and three and Û is the total three-body potential. The three-body
potential Û is assumed to be totally symmetric. To make the hamiltonian look more
symmetric, I define Ûi � �1~3�Û for i � 1,2,3. Then the hamiltonian will be

Ĥ � T̂ �

3

Q
i�1

�V̂i � Ûi�. (5.28)

The time-independent Schrödinger equation is

Ĥ SΨe � E SΨe . (5.29)

Now I rewrite this equation like in eq. (5.25), so that I have

SΨe � Ĝ0�E�� 3

Q
i�1

�V̂i � Ûi�� SΨe . (5.30)
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I decompose the full wave function into three parts, by defining

SΨe � 3

Q
i�1

Sψie (5.31a)

Sψie � Ĝ0�E��V̂i � Ûi� SΨe . (5.31b)

Notice that each operator Ĝ0�E��V̂i � Ûi� is symmetric in the two other particles, that
is, particle i is the odd one, and I can use the results from section 5.2.1 to write

Sψ1e � P̂12P̂23 Sψ3e (5.32a)Sψ2e � P̂13P̂23 Sψ3e . (5.32b)

This means that SΨe � Pi Sψie can be written like

SΨe � �1̂ � P̂ � Sψ3e . (5.33)

Inserting this in eq. (5.31b) for i � 3 I get

Sψ3e � Ĝ0�E� �V̂3�1̂ � P̂ � � Û� Sψ3e . (5.34)

Since the other two equations will look the same, it is enough to solve this one. This
equation is called the Faddeev equation. I used that

Ûi�1̂ � P̂ � � Û1 � Û2 � Û3 � Û . (5.35)

The equation as it is written now is not suitable for implementation though – for
the same reason that eq. (5.24) was not appropriate for partial-wave basis – since V̂3

is diagonal in the quantum numbers for the third particle, I get a Dirac delta from the
Ĝ0�E�V̂3 Sψ3e term which I cannot implement. Removing the index 3, and moving this
term to the left hand side, I get

�1̂ � Ĝ0�E�V̂ � Sψe � Ĝ0�E��V̂ P̂ � Û� Sψe Ô�
Ô� Sψe � �1̂ � Ĝ0�E�V̂ ��1

Ĝ0�E��V̂ P̂ � Û� Sψe �
� �1̂ � �E1̂ � T̂ ��1V̂ ��1�E1̂ � T̂��1�V̂ P̂ � Û� Sψe �
� ��E1̂ � T̂ ��1̂ � �E1̂ � T̂ ��1V̂ ���1�V̂ P̂ � Û� Sψe �
� �E1̂ � T̂ � V̂ ��1�V̂ P̂ � Û� Sψe � K̂3�E� Sψe .

(5.36)

This expression is well suited for implementation.

22



5.4 Low-energy scattering parameters
5 FEW-BODY OBSERVABLES

5.4 Low-energy scattering parameters

From the on-shell transition matrix two important observables can be calculated, namely
the scattering length a0 and the effective range r0. See the book Modern Quantum
Mechanics by Sakurai for more details about these parameters [11, p. 413].

At low energies, only S-wave scattering is important, that is Lp � 0. Therefore I will
omit the index Lp, assuming it is zero.

According to Sakurai, the on-shell transition matrix is related to the partial-wave
amplitude f�p0� by

f�p0� � �πt̃E
p0

(5.37a)

E �
p2

0

m
. (5.37b)

Here, t̃E is the matrix element `E00S t̂E SE00e. The relationship between t̃E and the
matrix element I calculate, tE � `p000S t̂E Sp000e is [11, eq. (7.5.21a)]

t̃E � `E00S t̂E SE00e � S
p�

p�2 dp�S
p��

p��2 dp�� aESp�f ap�00T t̂E Tp��00f ap��SEf �
� tE

2

mp0
�S

p�

p�2 dp�δ �p2
0

m
�
p�2

m
��2

� tE
2

mp0
�mp0

2
�2

�

� tE
mp0

2
.

(5.38)

The partial-wave amplitude determines the phase shift, δ of the reflected wave,
through the relation

1 � 2ip0f�p0� � exp�2iδ� Ô�
Ô� f�p0� � 1

p0 cot�δ� � ip0
.

(5.39)

The parameters a0 and r0 are then defined through a Taylor expansion of p0 cot�δ�
around p0 � 0,

p0 cot�δ� � � 1

a0
�

1

2
r0p

2
0 �O�p4

0� Ô�
Ô�

mπi
º
mEStE S2 � 2t�E
mπStE S2 � �

1

a0
�

1

2
r0mE �O�E2�. (5.40)

Writing tE � tR � tIi, I get

�2tR
mπ�t2R � t2I� � � 1

a0
�

1

2
r0mE �O�E2� (5.41a)

1 �
2tI

mπ�t2R � t2I� � O�E2�. (5.41b)

The last of these two equations is good for checking that the calculations have been done
correctly, since it should tend to zero.

The parameter a0 determines the cross section at low momenta, which is 4πa2
0 [11].
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6 The SRG flow equation

The main goal of this project is to transform a given potential V̂ to another potential
˜̂
V in such a way that the values of observables stay the same, and with the intent that
˜̂
V will have decoupled the low and high-energy physics. This means that only a small
number of matrix elements will be needed when doing low-energy calculations.

This is achieved with the SRG transformation. It is a continuous, unitary transfor-
mation. The unitarity ensures that the values of observables stay the same.

I will now derive the SRG flow equation. I start by defining the transformed hamil-

tonian
˜̂
H from the unevolved hamiltonian Ĥ.

˜̂
H � Û �ĤÛ (6.1a)

Û �Û � 1̂ (6.1b)

In order to find a good Û with the desired property that the off diagonal elements of
˜̂
V

becomes less significant, a flow parameter s is introduced, so that

˜̂
H � Ĥs � Û

�
s ĤÛs (6.2a)

Û �
s Ûs � 1̂. (6.2b)

These equations can now de differentiated with respect to s:

d

ds
1̂ � 0̂ �

d

ds
�Û �

s Ûs� � Û ��

s Ûs � Û
�
s Û

�

s � η̂s � η̂
�
s (6.3a)

d

ds
Ĥs � Û

��

s ĤÛs � Û
�
s ĤÛ

�

s �

� Û ��

s ÛsÛ
�
s ĤÛs � Û

�
s ĤÛsÛ

�
s Û

�

s �

� η̂sĤs � Ĥsη̂s �

� �η̂s, Ĥs�.
(6.3b)

Now I need an operator η̂ which obeys the relation η̂ � �η̂�. Given a hermitian
operator Ĝs, I can use η̂s � �Ĝs, Ĥs�, so the equation looks like

Ĥ �

s � ��Ĝs, Ĥs�, Ĥs�. (6.4)

Ĝs is called the propagator.
I am interested in the potential, and Ĥ � T̂ � V̂ . I am not interested in a transformed

kinetic energy operator, so I define

V̂s � Ĥs � T̂ . (6.5)

This means that eq. (6.4) expressed in V̂s will be

Ĥ �

s � V̂
�

s � ��Ĝs, T̂ � V̂s�, T̂ � V̂s�. (6.6)
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6 THE SRG FLOW EQUATION

In this report I will only consider the propagator Ĝs � T̂ . To motivate this, I write
the equation in the partial-wave basis in momentum space for two particles:

V �

Lp,s�p, p�� � �VLp,s�p, p���p2
� p�2�2

m2
�

� S
ª

0
p��2 dp��VLp,s�p,p���VLp,s�p��,p��p2

� p�2 � 2p��2

m
.

(6.7)

The first term will quickly drive off-diagonal terms towards zero since the factor �p2
�p�2�2

is large for the off-diagonal elements. Furthermore, if one considers only the first term,
the evolution would directly be given by

VLp,s�p,p�� � VLp,0�p,p�� exp��s�p2
� p�2�2

m2
� . (6.8)

This suppresses off-diagonal elements, since p2
�p�2 is large for those elements. This will

decouple the high- and low-energy states. For this reason, another flow parameter Λ is
often used, which relates to s through

Λ�4
�

s

m2
. (6.9)

This means that the unit for Λ is the same as that for p and Λ will be a measure on how
close to band diagonal the potential is. Λ �ª corresponds to the unevolved potential.

Using the linearity of the commutator, eq. (6.4) becomes

V̂ �

s � ��T̂ , T̂ � V̂s�, T̂ � V̂s� �
� ��T̂ , T̂ � � �T̂ , V̂s�, T̂ � V̂s� �
� �T̂ , V̂s��T̂ � V̂s� � ��T̂ , V̂s��T̂ � V̂s��� . (6.10)

Defining

S�Â� � Â � ÂT (6.11)

the equation can be written as

V̂ �

s � S��T̂ , V̂s��T̂ � V̂s�� (6.12)

since the potential is assumed to be real valued.
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7 DISCRETIZATION OF SPACE

Part II

Implementation

In this part I will show how the major algorithms and equations are implemented. The
most important task is to construct a discretized representation of the operators. For
this, both how to store the operators as matrices and how the discretization will be
handled are important aspects.

Since the amount of data that needs to be handled is often very large, care must be
taken that the implementation can be done with relatively low memory usage. But the
main goal is of course a fast, stable algorithm, which will allow more accurate calcula-
tions.

Details about the actual software and programming environment I have used in order
to implement the calculations, can be seen in appendix D. When I have used algorithms
that are part of a software library, that will be stated in the text.

7 Discretization of space

7.1 Discretized representation

Non-diagonal operators will be stored as matrices. The bases I work with are either con-
tinuous and ranging from zero to infinity – as in the case of the position and momentum
variables – or discrete, as in the case of the angular momentums. In both cases a cut
off must be choosen, so that only states below this limit are included in the discretized
basis.

In the continuous case, a finite number of states – grid points – between zero and
the cut off limit must be choosen too. Since the operators often must be integrated, a
natural choice is to choose grid points according to some quadrature rule, which will be
discussed more in detail in section 7.2.

For an operator Â depending on one variable x – discrete or continuous – with a
choosen grid �xi�ni�1, the matrix representation Ǎ with elements Ǎii� will be defined as

Ǎii� � `xiS Â Tx�if . (7.1)

In the general case, the matrix entries could be complex numbers. In most cases
though, the operators I work with allow for a pure real representation, so unless otherwise
stated, the matrices will be real. Many of the operators are also hermitian. This means
that the matrix representation also will be hermitian, which in the real case is the same
as the matrix being symmetric, Ǎ � ǍT . In this case, only the upper or lower triangle
need to be stored and calculated. This means that at most n2 elements need to be
stored, and only n�n � 1�~2 elements if the operator is hermitian.

When an operator B̂ depends on two variables x and y, with grids �xi�ni�1 and �yj�mj�1,
the discretized representation will still be a matrix. A combined grid is constructed,
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�zk�nmk�1, with grid point im � j corresponding to the state Sxie a Syje, so the matrix
elements will be

B̌im�j,i�m�j� � `xiyj S B̂ Tx�iy�jf . (7.2)

Note that if B̂ is hermitian, only nm�nm�1�~2 elements need to be stored and computed.
For more than two variables, I do in the same fashion. For diagonal operators, D̂ with

matrix representation Ď, only the diagonal is stored, in the form of a vector,
Ð�

D . For a
diagonal operator D̂ depending on a single variable x with a choosen grid �xi�ni�1, the
operator looks like

`xiS D̂ Tx�if �D�i�δ̃�xi � x�i�. (7.3)

The delta function should be interpreted as either a Dirac delta of the correct dimension

or a Kronecker delta. The vector
Ð�

D with elements
Ð�

D i will then be defined as

Ð�

D i �D�i�. (7.4)

An operator Â depending on two variables, x and y, can be diagonal in one of the
variables, y. In this case, the discretized representation will be a vector of matrices,
where element j of the vector will be the matrix Ǎj with elements

Ǎj;ii� � Ayj�xi,x�i� (7.5a)`xiyj S Â Tx�iy�jf � Ayj�xi,x�i�δ̃�yj � y�j�. (7.5b)

I call this that the operator Â is decomposed in y.

7.2 Discretized integration

In order to evaluate the product of two operators, `αS ÂB̂ Sα�e, where α represents all the
quantum numbers, a complete set of states, nα�� wI�α��� Sα��e `α��S is inserted between the
operators:

`αS ÂB̂ Tα�f � o
α��

`αS Â Tα��fwI�α��� aα��T B̂ Tα�f . (7.6)

The n symbol indicates that it can either be a discrete sum over a discrete quantum
number, or an integral over a continuous variable. The wI�α��� term is the integration
weight, if any. For example, when integrating the p or q variable in the partial-wave
basis, wI�p� � p2 and wI�q� � q2, since it is three dimensions. In the case of a discrete
variable, it is an ordinary matrix multiplication between the two matrix representations
of the operators. When dealing with continuous operators however, the integral need to
be discretized. For this, a quadrature rule is used.

A quadrature is defined over some interval �a, b�, or possibly over an infinite interval.
It also has a set of discrete points contained in the interval, �xi�Ni�1, where N is the order
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8 THE PERMUTATION OPERATOR

of the quadrature and a set of weights �wq,i�Ni�1. This is used to create an approximation
of the integral:

S
b

a
dxf�x� � N

Q
i�1

wq,if�xi�. (7.7)

Using this, and defining w�α��� � wq�α���wI�α���, eq. (7.6) can be discretized as

`αS ÂB̂ Tα�f� Ǎ�W̌αB̌, (7.8)

where W̌α is a diagonal matrix with diagonal entries W̌α��α�� � w�α���. Only the diagonal

of W̌α will be stored, as a vector
Ð�

Wα. The star between Ǎ and W̌α signify that no real
matrix multiplication need to be done, since W̌α is diagonal.

For operators Â � 1 a Ây and B̂ depending on two variables, x and y, where Â is
decomposed in x, the matrix multiplication will simplify due to the delta function,

`xyS ÂB̂ Tx�y�f � o
x��y��

� δ̃�x � x���
wI�x��� a `yS Ây Ty��f�wI�x��,y��� ax��y��T B̂ Tx�y�f �

� o
y��

`yS Ây Ty��fwI�y��� axy��T B̂ Tx�y�f . (7.9)

To explicitly show when the matrix multiplications are done only over some variables, I
write the discretization as

`xyS ÂB̂ Tx�y�f� Ǎ�W̌y
y
�B̌, (7.10)

where the y over the star means that there is only a matrix multiplication in the y
variable.

The different quadratures I use are described in appendix A.
Matrix multiplications are the main time consumers in the algorithms, so minimizing

the number of such multiplications is always important to make the algorithms go faster.
The BLAS routine dgemm is used to do matrix multiplications.

8 The permutation operator

The permutation operator that I need to discretize is

P̂ � P̂12P̂23 � P̂13P̂23. (8.1)

As will be seen, this can be done in a few different ways.
I will not show the derivation of the discretized expressions, for these I refer to the

book “The quantum mechanical few-body problem” by W. Glöckle [15].
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8 THE PERMUTATION OPERATOR

In a three-particle system using the parital-wave basis in momentum space [15, eq.
3.349],

`pqLαLS P̂ Tp�q�L�αLf �
� S

1

�1
dx
δ�p � π1

p�q,q�,x��
π1
p�q,q�,x�Lp�2

δ�p� � π2
p�q,q�,x��

π2
p�q,q�,x�L�

p�2
Gp�q,q�,Lα,L�α,L� �

� S
1

�1
dx
δ�p � πpL�p�,q�,x��
πpL�p�,q�,x�Lp�2

δ�q � πqL�p�,q�,x��
πqL�p�,q�,x�Lq�2

GL�p�,q�,Lα,L�α,L� �
� S

1

�1
dx
δ�p� � πpR�p,q,x��
πpR�p,q,x�L�

p�2

δ�q� � πqR�p,q,x��
πqR�p,q,x�L�

q�2
GR�p,q,Lα,L�α,L�.

(8.2)

Lα stands for both Lp and Lq. The difference between the three expressions is which two
momentum variables are singled out in the delta functions and this also affects the factor
G. The expressions for Gp, GL and GR are in appendix C. When the two p variables are
singled out, I call it “acting on the p variables”, and when p and q are removed, I call it
“acting to the left”, which also should explain the L (left) and R (right) notation for the
π functions. I have not included the case when it acts on the q variables, since I will not
need it.

Which expression that is most suitable depends on the equation where the permu-
tation operator appears, since each delta function must be canceled by an integration.
For example, consider the following equation,

Sψe � P̂ Sψe . (8.3)

In the partial-wave basis this becomes

ψ�p, q,Lα, L� �Q
L�

α

S
p�

p�2 dp�S
q�

q�2 dq�S
1

�1
dx

�
δ�p� � πpR�p,q,x��
πpR�p,q,x�L�

p�2

δ�q� � πqR�p,q,x��
πqR�p,q,x�L�

q�2

�GR�p,q,Lα,L�α,L�ψ�p�, q�, L�α, L� �
�Q
L�

α

S
1

�1
dx
GR�p,q,Lα,L�α,L�ψ�πpR�p,q,x�, πqR�p,q,x�, L�α, L�

πpR�p,q,x�L�

pπqR�p,q,x�L�

q
.

(8.4)

In this case, the permutation operator has to act to the right, since the variables p and
q are not integration variables.

In most cases, the values of the π-functions will not correspond to a choosen grid
point. This means that either interpolation or extrapolation will be neccessary. To see
when it is enough with interpolation, I need the explicit expressions for the π-functions.
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8 THE PERMUTATION OPERATOR

They are given by

π1
p�q,q�,x� �¾1

4
q2 � q�2 � xqq� (8.5a)

π2
p�q,q�,x� � π1

p�q�,q,x� (8.5b)

πpL�p�,q�,x� �¾1

4
p�2 �

9

16
q�2 �

3

4
xp�q� (8.5c)

πqL�p�,q�,x� �¾p�2 �
1

4
q�2 � xp�q� (8.5d)

πpR�p,q,x� � πpL�p,q, � x� (8.5e)

πqR�p,q,x� � πqL�p,q, � x�. (8.5f)

For the case when the permutation operator acts on the p variables the extreme values
of π1

p and π2
p will be when x � �1. This gives the values¾

1

4
q2 � q�2 � qq� �

¾�1

2
q � q��2

� V1
2
q � q�V . (8.6)

Of course I have that 0 C πxp�q,q�,x�, but since not all quadrature rules include the zero
in the quadrature, it could happen that the lowest off-grid value is lower than the lowest
quadrature point. To avoid this, I use a quadrature rule which includes the endpoints of
integration. For a given momentum cutoff qm, the largest p momentum value that will
be needed is 1.5qm. This means that extrapolation can be avoided by letting pm C 1.5qm.

Now for the case when the permutation operator acts to just one side. For a given
pm and qm, the maximum values that πpL and πqL can attain are

max
p�,q�,x

πpL�p�,q�,x� �¾1

4
p2
m �

9

16
q2
m �

3

4
pmqm �

1

2
pm �

3

4
qm (8.7a)

max
p�,q�,x

πqL�p�,q�,x� �¾p2
m �

1

4
q2
m � pmqm � pm �

1

2
qm. (8.7b)

Now I would like to find pm and qm such that

1

2
pm �

3

4
qm B pm (8.8a)

pm �
1

2
qm B qm, (8.8b)

but the problem is that it reduces to the inequalities pm C 1.5qm and pm B 0.5qm. So
extrapolation is unavoidable in this case. Since the first of these inequalities is the same
as in the case when it acts on only p variables, I always use pm � 1.5qm, which will avoid
extrapolation entirely when I do not need to act to the right or left, and it will as good
as possible comply with the other inequality.

30



8.1 Interpolation and extrapolation
8 THE PERMUTATION OPERATOR

8.1 Interpolation and extrapolation

As stated in the previous section, I will need to interpolate and extrapolate in order to
evaluate the permutation operators. Here I describe how this is done in general terms.

Given a set of grid points �gi�Ni�1 and their values �vi�Ni�1 the values �yj�Mj�1 at the

off-grid points �xj�Mj�1 is evaluated with the formula

yj �
N

Q
i�1

s�xj ; g1, g2, . . . , gN�vi. (8.9)

This can be written as a matrix-vector multiplication,

y � Sv. (8.10)

In appendix B, I describe the different interpolation and extrapolation methods I
have used.

8.2 Matrix representations of the permutation operator

By using the interpolation matrices defined in section 8.1, an explicit matrix represen-
tation can be created for the permutation operator. As an example, I will here consider
the case of the permutation matrix acting on the p variables. In this case, the p variables
need to be integration variables. In the partial-wave basis in momentum space I have

S
ª

0
p2 dpS

ª

0
p�2 dp� SpqLαe `pqLαS P̂ Tp�q�L�αf ap�q�L�αT �

Tπ1
p�q,q�,x�qLαfS 1

�1
dx

Gp�q,q�,x,Lα,L�α,L�
π1
p�q,q�,x�Lpπ2

p�q,q�,x�L�

p
aπ2
p�q,q�,x�q�L�αT . (8.11)

Discretizing the x integration and using the interpolation scheme from section 8.1, the
above expression is

Q
p
Q
p�

SpqLαe

�

�P̌p�p,q,Lα;p�q�L�

α�³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Q
x

<@@@>wq�x�s�π1
p�q,q�,x�;p� Gp�q,q�,x,Lα,L�α,L�

π1
p�q,q�,x�Lpπ2

p�q,q�,x�L�

p
s�π2

p�q,q�,x�;p�=AAA? ap�q�L�αT
(8.12)

Similar calculations can be done for the case when the permutation operator acts to
one side.

In this way, matrix representations of the permutation operators are possible, allow-
ing for fast calculations. The downside is that everything the permutation operators
act on will be interpolated. When the permutation operator acts on the kinetic energy
operator or on another permutation operator, it would not be neccessary to interpolate
since the exact expressions could be used instead.
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9 CALCULATION OF THE BINDING ENERGY

9 Calculation of the binding energy

In the theory part, I reduced the problem of finding the binding energy to one of two
cases. Either I diagonalize the hamiltonian directly, or find E so that the operator K̂i

has eigenvalue 1. In this section I will describe how these equations are solved in the
implementation.

9.1 Diagonalization in the harmonic-oscillator basis

The diagonalization is only done in the harmonic-oscillator basis. The only variable is
n, which is discrete. This means that no integration weights should be added. The
hamiltonian matrix Ȟ will then have elements Ȟij � `iS �V̂ � T̂ � Sje. This will be a real,
symmetric matrix. Due to the spectral theorem for finite matrices, this means that the
eigenvalues will all be real.

To diagonalize the matrix, I use the GSL function gsl_eigen_symm, which in turn
uses a method from section 8.3 of the book Matrix Computations by Golub and van
Loan [16].

This immediately gives all the eigenvalues, and the eigenvalues that are negative
corresponds to bound states.

9.2 Solving the kernel equation

I need to find E such that the equation

K̂�E� Sψe � Sψe , (9.1)

has a non trivial solution. With non trivial I mean that Sψe should not be zero. To do
this, a matrix representation of K̂�E� is needed. This can be obtained by multiplying
with `αS from the left and inserting a complete set of states,

1̂ � o
α�

wI�α�� Tα�f aα�T , (9.2)

between K̂�E� and Sψe. α represents all the quantum numbers for the given problem.
This gives the equation

o
α�

wI�α�� `αS K̂�E� Tα�f aα�Sψf � `αSψe . (9.3)

With a choosen grid for α, �αi�Ni�1, the matrix equation is

Ǩ�E�ψ � ψ. (9.4)

Solving eq. (9.4) will be an iterative process, where different values of E needs to be
tested. In order to do this, I need a piecewise continuous real valued function, f � R� R,
taking an energy value as argument and returning zero if and only if the equation has
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a solution. If I have such a function, I can apply a root finding algorithm to it to find
the binding energies. In the following sub sections I will describe some different such
functions that I have used.

I have used a bracketing algorithm to find the root. Such an algorithm starts with
two energy values E0 and E2 for which the function f has different signs and E0 @ E2.
If f is continuous in the interval �E0,E2�, then a root exists in that interval. It is
found by calculating f at some point E1, E0 @ E1 @ E2 and then continuing the process
recursively with either the interval �E0,E1� or �E1,E2� depending on the sign of f at
the three points.

Since f is only assumed to be piecewise continuous, I can get false roots with the
bracketing algorithm if f has a discontinuity where the value at one side of the discon-
tinuity has different sign than on the other. This is easily seen to be a false root since
the function value does not approach zero.

I have used the Brent-Dekker bracketing algorithm, implemented in the GSL library
as the algorithm gsl_root_fsolver_brent.

9.2.1 Determinant method

With this method, the function f described above is

f�E� � det�Ǩ�E� � Ǐ�. (9.5)

This will return zero if and only if the equation

�Ǩ�E� � Ǐ�ψ � 0̌ (9.6)

has a non trivial solution, which is exactly what I want. This function f will also be
continuous.

To calculate the determinant, I calculate the LU decomposition of the matrix Ǩ�E��
Ǐ,

P̌ �Ǩ�E� � Ǐ� � ĽǓ , (9.7)

where P is a permutation matrix. The determinant is then just the product of the diago-
nal elements of Ǔ times the sign of the permutation matrix P̌ . The LU decomposition is
done using the function gsl_linalg_LU_decomp, which in turn uses the algorithm 3.4.1
from the book Matrix Computations by Golub and Van Loan [16].

For large matrices, the determinant takes a long time to calculate, which makes it
useful mostly for rather small matrices, with N ß 2000 or when no other method works.

Another problem is that the value of the determinant could be too large or too small
for the computer to represent the number. This can be avoided by, instead of calculating
the value of the determinant from the LU decomposition, just calculate the sign. This
will, however, make it harder for the bracketing algorithm, since it can not estimate in
a good way where the zero is.

One of the advantages of the kernel Ǩ1 over Ǩ2 is that the value of the determinant
stays relatively close to zero regardless of the matrix size.
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9.2.2 Power iteration

A method to find the eigenvalue with the largest absolute value, is the power iteration
method. The idea is simply to start with any vector x0 of norm 1, then repeatedly do

xn � Ǩxn�1. (9.8)

The goal is that the ratio SxnSSxn�1S (9.9)

should converge to the value of the eigenvalue with largest absolute value. This can be
seen by expanding x0 and xn in the eigenbase of Ǩ:

x0 �Q
i

Ciki (9.10a)

xn � Ǩ
nQ

i

Ciki �Q
i

Ciλ
n
i ki, (9.10b)

where ki are the eigevectors of Ǩ and λi are the eigenvalues. Assuming λ0 is an eigenvalue
with largest absolute value, then by dividing by λn0 , I get

1

λn0
xn �Q

i

Ci
λi
λ0

n

ki. (9.11)

This means that the components i with λi @ λ0 tend to zero.
This can only solve the kernel equation if 1 is the largest eigenvalue. For systems

with only one bound state, this has been observed to be the case for kernels K1 and K3,
which is an additional advantage of K1 over K2.

When there are more than one bound state, lower eigenvalues need to be found. This
can be done by first finding the highest eigenvalue, then start again, with a new x0 and
in each step make the obtained vector orthogonal to the eigenvector k0. In this way, the
next largest eigenvalue is found.

9.2.3 Arnoldi iteration

Another way to find eigenvalues other than the one with largest absolute value, is to use
Arnoldi iteration. It is similar to the technique used in power iteration. But instead of
converging each eigenvector at a time, all the obtained vectors xi are orthogonalized to
each other and normalized. Then the matrix Ȟ is formed, with matrix elements

Ȟij � xTi Ǩxj . (9.12)

If Ǩ had been symmetric, then the eigenvalues of Ȟ will converge to the largest eigen-
values of Ǩ. In this case it is called Lanczos algorithm. For non symmetric matrices,
the theory is not as well developed, but it has been observed in practice that the same
holds in the non symmetric case.
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The eigenvalues of Ȟ can easily be determined in a fast way, since the size of this
matrix will be very small, usually between ten and twenty.

This method is usually faster than the power iteration method, since fewer iterations
are needed for convergence, usually between 10 and 20.

9.3 The Kernels

9.3.1 Two-particle kernels

The two kernels for two particles are K̂1�E� and K̂2�E�, see section 5.3. Discretizing
is done according to the rule in section 7.2, that is by inserting complete set of states
between all operators and states:

`αS K̂1�E� Sψe � `αSψe � o
α�

o
α��

`αS �E1̂ � T̂ ��1 Tα�f aα�T V̂ Tα��f aα��Sψf . (9.13)

In the harmonic oscillator, there are no integrations, and the discretized version of the
kenrel is

Ǩ1�E� � �E1̌ � Ť ��1V̌ . (9.14)

In the partial-wave basis, the operator T̂ is diagonal, so the operator �E1̂ � T̂ ��1 will
also be diagonal. This means that the Dirac delta function will remove the integration
over α�. Using that α � p, the relative momentum, I can write eq. (9.13) as

S
ª

0
p�2 dp��E � T �p,E���1V �p, p�� ap�Sψf � `pSψe . (9.15)

The discretized kernel is then

Ǩ1�E� � �EǏ � Ť ��1
�V �W̌p (9.16)

The kernel K̂2�E� can only be used in the harmonic oscillator basis, and the dis-
cretized version is just

Ǩ2�E� � 1

E
�V̌ � Ť �. (9.17)

9.3.2 Three-particle kernels

The only kernel is K̂3�E�. The expression for the kernel is

K̂3�E� � �E1̂ � T̂ � V̂ ��1�V̂ P̂ � Û� �K�1�
3 �E�K�2�

3 (9.18)

where K
�1�
3 � �E1̂� T̂ � V̂ ��1. This is the only part that depends on E, which means that

the other part only needs to be calculated once. Discretizing the equation K̂3�E� Sψe � Sψe
in the usual way, I get

Ǩ3�E� � �EǏ � Ť � V̌ �W̌p��1p
��V̌ �W̌pP̌�W̌pq � Ǔ�W̌pq�. (9.19)
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I need to choose which variables the permutation operator should act on. It can not
act to the left, since V̂ is diagonal in the q variable. I can either let it act on the two
p variables or just to the right. If it acts on the p variables, the W̌p matrices will be
removed due to the delta functions, and if I choose it to act to the right, the W̌pq to the
right of P̌ will be removed. To simplify, I define the matrix P̌w as

P̌w �

¢̈̈¦̈̈¤P̌p�W̌q, if P̂ acts onpvariables

W̌p�P̌R, if P̂ acts to the right
. (9.20)

Using this, the discretized equation will look the same in both cases, and the expression
will be

Ǩ3�E� � �EǏ � Ť � V̌ �W̌p��1p
��V̌ P̌w � Ǔ�W̌pq�. (9.21)

Note that Ť depends on q and V̌ depends on Lp, so there will be one Np �Np matrix
to invert for each q and each Lp.

10 Calculation of low-energy scattering observables

To calculate the low energy scattering parameters a0 and r0 I first need to discretize
eq. (5.11), which for Lp � 0 looks like

tE�p, p�� � V �p, p�� � S
p��

dp��
V �p, p���tE�p��, p��p��2 � V �p, p0�tE�p0, p

��p2
0

T �p0� � T �p��� �

�
mp0

2
V �p, p0�tE�p0, p

�� �log �pm � p0

pm � p0
� � iπ� . (10.1)

Since the momentum p0 will be off grid, that is not one of the quadrature points, the
matrices must be interpolated to get the value at the desired momentum. This can be
achieved using an interpolation vector s, such that if x is a vector with values at the
grid points, x � s will be the value at the desired point. This means that the terms
V �p, p0�tE�p0, p

�� when discretized will look like

V �p, p0�tE�p0, p
��� V̌ ssT ťE (10.2)

Using this, the discretized version will be

ťE � V̌ � V̌ �W̌p�Ť � αssT � ťE (10.3a)

Ť � �T �p0�Ǐ � Ť��1
(10.3b)

α �
mp0

2
�log �pm � p0

pm � p0
� � iπ� � p2

0

Ð�

W T
g

Ð�

T . (10.3c)

Solving for ťE , this becomes

ťE � �Ǐ � V̌ �W̌p�Ť � αssT ���1
V̌ � Ǩ�1V̌ . (10.4)
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Since I am only interesting in the on shell value tE , I want to calculate

tE � sT ťEs � sT Ǩ�1V̌ s. (10.5)

Defining x from the relation Ǩx � V̌ s � y, which is easily solved using for example LU
factorization, the value for tE will be

tE � sTx (10.6)

So the only time consuming part will be solving Ǩx � y. Note that Ǩ is a complex
valued matrix.

This process then has to be repeated for several different values of E, then the
parameters a0 and r0 can be calculated from a linear fit to eq. (5.41a). Since a0 is
determined from the value at very low E, an accurate value can be obtained simply by
decreasing E sufficiently. This is not the case for r0, since the slope of the line must be
resolved. When using too low values of E, numerical errors will dominate and the data
points will not look like a straight line. For too large E, the taylor expansion will not
hold, so care must be taken when choosing the values for E.

11 The SRG flow equation

11.1 In two-particle space

For a two-particle system, the total hamiltonian is just

Ĥ � T̂ � V̂ . (11.1)

Using eq. (6.12), I get the derivative

∂V̂

∂s
� S��T̂ , V̂ ��T̂ � V̂ ��. (11.2)

The evolution will be done in the partial-wave basis, so integration weights will only
be needed between two V̂ terms, since T̂ is diagonal. This means that the discretized
version can be written as

∂V̂

∂s
�

∂V̌

∂s
� S��Ť�V̌ � V̌ �Ť ��Ť � W̌p�V̌ �. (11.3)

This means that only one matrix multiplication is neccesary.
The only approximation that has been done is the discretized integration. Apart

from that eq. (11.3) will cause V̌ to evolve unitarily. The discretized integration is not
exepcted to cause any significant deviations from unitarity.
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11.2 In three-particle space

For three particles, the potential is Pi V̂i � Û , and the SRG equation is

� 3

Q
i�1

V̂i � Û�� � S ��T̂ , 3

Q
i�1

V̂i � Û	�T̂ �

3

Q
i�1

V̂i � Û�� . (11.4)

Here the derivation sign is implicitly assumed to be with respect to the flow parameter
s. The expression for the V̂ �

3 term is already known from the two particle case, and from
eqs. (5.17a) and (5.17b) I can relate V̂ �

1 and V̂ �

2 to V̂ �

3 ,

V̂ �

1 � �P̂23P̂12��1V̂ �

3 P̂23P̂12 � P̂
�1
1 V̂ �

3 P̂1 (11.5a)

V̂ �

2 � �P̂23P̂13��1V̂ �

3 P̂23P̂13 � P̂
�1
2 V̂ �

3 P̂2. (11.5b)

It is expected that the differential equations for V̂1 and V̂2 are the same as for V̂3.
This is indeed the case:

V̂ �

1 � P̂ �1
1 S��T̂ , V̂3��T̂ � V̂3��P̂1 � S�P̂ �1

1 �T̂ , V̂3�P̂1P̂
�1
1 �T̂ � V̂3�P̂1� �

� S��T̂ , P̂ �1
1 V̂3P̂1��T̂ P̂�1

1 P̂1 � P̂
�1
1 V̂3P̂1�� � S��T̂ , V̂1��T̂ � V̂1��, (11.6)

where I used that P̂1 is hermitian and that it commutes with T̂ .
I want to evaluate the differential equation in the partial-wave basis. As was shown

in section 5.2.1,

`pqLpS P̂1 Tp�q�L�pf � `pqLpS P̂2 Tp�q�L�pf � 1

2
`pqLpS P̂ Tp�q�L�pf , (11.7)

where the last inequality holds since P̂ � P̂1 � P̂2. Furthermore, I will use the identities

P̂ �1
1 � P̂2 (11.8a)

P̂1P̂
�1
2 � P̂2 (11.8b)

so that
V̂1V̂2 � P̂

�1
1 V̂3P̂1P̂

�1
2 V̂3P̂2 � P̂2V̂3P̂2V̂3P̂2 (11.9)

Moving the Pi Vi sum to the right hand side of eq. (11.4), dropping the index 3 on
the two-body potential and using the expressions valid only in the partial-wave basis I
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get

Û �
� S��T̂ , V̂ �

1

2
P̂ V̂ P̂ � Û� �T̂ � V̂ �

1

2
P̂ V̂ P̂ � Û��

� �T̂ , V̂ ��T̂ � V̂ � � 2 �T̂ , 1

4
P̂ V̂ P̂ � �T̂ �

1

4
P̂ V̂ P̂�� �

� S� �T̂ , Û� T̂ � �T̂ , V̂ � �1

2
P̂ V̂ P̂ � Û��

� �T̂ , 1

2
P̂ V̂ P̂ � �V̂ �

1

4
P̂ V̂ P̂ � Û� � �T̂ , Û� �V̂ �

1

2
P̂ V̂ P̂ � Û�� �

� S� �T̂ , Û� T̂ � �T̂ , V̂ � �1

2
P̂ V̂ P̂ � Û��

� �T̂ , 1

2
P̂ V̂ P̂ � �V̂ �

1

2
V̂ P̂ � Û� � �T̂ , Û� �V̂ �

1

2
P̂ V̂ P̂ � Û��.

(11.10)

The discretized version, valid only in the partial-wave basis, is

Û �
� Ǔ �

� S� �Ť , Ǔ��Ť � �Ť , V̌ �p��1

2
P̌pV̌

p
�P̌L � W̌p�Ǔ��

� �Ť , 1

2
P̌RV̌

p
�P̌p� �V̌ �

1

2
V̌
p
�P̌L � W̌q�Ǔ��

� �Ť , Ǔ� �W̌p�V̌ �
1

2
W̌q�P̌pV̌

p
�P̌L � W̌pq�Ǔ��.

(11.11)

The first term in all the brackets is Ť , which means that the brackets can be calculated

without using any matrix multiplications. Calculation of the term P̌pV̌
p
�P̌L requires one

matrix multiplication, and using the fact that P̌RV̌
p
�P̌p � �P̌pV̌ p

�P̌L�T I need no extra
matrix multiplication for that term. Two of the multiplications between bracket and
parenthesis need a full matrix multiplication. This gives in total 3 matrix multiplications.

In eq. (11.11), deviations from a truly unitary transformation arises from the dis-
cretized integration, the cutoff in angular momentum values and the permutation matri-
ces. The first two should both tend to zero as the cutoff values and density of grid points
goes to infinity. The error from the permutation matrices is due to the interpolation and
extrapolation, and this error should also decrease with the number of grid points.

Although T̂ and P̂ commute, the discretized matrices will not neccessarily commute
due to the interpolations and extrapolations in the permutation matrices. This means
that by rewriting the SRG flow equation a better or worse expression could be obtained.
For comparison, I have also tried the following expression, which is a reordering of the
terms in eq. (11.10):

Û �
� S ��T̂ , Û� T̂ � �1

2
Î �

1

8
P̂� f �V̂ P̂ , V̂ P̂ � � f �Û , 1

2
P̂ V̂ P̂ �

1

2
Û � V̂ ��

f�Â, B̂� � T̂ ÂB̂ � 2ÂT̂ B̂ � ÂB̂T̂ .

(11.12)
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Discretizing this equation, I get

Ǔ �
� Ǔ �

� S ��Ť , Ǔ��Ť � �1

2
Ǐ �

1

8
P̌R� f �V̌ p

�P̌p, V̌
p
�P̌L��

�f �Ǔ , 1

2
W̌q�P̌pV̌

p
�P̌L �

1

2
W̌pq�Ǔ � W̌p�V̌ ��

f�Ǎ, B̌� � Ť�ǍB̌ � ǍB̌�Ť � 2Ǎ�Ť B̌.

(11.13)

This discretized version requires a total of 6 full matrix multiplications. Each f
function requires two multiplications and then there are two more needed. This means
that this implementation will take about twice as long to evaluate.

40



12 INTRODUCTION

Part III

Results

12 Introduction

In this part of the report I present the results I have obtained by using some different
potentials for systems of nucleons and helium atoms. When using the algorithms for a
specific potential, there are a few things that need to be defined first. These choices will
be discussed in the following sub sections.

12.1 Choice of units

First off, the units need to be specified. As stated in the beginning of the report, I always
set Òh � c � 1 and express all quantities in either length or inverse length. However, to
show results I want to show energies in the unit of energy. For the nucleon potentials I
will use MeV and fm. The relation between the units is

1 � Òhc � 197.327MeV � fm. (12.1)

During the calculations, I store all quantities in units of fm. This implies that energies
are given in fm�1 and to obtain, for example, the binding energy in MeV, I just multiply
with 197.327.

For the helium potentials I use the units Kelvin (K) and atomic length units (au).
Note that Kelvin is used as a unit of energy by also setting kB � 1. This means that the
relation between the units is

1 �

Òhc
kB

� 4.327249141 � 107K � au. (12.2)

12.2 Choice of grid

Since the momentum variables are continuous suitable grids need to be chosen. By grid
I mean a number of discrete momentum values that will be used by the quadrature when
integrating. This means that the grid points will always be dictated by the quadrature
rule that is used. For the momentum variables I always use finite-interval quadratures.
I define the grid through a set of limiting momentum values �p1, p2, . . . , pN � and a set of
integer values �n1, n2, . . . , nN �. Then, for the interval �0, p1�, I use a quadrature with n1

points, and for �p1, p2� I use n2 points, and so on. N is the number of intervals.
In all cases presented here, I use N � 2. For the lower region, �0, p1�, I use a Gauss-

Radau quadrature including the value p � 0. For the upper region, �p1, p2�, I also use
Gauss-Radau and include the upper value p � p2. The end points are included so that I
can do interpolation in the full range. To specify the grid used, I write it in the format�p1, p2, n1, n2�.

For a two-particle system, I only need one momentum variable p. In a three-
particle system, both p and q has the type of grid descibed above. For a given p grid

41



12.3 Error estimates
13 NUCLEON POTENTIALS

�p1, p2, n1, n2�, the q grid is always �p1,2p2~3, n1, n2�. The factor 2~3 is there to avoid
extrapolation as much as possible, as explained in section 8. All values of the angular
momenta Lp are used up to a cutoff Lp,max. Only even values of Lp are used, as explained
in the theory part.

12.3 Error estimates

It is important to be able to give error bounds on the calculated values. This is achieved
by performing the calculations on different grids. The calculation of an observable A
– this could be the ground-state binding energy E0 for example – will depend on the
cutoff values M used and on the density of grid points ρ for continuous quantum numbers.
When all the variables M and ρ tends to infinity, the calculated value A�M, ρ� is more
exact. There could still be other sources of errors, such as numerical errors, but the error
due to the limited size of the Hilbert space will tend to zero.

In order to get a good estimation of the finite-space error, the behaviour of A�M, ρ�
need to be studied in detail for each observable A and for each potential. Since this is
not the focus of this thesis, I will instead do a simpler error estimation. I will calculate
A�M, ρ� for two different values of each Mi and each ρi and use the least rounded value
which is a correctly rounded value for each calculation. Many significat digits in the
presented value is an indication of a low error.

12.4 SRG evolution

For the SRG evolution I have used the explicit embedded Runge-Kutta-Fehlberg method
to solve the ordinary differential equation. I have used the implementation in GSL, more
specifically the stepper gsl_odeiv2_step_rkf45.

The method accepts a relative and an absolute error bound. For the two-body SRG
evolution, I have used a relative error bound of 10�10 for all potentials and an absolute
error bound of zero for all potentials except the LM2M2 potential where I used an
absolute error bound of 10�14au�1. For the three-body evolution I have used a relative
error bound of 10�4. For the nucleon potentials I have used 10�8fm�1 as absolute error.
For the soft core helium potential I have used an absolute error bound of zero. For the
LM2M2 potential I have not done a three-body evolution.

Of the two implementations of the three-body SRG flow equation, seen in eqs. (11.11)
and (11.13), the second one produced better results so I have only used that version for
all the results presented in this thesis.

13 Nucleon potentials

I will not include the spin degree of freedom for the nucleons, which means I can treat
them as spinless bosons. I have looked at two different nucleon-nucleon potentials. The
first one is a sum of a short-range repulsive and an intermediate-range attractive Yukawa
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interaction. This two-body potential has the form

`rS V̂ Tr�f � VNuc-1�r�δ3�r � r��
VNuc-1�r� � VR exp��µRr�

r
� VA

exp��µAr�
r

.
(13.1)

The parameter values used for this potential are the same that Elster et al. have
used in their article for the MT-V potential [17]. Since I work in the momentum basis,
I need to do a Fourier transform of this expression. In this case, the transform can be
done analytically. Using the results from section 4.2, and more specifically eq. (4.5), a
general term of form V0 exp��µr�~r is transformed as

`pSV0 exp��µr̂�r̂�1 Tp�f �
�

1

2π2q
S

ª

0
drV0 exp��µr��2i��1� exp�irq� � exp��irq�� �

�
V0

4π2iq
S

ª

0
dr� exp � � r�µ � iq�� � exp � � r�µ � iq��� �

�
V0

4π2iq
� 1

µ � iq
�

1

µ � iq
� � V02iq

4π2iq

1

µ2 � q2
�
V0

2π2

1

µ2 � q2
,

(13.2)

where q � Sp�p�S. The values of the parameters VR, VA, µR and µA are shown in table 1.
The second potential is a modification of the momentum-space expression of the first

one, with the expression

`pS V̂ Tp�f � VNuc-2�p,p�� � g2
R�2π�3

1

q2 �m2
R

FR�q� � g2
A�2π�3

1

q2 �m2
A

FA�q� (13.3a)

Fx�q� � �Λ2
x �m

2
x

Λ2
x � q

2
�2

. (13.3b)

The parameter values are presented in table 1 and are the same as the ones used by Liu
et al. [18].

The momentum-space expressions are used to obtain the potentials in a partial-wave
basis using eq. (4.4). The potentials for Lp � 0 and Lp � 2 in the partial-wave basis are
shown in figure 2.

13.1 Three-body potential

No three-body force is used together with the Yukawa potential. However the modified
Yukawa potential was used in combination with one of the three-body potentials pre-
sented in the paper by Liu et al. [18]. Using the coordinates defined in eq. (2.4), this
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(a) Yukawa, Lp � 0 (b) Yukawa, Lp � 2

(c) Modified Yukawa, Lp � 0 (d) Modified Yukawa, Lp � 2

Figure 2: Matrix representations of the two nucleon potentials for Lp � 0 and Lp � 2.
Note that I have used different momentum cutoff values for the two potentials. Each
potential was produced using a total of 400 grid points, resulting in 4002 matrix elements
for each Lp. The modified Yukawa potential tends to zero faster for large p than the
Yukawa potential due to the extra cutoff factor.
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Table 1: Parameter values used for the nucleon potentials, both the two-body forces and
the three-body force used with the modified Yukawa potential. The Yukawa potential
with its parameter values is the same as in the paper by Elster et al. [17]. The modified
Yukawa potential is identical to the one presented in the paper by Liu et al. [18]. The
expressions for the two-body potentials are eqs. (13.1) and (13.3) and the three-body
potential is eq. (13.4a).

Yukawa potential

VR 1438.4812 MeV

µR 3.11 fm

VA �570.3316 MeV

µA 1.550 fm

Modified Yukawa potential

Two-body parameters Three-body parameters

g2
A~�4π� 3.5775 g2

α~�4π� 5.0

mA 330.2104 MeV mα 305.8593 MeV

ΛA 1500.0 MeV Λα 1000.0 MeV

g2
R~�4π� 9.4086 aα �1.73

mR 612.4801 MeV
ΛR 1500.0 MeV

three-body potential has the form

`pqS Ûp Tp�q�f � UNuc-2,p�p,q,p�,q�� � (13.4a)

�
1�2π�6

aα
mα

g2
α

Fα�Q�
Q2 �m2

α

Fα�Q��
Q�2 �m2

α

�
C

G�Q�G�Q�� (13.4b)

Q � p � p� �
1

2
�q � q�� (13.4c)

Q�
� p � p� �

1

2
�q � q�� (13.4d)

C �
1�2π�6

aα
mα

g2
α�Λ2

α �m
2
α�4 (13.4e)

G�Q� � 1�Q2 �m2
α��Q2 �Λ2

α�2
. (13.4f)

The function F is defined in eq. (13.3b) and the parameter values are found in table 1.
This is not the entire three-body potential, it is only one part of three, symmetric only
in the two first particles. Using eqs. (2.5a) and (2.5b) the entire three-body potential
can be written as

UNuc-2�p,q,p�,q�� � UNuc-2,p ��1

2
p �

3

4
q,�p �

1

2
q��

�UNuc-2,p ��1

2
p �

3

4
q,p �

1

2
q� �UNuc-2,p�p,q,p�,q�� �

� C � 1

G�Q�1��G�Q�1��� � 1

G�Q�2��G�Q�2��� � 1

G�Q�G�Q��� .
(13.5)
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Figure 3: Modified Yukawa three-body potential for q � q� � 0 and Lp � L
�

p � 0.

To simplify this, I note that

Q�1�
� ��p � p�� � 1

2
�q � q�� � �Q�

� X (13.6a)

Q�1��
� q � q� � �Q�2�

� Y (13.6b)

Q�2��
� ��p � p�� � 1

2
�q � q�� � �Q � Z. (13.6c)

Using these identities, the three-body force can be written as

UNuc-2�p,q,p�,q�� � C � 1

G�X�G�Y � � 1

G�Y �G�Z� � 1

G�Z�G�X�� �

� C
G�X� �G�Y � �G�Z�
G�X�G�Y �G�Z� .

(13.7)

To transform this to the partial-wave basis, eq. (4.16) is used. The problem is that it
is a five-dimensional integration which takes a long time. This means that I had to use
fix-point integration which means no error bounds on the calculated matrix elements.

The three-body potential for q � q� � 0 and Lp � L
�

p � 0 is shown in figure 3. The
strength of the three-body force is lower than that of the two-body force, shown in
figure 2c.

13.2 Two-body results

For the two-body system, I have calculated the binding energy, the scattering length and
the effective range. In figures 4 and 5 it can be seen that the values of these observables
are well converged for large enough grids. The converged values are presented in table 2.

Using too low values of the cutoff momenta will give poor results, since the important
aspects of the potential are cut away. However, large values of the cutoffs will require
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(a) Two-body binding energy (b) Low-energy scattering parameters

Figure 4: Yukawa potential. Convergence of two-body observables with the number
of grid points and the momentum cutoffs. a0 is the scattering length and r0 is the
efefctive range. With many enough grid-points convergence is achieved in all cases. The
momentum cutoffs have only a small impact on the converged values in this case. The
grids have 2~3 of the grid points in the lower interval.

Table 2: Converged two-body observables for the nucleon potentials. Convergence can
be defined in several ways, see subsection 12.3 for the used definition. To obtain the
values, the two grids displayed in figures 4 and 5 with largest cutoff values were used,
with a total of 360 and 720 grid points.

Yukawa Reference

E0 0.35000 MeV 0.3500 MeV [17]

a0 12.1702 fm

r0 2.304 fm

Modified Yukawa Reference

E0 0.283951055 MeV 0.284 MeV [18]

a0 13.310080 fm

r0 2.228 fm

more grid points to converge, because more points are needed to get a good resolution
of the potential over the large momentum range. Therefore, I choose to work with the
lowest cutoffs that still give good results.

13.2.1 Determination of the effective range

As mentioned in section 10, care need to be taken when choosing an energy range for
the determination of r0. By testing different energy ranges, I got the best fit using the
range 0.5 keV to 50 keV.
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(a) Two-body binding energy (b) Low-energy scattering parameters

Figure 5: Modified Yukawa potential. Convergence of two-body observables with the
number of grid points and the momentum cutoffs. It is seen that with large enough
momentum cutoffs the same converged value is obtained. The grids have 2~3 of the grid
points in the lower interval.

13.2.2 Comparison with a harmonic-oscillator basis

I have compared the rate of convergence in the momentum-space partial-wave basis
with the harmonic-oscillator basis presented in section 2.3. Of the nucleon potentials I
have only considered the Yukawa potential. The position space expression (13.1) is used
together with eq. (4.20) to get the potential in the harmonic-oscillator basis, VL�n,n��.

A suitable value of r0, the oscillator length, need to be choosen to get good conver-
gence. The optimal r0 depends on the value of the cutoff in n. After some investigation
I concluded that a good choice for r0 is

r0�nmax� � 1.8 � 0.0008nmaxfm. (13.8)

The relative difference between the calculated two-body binding energy and the con-
verged value in table 2 for the two bases are shown in figure 6. The figure shows that
the momentum-space partial-wave basis converges much faster as a function of matrix
size.

13.3 Three-body results

I have done similar convergence calculations for the three-body binding energy as for
the two-body binding energy. In figures 7 and 8 are the results. An Lp cutoff of 4 or 6
is enough to get converged results.
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Figure 6: Yukawa potential. Comparison between convergence rate when using the
harmonic-oscillator basis and the momentum-space partial-wave basis. The y-axis shows
the relative difference between the calculated value and the converged value in table 2.
The y-axis uses a logarithmic scale. The matrix size is equal to the cutoff in n and the
number of grid points in p respectively. The oscillator length used is given by eq. (13.8)
and the grid used is �4.0,60.0,2x~3, x~3�.

(a) Changing grid size. Lp B 2. (b) Changing Lp cutoff. There are 120 grid points
in p and q.

Figure 7: Yukawa potential. Convergence of the three-body binding energy with the
number of grid points, the momentum cutoffs and the Lp cutoff. 2~3 of the grid points
are in the lower interval.
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(a) Changing grid size. Lp B 2. (b) Changing Lp cutoff. There are 72 grid points
in p and q.

Figure 8: Modified Yukawa potential with three-body force. Convergence of the three-
body binding energy with the number of grid points, the momentum cutoffs and the Lp
cutoff. 2~3 of the grid points are in the lower interval. I have only used one grid here
since the calculations take too much time. That is why I do not have more than 72 grid
points. The three-body matrix elements were calculated using a fixed-point quadrature
without error checking, using a total of 85 points.

13.4 SRG evolution of the potentials

13.4.1 Two-body evolution

The two-body SRG evolution is governed by eq. (11.3). The result of applying the
transformation to the two potentials are shown in figures 9 and 10. The potentials
display the expected behaviour of becoming band diagonal, and the width of the band
is approximately given by the value of the flow parameter Λ.

The two-body observables are expected to be independent of Λ. In figures 11 and 12
it can be seen that the binding energy and the scattering length display no dependence
on the flow parameter. The small errors are negligble. The effective range display a small
dependence, but this is most likely due to the error in the calculation of the effective
range, see section 13.2.1.

13.4.2 Three-body evolution

The three-body evolution is governed by equation 11.13. As seen in figures 7 and 8,
many grid points are needed in p and q to get converged results. For the SRG evolution
I have still used only 32 grid points in p and 32 grid points in q, in favour for using larger
Lp cutoffs.

When doing the SRG evolution, I have considered two different Lp cutoffs. The first,
Lp,V is the cutoff in the potential, the second, Lp,I is the cutoff in the induced three-body
force. A large Lp,I will reduce the deviation from unitarity in the SRG equation, while
a large Lp,V will give a more correct result.

In figure 13, the evolution for some different values of Lp,V and Lp,I have been
plotted. Looking at the evolutions using Lp,V � 0 – figure 13a – it can be seen that the Λ
dependency is indeed reduced with increasing values of Lp,I . With Lp,I � 4 the evolution
is very close to unitary. The remaining error should be due to the relatively low number
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Figure 9: Yukawa potential. The potential depending on the SRG flow parameter Λ.
The width of the band diagonal structure is approximately equal to Λ. The grid used is�4.0,60.0,80,40�
of momentum grid points and the interpolation and extrapolation in the permutation
matrices.

In figure 14 I show the evolution of the modified Yukawa potential. The behaviour
is much like that of the Yukawa potential.

13.5 Decoupling

The purpose with the SRG transformation is to decouple the potential. I measure the
degree of decoupling by cutting of the potential at different momentum values. All matrix
elements with larger momentum values are set to zero, and the matrix elements with
lower momentum values are unaffected. Good decoupling means that a large portion of
the high-energy part of the potential can be set to zero without affecting the low-energy
observables.

In figures 15 and 16 I have compared the unevolved potentials with evolved potentials.
Since the three-body binding energy has a dependency on the SRG flow-parameter Λ, as
seen in section 13.4.2, I have decided to measure the decoupling at a Λ-value which does
not give too large deviation in the three-body binding energy. I have choosen values of
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Figure 10: Modified Yukawa potential. The potential depending on the SRG flow pa-
rameter Λ. The width of the band diagonal structure is approximately equal to Λ. The
grid used is �2.5,20.0,80,40�

Figure 11: Yukawa potential. Two-body observables depending on the SRG flow-
parameter Λ. The binding energy and scattering length have a very small error. The
error in the effective range is probably due to the error in the calculation of the effective
range, see section 13.2.1. The grid used is �2.5,40.0,21,11�
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Figure 12: Modified Yukawa potential. Two-body observables depending on the SRG
flow-parameter Λ. The binding energy and scattering length have a very small error.
The error in the effective range is probably due to the error in the calculation of the
effective range, see section 13.2.1. The grid used is �2.5,20.0,21,11�

(a) Using Lp,V � 0. Without an induced three-body
force there is a large Λ dependency. When an in-
duced three-body force is included, the dependency
decreases as the Lp,I cutoff increases. The maxi-
mal deviations in the binding energy from the un-
evolved version is 2.3% without initial three-body
force. With an Lp,I cutoff of 0, 2 and 4 the maximal
deviation is 1.5%, 0.30% and 0.060% respectively.
Some curves are not evolved as far as others due to
time constraints.

(b) Using Lp,V � 4. Without an induced three-
body potential, the maximal deviation in the bind-
ing energy is 1.4%. This is reduced to 0.27% when
including the induced three-body potential.

Figure 13: Yukawa potential. Three-body binding energy depending on the SRG flow-
parameter Λ. The grid used is �2.5,40.0,21,11� for the p variable.
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(a) Without initial three-body potential. Three-
body binding energy depending on the SRG flow-
parameter Λ. Without an induced three-body force
there is a large Λ dependency, but including the
induced forces the deviation in the binding energy
is 0.14%.

(b) With the initial three-body potential. Three-
body binding-energy depending on the SRG flow-
parameter Λ. With the initial three-body force the
behaviour is the same as without, seen in figure 14a.
The maximal deviation is 0.13%.

Figure 14: Modified Yukawa potential. Three-body binding energy depending on the
SRG flow-parameter Λ. The grid used is �2.5,20.0,21,11� for the p variable. The three-
body matrix elements were calculated using a fix-point quadrature using a total of 125

points.

Λ where the deviation is about 0.1% from the unevolved value. In the figures I also show
the decoupling at the lowest Λ value I have evolved to.
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Figure 15: Yukawa potential. Two- and three-body observables depending on the cutoff
in the momentum variables. The dotted vertical lines corresponds to the Λ values. The
evolved potential has a greatly improved decoupling. Evolving from Λ � 4.0fm�1 to
Λ � 3.1fm�1 increases decoupling slightly, but the three-body binding energy deviation
is increased from 0.1% to 0.27%. The grid used is �2.5,40.0,21,11� with Lp B 4.

Figure 16: Modified Yukawa potential. Two- and three-body observables depending on
the cutoff in the momentum variables. The evolved potential has a greatly improved
decoupling, with an initial three-body binding-energy deviation of 0.13%. The dotted
vertical line corresponds to the Λ value used. The grid used is �2.5,20.0,21,11� with
Lp B 4.
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14 Helium potentials

The soft core potential is simply a gaussian term, of the form

`rS V̂ Tr�f � VHe,soft�r�δ3�r � r�� (14.1a)

VHe,soft�r� � V0 exp�� r2

R2
� , (14.1b)

and the mimic potential LM2M2 looks like

`rS V̂ Tr�f � VHe,hard�r�δ3�r � r�� (14.2a)

VHe,hard�r� � ε�A� exp��α�x � β�x2� � F �x� �C6

x6
�
C8

x8
�
C10

x10
� � Vb�x�� (14.2b)

x �
r

rm
(14.2c)

F �x� � ¢̈̈¦̈̈¤exp �� �Dx � 1�2� , x B 1

1 , x A 1
(14.2d)

Vb�x� � ¢̈̈¦̈̈¤Aa �sin �2π x�x1
x2�x1

�
π
2 � � 1� , x1 B x B x2

0 , otherwise
. (14.2e)

The values of the parameters are presented in table 3. The coordinate space representa-
tions of the potentials are plotted in figure 17, where the strong repulsion of the LM2M2
potential can be seen.

The soft-core two-body potential expressed in momentum-space is

`pS V̂ Tp�f � V0R
3

8π3~2
exp��R2

4
q2�

q � Sp � p�S. (14.3)

The LM2M2 potential can not be converted to momentum space analytically, instead
eq. (4.6) is used. The double integral is not straight forward to evaluate, especially since

Table 3: Parameter values used for the helium potentials. The values for the soft core
potential are the same as one of the parameter sets used by Gattobigio et al. [19]. The
values for the LM2M2 potential are the ones that Aziz et al. used [9].

Soft core potential

V0 �1.227 K

R 10.03 au

W0 1.4742 K

ρ0 10.0 au

LM2M2 potential

ε 10.97 K C6 1.34687065

rm 5.6115 au C8 0.41308398

A� 1.89635353 � 105 C10 0.17060159

α� 10.70203539 Aa 0.0026000000

β� �1.90740649 x1 1.0035359490

D 1.4088 x2 1.4547903690
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Figure 17: Coordinate space represenations of the two helium potentials. Two different
energy scales are used to emphasize the strong repulsion of the LM2M2 potential at close
range.

the LM2M2 potential does not have an exponential decay for high values of r. The sine
in eq. (4.6) will cause the integral to be very fluctuating for certain values of p, p� and
t. I tried several different ways of integrating the function, and the method that worked
best is to first do the t integration with an adaptive 31-point Gauss-Konrod rule, using
the function gsl_integration_qag. If the argument to the sine function is zero, the x
integration is done with the function gsl_integration_qagiu for semi infinite intervals.
Otherwise, it is done with a Gauss-Konrod rule up to the first zero of the sine function,
then I use the specialized integrator gsl_integration_qawf for Fourier integrals for the
rest of the interval.

Some of the terms in the LM2M2 potential can be calculated analytically. The 1~xn
terms for x A 1 can be calculated analytically. This did not improve the results however,
so the numerical integration was used.

In figure 18 are the momentum space partial-wave representations. As seen in the
figure, the soft-core potential is everywhere negative and has very low absolute values,
compared to the LM2M2 potential which is positive with large values. The momentum
scale is also very different.

14.1 Three-body potential

Since the soft-core potential is constructed just to give accurate results for low-energy
two-body observables, it does not give accurate results when doing three-body calcula-
tions. For this reason, a three-body force is needed. The three-body potential expressed
in the absolute coordinates x1 to x3 is [19]

`x1x2x3S V̂3 Tx�1x�2x�3f �
� UHe,soft�Sx1 � x2S, Sx2 � x3S, Sx3 � x1S�δ3�x1 � x�1�δ3�x2 � x�2�δ3�x3 � x�3� (14.4a)

ŨHe,soft�r12, r23, r31� �W0 exp�� 4

3ρ2
0

�r2
12 � r

2
23 � r

2
31�� . (14.4b)

The values I use for the parameters are presented in table 3.
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(a) Soft core, Lp � 0 (b) Soft core, Lp � 2

(c) LM2M2, Lp � 0 (d) LM2M2, Lp � 2

Figure 18: Matrix representations of the two helium potentials for Lp � 0 and Lp � 2.
Each potential was produced using a total of 400 grid points, resulting in 4002 matrix
elements, for each Lp. Note the large difference in momentum scale and the magnitude
of the potentials.
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Expressed in Jacobi coordinates, ŨHe,soft is

UHe,soft�r, s� �W0 exp��ρ�2
0 �2r2

� 8s2~3�� (14.5)

To express it in momentum coordinates, I need to do a Fourier transform of the expres-
sion. Since the potential is separable, I do the calculation for a general term exp��αr2�.

`pS exp��αr̂2� Tp�f � �2π��3S
R3

d3r exp�i�p� � p� � r� exp��αr2� �
� ��2π��1S

R
dr exp�i�p�1 � p1�r1� exp��αr2

1��3

�

� � 1º
4πα

exp��1

4

Sp�1 � p1S2
α

��3

�

� �4πα��3~2 exp��1

4

Sp� � pS2
α

� � f�Sp� � pS,α�.
(14.6)

Thus, the entire expression will be

`pqSW0 exp��ρ�2
0 �2r̂2

� 8ŝ2~3�� Tp�q�f �W0f�
�p̃³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µSp� � pS ,2ρ�2

0 �f� �q̃³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹µSq� � qS ,8ρ�2
0 ~3� �

� 3
W0ρ

6
0

º
3

212π3
exp��ρ2

0

8
�p̃2

�
3

4
q̃2�� (14.7)

Eq. (4.18) is used to get the expression in the momentum-space partial-wave basis.
Due to the simplicity of this three-body force however, the four-dimensional integral
can be turned into a two-dimensional integration. Using eq. (4.18) and this three-body
potential, I get

V �p,q,Lp,p�,q�,L�p� � 3
W0ρ

6
0

»
3�2Lp � 1��2L�p � 1�

213π3 S
1

�1
dt2PLp�t2�S 1

�1
dt3

� S
1

�1
dt4S

2π

0
dφ2 exp��ρ2

0

8
�p2

� p�2 � 2pp�t23 �
3

4
�q2

� q�2 � 2qq�S̃24���
� S

2π

0
dφ3PL�

p
�S̃34�,

(14.8)

where
S̃ij �

¼�1 � t2i ��1 � t2j� cos�φi� � titj . (14.9)
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To simplify, I will use

C � 3
W0ρ

6
0

»
3�2Lp � 1��2L�p � 1�

213π3
(14.10a)

� exp��ρ2
0

8
�p2

� p�2 �
3

4
�q2

� q�2��� (14.10b)

α � 2pp�
ρ2

0

8
(14.10c)

β � 2qq�
ρ2

0

8
(14.10d)

f�α,β,Lp, L�p� � V �p,q,Lp,p�,q�,L�p�C
. (14.10e)

Now I need to calculate f ,

f�α,β,Lp, L�p� � S 1

�1
dt2PLp�t2�S 1

�1
dt4 exp�βt2t4�

�

�A³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
S

2π

0
dφ2 exp�β¼�1 � t22��1 � t24� cos�φ2��

� S
1

�1
dt3 exp�αt23�

�B³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
S

2π

0
dφ3

�D³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
PL�

p
�¼�1 � t23��1 � t24� cos�φ3� � t3t4�

(14.11)

The factor A is just 2πI0�β»�1 � t22��1 � t24��, where I0�x� is the regular modified cylin-
drical Bessel function of zeroth order, which I calculate with the GSL routine named
gsl_sf_bessel_I0. D is a polynomial in cos�φ3�. The integral from 0 to 2π is easy to
compute analytically and an important property is that the integral will be zero for all
odd powers. This means that B will be a polynomial in t3 and the integral over t3 can
be calculated analytically.

Now I am left with only two integrals which can be calculated fast with an adaptive
integration procedure. The potential also has the property that

V �p,q,Lp,p�q�,L�p� � V �p�,q,Lp,p,q�,L�p� (14.12a)

V �p,q,Lp,p�q�,L�p� � V �p,q�,Lp,p�,q,L�p�. (14.12b)

which means that it is enough to calculate the potential for p C p�, q C q� and Lp C L
�

p,
where the last inequality comes from that the potential is a hermitian operator.

In figure 19 is the three-body potential for q � q� � 0 and Lp � L
�

p � 0. Worth noting
is that the three-body force have larger values than the two-body force.
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Figure 19: Soft core three-body potential. The potential for q � q� � 0 and Lp � L
�

p � 0.
The maximum value of the three-body force is larger than the maximum value of the
two-body force in figure 18a.

(a) Two-body binding energy (b) Low-energy scattering parameters

Figure 20: Soft core potential. Convergence of two-body observables with the number
of grid points and the momentum cutoffs. It is seen that with large enough momentum
cutoffs the same converged value is obtained. 1~2 of the the grid points are in each
momentum interval.

14.2 Two-body results

In figures 20 and 21 are similar convergence plots as for the nucleon potentials. In-
teresting to note is that the LM2M2 potential needs considerably more grid points for
converged results.
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(a) Two-body binding energy (b) Low-energy scattering parameters

Figure 21: LM2M2 potential. Convergence of two-body observables with the number of
grid points and the momentum cutoffs. It is seen that with large enough momentum
cutoffs the same converged value is obtained. 2~3 of the grid points are in the lower
interval.

Table 4: Converged two-body observables for the helium potentials. To obtain the values,
the five grids used in figure 20 and 21 were used with a total of 360 and 720 grid points.
The digits that were the same for the two largest grid cutoffs and the two grid sizes are
displayed. The number of significant digits is thus an indication of how fast the value is
converging.

Soft core Reference

E0 1.29589113343035 mK 1.296 mK [19]

a0 189.947742 au 189.947 au [19]

r0 13.848 au 13.846 au [19]

LM2M2 Reference

E0 1.3035 mK 1.302 mK [19]

a0 189.414 au 189.054 au [19]

r0 13.8 au 13.843 au [19]

14.2.1 Comparison with a harmonic-oscillator basis

Just like in the case of the Yukawa potential in section 13.2.2 I have compared the rate
of convergence in the momentum-space partial-wave basis with the harmonic-oscillator
basis presented in section 2.3. Of the helium potentials I have only considered the
soft-core potential.

The relationship between r0 and nmax I have used in this case is

r0�nmax� � 30 � 0.052nmaxau. (14.13)

The relative difference between the calculated two-body binding energy and the con-
verged value in table 4 for the two bases are shown in figure 22. The figure shows that
the momentum-space partial-wave basis converges much faster as a function of matrix
size.
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Figure 22: Soft-core potential. Comparison between convergence rate when using the
harmonic-oscillator basis and the momentum-space partial-wave basis. The y-axis shows
the relative difference between the calculated value and the converged value in table 4.
The matrix size is equal to the cutoff in n and the number of grid points in p respectively.
The oscillator length used is given by eq. (14.13) and the grid used is �0.2,2.0, x~2, x~2�.
14.3 Three-body results

A big difficulty in obtaining the three-body binding energy for the LM2M2 potential is
that the Arnoldi iteration method used to calculate the binding energy does not converge
for this potential. The reason is that the kernel has many eigenvalues tightly packed close
to one, which is the eigenvalue that need to be found. The other potentials have a simpler
spectra of eigenvalues with a single eigenvalue close to one.

In figures 23 and 24 are the same type of convergence graphs for the three-body
binding energy as for the nucleon potentials. In the case of the soft core potential a
angular momentum cutoff of 2 is enough for converged results, whereas for the LM2M2
potential the binding energy does not seem to be completely converged even for a cutoff
value of 6. More grid points in the momentum variables are also needed for the LM2M2
potential.

14.4 SRG evolution of the potentials

14.4.1 Two-body evolution

The result of applying the transformation to the two helium potentials are in figures 25
and 26. Just as the nucleon potentials, the potentials display the expected behaviour of
becoming band diagonal. In the case of the LM2M2 potential there is an artifact left
on the diagonal at the high end of the spectra. This is an edge effect, which is a result
of the potential not being close enough to zero at the momentum cutoff. With a larger
momentum cutoff value this side effect is not present.

As seen in figures 27 and 28, the two-body observables display the same kind of
behaviour as they did for the nucleon potentials. The binding energy and the scattering
length are independent of the flow parameter and the effective range display a small
dependence on Λ.
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(a) Changing grid size. Lp B 2. (b) Changing Lp cutoff. There are 80 grid points
in p and q.

Figure 23: Soft-core potential. Convergence of the three-body binding energy with the
number of grid points, the momentum cutoffs and the Lp cutoff. 1~2 of the grid points
are in each momentum interval.

(a) Changing grid size. Lp B 2. (b) Changing Lp cutoff. There are 50 grid points
in p and q.

Figure 24: LM2M2 potential. Convergence of the three-body binding energy with the
number of grid points, the momentum cutoffs and the Lp cutoff. 2~3 of the grid points
are in the lower interval.

64



14.4 SRG evolution of the potentials
14 HELIUM POTENTIALS

Figure 25: Soft core potential. The potential depending on the SRG flow parameter Λ.
The width of the band diagonal structure is approximately equal to Λ. The grid used is�0.1,1.0,60,60�
14.4.2 Three-body evolution

The behaviour of the two helium potentials are very different for the three-body evo-
lution. The three-body binding energy as a function of the flow parameter is seen in
figure 29. As seen, the behaviour is identical for all values of the angular momentum
cutoff. However, even with induced three-body forces the binding energy has a large
dependency on Λ. This is probably due to the large three-body force, which amplifies
the errors in the SRG evolution caused by the discretization and the interpolation and
extrapolation in the permutation matrices.

The three-body binding energy of the LM2M2 potential as a function of Λ is shown
in figure 30. There is a large Λ dependency. I have not done a three-body SRG evolution
with this potential. A relatively large grid is neccessary to get reasonable good results
which makes it difficult to do an SRG transformation.
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Figure 26: LM2M2 potential. The potential depending on the SRG flow parameter
Λ. Due to the large differences in scale when evolving this potential, I have plotted
sgn�V � log10�SV S� for SV S A 1. Values with SV S @ 1 are set to zero. The width of the band
diagonal structure is approximately equal to Λ. The grid used is �1.0,20.0,60,60�

Figure 27: Soft core potential. Two-body observables depending on the SRG flow-
parameter Λ. The binding energy and scattering length have a very small error. The
error in the effective range is probably due to the error in the calculation of the effective
range, see section 13.2.1. The grid used is �0.1,1.0,16,16�
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Figure 28: LM2M2 potential. Two-body observables depending on the SRG flow-
parameter Λ. The binding energy and scattering length have a very small error. The
error in the effective range is probably due to the error in the calculation of the effective
range, see section 13.2.1. The grid used is �0.9,6.0,21,11�

(a) Without initial three-body potential. Without
an induced three-body potential the Λ dependency
is very large. Even with the induced three-body
potential the dependency is large compared with
the results of the other potentials, with a deviation
of 1.5% at the end.

(b) With initial three-body potential. When in-
cluding the initial three-body potential, the Λ de-
pendency is still large, with a deviation of 1.7% at
the end. Just as in figure 23 there is no improve-
ment when including Lp � 4.

Figure 29: Soft-core potential. Three-body binding energy depending on the SRG flow-
parameter Λ. The grid used is �0.1,1.0,16,16� for the p variable.
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Figure 30: LM2M2 potential. Three-body binding energy depending on the SRG flow-
parameter Λ. There is a large Λ dependency, with a maximal devitaion of 6.6%. However,
already at Λ�1

� 1~3 there is a greatly improved decoupling, as seen in figure 32. The
grid used is �0.9,6.0,40,20� for the p variable.

Figure 31: Soft core potential. Two- and three-body observables depending on the cutoff
in the momentum variables. The evolved potential has a greatly improved decoupling.
The grid used is �0.1,1.0,16,16� with Lp B 2.

14.5 Decoupling

In figure 31 I have compared the unevolved potential with an evolved potential of the
soft-core potential. The decoupling has been improved with the SRG transformation for
the two-body observables.

The decoupling for the LM2M2 potential is shown in figure 30. The LM2M2 potential
displays a greatly improved decoupling after the SRG transformation. Despite this,
higher momentum values are still needed for the LM2M2 potential than for the soft-core
potential.
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Figure 32: LM2M2 potential. Two- and three-body observables depending on the cutoff
in the momentum variables. The evolved potential has a greatly improved decoupling
for all observables. The grid used is �0.9,6.0,40,20� with Lp B 6.
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16 RESULTS

Part IV

Conclusions

15 Algorithms

15.1 Faddeev equation

Using the Faddeev equation proved to be an effective method to calculate the three-body
binding energy. The kernel matrix was fast to calculate since no full matrix multiplication
is needed. The property that the eigenvalue 1 is the largest eigenvalue is an important
property, which makes it easy to find the eigenvalue. It did not work so well for the
LM2M2 potential however. As explained in section 14.3 the reason is that there are
many eigenvalues close to one.

15.2 SRG flow equation

The SRG flow equation with the kinetic energy as generator for a two-particle system in a
momentum space partial wave basis, implemented as in eq. (11.3), is fast and accurate.
All observables retained their values, with the exception of the small change in the
effective range, which likely comes from the way I calculated the effective range, and not
from errors in the SRG flow equation. In all cases the potential attained a more band
diagonal structure. The decoupling was increased compared to the unevolved potential
in all cases.

For a three-particle system the results are not as good. For the nucleon potentials
there were relatively small errors in the SRG evolution, but still significant. In the case of
the soft-core helium potential the situation is not as good, where the three-body binding
energy differed too much from the unevolved value. The reason for the large difference
could be due to the difference in importance of the three-body forces. The soft-core
helium potential has a very strong three-body force, while the nucleon potentials have
relatively weak three-body potentials.

From figure 13a it is clear that increasing the maximum value of the angular momen-
tum will improve the behaviour of the SRG transformation. It was also observed that
different potentials need different high Lp values.

16 Results

16.1 Nucleon potentials

Since very large two-body grids can be used, it was easy to obtain converged values for
the two-body observables. The effective range did however cause some problems, which
resulted in a larger error in the converged value, as seen in table 2. The converged values
agree with the reference values.
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Making the three-body binding energy converge is harder, especially for the modified
Yukawa potential due to the three-body potential. I had expected the three-body binding
energy for the Yukawa potential to be closer to the reference value. Fully converged values
are not the main focus however and I am not able to use the SRG transformation on the
large matrices needed to get fully converged values.

Figure 6 shows that at least for the two-body binding energy, the momentum-space
parial-wave basis is more suitable then the harmonic-oscillator basis.

The error in the SRG evolution could be controlled by increasing the Lp cutoff, as
was expected.

16.2 Helium potentials

The two helium potentials – the soft-core potential and the LM2M2 potential – display
very different behaviour. The soft-core potential does not need many grid points to get
converged results and Lp B 2 is enough. Futhermore, it is sufficient with a momentum
cutoff of 1.0 au to get good results. The LM2M2 potential, however, require a large state
space to get converged results, both in the number of grid points in the momentum vari-
ables and in the Lp cutoff. This is not surprising, since the LM2M2 potential reproduces
a lot of high-energy observables that require a detailed description of the potential.

The converged values of the two-body observables, shown in table 4, do not always
agree with the reference values. Most notably is the scattering length a0 for the LM2M2
potential. Also the effective range r0 is not very well converged. The values are, how-
ever, rather good and compared with the harmonic-oscillator basis, see figure 22, the
convergence is much faster.

The three-body binding energy converged relatively fast for the soft-core potential.
The LM2M2 potential needed a high Lp cutoff, and Lp � 8 does not seem to be fully
converged. The problem with the LM2M2 potential was also that I could not use as
many grid points due to the problematic spectra of the Faddeev kernel, see section 14.3.

The decoupling of the LM2M2 potential was improved significantly with a low error in
the observables without induced three-body forces. This was not the case with the soft-
core potential, which immediately displayed large errors. However, the momentum grid
for the soft-core potential was up to 1.0au�1, while the LM2M2 still needed up to about
3.0au�1 without changing the three-body binding energy too much. For Λ � 0.25 au�1

the LM2M2 potential for low momentum values have matrix elements on the same order
of magnitude as the soft-core potential.

17 Improvements

17.1 Momentum grids and angular momentum cutoff values

It is the size of the three-body state space that is the limiting factor. This suggests a
couple of improvements. First off, the size of the two-body state space, used for the
two-body potential for example, have only a small impact on the execution time of
the algorithms. This means that a larger two-body state space can be used, possibly
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improving convergence of the three-body binding energy and maybe also improving the
SRG flow equation.

Another improvement to the grid structure could be to use different grids for differ-
ent Lp values. Both the cutoff values and the number of grid points could be varied.
Probably, larger cutoffs would be better for high Lp values, since the potentials for high
Lp are localized at higher momentum values, as seen in for example figure 18. Also, fewer
grid points could be used for higher Lp values, since the low Lp values are of greatest
importance to the low-energy observables.

One could for example implement an algorithm that automatically chooses a suitable
grid for each Lp value, by looking at the integration error using that grid. This, together
with using different grids for the two- and three-body states spaces could improve the
results without increasing the running time of the algorithms.

Using different grids for different Lp values could potentially improve the SRG results
significantly, since the potentials for high Lp would be more accurately represented.

17.2 SRG flow equation

To decrease the error in the SRG evolution, the most important improvement is most
likely to not precompute the permutation matrices so that interpolation and extrapola-
tion of the kinetic energy operator and other permutation matrices can be avoided. If
this would result in a too slow algorithm, a compromise could be to precompute permu-
tation matrices where the kinetic energy is already included, which would remove some
of the unneccesary interpolations and extrapolations.

In order to speed up the SRG flow equation, one possibility could be to take advantage
of the band diagonal structure that arise. By using sparse matrices and dynamically
remove elements that have become zero and also remove high momentum elements when
they no longer affect the low-energy observables the SRG tranformation should be faster
and require less memory.
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A QUADRATURES

Appendices

A Quadratures

As explained in section 7.2, all quadrature rules are defined over a finite interval, �a, b�,
or an infinite interval. The associated discrete points are called �xi�Ni�1 and the weights
are called �wi�Ni�1.

For the finite interval quadratures, the interval can be changed to any arbitrary, finite
interval by means of the variable substitution

x̃ � ã
b � x

b � a
� b̃

x � a

b � a
� x

b̃ � ã

b � a
�
ãb � b̃a

b � a
� kx �m (A.1a)

dx̃ � d x
b̃ � ã

b � a
� kx (A.1b)

which gives the quadrature

S
b̃

ã
dx̃f�x̃� � S b

a
dxkf�kx �m� � N

Q
i�1

wikf�kxi �m� Ô� (A.2a)

x̃i � kxi �m (A.2b)

w̃i � kwi. (A.2c)

The quadrature rules I have used are constructed in such a way that they will give
exact results (numerical errors aside) for as high degree of polynomials as possible, for
the given number of points N , times a weight function g�x�.

To check that a generated quadrature rule produces correct results, one can test the
quadrature on functions that can be integrated analytically, and compare the numerical
and analytical result. For all the quadrature rules, I did this check using the functions

f0�x� � 1 � g�x� (A.3a)

f1�x� � xg�x� (A.3b)

f2�x� � x2g�x�. (A.3c)

These functions should in theory give no error, assuming N is large enough. The errors
will thus be an indication of the magnitude of the numerical errors.

A.1 Gauss-Legendre

This is the standard, finite interval quadrature. It has g�x� � 1, a � �1, b � 1 and the
points for the N point rule are the roots of the Legendre polynomial of order N , PN�x�.
The weights are given by

wi �
2�1 � x2

i ��P �

N�xi��2
. (A.4)

The quadrature rule is exact for polynomials up to degree 2N � 1.
The calculation of the points and weights where done using the Gnu Scientific Library.
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B INTERPOLATION AND EXTRAPOLATION

A.2 Gauss-Lobatto

Gauss-Lobatto quadrature is a variant of Gauss-Legendre, where the end points �1 and
1 are included. It is exact for polynomials up to degree 2N � 3. The points are x1 � �1,
xN � 1 and for the other, xi is root �i � 1� of P �

N�1�x�, that is the derivative of the
Legendre polynomial of degree N � 1. The weights are given by

wi �
2

N�N � 1��PN�1�xi��2
. (A.5)

The points xi are found by stepping – with small enough steps – over the interval��1,1�, and calculating the value of P �

N�1�x� at each point. If there is a sign change, a
simple bracketing root finder is used to locate the zero down to machine precision. The
root finder calculates the value at the mid point and calls itself for the new sub interval
that contains the root, until the interval is as small as it can be made. Although it is not
an optimized algorithm, it runs in very short time, and it gives good results. It could
fail if the step size is too large, but then one can just decrease the step size.

The Legendre polynomials are calculated using the recurrence relation

P0�x� � 1

P1�x� � x
Pn�x� � x�2 �

1

n
�Pn�1�x� � �1 �

1

n
�Pn�2�x�. (A.6)

A.3 Gauss-Radau

Gauss-Radau is another variant of Gauss-Legendre, where only one of the end points is
included. It is exact for polynomials up to degree 2N � 2. For the variant where the
point x1 � �1 is included, the rest of the points are the roots of the polynomial

PN�1�x� � PN�x�
1 � x

. (A.7)

The weights are given by the expression

wi �
1 � xi

n2�PN�1�xi��2
. (A.8)

To get the variant where the point xN � 1 is included, I can just let xi � �xi. The
calculation of the points and weights are done in the same way as for the Gauss-Lobatto
quadrature rule, see appendix A.2.

B Interpolation and extrapolation

Two different interpolation schemes have been implemented and compared. Both are of
the form

yj �
N

Q
i�1

si�xj ; g1, g2, . . . , gN�vi, (B.1)
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where yj is the value at the intermediate point, xj is the unknown point, vi are the values
at the grid points gi.

The first one is a linear interpolation, where for a point xj between the two grid
points g0 and g1 the value of the si coefficients are

s0 �
g1 � xj

g1 � g0

s1 �
xj � g0

g1 � g0

s2 � s3 � . . . � sN � 0.

(B.2)

This method has the advantages of being fast and requiring only a small amount of
memory.

The other method is a global c-splines method, where each grid point is used to
estimate the value at xj [20].

The global c-splines method generally gives more accurate results, so I have used
that method, since the time and memory used by the interpolation matrices where very
low anyway.

Extrapolation is a tougher problem, since the behaviour need to be guessed. In
my case, I know beforehand what the maximum value to extrapolate will be. The
extrapolation was then done by assuming that there is another known point at the
highest possible extrapolation point, with the value zero. For the extrapolation region
linear interpolation was then used to get the value.

C Permutation operators

Here I present the factors Gp and GR that appear in the permutation operators.

Gp�q, q�, x,Lα, L�α;L� �
� wx�2Lp � 1��2L�p � 1�¼�2Lq � 1��2L�q � 1�
� Q̃
Lp

¿ÁÁÀ�2Lp

2L̃p
�Q̃
L�

p

¿ÁÁÀ�2L�p

2L̃�p
�qLp�L�

p�L̃p�L̃
�

pq�L̃p�L̃
�

p �1

2
�Lp�L̃p�L̃�

p

�Q
f

�2f � 1��L̃p Lp � L̃p Lp
Lq L f

¡�Lp � L̃p Lq f
0 0 0

�
�Q
f �

�2f � � 1��L�p � L̃�p L̃�p L�p
L�q L f �

¡�L̃�p L�q f �

0 0 0
�

�Q
k

�2k � 1��f L̃p L

f � L�p � L̃
�

p k
¡�k L̃p f �

0 0 0
��k L�p � L̃

�

p f

0 0 0
�

� Pk�x�.

(C.1)
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GR�p, q, x,Lα, L�α;L� �
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(C.2)

The 3j-symbols are written with parentesis and the 6j-symbols and 9j-symbols with
curly brackets. Pk is the Legendre polynomial of degree k.

The summations over L̃p, L̃
�

p and L̃�q runs from 0 up to the corresponding angular
momenta without the tilde. The other summation variables will be restricted by the 3j-,
6j- and 9j-symbols.

D Software

All implementations have been done in the programming language C. The implementa-
tion is heavily built around the open source library GSL – Gnu Scientific Library [10] –
version 1.15.

BLAS routines have been used in order to get fast matrix and vector operations. The
BLAS implementations used are ACML [21], MKL [22] and ATLAS [23] depending on
availability.

openMP [24] was used to parallelize the code, together with POSIX threads.

78


	Introduction
	Specific aim
	Method
	Reading guide
	Notation


	I Theory
	Quantum few-body states
	Jacobi coordinates
	Normalization
	Kinetic energy

	Partial-wave basis
	Symmetrical states
	Three particles
	Partially symmetric states for three particles
	The Wigner-Eckart theorem

	Harmonic-oscillator basis

	Types of potentials
	Basis transformations
	Partial-wave projection for two particles
	From position space to partial-wave basis in momentum space for two particles
	Partial-wave projection for three particles
	From position space to harmonic-oscillator basis for two particles

	Few-body Observables
	The transition operator for two particles
	The permutation operators
	Two-body potentials acting on three-body states

	Binding energy
	Two particles in a partial-wave basis
	Two particles in a harmonic-oscillator basis
	Three particles in a partial-wave basis

	Low-energy scattering parameters

	The SRG flow equation

	II Implementation
	Discretization of space
	Discretized representation
	Discretized integration

	The permutation operator
	Interpolation and extrapolation
	Matrix representations of the permutation operator

	Calculation of the binding energy
	Diagonalization in the harmonic-oscillator basis
	Solving the kernel equation
	Determinant method
	Power iteration
	Arnoldi iteration

	The Kernels
	Two-particle kernels
	Three-particle kernels


	Calculation of low-energy scattering observables
	The SRG flow equation
	In two-particle space
	In three-particle space


	III Results
	Introduction
	Choice of units
	Choice of grid
	Error estimates
	SRG evolution

	Nucleon potentials
	Three-body potential
	Two-body results
	Determination of the effective range
	Comparison with a harmonic-oscillator basis

	Three-body results
	SRG evolution of the potentials
	Two-body evolution
	Three-body evolution

	Decoupling

	Helium potentials
	Three-body potential
	Two-body results
	Comparison with a harmonic-oscillator basis

	Three-body results
	SRG evolution of the potentials
	Two-body evolution
	Three-body evolution

	Decoupling


	IV Conclusions
	Algorithms
	Faddeev equation
	SRG flow equation

	Results
	Nucleon potentials
	Helium potentials

	Improvements
	Momentum grids and angular momentum cutoff values
	SRG flow equation


	References
	Appendices
	Quadratures
	Gauss-Legendre
	Gauss-Lobatto
	Gauss-Radau

	Interpolation and extrapolation
	Permutation operators
	Software


