
Physical Sokoban
An augmented reality game
Master’s thesis in Computer Science: Algorithms, Languages and Logic

CHRISTOFFER ÖJELING

Department of Computer Science and Engineering

Chalmers University of Technology

Gothenburg, Sweden 2016

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Physical Sokoban: An augmented reality game

© CHRISTOFFER ÖJELING, September 2016.

This project was carried out at Know-Center GmbH, Graz, Austria, under supervision
of Viktoria Pammer-Schindler. Know-Center is a research company focusing on data
science.

At Chalmers Graham Kemp was the examiner and K V S Prasad the supervisor.

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover: The Sokoban virtual game objects overlaid on top of the camera video stream.
Here the user is performing a move.

Abstract

An augmented reality version of the classical puzzle game Sokoban
was developed. The user wears a virtual reality headset on their head.
The game objects are virtually drawn on top of the video stream, and
the game controlled entirely by moving a physical object. This thesis
addresses the algorithmic and design requirements of such a game on
low cost and performance constrained devices like smartphones. To
this end a new algorithm for accurately tracking the position of the
physical object in the video stream was developed.

While the game is designed to be enjoyable by healthy users, it is
made to in the future be used in rehabilitation — to aid patients with
upper spinal cord injuries training grasping with their neuroprosthesis.
To this end the game records various statistics about how the user
plays — which in the future can be used to track and analyze patient
progress.

A user study carried out on healthy users indicates that the concept
shows promise. Out of 10 participants, 9 answered yes to “I would like
to play the game again”, rating their overall experience a mean of 7.2
out of 10 (higher is better).

Acknowledgments

I first wish to extend my gratitude to Granit Luzhnica, whom I
have worked closely with throughout the entire project, including co-
authoring a paper. Eduardo Vaes for help with the marker detection
benchmarks, paper writing and user studies. My supervisor Viktoria
Pammer-Schindler for writing support with both the thesis and paper,
the initial idea of the game and the first user study. Chalmers super-
visor K V S Prasad who has given me great flexibility in my thesis
work. Furthermore I wish to thank all my colleagues at Know-Center
for providing a very enjoyable environment to work in. In particular
Jörg Simon who has been responsible for ordering material and given
Android support.

Contents

1. Introduction 1
1.1. Aim and limitations . 1
1.2. Thesis outline . 2

2. Background 3
2.1. MoreGrasp . 3
2.2. Tangible games . 4
2.3. Sokoban . 5

3. The app 6
3.1. Gameplay . 6

3.1.1. Controllers . 6
3.2. Interface . 7

3.2.1. Regular screen specifics . 7
3.2.2. Cardboard specifics . 7
3.2.3. Bluetooth keyboard . 7
3.2.4. Exposure control . 9

3.3. Data collection . 10
3.4. Camera calibration utility . 10
3.5. Implementation . 10

4. Marker detection and pose estimation 12
4.1. Related work . 12
4.2. Theoretical Framework . 12

4.2.1. OpenCV . 13
4.2.2. Projective geometry . 13
4.2.3. Camera Model . 14
4.2.4. Thresholding . 16
4.2.5. RANSAC . 17
4.2.6. Disjoint set . 17
4.2.7. NEON Instruction set . 18

4.3. Implementation . 18
4.3.1. Marker Detection . 18
4.3.2. 3D pose estimation . 22
4.3.3. Bounding boxes for connected components 23
4.3.4. Controller . 26

i

4.4. Evaluation . 27
4.4.1. Controller . 27
4.4.2. Bounding boxes . 28
4.4.3. Neon Optimizations . 29

4.5. Competing algorithms benchmark . 29
4.5.1. Algorithms . 29
4.5.2. Performance test: marker detection & pose estimation 30
4.5.3. Performance test: Marker detection 31
4.5.4. Tracking performance . 31

4.6. Discussion . 34
4.6.1. Future work . 34

5. User studies 36
5.1. Preliminary study: Think-aloud protocol 36

5.1.1. Results . 36
5.1.2. Discussion . 37

5.2. Final study: Game experience . 37
5.2.1. Purpose . 38
5.2.2. Sample . 38
5.2.3. Experiment process . 38
5.2.4. Results . 39
5.2.5. Discussion . 42

6. Conclusion 45

Bibliography 46

A. Log file 50

ii

1. Introduction

The European Union funded project MoreGrasp is currently researching a brain-computer
interface (BCI) to allow patients with upper spinal cord injuries to regain some ability
to grasp with their hands. It uses a cap which analyses brain patterns and classifies
them into commands, such as “perform grasp”. A neuroprosthesis then stimulates the
relevant muscles with electrical impulses.
Since each brain is unique, the neuroprosthesis must be trained to recognize each pa-
tient’s individual brain pattern. This is done by grasping objects over and over. This
process is very long and tedious, making it hard to motivate the patient to perform the
required training. It is especially true as many patients have not only motor but also
cognitive impairments [1].
In this thesis an augmented reality game which incorporates a lot of grasping is devel-
oped. Augmented reality is a mixture of the real and digital world, where virtual objects
are overlaid on top the real world when viewed through a screen. The game developed
is a version of the classical game Sokoban, a puzzle game where you push boxes on a
2-dimensional grid. The game is played by grasping a physical object and placing it at
different locations. By using augmented reality, many different levels can be played using
the same physical objects, providing variation and hopefully motivating the user to train
the neuroprosthesis. At the same time data can be collected about the rehabilitation
progress which might provide useful insights in the future.

1.1. Aim and limitations

The aim of the thesis is to develop a game that can later be used in rehabilitation.
However, the neuroprosthesis is in the research phase, and not functional today. The
game will thus be tested on users without any physical disability — with the aim that
it should be enjoyable in its own regard, and not just for patients practicing grasping.
A major constraint of the game is that it should be readily available without requiring
expensive hardware. It is thus developed to run on an Android mobile phone. This
places significant performance constraints on the game. The second major issue is to
make the game accurate enough to be enjoyable — indeed, if game does not perform
the actions the users wanted it will not be enjoyable or very useful for rehabilitation.
These two constraints work against each other — the more accurate the game the more
computing power it requires. A large part of the thesis, and the work performed, is
about the algorithms developed to satisfy both constraints sufficiently.

1

A secondary aim is to provide useful data about how the future patients interacts with
the game. It is thus developed to measure how the user moves the object, how fast it
performs certain tasks etc. While the thesis does not analyze this data, the plan is that
it can be extended and analyzed in the future.

1.2. Thesis outline

The thesis is divided in two independent parts:

1. The game design from a training and enjoyment perspective

2. Software development and algorithm design used to realize the game

In the chapter that follows (chap. 2) we explore the research question regarding aug-
mented reality physical games, why Sokoban was chosen and its related work. Subse-
quently in The App chapter (3), the game is explained from an end-user perspective
without technical details. The algorithmic part is separated into its own self-contained
chapter (4) which outlines the algorithms invented, compares them to existing algo-
rithms, and presents performance evaluations. The User Studies chapter (5) evaluates
the user experience of the game.

2

2. Background

2.1. MoreGrasp

Know Center is part of the European Union funded project MoreGrasp.

The aim of the MoreGrasp project is to develop a non-invasive, multi-adaptive,
multimodal user interface including a brain-computer interface (BCI) for in-
tuitive control of a semi-autonomous motor and sensory grasp neuroprosthe-
sis supporting individuals with high spinal cord injury in everyday activities.

— MoreGrasp.eu

MoreGrasp aims to equip spinal cord injured patients with a neuroprosthesis to enable
them to cooperate with their hands. The neuroprosthesis will contain a brain-computer
interface which is used to analyze the patient’s brain signals and recognize activity in-
tentions like grasping. Low energy electrical impulses are then applied to the relevant
muscles, which perform the intended movement. The technique, called functional elec-
trical stimulation (FES), effectively augments a damaged nervous system.

The brain-computer interface technology translates brain activity to machine-intelligible
patterns. However the assignment of brain activity patterns are user-specific. Each
individual must thus perform a lot of training, which often involves repeating the same
movement over and over. This process is very repetitive and tedious for the patient,
especially as many patients have not only motor but also cognitive impairments [1].
Such a group is often hard to motivate to perform the required training as the tasks
may seem pointless. “Gamifying” the training process has the potential to alleviate
these problems and motivate the patient, while collecting the necessary data if designed
appropriately [1, 2].

Learning how to successfully grasp again is divided into two phases. At first, BCI
training and FES training is performed separately until the patient achieve satisfactory
results with the neuroprosthesis. This process uses guided and supervised training. After
this the training consists of both parts combined. This game developed in this thesis
targets the second phase. There are papers exploring BCI training games, like [1] and
[3]. However these are digital games using BCI input directly. This project focuses on a
physical game which is not directly connected to the BCI cap, but trains it indirectly.

3

http://www.moregrasp.eu

2.2. Tangible games1

In the past decades, interactions in virtual environments e.g. computer screens, tablet,
phones, virtual reality (VR), augmented reality (AR), have become common and replaced
a lot of interactions with real physical objects especially in digital games where VR and
AR are getting more popular everyday. Digital games have the possibility to stimulate
the imagination of the user by presenting a virtual world of objects and characters. In
addition, animations of characters and objects can be provided in order to enrich the
experience which would be almost impossible to stimulate in a tangible game. Moreover,
digital games can provide levels and context switching very cheap and effortless way for
the user as opposed to the tangible games where changing levels, scene and objects first
requires physical objects and then it requires user’s effort for setting up everything and
so it they are less flexible in almost every aspects.

On the other hand physical interactions and touch play a essential role in enjoyment
of life [5, 6]. Moreover, physical touch provides a feedback mechanism for regulating
interaction. Therefore, tangible games provide a unique experience as the touching,
grasping and physical interaction becomes part of the game. In addition, as interaction
requires physical activity, several researchers have have taken advantage of tangible
games to perform some targeted physical activity beneficial for occupational therapy
and rehabilitation [7, 8, 9].

Tangible user interfaces use direct manipulation of physical objects to interact with
digital environments. They aim to empower collaboration, learning and design by taking
advantage human ability for physical interaction [10].

Although, tangible interfaces are applied in different domains, in this section we will focus
on tangible games. In [6], Cheock et al. presented a VR tangible game with the goal
of preserving the physical and social interaction aspects of physical games. Although
the game was presented through a head mounted display, users still were required to
walk around a large room and interact with physical objects. In a study of 40 students,
the authors found the tangible game to be more enticing to users, and to promote more
human-to-human interactions when compared to the same digital only game. Other
studies have researched games with tangible interfaces with similar findings, namely
that games with tangible interfaces provide more engagement [11], social interaction [12]
or that they accelerate learning [13] when compared to the same digital versions of
games.

In occupational therapy, games with tangible interfaces are for instance after strokes
to support rehabilitation of motor upper extremity movements [14, 8, 9], wrist flexion
and extension[7] or postural control [8]. In most of these papers, authors use Wiimote
based Controllers [7, 8, 9] to capture physical movements or a CyberGrasp device [14]
to provide resistive force feedback.

1This section is based on a paper co-authored by me[4].

4

Figure 2.1.: An implementation of Sokoban. The boxes are pushed one step at a time,
horizontally or vertically, to any free adjacent square. The game is completed
when all boxes are at a goal position square — here indicated by a red disc
in the center of the square.

2.3. Sokoban

Sokoban is a 2D puzzle game, in which the player pushes boxes on a board of squares.
The goal is to push each box to any of the predefined goal positions on the game board,
see fig. 2.1. The challenge lies in that the player can only push the boxes — not pull
them. They must thus be careful not to create deadlock situations where the boxes can
no longer be pushed to a goal position. The levels can be designed to be of varying
difficulty, some trivial while others provide quite a challenge. When a level has been
completed the players can further challenge themselves by trying to complete it in the
minimal amount of moves. Solving a level, and solving it in the minimal amount of
moves has been shown to not only be in NP-hard, but in PSPACE [15].

The version of the game designed has the same gameplay mechanics as the original
version. The difference lies in how the game is controlled and displayed to the player.
In the original version the player controls the game with the 4 arrow keys, deciding in
which direction to move the player. The level is normally displayed from a birds eye
perspective, such as fig. 2.1, allowing the player to see the full level at all times. The
version developed is instead controlled by moving a physical object around in relation
to a pattern on a flat surface. The level is virtually added on top of the pattern when
looking at it through a screen, such as a smartphone or virtual reality glasses. It is
rendered in 3D with the same perspective as the world, making it appear as if the level
is naturally a part of the real world for the player.

5

3. The app

In this chapter the gameplay mechanics and features of the game are explained, as well
as a brief overview of its implementation.

The Sokoban app consists of three programs, one to calibrate the camera, and two ver-
sions of the game. The difference between the two game versions is solely how the game
is displayed to the user. The “regular screen”-version displays the game on the smart-
phone’s screen directly, while the other version uses Google Cardboard1, a makeshift
device to turn a regular mobile phone to a virtual reality device. To play the Cardboard
version, the user puts their phone into a cardboard viewer, which is then placed on their
head (see fig 3.1).

3.1. Gameplay

The game is controlled entirely by moving around a physical object, hereafter controller,
see fig. 4.9. The controller is moved around in relation to the game board, which is a
specific pattern printed to a paper, put on a flat surface such as a table in front of the
player. The game works like a state machine with state changes triggered by changes in
the position of the controller in relation to the game board. See fig 3.2 for an explanation
of the game mechanics. For a video, see http://ojeling.net/thesis/sokoban.mp4.

If the player moves the object without first lifting it up, the game will go into the same
state as in the beginning of the level. This method of playing is motivated by encouraging
the player to practice grasping by letting go and grasping the object to perform each
move.

3.1.1. Controllers

Three different controllers are available to use for the user. The controllers are custom
designed and 3D-printed. The basic design of the controller is motivated in section 4.3.4.
Three variations of the controller are available to promote different grasps, see fig. 3.3.

1A Google Cardboard application is developed using the Cardboard SDK which takes care of the
internals so the game can be displayed is a combination of a Cardboard viewer and an SDK taking
care of cardboard specifics such as distorting the image for the lenses of the viewer. https://vr.
google.com/cardboard

6

http://ojeling.net/thesis/sokoban.mp4
https://vr.google.com/cardboard
https://vr.google.com/cardboard

Figure 3.1.: A user plays the Google cardboard version of the game.

3.2. Interface

3.2.1. Regular screen specifics

Touch operation Action
Left swipe Change to the next level
Right swipe Change to the previous level
Double tap Restart the current level

3.2.2. Cardboard specifics

Since the user can not touch the screen, the Cardboard version uses a trick where it
measures the magnetic field with the device’s built in magnetometer. When the field is
disrupted the level changes to the next. The field can be disrupted by moving a weak
magnet over the phone.

3.2.3. Bluetooth keyboard

If a Bluetooth keyboard is connected, key-presses can control some aspects of the game.
This is useful for an instructor conducting experiments. An additional mode where the

7

(a) The initial state of the game. The player must
place the controller on the square designated as
the starting position. This is indicated by the
augmented red outline of the controller.

(b) The controller is positioned at the starting po-
sition. A move is initiated by lifting the con-
troller orthogonally in relation to the game
board.

(c) A move has been initiated. The squares the
player can move the controller to is indicated by
green circles. The boxes the player can push is
indicated by green arrows. If the player places
the controller on a box, it will be pushed one
square further in the same direction.

(d) The move has been performed by putting the
controller down on the box. Since the box was
pushed to a goal position it is now has a star is
on top of it.

(e) After multiple moves all boxes are at goal po-
sitions. The starts starts spinning to indicate
this to the player.

Figure 3.2.: The Sokoban augmented reality game. Note that the renderings occlude the
physical controller and the player’s hand. Thus a virtual marker is rendered
on top of the real marker.

8

Figure 3.3.: Three 3D-printed controllers for practicing different grasps. The keys are
used for pinch grasps.

player is required to press space between each box move is included. This forces the user
to let go of the controller between each move, thus ensuring grasp practice.

Key press Action
1-9 Change the level
Q,W,E Change configuration
Shift Restart the current level
Space Signal the game as explained above (if enabled)

The following game configurations are available:

Key press Action
Q Controller 1 used (default)
W Controller 2 used, Space press required
E Controller 3 used, Space press required

3.2.4. Exposure control

The exposure and ISO sensitivity of the camera must be set manually. This is done by
tapping once on the regular screen version of the game, and adjusting the sliders until

9

it looks good. Afterwards the user can start the cardboard version, which will use the
same settings. If the lighting conditions are good the exposure time is recommended to
be between 1–5ms, to allow the user to move their head quickly without motion blur
interfering with marker detection.

3.3. Data collection

For each level played a log file is created on the Android device’s externally accessible
storage. It consists of the 6 degrees of freedom of both the controller and game board
over time. It also stores events for all actions performed. See appendix A for further
details.

3.4. Camera calibration utility

Before the game can be played the camera has to be calibrated once for each phone.
In this mode the user takes several pictures from different angles of a printed reference
chessboard pattern, see fig. 3.4. It works as follows:

1. Point the camera at the printed chessboard and tap the screen.
2. After processing the frame, the corners of the chessboard pattern light up in blue

if a probable pattern is found, or the application returns to step 1.
3. The user can either accept the pattern by tapping the screen once, or reject it by

swiping left. The user should accept the pattern if the corners of the chessboard
are all lit up in blue.

4. Repeat step 1–3 for different angles. At least 10 times are recommended.
5. Double tap the screen to compute and store calibration. Wait about 20 seconds

to ensure it is stored.

3.5. Implementation

The game is mostly implemented in C++ using the Android NDK2. Java code is used to
interface with the Android subsystems, such as fetching the camera frames and creating
the OpenGL context. OpenGL ES 2.0 is used for 3D graphics, the camera2 android API
is used to control the camera exposure and sensitivity manually — it is indeed important
for accurate marker detection that the motion blur is minimal, thus a low exposure time
is required. The application is multi-threaded and the algorithms parallel. See fig. 3.5 for
an overview of the program. The marker detection part itself is described in chapter 4.
The game does not use any additional frameworks, with the 3D engine being custom
made.

2https://developer.android.com/ndk

10

https://developer.android.com/ndk

Figure 3.4.: The calibration mode as it appears from within the application. The user
captures many photos of the chessboard printout from different angles. The
corners of the chessboard lit up in blue.

Camera frame reciever

Worker

Marker Detection

3D reconstruction

Worker

Marker Detection

3D reconstruction

Update game logic
Render OpenGLAndroid input listener

Android Java

NDK C++

Thread

Figure 3.5.: The Sokoban program. It consists of several threads, with the marker de-
tection subtask itself parallel.

11

4. Marker detection and pose estimation

In this chapter the algorithms for marker detection and pose estimation are explained
and evaluated. The layout of the game board and the controller are also explained.

4.1. Related work

In computer vision there are two conceptually different approaches to find the perspective
and pose of preknown patterns in a scene. Natural feature tracking (NFT) or using
specifically designed markers. With NFT any image can be tracked. It works by finding
high frequency features in an image, such as corners, and computing certain statistics
about them. The features of a reference image are matched to the features of another
image. If more than a threshold of them match and have consistent perspective, the
perspective and pose of the reference image can be found in the scene. The other
approach is to design special markers which are analyzed semantically. Typically these
markers are black and white to provide maximum contrast. Many of these markers can
be printed in a predefined grid, providing redundancy in case some are occluded.

The advantages with the latter approach is lower processing power required, better
resistance to different lighting conditions, motion blur and different distances of the
camera. The advantage of NFT is that any image can be used. The current de facto
standard for NFT is Vuforia, a proprietary framework developed by Qualcomm. For
marker tracking two common open-source libraries are ARToolKit and Aruco. While
NFT is considered to be theoretically slower, Vuforia has a large commercial backing, is
heavily optimized and can process camera frames in real time on modern phones.

In this chapter a new algorithm for marker detection is developed, specialized to work
well for the use case of the Sokoban game.

4.2. Theoretical Framework

In this chapter existing technologies and frameworks, and how they relate to the thesis,
are explained.

12

4.2.1. OpenCV

OpenCV1 is an open source library originally developed by Intel. Currently maintained
by the non profit foundation OpenCV.org, it is designed for computational efficiently
and aims mainly at real-time computer vision applications. The library provides the
basic building blocks for the marker detection algorithm.

4.2.2. Projective geometry

A projective transform maps a set of coordinates from one space to another, with the
important property that lines maps to lines. Augmented reality is based heavily on the
mathematical properties of those transforms, from reconstructing the 3D scene from a
2D image, and then render virtual 3D objects on top of the 2D image.

Homography transform

A homography transform establishes a mapping between two projective planes P2 → P2

[16]. A 2D point (x,y) in an image can be represented as (x1, x2, x3) where x = x1
x3

and
y = x2

x3
. This is called a homogeneous coordinate. Given a 3× 3 matrix H, we can map

a set homogeneous coordinates from one plane to another:

s

 u

v

1

 =

 u · s
v · s
s

 = H

 x

y

1

H can be computed unambiguously from 4 point-to-point correspondences between the
two projective planes. It is important to note that the homography transform only
transforms from one plane to another — it does not give out any information about the
3-dimensional properties of the scene, such as the axis orthogonal to the plane.

A homography transform is computed once per marker in the image to transform the
projected marker to a top-view perspective. It is then possible to efficiently compute
how much of each cell in the marker is colored, as the borders are axis parallel (see
fig. 4.1).

Perspective projection

When the eye or a camera sensor views a scene, objects further away appear smaller —
this is know as perspective. A perspective projection is a mapping from P3 → P2. Given
a projection matrix K, and a coordinate in the world [x,y, z]T , its R2 projection [u, v]T
is defined as

1http://opencv.org

13

http://opencv.org

Figure 4.1.: The homography transform maps a projective plane to another, P2 → P2.

s

 u

v

1

 =

 u · s
v · s
s

 = K

 x

y

z

Where s is a scaling factor, also know as the perspective divide, such that the third row
is 1. It is the division of s that makes objects further away seem smaller on their 2D
projection. In section 4.2.3 we will define K for the camera sensor.

4.2.3. Camera Model

A good mathematical model for the camera sensor is necessary to accurately find the
perspective and pose of the controller and game board.

Intrinsic parameters

Each camera has different parameters inherent to its lens and sensor, called the intrinsic
parameters. Those parameters determine how a 3D coordinate in the world will be
projected on the camera’s sensor. There are numerous ways to model this. In this
application we use the pinhole camera model, a simplification where the camera aperture
is described as a point with an infinitely small aperture, and no lenses are used to focus
light (see fig. 4.2). A good estimation of the parameters are required to successfully
estimate the 3D pose of objects captured, and to relate the camera sensor’s native unit,
pixels, to world units, such as millimeters.

We define the camera matrix, K, for the linear parameters, where f is the focal length
and c the optical center. Both expressed in pixel units.

K =

 fx 0 cx
0 fy cy
0 0 1

 (4.1)

Given a coordinate in the world [x,y, z]T , with origin at the camera lens and the Z axis
forward, see fig. 4.2, the projection on the camera sensor is:

14

O
V

Image sensor

X

Y
Z

f
U

cu,v

x,y,z

Pinhole

Figure 4.2.: The pinhole camera model. Modified graphics. Original license public do-
main.

s

 u

v

1

 = K

 x

y

z

Where u, v is the coordinate in pixel units on the sensor, s is a scaling factor, also know
as the perspective divide, such that the third row is 1. It is the division of s that makes
objects further away seem smaller on their 2D projection[17].

Lens distortion

The pinhole camera model does not take into account the distortions from imperfections
of the camera lens. This problem is especially significant on cheap camera lenses such
as those found on mobile phones. Another model is used to compensate for several
distortion parameters, such as barrel and sheer distortion (see fig. 4.3).

Extrinsic parameters

The extrinsic parameters define a transformation P3 → P3. It consists of a rotation
and a translation, which transforms from the object coordinate system to the camera
coordinate system. Intuitively it describes the 6 degrees of freedom of an object in the

15

Figure 4.3.: Cheap lenses such as the ones found in mobile phones often have significant
barrel distortion. An image can be undistorted if the distortion coefficients
for the lens are known. On the left an exaggerated distorted image and on
the right its undistorted version.

scene. While the intrinsic parameters are calibrated once per sensor, the extrinsic are
computed for each camera frame.

4.2.4. Thresholding

Thresholding classifies lightness intensities of a gray-scale image to to a binary image
(black and white).

Global thresholding A global threshold is fast and simple, each pixel in the binarized
image bi,j is set according to the following rule, where gi,j is the pixel value for a greyscale
image:

bi,j =

{
1 if gi,j > value
0 otherwise

Otsu thresholding

Determining a good threshold value can be hard since the lightness of the image changes
depending on dynamic factors such as the amount of light in the room. If it is possible
to make the assumption that the image contains two distinct brightness levels — an
optimal threshold value can be computed so that the intra-class variance is minimized.
This is called an Otsu threshold. The single threshold value is first computed and
then used as the threshold for the entire image. For thresholding a part of the image
containing a single marker, an Otsu threshold provides good results in practice with
minimal computing power.

16

Adaptive thresholding

A camera image has some properties that makes it difficult to use a single threshold value
for the entire image. Highlights and shadows make the absolute brightness throughout
the image very uneven. An adaptive threshold uses a different threshold value for each
pixel. The threshold value for a pixel is computed by taking the mean of the pixels of
a square window of some size centered on that pixel. It is thus very good at detecting
edges in the image. However, if the window size is too small it may result in a lot of
noise, while if it is too big might miss detail and suffer from the same problem as a
global threshold. Adaptive thresholding is significantly slower than global thresholding,
as the image is convoluted to find the mean value for each window.

bi,j =

{
1 if gi,j > meani,j
0 otherwise

4.2.5. RANSAC

Random sample consensus — RANSAC— is an iterative method to estimate parameters
from data that may contain a relatively large amount of outliers [18]. For the purpose
of this application it works as follows:

1. A subset of the data is randomly selected and used to compute a 3D→2D trans-
formation.

2. The transformation is used to re-project the entire data-set 3D→2D.
3. For each point the Euclidean distance between its original coordinate and its re-

projection is computed. If it is lower than some threshold it is counted as an
inlier

4. The above steps are repeated many times for different subsets of the data.
5. The points from transformation which yielded the largest amount of inliers are

designated as good inlier points.
6. All good inliers points are used to compute the final transformation.

RANSAC produces non-deterministic results, however with a sufficiently large amount
of iterations the result works very well in practice.

4.2.6. Disjoint set

A disjoint set is a data structure that has a number of non-overlapping sets that partition
the elements. Finding which set an element belongs to is O(1). Merging two sets is
approximately2 O(1) [19].

2Merging two sets is amortized O(α(n)) where α(·) is the inverse Ackermann function. It grows so
slowly it is approximately O(1)

17

Figure 4.4.: RANSAC being used to fit a line to a set of points with a large amount of
outliers. Only the points designated as inliers (blue) are used to compute
the best fit. Modified graphics. Original author wikipedia.org user “Msm”.
License: CC BY-SA 3.0.

4.2.7. NEON Instruction set

NEON3 is the ARM processor extension for SIMD — Simple Instruction Multiple Data.
It performs simple arithmetic operations on multiple data in parallel. Contemporary
ARM processors in smartphones have 128bit NEON instructions, allowing for example
16x8bit data to be operated at once. A few performance critical functions have been
vectorized to take advantage of this. See section 4.4.3 for performance evaluations.

4.3. Implementation

For the controller and the game board, we wish to find their position in relation to the
camera sensor for each frame — in other words to find the extrinsic parameters (see
section 4.2.3). This is conceptually a two stage process:

1. The corners of the markers in the frame and their id:s are extracted.

2. A point to point correspondence between the observed corners and their supposed
position in relation to each other are used to compute the perspective and pose of
the object.

4.3.1. Marker Detection

The marker detection algorithm finds and identifies corners of specific markers in an
image. The markers consists of a black border with a 4x4 grid of cells inside. Square
cells are used as they can be identified efficiently with high accuracy, even in unfavorable
angles and poor lightning conditions. An overview of the algorithm can be see in fig. 4.5.

3http://www.arm.com/products/processors/technologies/neon.php

18

http://www.arm.com/products/processors/technologies/neon.php

Adaptive threshold

Find bounding boxes

Otsu threshold Variance too low

Compute contours

Find homography
of biggest conotur

Select image pyramid based on
bounding box area

In paralllel

Inverse transform
each contour

Compute area of intersection
between each cell and the contours

Binarize each cell and find the ID
of the marker by a loopup table

In
va

lid
at

e
M

ar
ke

r
Bad
contour

Ba
d b

ord
ers

No
 ID

 fo
un

d

List of marker ID:s and corners

Figure 4.5.: The parallel marker detection algorithm

Blur and
subsample

Blur and
subsample

Blur and
subsample

Blur and
subsample

Original

1/2 resolution

1/4 resolution

1/8 resolution

1/16 resolution

Figure 4.6.: Image pyramids are used to speed up computation for the marker detection.
Modified graphics. Original author wikipedia.org user “Cmglee”. License:
CC BY-SA 3.0.

Initialization

The algorithm starts by computing image pyramids. Image pyramids down-sample the
image by halving both the width and height (see fig. 4.6). A specialized version using
the NEON instruction set is used where the mean value of 4 pixels is used for each new
pixel. Some image pyramid methods, including the one in OpenCV, uses a Gaussian
window instead. This yields higher quality at the cost of more computing power. Testing
showed that the quality degradation is not a major concern for the algorithm.

Adaptive threshold

An adaptive threshold (see section 4.2.4) is performed on an appropriate image pyramid.
The result is a binary image with the markers disjoint. The corners of the markers might
be slightly offset from their real position. However this is not important as seen later.

20

Find bounding boxes for the connected components

A connected component analysis is performed on the binarized image, returning the
bounding boxes of each connected component. Bounding boxes that are too small or
have odd shapes are discarded. Typically hundreds of valid bounding boxes are found
in a camera frame. Each bounding box contains a potential marker. The bounding box
algorithm is described in detail in section 4.3.3.

Parallel marker identification

Each bounding box is checked for a valid marker. After this stage the corners of all
valid markers, and their ID:s are returned. The bounding boxes are checked in parallel,
making the algorithm scale well on multi-core systems.

Pyramid selection and Otsu thresholding At first a suitable image pyramid is
selected based on the height and width of the bounding box. An Otsu threshold is
computed on the selected image-pyramid inside the bounding box. The use of image
pyramids are important as the next step, contour finding, is computationally expensive.
If the variance between the two classes of lightness in the image is too low — meaning
the result is just noise — the marker is discarded.

Contour finding A contour finding algorithm is run on the binarized image. The
largest contour is selected. If that contour is too small, does not have 4 corners or is not
convex the marker is discarded. A hierarchy of the contours are established, returning
a tree of which contours are inside each other.

Homography transform Given the largest contour found in the previous step, the
homography transform is computed, see section 4.2.2. Each contour inside the largest is
transformed to a top-eye perspective. This is done so each cell in the marker will be in
a 1x1 wide space of arbitrary units. It is easy to compute the intersection of a cell with
straight edges and an arbitrary contour.

Contour intersection and area computation The marker consists of 6x6 cells, of
which the outer border is 1 cell wide, and the actual ID of the marker is encoded with
4x4 cells. At first the area of intersection for all contours is computed for each cell.
For the edge cells it is required that they are filled above a certain threshold, or the
marker will be discarded. For the inner cells a majority vote is used. The area used
for computation is offset by a small amount on each side of each cell, giving margin for
image artifacts and motion blur.

21

Camera Frame Reference position

Figure 4.7.: The marker coordinates and their respective ID:s have been identified in the
camera frame. The corner for each marker is associated with its reference
position, which is used to find the perspective and pose of markers in the
camera frame.

Determination of Marker ID Since each marker consists of 4x4 cells, it can repre-
sents 16 bits of information. A precomputed lookup table is used associate each pattern
to one of 256 ID:s. To recover the rotation of the marker, each ID is represented 4 times,
giving 1024 valid bit-patterns. The markers are selected in such way that the Hamming
distance from each other is at least 2 bits. Thus one bit error is allowed per marker,
meaning that 16K bit-patterns out of the 64K possible, 15%, will return a valid ID. The
markers are identical to those of the Aruco library. The generation and motivation of
the markers are described in [20, 21].

Precision and recall

The parameters of the algorithm are tuned to have a high recall rate, with a lower
precision as a consequence. There are often some parts of the image being incorrectly
recognized as markers. This is however not a great concern for the purpose of the game,
as the pose estimation step uses robust inlier detection.

4.3.2. 3D pose estimation

Finding the transformation from a set of 2D-projected points to their original 3D coor-
dinates is a well understood problem. First a mapping between the marker corners in
the image their known relative reference position in the 3D space is established using
the marker IDs (see fig. 4.7). Next the rotation and the translation of the object is
reconstructed using RANSAC as explained in section 4.2.5. The extrinsic parameters
have been recovered.

22

4.3.3. Bounding boxes for connected components

Connected component analysis is used to detect regions of connected “filled pixels” in
a binary image. 8-connectivity is used, meaning two pixels are connected if their edges
or corners touch. A minimal bounding box is the smallest axis parallel rectangular box
containing all pixels of a component. For the marker detection algorithm the bounding
boxes are used to find areas of interest which are to be checked for markers.

The conventional algorithm to find bounding boxes first labels each pixel in the image,
then goes through the labels pixel by pixel to update the left-, right-, top-, and bottom-
most coordinate for each label [22]. In addition to requiring two passes, it also requires
O(nm) extra memory to store the labels of each pixel, where n,m is the height and
width of the image.

A custom algorithm was developed exploiting that only the bounding boxes and not
the labels themselves are needed. This eliminates the need for the extra memory and
manages to compute the bounding boxes in one pass instead of two. In practice it is
about 3-5 times faster for a typical camera frame. See section 4.4.2 for performance
measurements.

The algorithm scans the pixels in memory (row-major) order. It uses 2 data structures
to keep track of the bounding boxes:

1. The labels of the pixels in the row above the current.

2. A disjoint-set (see section 4.2.6) like data structure to efficiently keep track of and
merge bounding boxes.

The algorithm works as a state machine, it scans each row left to right until a filled pixel
is occurs. Once it occurs it needs to be assigned a label. For the 23 combinations of
pixels in the row above, there are 3 cases for deciding which label it will be assigned:

Legend:
Empty pixel
Filled pixel
It does not matter if the pixel is filled or not

23

Non filled state

j+=1

bb.left = min(bb.left, j)
bb.top = min(bb.top, i)
bb.bottom = i

Filled state

j+=1

bb.right = max(bb.right, j)

i += 1; j=0

j>=width

j>=width

j+=1

j+=1

j+=1

j+=1

Done
i>=height

i<height

Figure 4.8.: The state machine for the bounding box algorithm. i and j are the current
row and column. bb is a reference to the bounding box associated with the
current pixel.

24

No pixels above are filled. A new label is generated and the pixel assigned it.

One, two or three continuous pixels above are filled. The pixel will be assigned the label
of the above pixels.

Two non-adjacent pixels above are filled. There might potentially be a conflict since the
new pixel may connect the labels for the two pixels above for the first time. If that is
the case the labels above and their bounding boxes need to be merged. The label for
the pixel will be the smallest of the two above.

State filled

When the state machine is in the “filled” state the current pixel will always be assigned
the label of the pixel west of it. Two out of the 23 cases may cause a label conflict and
thus require a label and bounding box merging:

The value of the north-west pixel is not important, it was handled previously. Likewise
the north pixel was handled while processing the west pixel if it was filled. If both the
north and the north-east pixel are filled, they will be the same label and will have been
handled by the west pixel. However if the north pixel is not filled and the north-east
is filled, this may be the first time the labels of those pixels are connected. A merge is
thus required.

Complexity analysis

Giving a binary image with n rows and m columns. Each pixel will be visited once,
resulting in O(nm). For each pixel there might be a merge of labels, which is approx-

25

imately O(1) (see section 4.2.6). The final run-time is thus O(nm). This is the same
time complexity as the preexisting algorithm in OpenCV. However the advantage of the
new algorithm is that the bounding boxes are computed in one pass instead of two.
The space requirement is lower since the labels for each pixel are not stored. However
as there might be O(nm) bounding boxes it has the same upper bound too. In practice
the number of bounding boxes is a lot lower than O(nm) though. With k bounding
boxes, the space complexity improves to O(m + k), where m is the storage required to
save the previous row of pixels.

4.3.4. Controller

The design of the controller went through 3 prototypes. Initially a single flat marker
was placed on top of a cuboid made out of cardboard. This suffered from two problems:

Noise

The recovered perspective and pose of the object relative to the game board was very
noisy from certain angles, meaning that sometimes incorrect moves would be performed.
It turned out that the axis orthogonal to the camera sensor, see the Z axis in fig. 4.2,
was the worst. The noise is a natural consequence of the resolution of the image. This
is especially true for narrow angles, which could be very unstable.

Theoretical limitations

The 3D pose of an object cannot be recovered unambiguously from only co-linear points
— there are in fact 4 valid solutions [23]. By empirical testing it turned out that the
pose would oscillate between two of these valid solutions, posing a serious challenge to
the playability of the game.

Solution

A hypothesis to solve the first two problem by making the marker 3-dimensional was
tested by adding an additional marker to the side of the cuboid controller. This con-
strained the axis perpendicular to the flat marker and solve the theoretical issue of the
ambiguous pose. The test proved successful. However as the controller is typically viewed
from above while playing the additional marker would rarely be visible in practice.
A custom 3D-printed controller was created, see fig. 4.9. The pattern on top of the
controller is shaped as a frustum with 5 sides, each with a marker. From every position
typically viewed in a gaming session there will be at least 3 markers visible. This
eliminates both the noise- and theoretical problem completely. See section 4.4.1 for a
quantitative evaluation.

26

(a) A rendering of the 3D model created in
blender.

(b) The 3D printed physical controller with a pat-
tern of Aruco markers added.

Figure 4.9.: The physical controller.

4.4. Evaluation

All tests are run on the Motorola Nexus 6, released in 2014.

4.4.1. Controller

In section 4.3.4 it was conjectured that the 3D configuration of markers improve the
accuracy of the perspective and pose recovery. The conclusion was motivated by iterative
testing based on moving the controller around and looking at the accuracy in real-time. A
quantitative test is performed to verify the assumption and to measure how much better
the frustum configuration version is. A level of Sokoban is played as usual without taking
any extra consideration to the test itself. The translation vector of the two recovered
poses of the controller are used. The rotation is not compared as it only affects the
visual experience and not the gameplay directly.

The first important metric is if the controller is found at all. Using the frustum con-
figuration the controller is recovered for 99% of all frames, while for the single marker
it is recovered 94% of the frames. This is a clear advantage for the frustum marker.
However as the game is often viewed top-down the top marker is in view most of the
time, yielding a decent performance for it too. Note that the missing 1% for the frustum
configuration is not necessarily the algorithm failing — the controller could simply be
out of view.

The second metric is the accuracy of the controller. Using the frustum configuration as

27

Figure 4.10.: The two reconstructed controller paths using the frustum configuration
(blue) and the single marker configuration (green). It can be seen that the
single marker drifts compared to the frustum. Pixel units are used.

reference, we note that the average distance between the frustum and the single configu-
ration is 157mm with a std. dev. of 44mm. This is a clear improvement of the accuracy
which can be felt while playing the game. Due to the properties of 3D reconstruction,
the more markers used to reconstruct the pose the better the result. However we can not
be sure if the frustum configuration is the true reference position of the controller. The
test should thus be seen as indicative and not an absolute measurement (see fig. 4.10).

4.4.2. Bounding boxes

This section compares the improved algorithm to find bounding boxes to the one included
with OpenCV. Both algorithms return exactly the same results, so only the computation
time is measured. The test is performed by playing a level and running both versions
on the same camera frame. It is thus ensured that a typical image is used and the
performance for the particular use case is relevant. 1000 camera frames are used to
compute the statistics. The algorithm is run on an image of size 960x540.

Algorithm average std. dev. median min max
OpenCV 23ms 3.8ms 27ms 17ms 39ms
Custom 6.9ms 2.0ms 6.0ms 3.9ms 18ms

The custom algorithm outperforms the one included in OpenCV by a factor of 3.3. It
has also a lower standard deviation, which is an important as a spike in computation
time can cause noticeable lag for the player. Given the approximate 66ms available to

28

compute each frame for a smooth 30 frames per second frame rate4, the old version
spends 35% of the time computing the bounding boxes, while the new only spends 10%
— making it a crucial part of the performance of the new marker detection algorithm.

Tested on a Sony Xperia Z1, with a 640x360 image size, the results are even better for
the custom algorithm, improving the time by a factor of 4.6 (11ms down to 2.4ms)

4.4.3. Neon Optimizations

Like for the bounding boxes benchmark, the performance measurements are performed
both for the stock OpenCV version and the NEON optimized version on typical camera
frames. The NEON optimized threshold functions return exactly the same results as
the OpenCV versions. However the OpenCV version of the pyramid generation returns
a slightly different result explained in section 4.3.1.

Function average std. dev. median min max
Pyramid generation 8.8ms 2.0ms 7.8ms 7.3ms 39.0ms
Threshold 3.8ms 1.8ms 7.8ms 0.7ms 13.4ms
Adaptive threshold 7.1ms 1.5ms 6.0ms 5.9ms 18.3ms
NEON pyramid 0.91ms 0.35ms 0.73ms 0.63ms 3.8ms
NEON threshold 0.56ms 0.44ms 0.66ms 0.16ms 5.0ms
NEON adaptive 4.2ms 1.3ms 3.4ms 3.3ms 15.7ms

The NEON optimized versions provide a clear performance boost — pyramid generation
is 9.7 times faster, thresholding 6.8 times and adaptive threshold 1.7 times faster.

4.5. Competing algorithms benchmark

In this section we compare the performance of the custom algorithm compared to two ex-
isting, commonly used algorithms for similar patterns. There are two important metrics
— how long does it take to compute a frame and how accurate is it.

4.5.1. Algorithms

Artoolkit

ARToolKit5 is a commercial, open source library. It supports custom black and white
markers, natural feature tracking and 2D barcode tracking very similar to the algo-
rithm developed and Aruco. For the test 3x3 2D barcode tracking is used as it has

4The limit for one frame is 1/30=33ms, however as the algorithm is double buffered roughly the double
time is available.

5https://artoolkit.org

29

https://artoolkit.org

the best performance. The test is based on the example project “ARMulti” included
with the default ArToolKit 5.3.2 distribution. The time is measured by seeing how long
the NativeInterface.arwUpdateAR() function call takes. The Artoolkit SDK is single
buffered.

Aruco

Aruco6[20] is a minimal library included with OpenCV used for tracking 2D markers.
OpenCV 3.1 is compiled with support for NEON and multi-threading. Given that the
custom algorithm is a drop in replacement for Aruco, and each frame is independent
of previously computed frames, the code for double buffering designed for the custom
algorithm is also used for Aruco. The time for the function calls detectMarkers and
estimatePoseBoard are measured.

Custom algorithm

The same pattern as Aruco is used. The algorithm is designed to be double-buffered and
parallel in itself — like Aruco each frame is independent of previously computed frames.

4.5.2. Performance test: marker detection & pose estimation

The marker detection algorithms are tested for three different number of markers, 12,
24 and 48. The setup is as follows:

• A stream of 1920x1080 image frames
• Camera set to automatic expose
• Only the functions computing markers & pose measured - color conversion, OpenGL

etc are excluded
• Hover the phone 30-40cm above the pattern of markers while moving the phone

slightly, always allowing all markers to be seen.
• Run the computation for 1000 frames, 300 for Aruco due to overheating of the

phone causing a throttling of the CPU.
• Test with a pattern of 12, 24 and 48 markers and measure performance. Each

marker is 2x2cm
• Ideal lighting: Indoor with overcast weather, no glare or complicated shadows.
• Motorola Nexus 6 2014 is used.
• The doubled buffered performance is approximated by treating the measurements

as single buffered, then dividing it by two. The inverse of the throughput is thus
what is actually measured.

6http://docs.opencv.org/3.1.0/d9/d6d/tutorial_table_of_content_aruco.html

30

http://docs.opencv.org/3.1.0/d9/d6d/tutorial_table_of_content_aruco.html

Results

It is clear that Aruco performs far worse than the contenders (see fig. 4.11). Even
though it is double buffered it performs worse than the single buffered alternatives. This
is not surprising as the performance of Aruco motivated the development of the custom
algorithm. Artoolkit performs slightly better than the single buffered custom algorithm
for 12 and 24 markers. The custom scales better for more markers and has a clear
advantage for 48 markers. The double-buffered custom algorithm outperforms every
contender with a high margin. Arguably the most important metric for performance is
how many frames takes too long to compute — causing lag. The camera frames arrive at
a pace of 30 frames per second, giving the algorithms 33ms to compute the frame before
lag occurs. Given that the game uses 44 markers, the double-buffered custom algorithm
is the only algorithm which never fails the 33ms target. A significant improvement over
the 82% failure rate of the second best (see fig. 4.11).

4.5.3. Performance test: Marker detection

Pose estimation can be a time consuming step. Artoolkit is compared to the custom
algorithm for marker detection alone. Exactly the same setup as previously is used.
Aruco is skipped, as it, like the custom algorithm, is based on OpenCV which uses
the same pose estimation step — however without the outlier rejection. This means
that Aruco’s improvement will be at most as much as the custom algorithm, making it
irrelevant to test given its low performance.

Results

Excluding the pose estimation lowers the computation time significantly (see fig 4.12).
The custom double buffered version is still the clear winner. Artoolkit still has the
advantage for 12 and 24 markers, while the custom algorithm is better for 48. The
different in both cases is however smaller than with the pose estimation.

4.5.4. Tracking performance

An important metric is responsive and accurate tracking performance — if the input to
the game is not accurate the game won’t be enjoyable to play. It is also hard to quantify.
Since the algorithms uses different markers it is not possible to feed one video stream
to both and compare them. A short subjective evaluation why the custom algorithm is
better for this particular use case follows:

1. The parameters of the custom algorithm are tuned assuming multiple correct mark-
ers in view. This means the sensitivity of the marker detection can be very high,

31

12 markers 24 markers 48 markers

10ms

20ms

30ms

40ms

50ms

60ms

70ms

80ms

90ms

100ms

99% 1% 1% 0% 98% 9% 13% 0% 100%
82%

47%
0%

Computation time per frame

Aruco, double buffered
ArToolKit
Custom, single buffered
Custom, double buffered
33ms limit

Figure 4.11.: Box plot of performance. The bottom and top of the boxes represents the
first and third quartiles, with the median bar inside the box — 50% of
the time the algorithm will finish within the box. The whiskers show the
2% percentile to the 98% percentile. 96% of the time the algorithm will
finish within the whiskers. The red line is the 33ms mark. A computation
time above this results in game lag. The accompanying red text is the
percentage of frames failing to meet the 33ms deadline.

32

12 markers 24 markers 48 markers

10ms

20ms

30ms

40ms
Marker computation time per frame

ArToolKit
Custom, single buffered
Custom, double buffered

Figure 4.12.: Box plot of marker computation time. The plot uses the same graphics as
fig 4.11.

33

giving the algorithm a high recall, at the cost of a lower precision. The pose esti-
mation stage robustly invalidates outliers, meaning the false positive markers wont
affect the result.

2. With Artoolkit the tracking performance feels like it is “on ice”. The virtual objects
lag behind the actual image stream. A possible explanation is that it fails to track
the markers and interpolates between frames.

3. A major advantage compared to Artoolkit is that the custom algorithm uses the
camera2 API. This allows the exposure time to be very low, at around 3-4ms, elim-
inating motion blur but increasing noise. Even for quick movements the algorithm
tracks the markers very well. Due to its two pass nature the algorithm is very
good at handling noisy frames.

4.6. Discussion

The marker detection algorithm provides a solution to augmented reality games on
devices with constrained performance where 2D barcode markers can be used. The
competing algorithms lack the speed, accuracy or responsiveness to provide for an equally
enjoyable experience.

4.6.1. Future work

There are a lot of optimizations that can still be made to the algorithm, both for im-
proving its speed and tracking performance.

Filtering A low-pass filter or ideally a Kalman filter could be added as a final step to
avoid bad poses, and to interpolate when the markers cannot be found. Ideally sensor
fusion with the gyroscope or accelerometer can be added to increase the accuracy. This
would still allow the algorithm to be double buffered as it would be a final step after the
pose has been recovered.

Pose reconstruction The pose reconstruction algorithms are directly from OpenCV
and take a significant fraction of the time of every frame, compare fig 4.11 and fig. 4.12.
Specializing them to the particular use case might yield better performance

Marker identification The parallel marker identification step in the algorithm uses
a few slow OpenCV functions such as findContours. It is likely that it is possible to
make a specialized version given the assumptions about the shape of the marker that is
faster. Instead of computing the inner contours, and then transforming them with the
homography transform, the borders of the marker cells in the original image could be
computed, and the pixels counted directly.

34

Low level optimizations While some functions are NEON optimized, there is likely
room for optimizations decreasing memory allocations and improving memory access
patterns.

35

5. User studies

While the game has been continuously tested by several participants throughout its
development, two formal user studies have been performed, one during development and
one after the completion of the game.

5.1. Preliminary study: Think-aloud protocol

The first study was performed as soon as the first prototype was playable, roughly
half way through the thesis work. It uses the think-aloud protocol, where participants
are instructed to say whatever they think throughout the test. Each test started by a
short introduction of the game and how to play it. The players participated as part
of their curriculum in user usability, and were already familiar with the think-aloud
protocol. Each participant played through at least two levels, one of which posed no
logical challenge and were used to get the participants familiar with the controller. At
this stage there were two versions of the game (see fig. 5.1):

1. The regular phone version set up on a trip-pod with its camera capturing the game
board from a favorable angle.

2. A version using the Epson Moverio BT-200 augmented reality glasses.

The participants played the game on the tripod for about 5 minutes each, and were
then given the option to try out the augmented reality glasses. 1 female and 5 males
participated in the study.

5.1.1. Results

All participants quickly figured out how to control the game. A session typically started
by the participants moving the controller around and seeing how the game reacted.
Two participants initially didn’t get how a move was performed (see fig. 3.2c). At this
time the entire square was lit up green, with no indication that the squares had to be
connected to be able to go there. However they understood it without help after testing
for less then a minute. Some thought it was a bit unclear what the different colors of
the overlay meant, and suggested clearer graphics. Participants noted the stuttering
performance of the game (about 8 frames per second at the time), but didn’t see it as a
big problem for the short duration of the experiment.

36

Figure 5.1.: Evaluating different technologies: 1) Epson Moverio, 2) hand-held mobile
phone and 3) head mounted display (cardboard)

The female participant was the only one who preferred the Epson Moverio glasses. Likely
as she was shorter and the tripod playing position was very awkward for her. Of the six
participants two had not played the classic Sokoban game before.

5.1.2. Discussion

The biggest outcome of the study was that playing it with a phone on a tripod or using
the Epson Moverio glasses is not ideal. It is inconvenient to have the phone in a fixed
position on the tripod, especially if the participant is not tall. On the other hand it
was confusing to play with the Epson Moverio glasses, as the video feed was not aligned
with reality. Even if it is theoretically possible to align, it would be impractical since the
slightest movement of the glasses in relation to the eyes requires a tedious realignment
process.

The study promoted the development of the Google Cardboard version and the new
marker detection algorithm. The graphics were also improved to be more intuitive.

5.2. Final study: Game experience

A game experience user study of the Cardboard version was carried out. The participants
played up to four levels of increasing difficulty. After each level a questionnaire related
to the state of mind was filled in by the participants. The participants decided the

37

pace of the game, including how long they would like to play. They were allowed as
many restarts as they wished. After completing all levels or deciding to quit, a broader
questionnaire was given about the general and augmented reality experience. Some
questions are modeled after the Game Experience Questionnaire (GEQ)[24], a set of
questions that measures the emotional response.

5.2.1. Purpose

The purpose of the experiment is to investigate if the augmented reality version of
Sokoban is enjoyable for healthy users without any disabilities. This includes to see if
the augmented reality part introduces nausea or sickness, if the controller is accurate
enough and the general enjoyment of the game. If this is the case it might show potential
for use in rehabilitation in the future.

5.2.2. Sample

The participants were sampled from colleagues1 on an opt-in basis. The demographics
of the study is thus well educated, technical oriented people.
10 people participated in the experiment, of which 5 male and 5 female. The demo-
graphics were two younger than 19, six between 20–29, one 30–39 and one 40–49.
Only one participant had played the original Sokoban game. 5 participants had never
played a virtual reality or augmented reality game, while 5 had played it up to a few
times.

5.2.3. Experiment process

1. The purpose and process of the experiment is explained. The participant signs a
consent form.

2. The participant answers demographic questions and their previous experience with
Sokoban and augmented reality games.

3. The Test level is demonstrated using the regular screen version. How to play the
game is explained.

4. The participant puts on the Google Cardboard and plays the Test level.
5. The following is repeated for the levels Omega, Alpha, Star, TrickyThree in that

order (see fig. 5.2).
a) The participant puts on the Google Cardboard and plays the level as many

times as they like. The participant may at any time request a restart of the
level.

1Employees of Know-Center, a data science research company.

38

b) If the game performance suffers because of overheating, the phone is cooled
with a cool pack for 30 seconds.

c) When the participant completes the level or they request to stop, they take
off the headset, and the “In-Game” module of the GEQ is presented for that
level.

d) Simultaneously the smartphone is cooled with a cool-pack.

6. After the experiment several questions are asked:

a) The Post-Game module of GEQ.

b) Augmented reality particulars.

c) Overall impressions.

d) Other free text comments.

7. The experiment is finished.

A session typically lasted between 30–50 minutes. See https://goo.gl/WgVHUI for the
questions asked and a summary of the responses. See https://goo.gl/WzfIh0 for the
individual responses.

5.2.4. Results

The survey indicates that the participants enjoyed the game. They rated The mean
overall experience 7.2 out of 10 (higher is better). 9 answered yes to “Would you like to
play the game again” (see fig 5.3).

The biggest complaint was that the smartphone overheated. This became more prob-
lematic for the harder levels, as the participants required more playtime. For the hardest
level, TrickyThree, it was not uncommon to take one or two short pauses to cool down
the phone.

Two participants rated their augmented reality sickness as “fairly”, while the median
was “slightly”. The comfort of the headset was rated relatively high, at a median of
“fairly”. The accuracy of the controller was generally perceived as high, with all but two
participants rating it at least “fairly”.

By inspecting the correlation2 (see fig. 5.4) between the overall experience and various
factors we can recover interesting information.

2Pearson product-moment correlation coefficient is a measure of the linear correlation between two
variables X and Y, giving a value between +1 and −1 inclusive, where 1 is total positive correlation,
0 is no correlation, and −1 is total negative correlation. — Wikipedia

39

https://goo.gl/WgVHUI
https://goo.gl/WzfIh0

(a) Test (b) Omega. All participants solved this level, every-
one using 5 moves.

(c) Alpha. 9 participants solved this level, using on
average 8.3 moves.

(d) Star. 8 participants solved this level, using on
average 13 moves.

(e) TrickyThree. No participant solved this level.

Figure 5.2.: The levels played for the game experience study

40

positiv
e

negative

tire
dness

returning to reality
not at all

slightly

moderately

fairly

extremely
Post game GEQ

sick
ness

comfort

accu
racy

Augmented reality

1 2 3 4 5 6 7 8 9 10

1

2

3

2

1 1

Very bad Very good

Overall score

Figure 5.3.: Post game impressions.

41

posit
ive

negativ
e

tire
dness

returning to
 re

ality

Levels c
ompleted

AR sic
kness

AR co
mfort

AR accu
racy

0.61 -0.47 -0.77 -0.26 0.25 -0.62 0.62 0.31

Figure 5.4.: Correlation with overall experience.

The most important factor was low tiredness, followed by low AR sickness (also know as
cybersickness, motion sickness) and the comfort of the headset. There is a moderate cor-
relation between positive emotions and inversely so for negative emotions (as computed
by the GEQ).

The immersion (returning to reality), levels completed, and the AR accuracy did not
have a great correlation with the overall score. It should however be noted that there
was a great consensus in both the AR accuracy, see fig. 5.3, and the number of levels
completed — 8 participants solved 3 out of 4 levels.

Per level results

While the test level and Omega were trivial and completed by all participants in the
least amount of moves, the other levels were increasingly challenging. All except one
participant completed Alpha, while Star was not completed by two. No participant
completed TrickyThree. Participants experienced widely different emotions completing
the levels, as seen in fig 5.5. While all participants agree that the challenge increases for
the later levels, their reaction seemed to differ. Some expressed this positively where they
became very engaged and tried hard to complete the level, while others felt frustrated
and inadequate when they realized they got stuck yet again. The flow of the game
seemed to improve slightly as the levels got harder. While the negative emotions are
consistently relatively low, the competence and positive emotions vary widely.

5.2.5. Discussion

The experiment shows that healthy users enjoy the game. No usability problems from
the first evaluation (see section 5.1) appeared. While playing the game though the Epson
Moverio eyewear and tripod solution were awkward, the Google cardboard headset was
comfortable enough for most participants.

After the session several participants requested more attempts for the final level outside
the scope of the study — a strong indication they found the game engaging.

42

not at all

slightly

moderately

fairly

extremely
challenge competence flow

omega
alpha Star

Trick
yThree

not at all

slightly

moderately

fairly

extremely
negative

omega
alpha Star

Trick
yThree

positive

omega
alpha Star

Trick
yThree

tension

Figure 5.5.: The in-game module GEQ as completed per level.

43

The biggest problem reported was the overheating of the smartphone, with several par-
ticipants complaining about it. Fixing the overheating — either by improving the algo-
rithms or finding better hardware — should be the primary aim for future work.

The augmented reality experience was mostly fine, with most participants rating the
accuracy as good enough, while not suffering from any nausea or other discomfort. There
was one visibly nauseous participant, which might indicate that the game will never be
playable by the entire population. It should however be noted that the participant was
still motivated to continue solving the levels, even if she was given the option to terminate
the experiment several times when displaying physical discomfort. This further indicates
that the concept has potential.

44

6. Conclusion

The thesis successfully demonstrates that a physically controlled augmented reality game
is enjoyable for healthy users. Three technologies were tried for augmenting the game to
the user, a regular phone screen, smart-glasses (Epson Moverio) and Google Cardboard.
The latter was shown to be the best option out of the three.

A new algorithm for marker detection is presented. With it the game can run at a con-
tinuous 30 frames per second, a task no other tested algorithm managed. Combined with
the custom 3D-printed controller, the game satisfies both constraints for an enjoyable
augmented reality experience — accuracy and no lag.

The user studies concludes that the augmented reality parts and the game itself were
perceived positively by most users. The biggest complaint was the eventual performance
degradation due to the smartphone overheating.

A shortcoming of the user study is that it did not compare against the non-augmented
version of Sokoban — which might be more enjoyable than the augmented version.
While the non-augmented version is not relevant for rehabilitation, it would nonetheless
be interesting to compare it for healthy users.

Future work

Given the positive results of the user study, the next step would be a study on patients
with spinal cord injury to evaluate if the concept carries over to grasp training. The
most important focus for the application is to solve the overheating issue. Either by
improving the algorithm, using better hardware, or a combination of both. If better
augmented reality glasses appears on the market, it may be of interest to port the game
to those devices.

45

Bibliography

[1] Viktoria Pammer et al. “Designing for Engaging BCI Training: A Jigsaw Puzzle”.
In: Proceedings of the 2015 Annual Symposium on Computer-Human Interaction
in Play. CHI PLAY ’15. London, United Kingdom: ACM, 2015, pp. 667–672. isbn:
978-1-4503-3466-2. doi: 10.1145/2793107.2810290. url: http://doi.acm.org/
10.1145/2793107.2810290 (cit. on pp. 1, 3).
A digital game using a brain computer interface to control it.

[2] Johannes Breuer and Gary Bente. “Why so serious? On the relation of serious
games and learning”. In: Eludamos. Journal for Computer Game Culture 4.1
(2010), pp. 7–24. issn: 1866-6124. url: http : / / www . eludamos . org / index .
php/eludamos/article/view/vol4no1-2/146 (cit. on p. 3).
About the concept of games that combines fun with learning or some other useful
task.

[3] Damien Coyle, Jhonatan Garcia, Abdul R Satti, and T Martin McGinnity. “EEG-
based continuous control of a game using a 3 channel motor imagery BCI: BCI
game”. In: Computational Intelligence, Cognitive Algorithms, Mind, and Brain
(CCMB), 2011 IEEE Symposium on. Apr. 2011, pp. 1–7. doi: 10.1109/CCMB.
2011.5952128 (cit. on p. 3).
A digital game using a brain computer interface to control it.

[4] Granit Luzhnica, Christoffer Öjeling, Eduardo E. Veas, and Viktoria Pammer-
Schindler. “Technical Concept and Technology Choices for Implementing a Tangi-
ble Version of the Sokoban Game”. Poster paper to be presented at IEEE ISMAR
2016, Merida, Mexico. 2016 (cit. on p. 4).

[5] John Bowlby. Attachment and loss. 1. Attachment. Attachment and Loss. Basic
Books, 1969. url: https://books.google.at/books?id=FYEuAAAAMAAJ (cit. on
p. 4).

[6] Adrian David Cheok et al. “Touch-Space: Mixed Reality Game Space Based on
Ubiquitous, Tangible, and Social Computing”. In: Personal Ubiquitous Comput.
6.5-6 (Jan. 2002), pp. 430–442. issn: 1617-4909. doi: 10.1007/s007790200047.
url: http://dx.doi.org/10.1007/s007790200047 (cit. on p. 4).

[7] Jilyan Decker, Harmony Li, Dan Losowyj, and Vivek Prakash. “Wiihabilitation
: Rehabilitation of Wrist Flexion and Extension Using a Wiimote-Based Game
System”. In: Governor’s School of Engineering and Technology Research Journal
(2009), pp. 92–98. url: http://www.osd.rutgers.edu/gs/09papers/Wii.pdf
(cit. on p. 4).

46

http://dx.doi.org/10.1145/2793107.2810290
http://doi.acm.org/10.1145/2793107.2810290
http://doi.acm.org/10.1145/2793107.2810290
http://www.eludamos.org/index.php/eludamos/article/view/vol4no1-2/146
http://www.eludamos.org/index.php/eludamos/article/view/vol4no1-2/146
http://dx.doi.org/10.1109/CCMB.2011.5952128
http://dx.doi.org/10.1109/CCMB.2011.5952128
https://books.google.at/books?id=FYEuAAAAMAAJ
http://dx.doi.org/10.1007/s007790200047
http://dx.doi.org/10.1007/s007790200047
http://www.osd.rutgers.edu/gs/09papers/Wii.pdf

[8] Eun Kyung Kim, Jong Ho Kang, Jang Sung Park, and Byung Ho Jung. “Clinical
Feasibility of Interactive Commercial Nintendo Gaming for Chronic Stroke Reha-
bilitation”. In: Journal of Physical Therapy Science 24.9 (2012), pp. 901–903. issn:
0915-5287. doi: 10.1589/jpts.24.901 (cit. on p. 4).

[9] Loh Yong Joo et al. “A feasibility study using interactive commercial off-the-shelf
computer gaming in upper limb rehabilitation in patients after stroke”. In: Jour-
nal of Rehabilitation Medicine 42.5 (2010), pp. 437–441. issn: 1650-1977. doi:
10.2340/16501977-0528. url: http://jrm.medicaljournals.se/article/
abstract/10.2340/16501977-0528 (cit. on p. 4).

[10] Hiroshi Ishii. “Tangible Bits: Beyond Pixels”. In: Proceedings of the 2nd Inter-
national Conference on Tangible and Embedded Interaction. TEI ’08. Bonn, Ger-
many: ACM, 2008, pp. xv–xxv. isbn: 978-1-60558-004-3. doi: 10.1145/1347390.
1347392. url: http://doi.acm.org/10.1145/1347390.1347392 (cit. on p. 4).

[11] Lesley Xie, Alissa N. Antle, and Nima Motamedi. “Are Tangibles More Fun?:
Comparing Children’s Enjoyment and Engagement Using Physical, Graphical and
Tangible User Interfaces”. In: Proceedings of the 2nd International Conference
on Tangible and Embedded Interaction. TEI ’08. Bonn, Germany: ACM, 2008,
pp. 191–198. isbn: 978-1-60558-004-3. doi: 10 . 1145 / 1347390 . 1347433. url:
http://doi.acm.org/10.1145/1347390.1347433 (cit. on p. 4).

[12] Tamara M. Lackner, Kelly Dobson, Roy Rodenstein, and Luke Weisman. “Sen-
sory Puzzles”. In: CHI ’99 Extended Abstracts on Human Factors in Computing
Systems. CHI EA ’99. Pittsburgh, Pennsylvania: ACM, 1999, pp. 270–271. isbn:
1-58113-158-5. doi: 10.1145/632716.632882. url: http://doi.acm.org/10.
1145/632716.632882 (cit. on p. 4).

[13] Nesra Yannier, Kenneth R. Koedinger, and Scott E. Hudson. “Learning from
Mixed-Reality Games: Is Shaking a Tablet As Effective As Physical Observation?”
In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems. CHI ’15. Seoul, Republic of Korea: ACM, 2015, pp. 1045–1054.
isbn: 978-1-4503-3145-6. doi: 10.1145/2702123.2702397. url: http://doi.
acm.org/10.1145/2702123.2702397 (cit. on p. 4).

[14] Harish Damodaran and Sergei Adamovich. “Examining the Manipulation of the
Dynamic Properties of Virtual Objects to Optimize Upper Extremity Rehabilita-
tion Activities.” In: Proceedings of the 2010 IEEE 36th Annual Northeast Bioengi-
neering Conference (NEBEC). IEEE. 2010, pp. 1–2. isbn: 9781424469246 (cit. on
p. 4).

[15] Joseph Culberson. Sokoban is PSPACE-complete. 1999 (cit. on p. 5).
[16] Elan Dubrofsky. Homography Estimation. 2009. url: https://www.cs.ubc.ca/

grads/resources/thesis/May09/Dubrofsky_Elan.pdf (cit. on p. 13).

Explaining the Homography transform.

47

http://dx.doi.org/10.1589/jpts.24.901
http://dx.doi.org/10.2340/16501977-0528
http://jrm.medicaljournals.se/article/abstract/10.2340/16501977-0528
http://jrm.medicaljournals.se/article/abstract/10.2340/16501977-0528
http://dx.doi.org/10.1145/1347390.1347392
http://dx.doi.org/10.1145/1347390.1347392
http://doi.acm.org/10.1145/1347390.1347392
http://dx.doi.org/10.1145/1347390.1347433
http://doi.acm.org/10.1145/1347390.1347433
http://dx.doi.org/10.1145/632716.632882
http://doi.acm.org/10.1145/632716.632882
http://doi.acm.org/10.1145/632716.632882
http://dx.doi.org/10.1145/2702123.2702397
http://doi.acm.org/10.1145/2702123.2702397
http://doi.acm.org/10.1145/2702123.2702397
https://www.cs.ubc.ca/grads/resources/thesis/May09/Dubrofsky_Elan.pdf
https://www.cs.ubc.ca/grads/resources/thesis/May09/Dubrofsky_Elan.pdf

[17] Tom Dalling. Explaining Homogeneous Coordinates & Projective Geometry. url:
http://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-
coordinates-and-projective-geometry (cit. on p. 15).

Several concepts relating to projective geometry explained. Used for reconstructing
the perspective and rendering the augmented objects with OpenGL.

[18] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartogra-
phy”. In: Commun. ACM 24.6 (June 1981), pp. 381–395. issn: 0001-0782. doi:
10.1145/358669.358692. url: http://doi.acm.org/10.1145/358669.358692
(cit. on p. 17).

The RANSAC method of excluding outliers.
[19] Bernard A. Galler and Michael J. Fisher. “An Improved Equivalence Algorithm”.

In: Commun. ACM 7.5 (May 1964), pp. 301–303. issn: 0001-0782. doi: 10.1145/
364099.364331. url: http://doi.acm.org/10.1145/364099.364331 (cit. on
p. 17).

The disjoint set data structure. Also know as union-find.
[20] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez.

“Automatic generation and detection of highly reliable fiducial markers under oc-
clusion”. In: Pattern Recognition 47.6 (2014), pp. 2280–2292. issn: 0031-3203.
doi: http : / / dx . doi . org / 10 . 1016 / j . patcog . 2014 . 01 . 005. url: http :
//www.sciencedirect.com/science/article/pii/S0031320314000235 (cit. on
pp. 22, 30).

The first marker-detection algorithm used. Later replaced by a custom better per-
forming algorithm.

[21] S. Garrido-Jurado, R. Muñoz-Salinas, F.J Madrid-Cuevas, and R. Medina-Carnicer.
“Generation of fiducial marker dictionaries using mixed integer linear program-
ming”. In: Pattern Recognition 51 (2016), pp. 481–491. issn: 0031-3203. doi:
http://dx.doi.org/10.1016/j.patcog.2015.09.023. url: http://www.
sciencedirect.com/science/article/pii/S0031320315003544 (cit. on p. 22).

The method used to generate the Aruco markers.
[22] Linda G. Shapiro and George C. Stockman. Computer vision. Upper Saddle River,

NJ: Prentice Hall, 2001, pp. 69–73. isbn: 0-13-030796-3. url: http : / / opac .
inria.fr/record=b1128947 (cit. on p. 23).

Conventional algorithm to find connected components in a binary image.
[23] Ezio Malis et al. Deeper understanding of the homography decomposition for vision-

based control. INRIA Research Report #6303. 2007. url: https://hal.inria.
fr/inria-00174036v3/document (cit. on p. 26).

48

http://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-projective-geometry
http://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-projective-geometry
http://dx.doi.org/10.1145/358669.358692
http://doi.acm.org/10.1145/358669.358692
http://dx.doi.org/10.1145/364099.364331
http://dx.doi.org/10.1145/364099.364331
http://doi.acm.org/10.1145/364099.364331
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2015.09.023
http://www.sciencedirect.com/science/article/pii/S0031320315003544
http://www.sciencedirect.com/science/article/pii/S0031320315003544
http://opac.inria.fr/record=b1128947
http://opac.inria.fr/record=b1128947
https://hal.inria.fr/inria-00174036v3/document
https://hal.inria.fr/inria-00174036v3/document

[24] Wijnand IJsselsteijn, Yvonne de Kort, and Karolien Poels. “The Game Experience
Questionnaire: Development of a self-report measure to assess the psychological im-
pact of digital games.” In: (). url: https://pure.tue.nl/ws/files/21666907/
Game_Experience_Questionnaire_English.pdf (cit. on p. 38).

A standardized set of questions used to compute various scores for games used in
the second user study.

49

https://pure.tue.nl/ws/files/21666907/Game_Experience_Questionnaire_English.pdf
https://pure.tue.nl/ws/files/21666907/Game_Experience_Questionnaire_English.pdf

A. Log file

For each level played a a log file is created in the “sokoban” folder on the Android device’s
externally accessible storage. The log file consists of two parts, one metadata part and
one part for the continuous information generated by the game. The log file begins with
the metadata part, ended by a blank line, after which the continuous part starts. The
name of the log file is the level played and the current date.

Metadata part

File entry Explanation
Level: Alpha The level played.
WxH: 8 5 Number of markers (width x height) of the game board.
MarkerLengthPx: 200 The length of the game board marker and the spacing

between them. (in pixel units)MarkerSpacePx: 40
VirtualSize: 200 The size of the virtual squares (in pixel units) One marker

unit is the size of the virtual size.
PixelPerMM: 3.54333 Millimeter per pixel unit.
LiftedThreshold: 500 Threshold for the controller to be considered in lifted state.

(in pixel units)
RequireSignal: 0 1 If the user was required to press space after each move, 0

otherwise.

Data

The continuous part consists of one line per event. Each event consists of multiple values,
separated by space.

• The first value is always number of microseconds since the start of the level.
• The second value is a character deciding what’s in the next columns, see the table

below
Character Explanation
L <x> <y> The controller was lifted from position x, y.
P <x> <y> The controller was put down at position x, y.
M <x> <y> <x’> <y’> A box was moved from x ,y to x’,y’.
C <n> The game was completed in n moves.
X <v>×21 The translation and rotation of the game board, controller

and relative game board. See table below.

50

Where the values for the X entry are:
Column Explanation
0 Time since the start of the level (microseconds)
1 X
2 Time used to find the markers (microseconds)
3 Time used to find the pose (microseconds)
4–6 Rodrigues rotation vector for the controller (in pixel units)
7–9 Translation vector for the controller (in pixel units)
10-12 Rodrigues rotation vector for the game board (in pixel units)
13-15 Translation vector for the game board (in pixel units)
16 x position of the controller relative to the board (in marker

units)
17 y position of the controller relative to the board (in marker

units)
18 1 if the controller is in the lifted state, 0 if it is not.
A Rodrigues vector is a way to unambiguously describe the 3 degrees of freedom of a
rotation. For further information see the Rodrigues function at http://docs.opencv.
org/3.1.0/d9/d0c/group__calib3d.html.

51

http://docs.opencv.org/3.1.0/d9/d0c/group__calib3d.html
http://docs.opencv.org/3.1.0/d9/d0c/group__calib3d.html

	Introduction
	Aim and limitations
	Thesis outline

	Background
	MoreGrasp
	Tangible gamesThis section is based on a paper co-authored by meposterpaper.
	Sokoban

	The app
	Gameplay
	Controllers

	Interface
	Regular screen specifics
	Cardboard specifics
	Bluetooth keyboard
	Exposure control

	Data collection
	Camera calibration utility
	Implementation

	Marker detection and pose estimation
	Related work
	Theoretical Framework
	OpenCV
	Projective geometry
	Camera Model
	Thresholding
	RANSAC
	Disjoint set
	NEON Instruction set

	Implementation
	Marker Detection
	3D pose estimation
	Bounding boxes for connected components
	Controller

	Evaluation
	Controller
	Bounding boxes
	Neon Optimizations

	Competing algorithms benchmark
	Algorithms
	Performance test: marker detection & pose estimation
	Performance test: Marker detection
	Tracking performance

	Discussion
	Future work

	User studies
	Preliminary study: Think-aloud protocol
	Results
	Discussion

	Final study: Game experience
	Purpose
	Sample
	Experiment process
	Results
	Discussion

	Conclusion
	Bibliography
	Log file

