
Map Representation and LIDAR-Based Ve-
hicle Localization
Automatic Map Extraction from High Density Point Clouds for
LIDAR Localization in Production Vehicles

Master’s thesis in the Signal and Systems department, Chalmers

EILIV HÄGG

YINGZHI NING

Department of Signal and System
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis EX024/2016

Map Representation and LIDAR-Based Vehicle
Localization

Automatic Map Extraction from High Density Point Clouds for
LIDAR Localization in Production Vehicles

EILIV HÄGG
YINGZHI NING

Department of Signal and System
Chalmers University of Technology

Gothenburg, Sweden 2016

Map Representation and LIDAR-Based Vehicle Localization
Automatic Map Extraction from High Density Point Clouds for LIDAR Localization
in Production Vehicles
EILIV HÄGG, YINGZHI NING

© EILIV HÄGG, YINGZHI NING, 2016.

Supervisor: Robin Lindholm, Volvo Car Corporation
Academic Supervisor: Lennart Svensson, Signal and System department
Examiner: Lennart Svensson, Signal and System department

Master’s Thesis EX024/2016
Department of Signal and System
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Map Representation and LIDAR-Based Vehicle Localization
Automatic Map Extraction from High Density Point Clouds for LIDAR Localization
in Production Vehicles
Eiliv Hägg
Yingzhi Ning

Department of Signals and Systems
Chalmers University of Technology

Abstract
Within the automotive industry, a lot of resources and effort is put into the develop-
ment of autonomous vehicles. New functions and driver support systems are added
continuously, and in a near future, human interaction for driving will no longer be
needed. For this to become reality the cars need to be able to handle all possible
scenarios without any accidents or failures. One problem to solve is being able to
accurately localize the vehicle in a wide range of conditions. To ensure robust lo-
calization, several independent systems that rely on different sensors and maps are
needed.

In this thesis, we propose a method for automatic map extraction from a high den-
sity point cloud, and a localization algorithm using front-facing LIDAR. The aim
of the project is to develop a map representation that contains enough informa-
tion to allow very accurate localization, with a main focus on lateral positioning,
but still being compact in the sense that it requires a low amount of data per unit
road. The extracted map together with the localization algorithm, which was based
on a particle filter using a likelihood field, were evaluated by running localization
simulations using recorded data. The results show accurate estimates of the lat-
eral position with sub decimetre precision, and heading angle with no more than
one degree error, but less accurate longitudinal positioning. It was found that the
localization algorithm also proved itself robust to surrounding traffic by producing
accurate position estimates under short periods of occlusion of the LIDAR.

Keywords: Map Representation, LIDAR Localization, Particle Filter, Likelihood
Field, High Density Point Cloud.

v

Acknowledgements
We would like to give our sincerest thanks to our supervisor Robin Lindholm, who’s
patience, support, and passion inspired us throughout the thesis. We would also like
to thank our academic supervisor Lennart Svensson who was standing by to give us
support when we needed it.

The colleagues in sensor fusion team in Volvo cars were very helpful and actively
participated in our weekly meetings. Many novel ideas and solutions came from the
discussions with them, we would like to express our gratitude to them.

Besides we also want to thank everyone in the Master thesis study group in signals
and systems department in Chalmers, including but not limited to Erik Henriksson,
Viktor Kardell, Christoffer Gillberg and Kristian Larsson. Many interesting ideas
been shared during our discussions and meetings.

Thanks also goes to Volvo car corporation, for financing this thesis and giving us
the opportunity to work on it. They provided us access to all the necessary data
and tools that we needed to complete the thesis, therefore we would like to express
our sincere gratitude to them.

Eiliv Hägg, Yingzhi Ning, Gothenburg, June 2016

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Objective . 1
1.2 Scope . 1
1.3 Outline . 2
1.4 Related Work and Contributions . 2

2 Data sets and Sensors 3
2.1 High Density Point Cloud . 3
2.2 Barrier Point Clouds . 4
2.3 Road Data . 4
2.4 Drive-Logs . 5
2.5 Front Facing LIDAR . 5

2.5.1 LIDAR Raw Data . 6
2.5.2 Filtered scan data . 6

3 Theory 7
3.1 Ego Vehicle Reference Frame . 7
3.2 Homogeneous coordinates . 7
3.3 Bayesian Filtering . 9

3.3.1 Extend Kalman Filter . 9
3.3.2 Particle Filter . 10

3.4 Sensor Models . 11
3.4.1 Beam-Based Model . 11
3.4.2 Likelihood Field . 13

3.5 Clustering . 14
3.5.1 K-means clustering . 14
3.5.2 Single Linkage Clustering . 15

3.6 Naive Bayes Classifier . 15
3.7 Forward Selection . 16
3.8 Cross-Validation . 17
3.9 Twiddle Optimization . 17

4 Method 19

ix

Contents

4.1 Map Extraction from Barrier Point Cloud 19
4.1.1 Slicing the Barrier Point Cloud 19
4.1.2 Identifying Individual Barrier Segments 19
4.1.3 Classification and Offset Corrections 20
4.1.4 Barrier Segment Association 21
4.1.5 Barrier Corrections . 22
4.1.6 Automatic Classification of Barrier Segments 23
4.1.7 Compact Map Representation 23

4.2 Localization Algorithm . 24
4.2.1 Simulation Environment . 24
4.2.2 Choice of Sensor Model . 28

4.2.2.1 Beam-based Model 29
4.2.2.2 Likelihood Field . 35

4.3 Implementation . 37
4.3.1 Localization Algorithm . 37
4.3.2 Optimization of Localization Algorithm Parameters 37

5 Results 39
5.1 Map Extraction . 39

5.1.1 Barrier Classification . 39
5.2 Compact Map Representation . 40
5.3 Localization of the Vehicle . 41

5.3.1 Lateral Error . 42
5.3.2 Longitudinal Error . 43
5.3.3 Heading Error . 44

5.4 Optimization of Localization Algorithm Parameters 45
5.4.1 Lateral Error . 45
5.4.2 Longitudinal Error . 46
5.4.3 Heading Error . 47

6 Discussion 49
6.1 Map . 49
6.2 Localization . 49

6.2.1 Lateral Error . 50
6.2.2 Longitudinal Error . 50
6.2.3 Heading Angle Error . 50

6.3 Particle Filter . 50
6.4 Parameter Optimization . 51
6.5 Conclusion . 52

7 Future Work 53
7.1 Look-up table of the likelihood field 53
7.2 False measurement tolerance . 55
7.3 Implementation of the localization algorithm 56

A Appendix I
A.1 Barrier Types . I

x

List of Figures

2.1 An example of the high definition point cloud with artificial color
depending on the altitude. 3

2.2 The high density point cloud with extracted barriers plotted in red. . 4
2.3 A view of the Gothenburg road network, were the used subset of the

AD-route is marked in red. 5

3.1 The ego vehicle reference frame with origin in the rear wheel axle. . . 7

4.1 Schematic view over barrier point cloud ’slicing’. 19
4.2 Schematic view over barrier point cloud clustering. 20
4.3 Schematic view over classification and offset of barrier points. 21
4.4 Schematic view over the barrier segment association method. 22
4.5 Schematic view over the barrier correction method. 22
4.6 Example of test map in simulation environments, this map is largely

inspired by an assignment in Chalmers Sensor Fusion course (period
2015/2016, course code SSY320, lead by Lennart Svensson, Signals
and systems department) . 25

4.7 Testing environment with route of the car (green and blue dash line)
and the LIDAR beams (red lines) shown 26

4.8 Zoom-in bird view of the car (the green object) and LIDAR beams
(red lines) . 26

4.9 LIDAR view when the ego vehicle in (0,0) position and heading upwards 27
4.10 Schematic view of the particle filter 28
4.11 Beam-based model illustration . 29
4.12 Particle weight update according to longitudinal position of the par-

ticle, the longitudinal distance between particles and ground truth
are evenly spread out from -10 meters to 10 meters, and here the
particles that are close to the ground truth gets high weight, while
the particles that are far away from the ground truth get very little
weights. 31

4.13 Resampling process according to longitudinal position of the particle,
the particles are evenly spread out longitudinally from -10 meters to
10 meters, while the ground truth is at 0 position, the graph shows
that after resampling, only the particles that are very close to the
ground truth got selected. 33

4.14 Particle weight update according to lateral position of the particle . . 34

xi

List of Figures

4.15 Resampling process according to lateral position of the particle, the
particles are evenly spread out laterally from -5 meters to 5 meters,
while the ground truth is at 0 position, the graph shows that after
resampling, only the particles that are very close to the ground truth
got selected. 34

4.16 Particle weight update according to heading angles of the particle . . 35
4.17 Resampling process according to heading angles of the particle 35
4.18 Likelihood field model illustration . 36

5.1 An example of the result of the automatically extracted map. The
green points are the barriers from the high density point cloud and
the red lines are the resulting map. Note how well the extracted map
lines represents the point cloud. 39

5.2 The results from the forward selection of feature parameters. The
line shows the average misclassification rate for every added feature. . 40

5.3 A comparison over the average lateral error in each log-file, when
using raw scan data and using the filtered scan data. Note that the
lateral error from using the filtered scan data is most of the time lower
or approximately equal to lateral error when using raw scans. 42

5.4 A comparison over the lateral max-error in each log-file, when using
raw scan data and the filtered scan data. Note that the lateral max
error from using the filtered scan data is most of the time lower or
approximately equal to lateral max error when using raw scans. . . . 42

5.5 A comparison over the average longitudinal error in each log-file, when
using raw scan data and the filtered scan data. Note that, on average,
the filtered scan data gives a lower average error than the raw scans. . 43

5.6 A comparison over the longitudinal max-error in each log-file, when
using raw scan data and the filtered scan data. Here there are no obvi-
ous difference between raw scans and the filtered scan data, however,
they do perform differently on the same log-files. 43

5.7 A comparison over the average heading angle error in each log-file,
when using raw scan data and the filtered scan data. Note how the
filtered scan data performs better for almost every log-file, however,
differences are only about 0.05◦. 44

5.8 A comparison over the heading angle max-error in each log-file, when
using raw scan data and the filtered scan data. Note that the filtered
scan data most of the time performs better or equal to when using
raw scan data. 44

5.9 A comparison over the average lateral error in each log-file, before
and after optimization of the algorithm parameters. Note how the
average lateral error became slightly worse after optimization. 45

5.10 A comparison over the lateral max-error in each log-file, before and
after optimization of the algorithm parameters. Note how the largest
peaks in the lateral max error has been drastically reduced after op-
timization. 46

xii

List of Figures

5.11 A comparison over the average longitudinal error in each log-file, be-
fore and after optimization of the algorithm parameters. Note how
the average longitudinal error has been reduced for every log-file, after
optimization. 46

5.12 A comparison over the lateral max-error in each log-file, before and
after optimization of the algorithm parameters. Note how the maxi-
mum longitudinal error for each log-file is reduced after optimization. 47

5.13 A comparison over the average heading angle error in each log-file,
before and after optimization of the algorithm parameters. Note how
the average heading error is slightly better or equal for every log-file,
after optimization. 47

5.14 A comparison over the heading angle max-error in each log-file, before
and after optimization of the algorithm parameters. Note that the
optimization improved the heading max-error significantly for most
log-files. 48

7.1 Map in pixel representation, serves as a likelihood loop-up table, pos-
sibility is represented by the brightness level of the pixel, the brighter
the possibility is higher. The left line in the picture is a barrier on
the side of the road, the two long lines on the right are the central
barrier, and two short lines on the right is a bridge pillar. 54

7.2 Map in pixel representation, a zoom in version of a part of a bar-
rier. Possibility is represented by the brightness level of the pixel, the
brighter the possibility is higher. 55

A.1 An example of an elevated rail and its point cloud representation. . . I
A.2 An example of an offset rail and its point cloud representation. II
A.3 An example of a double rail and its point cloud representation. II
A.4 An example of a protected rail and its point cloud representation. . . III
A.5 An example of a pipe rail and its point cloud representation. III
A.6 An example of a concrete cone and its point cloud representation. . . IV

xiii

List of Figures

xiv

List of Tables

3.1 Bayes Filter Algorithm . 9
3.2 Extended Kalman Filter Algorithm 9
3.3 Particle Filter Algorithm . 11
3.4 Beam-based sensor model Algorithm 13
3.5 Likelihood field sensor model Algorithm 14
3.6 K-means algorithm . 15
3.7 Single linkage algorithm . 15
3.8 Forward selection algorithm . 17
3.9 Twiddle optimization algorithm . 18

4.1 Description of the algorithm that detects and discards redundant
points in barrier. 24

5.1 Average lateral, longitudinal, and heading angle error with standard
deviations. Raw LIDAR data compared with filtered scan data 41

5.2 Maximum lateral, longitudinal, and heading angle error using raw
scans and filtered scan data . 41

5.3 The tuneable parameters of the localization algorithm; the initial
guess of the parameters and the resulting parameters after twiddle
optimization, . 45

xv

List of Tables

xvi

1
Introduction

A future introduction of self driving cars could have a great impact on vehicle
safety, mobility, economy, and society as a whole. They could avoid traffic collisions
caused by human driver errors, reduce traffic congestion, relieve the driver from
navigational chores, etc [1]. For this to become reality the cars need to be able to
handle all possible scenarios without any accidents or failures. In order to achieve
this it is very important to be able to accurately localize the vehicle on the road,
with high precision. To ensure robustness of the localization, several independent
systems that rely on different sensors and maps are needed.

1.1 Objective

The goal of this project is two-fold. First, it is to create a method to automatically
extract a compact map for LIDAR localization, from a high density point cloud.
The map must be compact in the sense that it can be easily stored in the vehicle
computer as well as transferred over the cloud, enabling easy download of maps as
you go. Second, it is to implement an algorithm that can localize the car in the map
using a front facing LIDAR. The localization must estimate three states of the car;
lateral- and longitudinal position on the road and heading angle of the vehicle. The
main focus is on lateral positioning since the error margin is much smaller there than
for the longitudinal position. To guarantee that the vehicle will stay in its own lane,
not causing accidents by accidentally switching lane or driving off the road, there is
about a maximum of 0.5 m margin on each side of the vehicle, whereas the vehicle
could be 2 m off longitudinally without inducing any dangers. The aim for the thesis
is that it will be useful for Volvo Cars in deciding which map representation to use
and which positioning algorithms to develop in the future.

1.2 Scope

This project will investigate available methods and focus on implementing a com-
plete map representation and positioning algorithm. Only the front facing LIDAR,
which is designed for commercialization, will be investigated as the sensor used for
positioning. The project is not limited to a real time solution.

1

1. Introduction

1.3 Outline
In Chapter 2, an overview of the data and sensors used in the project, is given. There,
specifications of the high density point clouds as well as the front facing LIDAR,
can be found. Chapter 3 explains important background theory needed in order
to understand the developed methods; basic concepts like homogeneous coordinates
and different filtering techniques are described. Chapter 4 is divided into three parts;
the first goes through the method for automatic map extraction, the second as well
as implementation, optimization and choices regarding the localization algorithm.
Chapter 5 presents the results of the project, which are then evaluated and discussed
together with a project conclusion in Chapter 6. Chapter 7 describes ideas for future
development of the map representation and the localization algorithm. Potential
areas of improvement are highlighted here.

1.4 Related Work and Contributions
The mapping and localization problem is a widely studied area. Troughout our
thesis we have had a few main sources of information to which we would like to
give some extra credit. Probabilistic Robotics [2] by Sebastian Thrun, provides the
fundamental concepts of Bayesian filtering. It explains some filters such as extend
Kalman filter and the particle filter. This book also introduces the algorithms
of different sensor models such as beam-based model and likelihood field model.
It also suggests some ways to model measurement noise, which is important for
developing positioning algorithms. Several lectures from Introduction to Mobile
Robotics and lectures from Robot Mapping at University of Freiburg [3] introduce
some essential theory such as homogeneous coordinates and sensor modeling. They
explain the basic concepts of homogeneous coordinates and show some examples of
how to apply this to Radar and LIDAR data. The concepts and some application
examples of clustering methods such as single-link clustering and K means clustering
are described in [4] and [5]. Besides these, other literature and articles have been
studied throughout the whole project, out of which, some are cited in this thesis.

2

2
Data sets and Sensors

This chapter explains the data and sensors used in the project. The point clouds
and drive-logs used for automatic map extraction are explained and specifications
of the LIDAR, used for locaization, are given here.

2.1 High Density Point Cloud

The data for making a compact map was a high density point cloud, made by a
third party. It consisted of several merged high precision LIDAR scans, resulting
in about 3000-4000 points per square metre road, depending on the environment.
Each point had position given in wgs84 latitude, longitude and altitude, which was
converted into a local coordinate frame Sweref99TM [6] that is based on metric
Cartesian coordinates. The points also had information about reflected intensity.
To be able to handle the amount of data in the point cloud, it had been divided up
in separate files of approximately 200 meters of road in each. An example of a point
cloud can be seen in Figure 2.1.

Figure 2.1: An example of the high definition point cloud with artificial color
depending on the altitude.

3

2. Data sets and Sensors

2.2 Barrier Point Clouds

To simplify our work with the map extraction we also had access to data from the
high density point cloud where man made barriers such as guardrails etc. had been
extracted. The information for each point in the barrier point cloud was the same
as in the high density point cloud. Below in Figure 2.2 one can see what parts of
the point cloud has been extracted into the barrier point cloud (red).

Figure 2.2: The high density point cloud with extracted barriers plotted in red.

2.3 Road Data

Volvo Cars defined an autonomous drive route (AD-route) in Gothenburg, for the
Drive Me project, which intends to put 100 self-driving cars on the roads in Gothen-
burg, Sweden in 2017. In our project, the focus for map extraction has been on
a subset of the AD-route which stretches from Gnistängstunneln down to Tyn-
neredsmotet. In Figure 2.3, a map marking the subset, can be seen.

4

2. Data sets and Sensors

Figure 2.3: A view of the Gothenburg road network, were the used subset of the
AD-route is marked in red.

2.4 Drive-Logs
To be able to test and evaluate the barrier map and the localization algorithm, we
made use of drive logs from drives along the Gothenburg AD-route. These drive
logs contain ego vehicle data such as speed, yaw rate, pitch, roll etc. together with
post processed GPS data giving accurate positions for the car with an accuracy of
centimetres. This post processed GPS data has been used as ground truth for our
localization algorithm.

2.5 Front Facing LIDAR
The front facing LIDAR used in this project, is mounted behind the grill on produc-
tion cars, facing in the heading direction of the vehicle. The sensor’s main purpose
is obstacle detection and it forwards information to adaptive cruise control. This is
the sensor which has been used for localization in the project. Access was provided
to both raw measurements as well as a filtered version of the LIDAR data, as de-
scribed below.

Sensor specifications:
• infrared laser 905 nm
• horizontal field of view 145◦
• horizontal angular resolution 0.25◦
• vertical field of view 3.2◦
• 4 vertical fields of 0.8◦ each
• sensor frequency 25 Hz
• distance resolution < 0.1 m
• typical range 150 m

5

2. Data sets and Sensors

2.5.1 LIDAR Raw Data
The raw data from the sensor consists of a maximum of 5000 readings per scan, where
every reading has a given range, horizontal angle and vertical scan layer. With a
sensor calibration matrix, the scan data can be converted into Cartesian coordinates
in the vehicle ego reference frame. In the LIDAR scans, road side barriers are clearly
visible, most of the time. It is also possible to see other vehicles, hillsides, nearby
structures etc.

2.5.2 Filtered scan data
In this project we also used a filtered version of the scan data. In the filtered
scans, the maximum number of readings have been reduced to 2000 by only keeping
the closest reading for two readings in the same angle. The data has also been
converted to 2D by recalculating the ranges depending on the vertical angle and
thereby discarding the height information. All readings have also been a classified
whether it is originating from a static or dynamic object, enabling easy separation
of dynamic and static objects. In this version of the scans data, a lot of clutter has
been removed and road side barriers as well as on-road vehicles, stand out more
clearly.

6

3
Theory

In this chapter the essential background theory for this thesis is presented. Here,
the major concepts will be explained in order for the reader to better understand
what has been done in the project.

3.1 Ego Vehicle Reference Frame

The ego vehicle reference frame is a coordinate system with its origin in the centre
of the rear wheel axle of the vehicle. This coordinate frame follows along with the
car having the positive x-axis pointing in the vehicle driving direction, the positive
y-axis pointing to the left and the positive z-axis pointing upwards, see Figure 3.1.
This is a useful reference frame for describing objects with respect to the car e.g.
sensor data etc. If the position of the car is known objects can be transferred from
the ego reference frame to the global frame and vice versa.

Figure 3.1: The ego vehicle reference frame with origin in the rear wheel axle.

3.2 Homogeneous coordinates

Homogeneous coordinates are a system of coordinates that are commonly used in
projective geometry because of how easy they can be transformed between different
reference frames and for projections from 3D-space to 2D-space, [7]. These coor-
dinates are also sometimes referred to as projective coordinates. The definition of
homogeneous coordinates is that a point x = [x y] is homogeneous if it can be
multiplied with any scalar λ 6= 0 and still describe the same point. Cartesian co-
ordinates x are easily transformed into homogeneous coordinates xh by adding an
extra dimension that is functioning as a scale factor

7

3. Theory

x =
[

x
y

]
=⇒ xh =

 x
y
1

 . (3.1)

In this way it can be shown that any homogeneous coordinate that has been multi-
plied with a scalar still describes the same point in the Euclidean coordinate frame
as

xh =

 u
v
λ

 =

 λx
λy
λ

 = λ

 x
y
1

 . (3.2)

By dividing the homogeneous coordinates with the scale factor and removing the
resulting scale factor (which should be 1), one retrieves the corresponding Cartesian
coordinates.

By using homogeneous coordinates, affine transformations of points such as rotation
and translation can be made by only one matrix multiplication. This is very useful
since it can be used to describe the motion of a vehicle or to move points and objects
between different reference frames. A transformation matrix M is constructed as

M =
[
R t
0 1

]
, (3.3)

whereR is a rotation matrix, t is a column vector containing translation information
and 0 is a vector padding the matrix with zero’s. In two dimensions the rotational
matrix is formed as

R =
[
cos θ − sin θ
sin θ cos θ

]
(3.4)

and the translational vector

t =
[

tx
ty

]
, (3.5)

where θ is the rotation angle, tx and ty are the translation in x and y respectively.
A rotation and translation of a point or an object is then be made by

x′h = Mxh. (3.6)

The transformation is fully revertible as

xh = M−1x′h (3.7)

and consecutive transformations can done by a matrix product as

x′ = M1M2x. (3.8)

8

3. Theory

3.3 Bayesian Filtering
Bayes filter algorithm is a general algorithm for calculating posterior distributions.
This algorithm calculates the posterior distribution bel from measurement zt and
control data µt [8]. Bayes filter is under the assumption that the true states are
a Markov model, that is, no variables prior to the state xt will have influence on
the future state, except this dependence is mediated through the state xt. Bayes
filter is also recursive, the posterior distribution bel(xt) at time t is derived from the
distribution bel(xt−1) at previous time stamp t− 1.

Algorithm Bayes Filter (bel(xt−1, µt, zt))
1: do
2: b̄el(xt) =

∫
p(xt|µt, zt)bel(xt−1)dxt−1

3: bel(xt) = ηp(zt|xt)b̄el(xt)
4: return bel(xt)

Table 3.1: Bayes Filter Algorithm

As Table 3.1 indicates a single iteration of the Bayes filter contains a prediction step
and an update step. In the second line, the prior distribution bel(xt−1) is used to
predict the distribution at the current time step. In the third line the measurement
zt is used to update the estimation.

3.3.1 Extend Kalman Filter
The Kalman Filter (KF) is one of the most common Bayes filter implementations
due to its low complexity and high accuracy for linear systems [9]. However, KF
can only provide high quality results for linear models, while in the real world the
state transitions and measurement are usually nonlinear. A widely used approach
for nonlinear systems is the Extended Kalman Filter (EKF), which continuously lin-
earizes the nonlinear system and measurement models via Taylor Expansion around
the state that is currently estimated, so that the linear KF can be used [10][11].

For each time instance, the posterior distribution is described by the mean µt, and
the covariance Σt−1. The EKF algorithm is described in Table 3.2. The first and

Algorithm Extended Kalman Filter (µt−1,Σt−1, µt, zt)
1: µ̄t = g(µt, ut−1)
2: Σ̄t = GtΣt−1G

T
t +Rt

3: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)−1

4: ut = µ̄t +Kt(zt − h(µ̄t))
5: Σt = (i−KtHt)Σ̄t

6: return µt,Σt

Table 3.2: Extended Kalman Filter Algorithm

second line is the prediction step, where the predicted mean µ̄t and covariance σ̄t is

9

3. Theory

calculated by using the prior distribution µt−1. Line 3 calculates the Kalman gain
Kt at time instance t. This parameter indicates how much the measurement should
be incorporated into the new state estimate [12]. Line 4 and 5 shows the update
step. It uses the measurement zt to update the predicted posterior distribution. As
one can see in line 4, the mean µt is updated in accordance with Kalman gain Kt

and the innovation. The innovation indicates the difference between the predicted
measurement h(µ̄t) and the real measurement zt. And line 5 shows that the posterior
covariance Σt is also updated in proportion to the Kalman gain.

However, since EKF only performs well for systems that are almost linear on the
time scale of the sampling time, the application for EKF is limited. The first-order
linearization could introduce errors in the posterior mean µt and covariance Σt of
the transformed Gaussian random variable.

3.3.2 Particle Filter

The Particle Filter (PF) is a nonparametric implementation of the Bayes filter [13].
The PF estimates the posterior distribution by a finite number of parameters. When
using PF, the posterior bel(xt) is represented by a set of random state samples drawn
from the posterior. When illustrating a Gaussian distribution in a parametric form,
the probability density function that defines a Gaussian distribution is used. The
PF, however, will describe a distribution by a set of particles drawn from this dis-
tribution. That is why it is called a particle filter. The PF is nonparametric, which
implies that it can be used to describe more kinds of distributions other than the
Gaussian distribution as well [13], and it can be used to solve nonlinear problems.

In the PF, particles that are used to represent a posterior distribution can be de-
scribed as Equation (3.9).

χt = x
[1]
t , x

[2]
t , ..., x

[M]
t (3.9)

Here M represents the number of particles in the particle set χt at time t. Each
particle x[m]

t (1<m<M) is a hypothesis of the true state. The goal of the PF is
to estimate the posterior distribution bel(xt) by the set of particle χt. The PF
algorithm is described in Table 3.3.

10

3. Theory

Algorithm Particle Filter (χt−1, µt, zt)
1: χ̄t = χt = φ
2: for m = 1 to M do
3: sample x[m]

t p(xt|µt, x[m]
t−1)

4: ω
[m]
t = p(zt|x[m]

t)
5: χ̄t = χ̄t+ < x

[m]
t , ω

[m]
t >

6: end for
7: for m =1 to M do
8: draw i with probability ∝ ω

[i]
t

9: add x[i]
t to χt

10: end for
11: return χt

Table 3.3: Particle Filter Algorithm

As we can see the PF algorithm constructs the particle set χt recursively from the
previous time instance particle set χt−1. Line 3 shows that a state hypothesis xt at
time instance t is generated based on the particle x[m]

t−1 and the control input µt. In
line 4, the weight ω[m]

t of the particle x[m]
t is calculated. It indicates the probability

of the measurement zt given the particle x[m]
t . Line 5 indicates the set of particles

with their corresponding weights, which represent the posterior distribution bel(xt).

Line 7 to 10 shows the resampling process, which is an unique character of PF.
By resampling, the algorithm replaces M particles from the temporary set χ̄t with
another set of particles of the same size. The probability the particle x[i]

t gets selected
is proportional to the corresponding weight of this particle ω[m]

t . After resampling,
particles with higher weight might have been duplicated several times, whereas the
particles with the lowest weights might not have been selected at all. The new set
of particles will be distributed according the posterior distribution bel(xt).

3.4 Sensor Models

A sensor model is the environment measurement model of the sensor. It describes
how sensor measurements are generated in the real world and how it will be used in
the filtering algorithm. The choice of the model depends on the sensor. For the front
facing LIDAR it might be described by the beams it sends out and their reflection
from the surfaces of the obstacles.

3.4.1 Beam-Based Model
Since a LIDAR measures distance by sending out laser light and counting how long
time it takes for the beam to be reflected, the beam-based model is a good fit [14].
The beam-based model is a sensor model for range finders and there are some typi-
cal measurement errors of a range measurements that can be incorporated into the

11

3. Theory

model: small measurement noise, which is usually Gaussian, and random measure-
ment noise[14][3]. Therefore the model p(zt|xt,m) should incorporate all these errors.

1. Local measurement noise

When the LIDAR measures the range to the nearest obstacle, there might be error
within the measurement. This error might be due to the limited resolution of the
LIDAR, environment noise on the laser signal, etc. This measurement noise can
be modelled as a Gaussian distribution with mean zk∗t and standard deviation σhit.
This noise distribution is denoted as phit.

Since the LIDAR has limited measured range, the measurement must be smaller
than the maximum value zmax. The measurement noise can be described by Equa-
tion (3.10).

phit(zkt |xt,m) =
{
ηN (zkt ; zk∗t , σ2

hit) if 0 ≤ zkt ≤ zmax
0 otherwise (3.10)

Here zk∗t is the "true" range of the object measured by zkt . N (zkt ; zk∗t , σ2
hit) is the

Gaussian distribution of the noise, which can be calculated as Equation (3.11) shows.

N (zkt ; zk∗t , σ2
hit) = 1√

2πσ2
hit

e
− (zkt −z

k∗
t)2

2σ2
hit (3.11)

The normalization factor η can be calculated as Equation (3.12) indicates.

η = (
∫ zmax

0
N (zkt ; zk∗t , σ2

hit)dzkt)−1 (3.12)

The standard deviation σhit is tuneable and the optimal value of σhit could be found
by optimization.

2. Random measurement noise

There could be random noise in the LIDAR measurement. Random noise can be
treated as a uniform distribution across the whole sensor measurement range 0 to
zmax. The distribution of the random noise is denoted as prand, and it can be
calculated as Equation (3.13) indicates.

prand(zkt |xt,m) =
{ 1

zmax
if 0 ≤ zkt ≤ zmax

0 otherwise (3.13)

The local measurement noise and random noise will be added together with its
corresponding weights, zhit and zrand, which satisfies zhit + zrand = 1. The noise
distribution can now be described as Equation (3.14) shows [14].

p(zkt |xt,m) =
(

zhit
zrand

)T
·
(

phit(zkt |xt,m)
prand(zkt |xt,m)

)
(3.14)

The basic assumption for the beam-based model is that the noise in each mea-
surement beam is independent. Therefore the probability can be calculated as the

12

3. Theory

product of each measurement likelihoods p(zt|xt,m) = ∏K
k=1 p(zkt |xt,m). The beam-

based model algorithm is explained in Table 3.4 [14].

Algorithm beam-based model (zt, xt,m)
1: q = 1
2: for k = 1 to K do
3: compute zk∗t for the measurement zkt using ray casting
4: p = zhit · phit(zkt |xt,m) + zrand · prand(zkt |xt,m)
5: q = q · p
6: return q

Table 3.4: Beam-based sensor model Algorithm

This algorithm takes measurement from all beams zt, vehicle status xt, and map
m as input. As line 5 indicates the probability p(zt|xt,m) is the product of all the
individual beams likelihood, and this is done by the loop from line 2 to 5. As one
can see in line 4, where the individual beam likelihood p(zkt |xt,m) is calculated, both
measurement noise and random noise have been incorporated.

3.4.2 Likelihood Field
Likelihood field is another sensor model that might be suitable for LIDAR. The key
thought of this model is to project the end points of all the beams of one scan zt into
the same coordinate system as the map. Then find the minimum distance between
the end point of the beam and the objects in the map; the smaller the distance the
higher probability a beam will get [14]. Like the beam-based model, the algorithm
has to consider two types of noises: local measurement noise and random measure-
ment noise.

1. Local measurement noise

Similar to the beam-based model, a Gaussian distribution is suitable to describe
the local measurement noise. The minimum distance between the end point of the
beam (xzkT , yzkT)T and the objects in the map m is denoted as dist. Since ideally
the distance is zero, the probability of the beam can be described as a Gaussian
distribution with zero mean, as Equation (3.15) indicates.

phit(zkt |xt,m) = N (dist; 0, σ2
hit) (3.15)

2. Random measurement noise

Just as the beam-based model, a uniform distribution prand is used to describe
random measurement noise.
The probability p(zkt |xt,m) incorporates these two noise distributions, as Equa-
tion (3.16) shows, where zhit and zrand are the weights of local and random measure-

13

3. Theory

ment noise, and zhit + zrand = 1. They are tuneable, and the optimized combination
depends on the specific situation.

p(zkt |xt,m) = zhit · phit + zrand · prand (3.16)

The algorithm using likelihood field model is illustrated in Table 3.5.

Algorithm likelihood field model (zt, xzkt , yzkt ,m)
1: q = 1
2: for all k do
3: if zkt 6= zmax
4: dist = min

x′,y′
{
√

(xzkt − x
′)2 + (yzkt − y

′)2| < x′, y′ > occupied in m}
5: q = q · (zhit · prob(dist, σhit) + zrandom

zmax
)

6: return q

Table 3.5: Likelihood field sensor model Algorithm

As one can see in Table 3.5, the loop is similar to the one in Table 3.4, the final
probability is the product of the likelihood of all the end points. The difference is
in Line 4 and 5. In line 4, the minimum distance between the end point of a beam
(xzkt , yzkt) and the objects in map m is calculated, note that here (x′, y′) are the
points in the map. In line 5, one can see that the final probability is the product of
likelihood of all end points. The function prob(dist, σhit) calculates the probability
of dist in a Gaussian distribution with zero mean and standard deviation σhit [14].

3.5 Clustering
There are several different algorithms for clustering data points. In this section
two different methods will be described; k-means clustering, which is a very fast
algorithm trying to find a given number of clusters, and single linkage clustering
which is more computationally heavy but has the advantage that the number of
clusters does not have to be known.

3.5.1 K-means clustering
The k-means clustering algorithm is perhaps one the most widely used and studied
clustering algorithms [4][15]. Given a set of d-dimensional data points you initialize
k cluster centres randomly as guesses of the clusters mean centres, hence the name
of the algorithm. The position of these centres are then updated by assigning every
point to its nearest centre and then recalculating a new centre from these points.
This is then iterated until convergence when no points are assigned to a new centre.
The k-means algorithm is very simple to implement and scales linearly with the
number of data points. In practice it is a very fast and efficient clustering algorithm,
but it has the drawback that it needs to be initiated with the number of clusters k
to search for.

14

3. Theory

Algorithm k-means clustering (x, k)
1: initiate k random cluster centres m
2: while not converged
3: assign every data point x to its nearest centre mj

4: recalculate new centres as mnew
j = 1

Nj

∑
x∈mj x

5: iterate step 3 and 4
6: return mj, x ∈ mj

Table 3.6: K-means algorithm

3.5.2 Single Linkage Clustering
Single linkage clustering, also called nearest neighbour clustering, is a hierarchical
clustering method that starts off with every data point being its own cluster [5].
The distances dij between all the clusters are calculated and the two clusters that
are nearest each other are merged into one cluster. This procedure is repeated until
all points are in one cluster. The order and distance of merged clusters is usually
saved in a dendrogram. By cutting the dendrogram at a certain cutoff distance one
gets clusters that that have a minimum distance between each other.

Algorithm single linkage clustering (x, cutoff)
1: Calculate all point-to-point distances dij and store them in an N ×N matrix D
2: Initiate level of clustering L(0) = 0 and sequence number m = 0
3: Find the two nearest neighbours by min(dij) in D
4: Merge these two points into a cluster
5: Increment m = m+ 1 and set L(m) = dij
6: Delete the rows and lines in D corresponding to the two points
7: Calculate new distances between the cluster and all points and insert in D
8: Repeat step 2-7 until only one cluster
9: Trim the clustering tree at desired cutoff distance
10: return clusters

Table 3.7: Single linkage algorithm

The single linkage clustering algorithm has a computational complexity of O(n3),
so it takes long time for large data sets, but it has the advantage that is does not
require a given number of clusters to look for.

3.6 Naive Bayes Classifier
Naive Bayes classifier is a probabilistic classification method in machine learning
that is based on Bayes rule [15]. Say you have a data point d that you would like
to determine whether it belongs to either class A or class B, where both classes
have their own vectors with attributes xA and xB defining the two classes by width,
height color etc. Then the probability that the point d belongs to, for example,
class A can be calculated trough Bayes rule as

15

3. Theory

P (d|xA) = P (xA|d)P (d)
P (x) , (3.17)

where P (d|xA) is the probability of the data point given the attribute vector xA,
P (xA|d) is the probability of the attributes given the data point, P (d) is the prior
likelihood of the data point and P (x) is a normalizing factor that is the probability of
all attribute vectors. With the assumption that all class attributes are independent
from each other, the probability of the attribute vector in the numerator of the
above equation can be separated as

P (d|xA) = P (xA1 |d)P (xA2 |d) . . . P (xAn |d)P (d)
P (x)

= P (d)∏n
i=1 P (xAi |d)
P (x) ,

(3.18)

where P (xA1 |d) is the probability of the individual attribute xA1 given the data point
d etc. If one can also assume that the attributes are normal distributed N (µ,Σ)
among the data points, the probability product in the nominator can be calculated
through

n∏
i=1

P (xAi |d) = 1
|2πΣ|e

−
1
2 (d−µA)TΣ−1(d−µA)

, (3.19)

where µA is a column vector containing the maximum likelihood estimator mean
(MLE) for each attribute and Σ is a diagonal matrix containing the MLE variance
for each attribute as

µA =


µA1
µA2
...
µAn

 , Σ =


σ2

1 0 0 · · · 0
0 σ2

2 0 · · · 0
...
0 0 0 · · · σ2

n

 . (3.20)

If the prior likelihood for all data points are equal, Equation (3.19) will be sufficient
to determine which class to assign the point to since the denominator in Equa-
tion (3.18), P (x), is a constant that is equal for all data points. By calculating the
probability of the data point belonging to class A and the probability of belonging
to class B, one can classify the point by assigning it to the class with the highest
probability. For further explanation of Naive Bayes classifier see [15].

3.7 Forward Selection
Forward selection is a data driven method for selecting relevant feature variables for
machine learning classification [16]. The method works in such a way that you start
out by evaluating which one of the parameters that performs the best in classifying
the data. This parameter is chosen and then you move on to evaluate which one

16

3. Theory

of the remaining parameters performs the best in conjunction with the previous
selected parameter. This is iterated until all parameters have been chose and then
you select the set of parameters that performed the best together.

Algorithm forward selection
1: mark all features as available
2: initiate chosen features as 0
3: for (i = 1; i <= number of features; i++)
4: Evaluate classification performance for each available feature together with previously chosen features
5: Put the feature that performs the best in chosen features and mark it as not available
6: Save classification performance with this feature together with previous features
7: end for
8: select the set of features that together had the overall best classification performance

Table 3.8: Forward selection algorithm

3.8 Cross-Validation

To be able to evaluate a classification algorithm and to avoid overfitting to the data,
one usually divides up the available data into a training set and a validation set.
The training set is used for training the classifier and the validation set is used to
evaluate how well the algorithm performs. In cross-validation the data set is divided
into multiple partitions [15], where every part takes turn to function as validation
set while the other parts are used for training. The final result will then be the
average performance for all validation and training set combinations.

3.9 Twiddle Optimization

The twiddle optimization algorithm is a machine learning algorithm that can be
used to tune parameters for optimal performance. It is an algorithm that is based
on gradient descent, so it has the disadvantage that it might get stuck in local
minima.

17

3. Theory

Algorithm twiddle optimization
1: initiate the parameters with an initial guess
2: initiate a step length dP for each parameter
3: calculate the result of the cost function with the initial parameters, store as lowest cost
4: do while (sum(parameter step length) < threshold and iteration < maxIteration)
5: for (i = 1; i <= number of parameters; i++)
6: parameteri = parameteri + dPi
7: calculate cost through cost function
8: if cost < lowest cost
9: lowest cost = cost
10: step length i = 2·step length i
11: else
12: parameteri = parameteri − 2 · dPi
13: calculate cost through cost function
14: if cost < lowest cost
15: lowest cost = cost
16: step length i = 2·step length i
17: else
18: step length i = 0.5·step length i
19: end if
20: end if
21: end for
22:end do while

Table 3.9: Twiddle optimization algorithm

18

4
Method

In this chapter the methods for map extraction and localization are described. The
first part goes trough the developed method for automatic map extraction from high
density point clouds and the last explains the localization algorithm that uses the
resulting map.

4.1 Map Extraction from Barrier Point Cloud

4.1.1 Slicing the Barrier Point Cloud
To be able to handle and process the barrier point cloud in an efficient manner it is
divided into smaller pieces. In order to do this, a set of vehicle GPS-poses over the
whole demo route is extracted from a drive log-file. The GPS-poses, that are spaced
approximately 1 m apart, contains information about x,y,z-position in Sweref99
coordinates as well as pitch, roll and yaw of the vehicle. With this data the whole
point cloud can be transferred into the vehicles ego reference frame, see Section 3.1,
for one GPS-pose at a time by the transformation described in Section 3.2. For every
GPS-pose a "slice", consisting of all the points from one meter behind the pose to
one meter ahead in the driving direction, is filtered and saved together with the
GPS information of the pose, resulting in many small point clouds of road barriers.
See Figure 4.1 for a schematic view.

Figure 4.1: Schematic view over barrier point cloud ’slicing’.

4.1.2 Identifying Individual Barrier Segments
To identify individual barrier segments in the resulting point cloud slices from the
previous step, each slice is analyzed one at a time by using single linkage clustering,

19

4. Method

see Section 3.5.2. Clustering is first run with a rather long cutoff distance of 0.4
m. Resulting clusters that are wider than a threshold of 1 m are clustered again
with a shorter cutoff distance of 0.1 m, to see if they are divided up into smaller
clusters. These smaller clusters are then considered as individual barriers if they
have dissimilar width or height, otherwise they are merged back into one cluster.
The reason for this double clustering method is that some barrier segments are very
wide and have points too far apart to end up in the same cluster if the cutoff distance
is set too low. With the cutoff distance set longer, points that are not in the same
barrier segment sometimes get clustered together, however, these are then separated
in the second clustering due to having different heights and widths. See Figure 4.2
for a schematic view.

Figure 4.2: Schematic view over barrier point cloud clustering.

4.1.3 Classification and Offset Corrections
In this step the found barrier segments are automatically classified into one of 6
different barrier types, see Appendix A.1, by using a naive Bayes classifier, see
Section 3.6 and the section about automatic barrier classification below. To get a
robust but easy-to-calculate point describing the position of the each cluster, the
mean position of all points in each cluster is used. By calculating the distance and
direction from the GPS-pose to each barrier cluster center, one can determine if the
barriers are closest to the lanes in the same driving direction or if they are closest
to the lanes in the other direction or if the barrier is a center barrier shared by both
driving directions. If the distance between two clusters to the left of the GPS-pose
is greater than 10 meters this space is classified as the road in the opposite driving
direction. If no such distance is found, the road is classified as being behind the
barrier furthest to the left. The reason for assigning the barrier clusters to either
side is that each driving direction is getting a separate map.

Since the mean centers of the barriers are not necessarily at the distance where they
would be detected by the LIDAR sensor, the positions of the barrier segments are
plotted together with the logged LIDAR scans to investigate weather any of the
barrier types need a lateral offset. By doing measurements of differences between
barrier positions and logged LIDAR scans for every barrier type, on several different
locations along the road, average lateral offsets for each barrier type can be calcu-
lated. These offsets together with the barrier classifications can then be used to
place all the barriers center points in the correct position by moving them towards
the center of the road for both driving directions. Points in center barriers used by

20

4. Method

both driving directions are split into two points, each being moved according to class
offset, towards each road center. See Figure 4.3 for a schematic view of classification
and offset correction.

Figure 4.3: Schematic view over classification and offset of barrier points.

4.1.4 Barrier Segment Association

After doing the above steps, one is left with positions of barrier segments that have
been classified by type and by witch driving direction they belong to. The remaining
problem is now to know witch points to associate with each other as belonging to
the same barrier. Since there is information about which point cloud slice the
segments originated from, there is no need to search for a best match among all
points, but instead one can compare barrier segments from two subsequent slices,
since these come in spatial order according to the GPS-poses. At first a search
for nearest neighbours between positions of barriers from subsequent slices might
seem sufficient, however, at times this results in bridge pillars standing near the
barriers sometimes being incorporated in the barrier. To solve this problem the
barrier type classification is also included as a parameter. If two points from two
subsequent slices are each other’s nearest neighbours but have different barrier type
classifications, the second nearest point is considered as being in the same barrier
if it has the same type classification and is within a distance threshold of 0.5 m.
If no such point can be found the two nearest points are associated as belonging
to the same barrier despite different type classification, since connected barriers
may contain several different type classes. If a mutual nearest neighbour can’t be
found, the barrier is considered as ended. If a point from the subsequent slice is
not associated with any existing barrier it is initiated as the start of a new barrier.
This procedure is then iterated over all slices from start to end resulting in sets of
positions describing barriers along the road. See Figure 4.4 for a schematic view of
the barriers segment association method.

21

4. Method

Figure 4.4: Schematic view over the barrier segment association method.

4.1.5 Barrier Corrections

Due to errors in barrier segment classification or errors in clustering, the extracted
map has small errors in several places, appearing as meter wide dents in the barriers
which are visually conspicuous to the human eye. These errors are corrected on the
assumption that the barriers are straight, smooth and have no sudden lateral changes
in position. Any point of a barrier that has been classified to another type than
the two surrounding neighbours or to a class that is not common among the nearest
neighbours, is considered erroneous and its position is recalculated by interpolation
of the two nearest neighbours. To check for other errors, all the barriers are searched
through by doing a linear regression of four subsequent points and then checking
that the fifth point is laying within a threshold of 10 cm from this line. If the next
point is laying further away than the threshold, the algorithm searches for a better
match along the line, with a maximum search distance of 10 m to the next point. If
a point further down the barrier is laying within 5 cm of this line, all the positions
of the points in between are interpolated by these two points. If no point is found
within the maximum search distance, the barrier is kept as is. In Figure 4.5 you can
see a schematic view of the barrier correction method.

Figure 4.5: Schematic view over the barrier correction method.

22

4. Method

4.1.6 Automatic Classification of Barrier Segments

To be able to automatically classify clustered barrier segments to a barrier type, a
machine learning algorithm called naive Bayes Classifier is implemented, see Sec-
tion 3.6 for a description. A training set of barrier segments is made by saving
and manually classifying 264 barrier segment clusters from the barrier identification
algorithm described in Section 4.1.2. Seven possible feature parameters of the clus-
ters are chosen for evaluation; width, height, y-variance, z-variance, xy-covariance,
xz-covariance and yz-covariance. To see which features are best for barrier cluster
classification, forward selection is used together with cross-validation. The training
set is split up into three parts by randomly assigning barrier clusters to either part,
taking one class at a time to be sure to get a few of each class in all three parts. For
every evaluation of a new parameter two parts are used for training of the classifier
and one part is used for validation. All three parts are rotated to function as vali-
dation set and training set, giving a final result of the misclassification rate as the
average between the three runs. The forward selection algorithm is iterated until all
features have been chosen and the set of parameters used for classification are the
set that together gives the lowest misclassification rate.

When training the naive Bayes Classifier for use in the map extraction algorithm
the whole training set is used. Since there is little information on how common
each barrier type is on the route, the prior likelihood of each type is set equal for
all types. The classification is made by assigning the most probable class to every
extracted barrier segment according to the probability given by the classifier.

4.1.7 Compact Map Representation

When considering only a meter of barrier at a time, most man made barriers are
more ore less straight. Even curved segments are straight enough to be accurately
represented by a collection of straight lines. Because of this the choice of map
representation is to describe every barrier as a set of connected line segments, all
described by a starting point and an end point, both in only two dimensions, x and
y. Since the lines are connected, the end point of one line is the starting point of the
next, reducing the amount of data even further. Hence, a barrier being described
by N lines will only need N + 1 points with x and y to describe it.

In the barrier map extraction, positions of the barriers are extracted with one point
for every meter. Due to the fact that road side barriers are very straight, a point per
meter is in most places redundant, since the result is a set of points all describing
more or less the same line. By iterating over every other point in a barrier and
forming a line between point k and k + 2 and then calculating the distance from
point k + 1 in the middle to the formed line, point k + 1 can be discarded as
redundant if it is laying closer to the line than 5 mm. By iterating this procedure
over the barrier until no points can be removed, the barrier is now described by
fewer points in straight parts reducing the data size of the map significantly. The
algorithm for discarding points in this way is described in greater detail below.

23

4. Method

Algorithm for detecting and discarding redundant points (pointsInBarrier)
1: do while nRemovedPoints > 0
2: nRemovedPoints = 0
3: for i=1; i<nPointsInBarrier-2 ; i=i+2
4: form line between point i and i+2
5: calculate distance from point i+1 to line
6: if distance < 5 mm
7: deleteList(end+1) = i+1
8: nRemovedPoints++
9: end for
10: delete all points with indices in deleteList
11: end while

Table 4.1: Description of the algorithm that detects and discards redundant points
in barrier.

Since the LIDAR often only sees the nearest barrier to the vehicle, barriers that are
behind the nearest barrier do not need to be included in the map. This results in
a maximum of two barriers along the road in the map limiting the data size even
further.

4.2 Localization Algorithm

In order to position the vehicle in the map, it is necessary to choose an appropriate
localization algorithm. An easy way to try out different algorithms is to create
a simple test environment, with simulated LIDAR measurements and simulated
vehicle positions as ground truth. In this way noise free "perfect" data can be
achieved. With "perfect" data it easy to determine if a localization algorithm works
well since the quality of the data does not effect the result.

4.2.1 Simulation Environment

In order to understand the vehicle localization problem better, a simulation environ-
ment was set up in the beginning of the project. The idea was to create simulated
data that would not contain any errors or noise. Then implement a particle filter
to try to localize the car in a test map. This simulation environment worked as a
simple test bench to try out different localization algorithms.

The map, which is largely inspired by an assignment in Chalmers Sensor Fusion
course (period 2015/2016, course code SSY320, lead by Lennart Svensson, Signals
and systems department), is shown in Figure 4.6.

24

4. Method

Figure 4.6: Example of test map in simulation environments, this map is largely
inspired by an assignment in Chalmers Sensor Fusion course (period 2015/2016,
course code SSY320, lead by Lennart Svensson, Signals and systems department)

The route of the car is generated by clicking a path in the map and the resulting
path is automatically smoothed. LIDAR measurements for each time stamp is gen-
erated according to the position of the car in the route and the map. The sampling
time and speed of the car is set constant and the vehicle state x, y, and heading
direction θ, at each time instance is calculated accordingly. The LIDAR measure-
ments are generated given the vehicle pose and the angles of the beams. For each
time instance and corresponding vehicle pose, the beams of all angles are drawn and
the intersection points between beams and the map are determined. The testing en-
vironment is illustrated in Figure 4.7, and an enlarged version is shown in Figure 4.8.

25

4. Method

Figure 4.7: Testing environment with route of the car (green and blue dash line)
and the LIDAR beams (red lines) shown

Figure 4.8: Zoom-in bird view of the car (the green object) and LIDAR beams
(red lines)

From Figure 4.7 and Figure 4.8 it can be seen that the route of car is indicated by
green and blue dashed lines. This route is generated by clicking route nodes in the
map. The green object indicates the car, the red lines are the LIDAR beams, and

26

4. Method

the length of the beams are the "exact" distance measurements. The LIDAR view
is shown in Figure 4.9.

Figure 4.9: LIDAR view when the ego vehicle in (0,0) position and heading up-
wards

Figure 4.9 shows the artificial LIDAR view. Here there are 20 LIDAR points in
total. When the vehicle is standing in the position as the green object in Figure 4.8,
Figure 4.9 is what the LIDAR is seeing as the ego vehicle in (0,0) position and
heading upwards.

The motion model being used is a simplified description of the car’s movement,
shown in Equations (4.1) to (4.3).

xk+1 = xk + (dT · vk · cos(θk)) (4.1)
yk+1 = yk + (dT · vk · sin(θk)) (4.2)

θk+1 = θk + dT · δk (4.3)

Here xk, yk are the coordinates, θk is the heading direction, vk is the speed and δk is
the yaw-rate of the car at the time instance k, respectively. The variable dT is the
sampling time interval for the particle filter. The assumption is that the car speed
and yaw is constant during the sampling period. The speed readings that are used
in the motion model are accompanied by Gaussian noise. The standard deviation
of this noise is σspeed = rspeed · v, which is proportional to the speed.

The exact yaw rate is calculated as δk = θk+1−θk
dT

, and Gaussian noise is also added
to the yaw rate that is used in the motion model. The standard deviation of this
Gaussian noise can be expressed as σyaw = ryaw · ω + CyawNoise. As one can see it
depends on both the yaw rate and a constant CyawNoise, in this way both ryaw and
cyawNoise are tuneable.

27

4. Method

With the ground truth and measurements set up, a particle filter (PF) is then
implemented in order to localize the car in the testing environment. For initial points
it is assumed that the initial state is known, therefore all particles are initialized in
the same state. The flow of the PF is illustrated in Figure 4.10.

Figure 4.10: Schematic view of the particle filter

With the map, control input (vehicle speed and yaw rate), and LIDAR measurement
set up, together with the ground truth, different algorithms can be tested.

4.2.2 Choice of Sensor Model
The front facing LIDAR measures the distance by sending laser light to the object,
and reading the reflection from it. With the angle of each beam and its correspond-
ing measured distance known, it is possible to calculate the coordinates of the end
point of every beam in the global coordinate frame. In the update step of particle
filter, the LIDAR measurements are used to update the weights of the particles,
and how to incorporate these measurements depends on the type of sensor model
used in the particle filter. Here, two sensor models are investigated: the beam-based
model, which compares the end points of every particle state with the LIDAR mea-
surement at the same time instance, and the likelihood field model, which calculates
the distance between the end points of particles and the map itself, the smaller the
distance the higher the probability. These two models are tested first in the testing
environment then in the real world environment with real log data.

For the real LIDAR scan data, there are many scan points per time stamp, and
it is too time consuming to take all the scan points into account for update step,

28

4. Method

therefore in this thesis only 10 beams are selected as LIDAR measurement for each
time stamp. The beams are chosen in such a way that they have a spread over the
whole scan. Since a LIDAR scan is performed from left to right it is sufficient to
pick every n:th beam to get this spread with n = m/10, note that m represents the
total number of scan points.

4.2.2.1 Beam-based Model

In the beam-based model, the angle of each beam of the LIDAR is fixed, therefore
each particle has its own set of beams given its position and heading angle. For
every beam of every particle, the intersection between the beam and the map was
calculated. An illustration of the beam-based model in shown in Figure 4.11.

Figure 4.11: Beam-based model illustration

As one can see in Figure 4.11, the blue line indicates the map, the green object
represents the car, where the direction it points indicates the heading angle, and the
red line indicates the LIDAR beams. Here four LIDAR beams are presented, and
their closest intersection with the map are considered as the end points of the beams.

For each particle, every beam has a distance xkt according to the position of the par-
ticle and hypothetical intersection between map and beam, where (k = 1, . . . , K)
and K is the total number of beams. The measured distances of every beams of one
particle is considered as a set {x1

t , x
2
t , ..., x

K
t }, and this set of distances is used to com-

pare with the LIDAR measurements, which is also a set of distances {z1
t , z

2
t , ..., z

K
t }.

For each beam of a particle, let xkt denote the measured distance, and zkt denote the
LIDAR measurement at the same time instance. The probability of this particle is

29

4. Method

calculated according to the algorithm presented in Table 3.4. One can see in line
4 of Table 3.4 that p = zhit · phit(zkt |xt,m) + zrand · prand(zkt |xt,m). The parameters
zhit and zrand determines the weights of local measurement noise and random noise,
and they satisfy zhit + zrand = 1. The more weight given to the local measurement
noise the more impact the value of standard deviation of the Gaussian distribution
will have on the final probability of the particle. On the other hand, the more
weight random noise has, the more the final probability will be influenced by the
random noise, which is the same for all the beams, that is, the beams will be less
distinguishable from each other.

The different combination of zhit and zrand leads to different lateral, longitudinal, and
heading angle error of the estimation. For example, with a small standard deviation
of the Gaussian distribution of the local measurement noise, the hypothetical beams
with a distance that is far away from the true LIDAR measurement is likely to
get a very low probability regarding the local measurement noise. In this case if
the local measurement noise has a high weight, then more particles are likely to
get killed during the resampling step. However, if the random noise has a high
weight, then every beam’s probability will increase in an equal amount, and every
particle’s probability will increase, which means more particles will survive during
the resampling step. This might, on one hand reduce the precision of the estimation
since more particles with less accurate estimated state survived, but on the other
increase the possibility for particles to get back on track if something goes wrong,
since more particles with different states survived, it is easier to let the correct one
survive and kill the wrong one in the following steps.

In order to investigate the weight update regarding longitudinal positions of the
particles, we assume that all particles have the lateral position and the heading
angle as the ground truth, and only spread out longitudinally. The particle weight
update in this case is illustrated in Figure 4.12.

30

4. Method

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference between particle’s longitudinal position and ground truth [m]

pa
rt

ic
le

 w
ei

gh
t u

pd
at

e

Figure 4.12: Particle weight update according to longitudinal position of the par-
ticle, the longitudinal distance between particles and ground truth are evenly spread
out from -10 meters to 10 meters, and here the particles that are close to the ground
truth gets high weight, while the particles that are far away from the ground truth
get very little weights.

31

4. Method

It can be seen that if the particle is spot on the ground truth position, then the
particle will get the highest weight, and if the particle is far away from the ground
truth position it will only get a fairly small weight. The weight update will then
influence the resampling process as explained before. The resampling result is shown
in Figure 4.13.

32

4. Method

−6 −4 −2 0 2 4 6 8 10 12
−10

−5

0

5

10

15

20

25

lateral distance [m]

D
iff

er
en

ce
 b

et
w

ee
n

pa
rt

ic
le

’s
 lo

ng
itu

di
na

l p
os

iti
on

 a
nd

 g
ro

un
d

tr
ut

h
[m

]

particles before resampling
particles after resampling
ground truth
scala measurement/mapLIDAR

Figure 4.13: Resampling process according to longitudinal position of the particle,
the particles are evenly spread out longitudinally from -10 meters to 10 meters, while
the ground truth is at 0 position, the graph shows that after resampling, only the
particles that are very close to the ground truth got selected.

33

4. Method

Figure 4.13 shows that after resampling, the particles with higher weights, i.e. ac-
cording to Figure 4.12 the particles that are spot on or close to the ground truth have
been repeated many times, while the particle with very low weights barely get picked
during the resampling process, which is as expected. Similarly, from Figure 4.14 we
can see the weight update regarding the lateral positions of the particles. The par-
ticles that are located on the expected position get the highest weights, and the
particles that are far off the position get almost zero weights. And from Figure 4.15
we can see that the resampling results for particles only spread out laterally. The
particles with higher weights has higher chances to get resampled during the resam-
pling process, therefore we can observe that the particles with higher weights shown
in Figure 4.14 get resampled many times as Figure 4.15 shows, and the particles
with lower weights or almost zero weights barely get resampled.

Figure 4.14: Particle weight update according to lateral position of the particle

Figure 4.15: Resampling process according to lateral position of the particle, the
particles are evenly spread out laterally from -5 meters to 5 meters, while the ground
truth is at 0 position, the graph shows that after resampling, only the particles that
are very close to the ground truth got selected.

34

4. Method

In Figure 4.16 and Figure 4.17 one can see the weight update regarding the heading
angles of the particles, and the resampling results for particles with different heading
directions.

Figure 4.16: Particle weight update according to heading angles of the particle

Figure 4.17: Resampling process according to heading angles of the particle

Different combination of zhit and zrand, together with the value of standard deviation
of the local measurement noise and the value of random noise will results in different
weight update of particles. Optimization regarding these parameters is explained in
more detail in Section 4.3.2.

4.2.2.2 Likelihood Field

To calculate the intersection between every beam of every particle and the map
takes a lot of computational effort, which therefore slows down the particle filter
operation. In order to make the algorithm run faster, another sensor model called
likelihood field is tried out. The assumption of the likelihood field model is that the

35

4. Method

angle of each beam of the LIDAR is fixed and the distance of each beam for every
particle is also fixed. They are all equal to the LIDAR measurement. In this way,
the end points of all the beams will have the same position for all particles in each
particle’s ego view. An illustration of likelihood field is shown in Figure 4.18.

Figure 4.18: Likelihood field model illustration

Here the angle and distance of each beam for every particle is fixed, and they are
the same as the LIDAR measurement. In Figure 4.18 one can see the end points
of four LIDAR beams from the particle standing in the green object’s position. For
different particles, as long as the particle’s states and the relevant position of the
end points of all beams to this particle is known, the position of the end points in
the global coordinate frame can be calculated by using a transformation matrix, as
Equation (3.3) indicates.

For each beam, the end point can be denoted as (xzkT , yzkT)T , k = 1, . . . , K, where K
is the total number of beams. The minimum distance between the end point and an
objects in the map m has to be calculated, denoted as dist. The probability of each
beam is a Gaussian distribution with zero mean regarding local measurement noise,
as phit(zkt |xt,m) = N (dist; 0, σ2

hit). To use the likelihood field model, it is not needed
to calculate the intersection between each beam and the map, but only calculating
the minimum distance between each end point of the beam and the nearest object
in the map is necessary.
Just like the beam-based model, both local measurement noise and random noise
needs to be considered. The probability of each beam is p(zkt |xt,m) = zhit · phit +
zrand · prand and the final probability for each particle can be calculated as Table 3.5
indicates.
Similarly, the optimized combination of zhit, zrand, standard deviation σhit, and
random noise prand was found by the optimization described in Section 4.3.2.

36

4. Method

4.3 Implementation
To make a compact version from the high density point cloud map, a complete
solution was implemented and optimized. To localize the car within the desired
error margin in the map, a particle filter was implemented with two different sensor
models. All functions and algorithms were implemented in MATLAB.

4.3.1 Localization Algorithm
For the particle filter algorithm, both the beam-based model and the likelihood field
model have been implemented in MATLAB. The process of each iteration of the
particle filter is explained in Figure 4.10.

In the prediction step, the predicted state is calculated based on the prior state and
control input, the algorithm shown in Equations (4.1) to (4.3) is implemented. For
the update step, the predicted state is updated by taking the map and LIDAR mea-
surement into consideration. Both the beam-based model and the likelihood model
are implemented as particle weight update methods. For the beam-based model, the
algorithm shown in Table 3.4 is implemented. And for the likelihood field model,
the algorithm described in Table 3.5 is implemented.

For parameters such as the weight of local measurement noise zhit and random noise
zrand, standard deviation of the Gaussian local measurement noise distribution of
σhit, random noise prand, number of particles, and number of selected beams, initial
values has been set in the beginning to test the algorithm. After the implementation
had been confirmed functioning well, many different combinations of those parame-
ters has been tried out in order to find out to which degree each parameter settings
can influence the result of the particle filter. An optimization algorithm has also
been implemented, which is explained below.

4.3.2 Optimization of Localization Algorithm Parameters
In order to make the localization algorithm perform as good as possible, the tunable
parameters of the algorithm were optimized. The possible parameters to optimize
were the amount of Gaussian noise in the particle motion model determined by rspeed,
ryaw and Cyaw, the variance of the likelihood field in the sensor model sigmahit, the
probability of random noise in the sensor model Prand and the weights to weigh
together the probabilities in the sensor model. The weights for the probabilities
were considered as only one parameter since both weights must sum up to 1, giving
zhit = 1− zrand, giving a total of 6 parameters to optimize.
The optimization was performed by using the Twiddle algorithm described in Sec-
tion 3.9. The cost function to be minimized by the optimization algorithm was
constructed to put equal weight on all three states to estimate; lateral- and longi-
tudinal position and heading angle. Since the error in longitudinal position was so
much larger than for lateral position and heading angle the error for the two latter
had to be emphasized. The reason for this was that improvement in longitudinal

37

4. Method

positioning was not be made on the cost of making worse results in lateral position
or in heading angle. The cost function was calculated as

cost =20 · µMaxLateralError + 40 · µMeanLateralError+
µMaxLongitudinalError + µMeanLongitudinalError+
3 · µMaxHeadingError + 9 · µMeanHeadingError

(4.4)

where µ denotes the average over all analyzed log-files. Due to time constraints only
6 minutes of driving from log-files were used in the optimization in order for it to
finish in reasonable time.

38

5
Results

5.1 Map Extraction

Implementation of the method for automatic map extraction described in Section 4.1
was made and an example of the result can be seen in Figure 5.1. In this figure it
can be seen that the extracted map lines in red over the high density point cloud
barriers in green. This figure is only a small part of the map but it is representative
for the overall result.

Figure 5.1: An example of the result of the automatically extracted map. The
green points are the barriers from the high density point cloud and the red lines
are the resulting map. Note how well the extracted map lines represents the point
cloud.

5.1.1 Barrier Classification

The results from the forward selection of feature parameters for barrier classification
can be seen in Figure 5.2. The x-axis of the plot is cumulative, meaning that the
misclassification result for each feature is for that feature combined with all the
previous ones. The chosen features for further use in the classification process where
the ones that gave the lowest misclassification rate; y-variance, z-variance and xz-
covariance. Cross-validation on the training set gave an average misclassification

39

5. Results

rate of 3% using these parameters. As can be seen in the result plot below, adding
more parameters for classification increased the misclassification rate.

Figure 5.2: The results from the forward selection of feature parameters. The line
shows the average misclassification rate for every added feature.

5.2 Compact Map Representation

The result of the compact map representation can be measured in two parameters;
amount of data per kilometre road and how well the localization algorithm performs
when using the map. The amount of data per kilometre road is a number easy to
calculate, whereas the performance of the map for localization is harder to measure
since the localization depends on many parameters. For this reason the performance
of the map for localization will be the result of the positioning algorithm.

In a worst case scenario where there are two barriers alongside the road, each of
them being curved, requiring one point per meter road to be described accurately,
the compact map will need 32 kB/km storage. This is calculated as: 1000 line
segments per barrier, having 1001 points with double precision x and y for every
point, times two barriers resulting in

mapDataSize/km = 1001 points · 2 coordinates · 8 bytes · 2 barriers
= 32032 bytes/km.

(5.1)

However, road side barriers are straight most of the time allowing the map repre-
sentation to be compressed even further by removing redundant point according to
the algorithm described in Table 4.1. This algorithm removed on average 70% of
the points in the barriers reducing the data size of the map representation to 9.6
kB/km.

40

5. Results

5.3 Localization of the Vehicle
The localization simulation was run using the compact map with recorded log-data
from 23 log-files, corresponding to approximately 23 minutes of driving. Results of
average errors and maximum errors can be seen in Table 5.1 and Table 5.2. The
algorithm was run with the optimized parameters in Table 5.3, 500 particles for
the particle filter and with 10 beams/points chosen from every LIDAR scan for
localization. The evaluation was done using both raw scan data as well as the
filtered scan data, for comparison between the two. Results from individual log-files
can be seen in the sections below.

Average positioning errors

Raw scans Filtered scan data
Error SD Error SD

Average lateral error 0.043 m 0.041 m 0.035 m 0.026 m
Average longitudinal Error 0.66 m 0.57 m 0.48 m 0.37 m
Average heading angle error 0.14◦ 0.13◦ 0.12◦ 0.091◦

Table 5.1: Average lateral, longitudinal, and heading angle error with standard
deviations. Raw LIDAR data compared with filtered scan data

Maximum positioning errors

Raw scans Filtered scan data
Maximum lateral error 0.88 m 0.13 m
Maximum longitudinal error 2.4 m 1.9 m
Maximum heading angle error 2.4◦ 0.79◦

Table 5.2: Maximum lateral, longitudinal, and heading angle error using raw scans
and filtered scan data

41

5. Results

5.3.1 Lateral Error

In Figure 5.3 and Figure 5.4, one can see results for the individual log-files with a
comparison between using the raw LIDAR scans and using the filtered scan data in
the localization algorithm.

Figure 5.3: A comparison over the average lateral error in each log-file, when using
raw scan data and using the filtered scan data. Note that the lateral error from using
the filtered scan data is most of the time lower or approximately equal to lateral
error when using raw scans.

Figure 5.4: A comparison over the lateral max-error in each log-file, when using
raw scan data and the filtered scan data. Note that the lateral max error from using
the filtered scan data is most of the time lower or approximately equal to lateral
max error when using raw scans.

42

5. Results

5.3.2 Longitudinal Error

In Figure 5.5 and Figure 5.6, one can see results for the individual log-files with a
comparison between using the raw LIDAR scans and using the filtered scan data in
the localization algorithm.

Figure 5.5: A comparison over the average longitudinal error in each log-file, when
using raw scan data and the filtered scan data. Note that, on average, the filtered
scan data gives a lower average error than the raw scans.

Figure 5.6: A comparison over the longitudinal max-error in each log-file, when
using raw scan data and the filtered scan data. Here there are no obvious difference
between raw scans and the filtered scan data, however, they do perform differently
on the same log-files.

43

5. Results

5.3.3 Heading Error

In Figure 5.7 and Figure 5.8, one can see results for the individual log-files with a
comparison between using the raw LIDAR scans and using the filtered scan data in
the localization algorithm.

Figure 5.7: A comparison over the average heading angle error in each log-file,
when using raw scan data and the filtered scan data. Note how the filtered scan
data performs better for almost every log-file, however, differences are only about
0.05◦.

Figure 5.8: A comparison over the heading angle max-error in each log-file, when
using raw scan data and the filtered scan data. Note that the filtered scan data
most of the time performs better or equal to when using raw scan data.

44

5. Results

5.4 Optimization of Localization Algorithm Pa-
rameters

By running the twiddle algorithm on the tuneable parameters of the localization
algorithm, the results in Table 5.3 were achieved. The upper part is the initial
guess of parameters that were chosen by reasoning, the lower part is the resulting
parameters after optimization. The cost function described in Equation (4.4) was
evaluated to 17.8 for the initial guess parameters and 10.4 for the optimized param-
eters, indicating the magnitude of the improvement of the localization algorithm.
In the sections below one can see the results of the optimization for each individual
log-file.

rspeed ryaw CyawNoise σlikelihood prand zhit zrand
Initial guess 0.1 0.1 10 0.05 0.1 0.9 0.1
Optimized 0.02 0.25 5 0.1 0.6 0.7 0.3

Table 5.3: The tuneable parameters of the localization algorithm; the initial guess
of the parameters and the resulting parameters after twiddle optimization,

5.4.1 Lateral Error

In Figure 5.9 and Figure 5.10, one can see results for the individual log-files before
and after the optimization of parameters. Since the optimization was carried out
using the filtered scan data, the results below are produced using the filtered scan
data as well.

Figure 5.9: A comparison over the average lateral error in each log-file, before and
after optimization of the algorithm parameters. Note how the average lateral error
became slightly worse after optimization.

45

5. Results

Figure 5.10: A comparison over the lateral max-error in each log-file, before and
after optimization of the algorithm parameters. Note how the largest peaks in the
lateral max error has been drastically reduced after optimization.

5.4.2 Longitudinal Error

In Figure 5.11 and Figure 5.12, one can see results for the individual log-files before
and after the optimization of parameters. Since the optimization was carried out
using the filtered scan data, the results below are produced using the filtered scan
data as well.

Figure 5.11: A comparison over the average longitudinal error in each log-file,
before and after optimization of the algorithm parameters. Note how the average
longitudinal error has been reduced for every log-file, after optimization.

46

5. Results

Figure 5.12: A comparison over the lateral max-error in each log-file, before and
after optimization of the algorithm parameters. Note how the maximum longitudinal
error for each log-file is reduced after optimization.

5.4.3 Heading Error

In Figure 5.13 and Figure 5.14, one can see results for the individual log-files before
and after the optimization of parameters. Since the optimization was carried out
using the filtered scan data, the results below are produced using the filtered scan
data as well.

Figure 5.13: A comparison over the average heading angle error in each log-file,
before and after optimization of the algorithm parameters. Note how the average
heading error is slightly better or equal for every log-file, after optimization.

47

5. Results

Figure 5.14: A comparison over the heading angle max-error in each log-file, before
and after optimization of the algorithm parameters. Note that the optimization
improved the heading max-error significantly for most log-files.

48

6
Discussion

The overall impression from the results is that the project have been successful in
both automatically extracting a map from the high density point cloud and storing
the map in a compact representation, as well as being able to accurately position
the car in the map by using the front facing LIDAR. In Table 5.1 and Table 5.2 one
can see that lateral position and heading angle are estimated very precisely when
using the filtered scan data, with both estimates having a very low mean error as
well as a maximum error that is low enough to ensure that the vehicle stays inside
the road lane. The longitudinal position has a fairly low mean error and a max
error that is not terrible. Although there is still room for improvements, the map
could be used in a cloud-based fashion, and the positioning results are enough for
autonomous driving.

6.1 Map
The map extraction seems to be working well with no major errors or missed bar-
riers. Depending on the point cloud and classification algorithm there are always
a risk for misclassification of segments or barriers standing so close to each other
that they end up in the same cluster leading to errors in position and/or misclas-
sification. The algorithm handles these errors by making the corrections explained
in Section 4.1.5, however, there is no guarantee that it will be sufficient and man-
ual inspection/verification will still be needed. An idea for a different approach for
determining a robust position of barrier segments than taking the average position,
would be to find a point that lies on the edge of the barrier about the height were the
LIDAR would "see" the barrier. This is a more complicated point to calculate but
it might make classification and offset correction of the barriers redundant, leaving
less possible sources of error.

6.2 Localization
From Table 5.1 and Table 5.2, one can see that the filtered scan data gives better
position estimates. This is expected though, since the filtered scan data contains
dynamic and static object classification, allowing the possibility of filtering out most
points that belong to dynamic objects.

The numbers in Table 5.1 and Table 5.2 indicate that the localization algorithm is
working very well. One should keep in mind though, that the results are only from

49

6. Discussion

about 23 minute of driving. To be able to say that it works in all traffic situations
one has to verify it by running simulations on a lot more log-files.

6.2.1 Lateral Error
As one can see in Table 5.1 and Table 5.2, the average lateral error using filtered scan
data is 3.5 cm, which is within our goal of 5 cm. The maximum lateral error is 0.13
m, which is about half a tyre width, leaving plenty of margin on both sides of the car
when driving in the middle of the lane. This is a reasonable result since the barriers
contain a lot of lateral information easy to perceive for the LIDAR. According to
the LIDAR specification the distance resolution is < 0.1m [17], and our results
indicates that it can perform range measurements with centimetre accuracy. The
lateral performance of the localization algorithm could be improved in many ways:
optimize the offsets for each barrier type by an automatic algorithm like e.g. twiddle;
use vertical information of the barrier; including more objects to the map such as
bridge pillars and light poles.

6.2.2 Longitudinal Error
The average longitudinal error seen in Table 5.1 is 0.48 m, which is within our goal of
0.5 m. Since the route of the log file contains much more straight road than curvy
road, the longitudinal information might be a bit insufficient for the positioning,
as the barriers position on both sides of the road differs little in a straight road.
Nevertheless, both the average and maximum longitudinal error (1.9 m, shown in
Table 5.2) are within the acceptable range. Another aspect to take into account is
that longitudinal position is much harder to estimate than the lateral, due to the
fact that the longitudinal speed of the vehicle is many times larger than the lateral
speed, giving a higher uncertainty in the longitudinal direction. Besides, the lateral
information is much richer than longitudinal information in this case.

6.2.3 Heading Angle Error
Table 5.1 and Table 5.2 shows that the average heading angle error using filtered
scan data is 0.12◦ with a maximum error of 0.79◦. These results would seem ade-
quate for autonomous driving and they are probably the product of having several
LIDAR measurements on the same barrier but at different distances, giving pose
hypothesises with incorrect heading angle a lot lower weight, since measurements
on the barrier far away will be very off, even for small angles.

6.3 Particle Filter
The particle filter contains two stochastic processes; first when the particles are
propagated forward using the measured yaw-rate and speed with added random
Gaussian noise for every particle and second, in the re-sampling step where a new
set particles are drawn randomly from the existing set, picking a particle for the
new set with a probability proportional to its weight. This results in that two

50

6. Discussion

simulations on the same log-file will not produce the exact same results. Due to
the computational limit of the computer, the following settings were chosen for
the simulation: 500 particles, 10 beams, and 0.1 likelihood field standard deviation
σlikelihood. The result of each simulation depends on how wide the particles spread
if the map goes off slightly or when other cars might be blocking the view of the
LIDAR. When σlikelihood is large the particles spread out more, therefore the particles
can correct their positions quicker if the estimated position is wrong, on the other
hand they have higher risk of creating an incorrect position estimate when they
spread out wider. One can see that there is a trade- off between precise accuracy
and the possibility of correcting the position estimate if going off too far. The
optimized value of σlikelihood depends on which result is more important, for example
to get the least average lateral error and the least maximum lateral error the setting
of σlikelihood is different. The optimized value in Table 5.3 is only calculated under
the assumption that roughly equal emphasis has been put on both average and
maximum lateral error, and less focus on longitudinal and heading angle error, as
the cost function Equation (4.4) indicates.

6.4 Parameter Optimization
In Figure 5.9 to Figure 5.14 one can see that the optimization managed to improve
all results except the average lateral error which increased slightly in almost every
log-file. This increase, though, is on millimetre level and is justified by quite big
improvements in all other errors. For example Figure 5.10 shows that the peak of
the maximum lateral error has been reduced for about 0.5 meter after optimization.

Table 5.3 indicates how the optimization results show certain modifications of pa-
rameter settings compared with the initial guess. For the noise that has been added
on the speed rspeed ·speed, the optimized value of rspeed is 0.02, which is much smaller
than the original guess 0.1. This indicates that the speed sensor is quite accurate
and a smaller longitudinal spread among the particles is enough to cover possible
longitudinal states

As for the noise that has been added on the yaw, it can be seen from Table 5.3 that
the optimized value of ryaw is bigger and the constant noise of yaw rate CyawNoise is
smaller than the initial guess. This makes sense since higher ryaw value will make
the particles spread more when the yaw rate is higher and vice versa, which makes
the particles propagate more according to the maneuver of the car, i.e. if the car
is turning more the particles will spread more in terms of heading angles and if the
car is going straight the particles will spread less in heading angles.

The standard deviation of the likelihood field σhit is doubled after the optimization.
This will make more particles have higher weights in the update step. The proba-
bility of random noise prand was also increased a lot after optimization. This means
that the weights of all the particles are likely to be increased. The weight on random
noise zrand increased from 10% to 30%, which also makes the particles more indiffer-
ent from one another. While the particles whose LIDAR measurements fit better in

51

6. Discussion

the map will get higher weight, other particles will also get some weight depending
on the value of random noise. This result is a bit surprising, since it is assumed that
the particle filter might perform better when the particles that are off get eliminated
in time. One possible explanation could be that the slightly off particles will not
get killed so easily during the resampling stage but particles whose measurements
fit better in the map are still more likely to get selected during resampling process.
The optimization here made more particles survive the resampling process, which
in turn will give a greater diversity in the state hypothesises among the particles.

6.5 Conclusion
The conclusion is that the method for automatic map extraction is working satis-
factory, but it still needs manual verification in its current state. The storage size of
the map representation is low enough to allow cloud based storage. The localization
algorithm based on a particle filter and a likelihood field sensor model works very
well and is robust to surrounding traffic. According to the 23 log files that have
been tested, using the filtered scan data instead of raw measurements improved the
localization results to some degree, due to the filtered scan data filteres out the
dynamic objects and ground information. If the results can be verified, they are
sufficient for autonomous drive.

52

7

Future Work

7.1 Look-up table of the likelihood field

The method to calculate the likelihood field in this thesis is that first calculate the
position of the end point of a beam, then calculate the minimum distance between
this point and the lines in the map, after that find out the possibility of this distance
in a zero-mean Gaussian distribution. This process is time consuming due to that
every beam of every particles need to be calculated in these three steps.

One possible method to speed up the calculation could be create a look-up table for
the likelihood field. With a look-up table, one just need to calculate the end point
of each beam, then check the possibility in the look-up table based on the position
of this point. This could potentially save some operation time for every time stamp.
To make the loop-up table, the map of the road need to be converted into a pixel
presentation, and each pixel represents a possibility according to its distance to the
barriers in the map. In this thesis a set of pixel map has been made, an illustration
is shown in Figure 7.1, and a zoom-in image of a part of a barrier in shown in
Figure 7.2.

53

7. Future Work

Figure 7.1: Map in pixel representation, serves as a likelihood loop-up table, pos-
sibility is represented by the brightness level of the pixel, the brighter the possibility
is higher. The left line in the picture is a barrier on the side of the road, the two
long lines on the right are the central barrier, and two short lines on the right is a
bridge pillar.

54

7. Future Work

Figure 7.2: Map in pixel representation, a zoom in version of a part of a bar-
rier. Possibility is represented by the brightness level of the pixel, the brighter the
possibility is higher.

The several log files has been tested using the likelihood loop-up table, while for
some log files it works for others some issues still need to be investigated further.
For example if each pixel map covers the whole longitudinal and lateral range of a
100-meter long barriers segment, then the overlap area between maps need to be
determined with careful consideration in order to make sure all end points of beams
of all particles will be covered in the map. A more reliable solution of the pixel
representation of the map need could be developed in the future.

7.2 False measurement tolerance

When the view of the LIDARmounted in front of the ego vehicle has been completely
blocked by a truck or bus, the measurement update might lead to false estimation.
Therefore, the next step would be to make the algorithm detect the false barrier
measurement, skip the measurement update in these time stamps and only produce
estimation position by dead reckoning. For example, if the LIDAR detects that
the distance to barrier remains the same at one side, but suddenly becomes much
shorter at the other side, it might be blocked by a bus or truck. In that case only the
prediction step of the particle filter will be performed, the measurement will not be
taken into consideration, since it is a false measurement. This might prevent errors
in the estimation of position.

55

7. Future Work

7.3 Implementation of the localization algorithm
The localization algorithm in this thesis is implemented in MATLAB only. The pos-
sible ways to speed up the algorithm in order to be used in the real time situation
could be implementing the algorithm in C or C++, and using parallel computing.
The particle filter is a highly parallelizable algorithm. The heaviest computational
part is calculating the weight for each particle. This calculation is exactly the same
for each particle and could easily be distributed over several cores, with a possibility
of improving the efficiency of the algorithm greatly. Switching programming lan-
guage from MATLAB to C could most likely also improve the performance since C
allows for the programmer to control so that the memory is used in a more efficient
way than MATLABs automatic memory handling.

56

Bibliography

[1] T. COWEN, “Can i see your license, registration and c.p.u.?”
http://www.nytimes.com/2011/05/29/business/economy/29view.html, 2011.

[2] S. Thrun, D. Fox, and W. Burgard, Probabilistic Robotics. The MIT Press,
2005.

[3] W. Burgard, D. Tipaldi, M. Ruhnke, and B. Steder, “Introduction to mobile
robotics.” [Online]. Available: http://ais.informatik.uni-freiburg.de/teaching/
ss15/robotics/slides/07-sensor-models.pdf

[4] K. et al., “An efficient k-means clustering algorithm: Analysis and implementa-
tion,” IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE
INTELLIGENCE, vol. 24, no. 7, pp. 881–892, July 2002.

[5] B. S. E. et al., Cluster Analysis, 5th ed. John Wiley & Sons, Ltd, ISBN:
9780470749913, 2011.

[6] “Kartprojektioner: Sweref99.” [Online]. Available: https://www.lantmateriet.
se/sv/Kartor-och-geografisk-information/GPS-och-geodetisk-matning/
Referenssystem/Tvadimensionella-system/SWEREF-99-projektioner/

[7] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[8] S. Thrun, D. Fox, and W. Burgard, Probabilistic Robotics. The MIT Press,
2005, ch. 2, p. 26.

[9] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear
systems,” pp. 182–193, 1997.

[10] D. Hong-de and D. Shao-wu, “Performance comparison of ekf/ukf/ckf for the
tracking of ballistic target,” Telkomnika Indonesian Journal of Electrical Engi-
neering, vol. 10, no. 7, pp. 1537–1542, November 2012.

[11] G. Einicke and L. White, “Robust extended kalman filtering,” Signal Process-
ing, IEEE Transactions on, vol. 47, no. 9, pp. 2596–2599, Sep 1999.

[12] S. Thrun, D. Fox, and W. Burgard, Probabilistic Robotics. The MIT Press,
2005, ch. 3, p. 43.

[13] ——, Probabilistic Robotics. The MIT Press, 2005, ch. 4, p. 96.
[14] ——, Probabilistic Robotics. The MIT Press, 2005, ch. 6, pp. 153–172.
[15] D. Barber, Bayesian Reasoning and Machine Learning. Cambridge University

Press, 2012.
[16] H. Liu and H. Motoda, ComputationalMethods of Feature Selection, 1st ed.

CRC Press Taylor & Francis Group, ISBN: 9781584888789, 2007.
[17] Technical Characteristics, Ibeo Automotive Systems GmbH. [Online]. Available:

http://autonomoustuff.com/ibeo-scala/

57

http://ais.informatik.uni-freiburg.de/teaching/ss15/robotics/slides/07-sensor-models.pdf
http://ais.informatik.uni-freiburg.de/teaching/ss15/robotics/slides/07-sensor-models.pdf
https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/GPS-och-geodetisk-matning/Referenssystem/Tvadimensionella-system/SWEREF-99-projektioner/
https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/GPS-och-geodetisk-matning/Referenssystem/Tvadimensionella-system/SWEREF-99-projektioner/
https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/GPS-och-geodetisk-matning/Referenssystem/Tvadimensionella-system/SWEREF-99-projektioner/
http://autonomoustuff.com/ibeo-scala/

Bibliography

58

A
Appendix

A.1 Barrier Types

Along the Gothenburg demo route there are several types of different man-made
roadside barriers. To be able to reference the different types in a consistent manner,
the following types and names are suggested. All types are visualized with a picture
and a plot of how they appear in the high density point cloud accompanied by a
short description.

Elevated Rail
This is one of the most common barrier types along the demo route. It is a metal
rail mounted on poles in the ground.

Figure A.1: An example of an elevated rail and its point cloud representation.

Offset Rail
The offset rail has the same rail type as the elevated rail but is is mounted on vertical
poles that connect to the poles in the ground, creating a space in between the rail
and the ground poles, hence the name.

I

A. Appendix

Figure A.2: An example of an offset rail and its point cloud representation.

Double Rail
The double rail consists of two rails mounted on each side of a center pole. This
rail type is commonly used as a center barrier dividing the road into two different
driving directions.

Figure A.3: An example of a double rail and its point cloud representation.

Protected Rail
This is an elevated rail but with some kind of fencing behind it. This rail type is
commonly used over bridges.

II

A. Appendix

Figure A.4: An example of a protected rail and its point cloud representation.

Pipe Rail
This barrier type has two pipe-shaped rails mounted in parallel on poles standing
in the ground.

Figure A.5: An example of a pipe rail and its point cloud representation.

Concrete Cone
The concrete cone barrier is normally a center barrier separating traffic going in
different directions. It consist of cone shaped concrete blocks that are connected
with each other.

III

A. Appendix

Figure A.6: An example of a concrete cone and its point cloud representation.

IV

	List of Figures
	List of Tables
	Introduction
	Objective
	Scope
	Outline
	Related Work and Contributions

	Data sets and Sensors
	High Density Point Cloud
	Barrier Point Clouds
	Road Data
	Drive-Logs
	Front Facing LIDAR
	LIDAR Raw Data
	Filtered scan data

	Theory
	Ego Vehicle Reference Frame
	Homogeneous coordinates
	Bayesian Filtering
	Extend Kalman Filter
	Particle Filter

	Sensor Models
	Beam-Based Model
	Likelihood Field

	Clustering
	K-means clustering
	Single Linkage Clustering

	Naive Bayes Classifier
	Forward Selection
	Cross-Validation
	Twiddle Optimization

	Method
	Map Extraction from Barrier Point Cloud
	Slicing the Barrier Point Cloud
	Identifying Individual Barrier Segments
	Classification and Offset Corrections
	Barrier Segment Association
	Barrier Corrections
	Automatic Classification of Barrier Segments
	Compact Map Representation

	Localization Algorithm
	Simulation Environment
	Choice of Sensor Model
	Beam-based Model
	Likelihood Field

	Implementation
	Localization Algorithm
	Optimization of Localization Algorithm Parameters

	Results
	Map Extraction
	Barrier Classification

	Compact Map Representation
	Localization of the Vehicle
	Lateral Error
	Longitudinal Error
	Heading Error

	Optimization of Localization Algorithm Parameters
	Lateral Error
	Longitudinal Error
	Heading Error

	Discussion
	Map
	Localization
	Lateral Error
	Longitudinal Error
	Heading Angle Error

	Particle Filter
	Parameter Optimization
	Conclusion

	Future Work
	Look-up table of the likelihood field
	False measurement tolerance
	Implementation of the localization algorithm

	Appendix
	Barrier Types

