
Single and Multi-Label Environmental
Sound Classification Using
Convolutional Neural Networks

Master’s thesis in the Programme Sound and Vibration

SANTIAGO ALVAREZ-BUYLLA PUENTE

Division of Applied Acoustics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis 2018: ACEX30-18-65

Single and Multi-Label Environmental Sound
Classification Using Convolutional Neural

Networks

SANTIAGO ALVAREZ-BUYLLA PUENTE

Department of Civil and Environmental Engineering
Division of Applied Acoustics
Audio Technology Group

Chalmers University of Technology
Gothenburg, Sweden 2018

Single and Multi-Label Environmental Sound Classification Using Convolutional
Neural Networks

SANTIAGO ALVAREZ-BUYLLA PUENTE

© Santiago Álvarez-Buylla Puente, 2018.

Supervisor: Jens Ahrens, Department of Architecture and Civil Engineering
Examiner: Jens Ahrens, Department of Architecture and Civil Engineering

Master’s Thesis 2018: ACEX30-18-65
Department of Civil and Environmental Engineering
Division of Applied Acoustics
Audio Technology Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visual representation of a feedforward neural network.

Typeset in LATEX

Gothenburg, Sweden 2017

iv

Single and Multi-Label Environmental Sound Classification
Using Convolutional Neural Networks

SANTIAGO ÁLVAREZ-BUYLLA PUENTE
Department of Civil and Environmental Engineering
Chalmers University of Technology

Abstract
Artificial neural networks are computational systems made up of simple processing
units that have a natural propensity for storing experiential knowledge and making
it available for use. In the recent years this technology has seen an exponential
growth in the fields of image recognition, natural language processing or speech
recognition. However, there is a dearth of research on environmental sound analysis.
In combination with IoT and wireless sensor networks, artificial neural networks
could help to characterize and therefore better address noise issues present in urban
environments.
This master thesis investigates the theory and construction of artificial neural net-
works for single-label and multi-label multiclass classification of environmental
sounds like dog bark, street music or jackhammer. Evaluation to different cor-
ruptions of the sounds are studied, as well as methods to increase robustness to
these variations.
A convolutional neural network arquitecture is proposed for both tasks. The in-
puts to the networks are time-frequency patches extracted from the computed mel-
spectrogram of the signals. Dropout and weight decay regularization methods are
applied and the cross-entropy loss is optimized using Adam algorithm.
Results show that these systems are very sensitive to noise and level corruptions of
the inputs. Techniques like data augmentation and amplitude scaling are needed
to avoid these issues. Results to the multi-label classification task show that it is
still possible for a neural network to learn in a complicated mixed environment.
However there is still room for improvement regarding prediction accuracy. Since
no previous benchmarks are available for comparison, this study sets the stage for
the multi-label classification task using UrbanSound8K dataset.

Keywords: Deep Learning, Environmental Sound Classification, Convolutional Neu-
ral Networks, Mel-spectrogram, UrbanSound8k.

v

Acknowledgements
I want to thank Jens Ahrens for his help and for his confidence in the idea of this
project, despite not being a common area of research in the division of applied
acoustics. I also want to thank Lennart Svensson, who kindly helped me to set the
planning of the project. I want also to express my gratitude to the people from ÅF:
Andreas Colebring, Martin Elmcrona, Åsa Collet, Victor Diez and Karl Vilén, for
their confidence in the project and their valuable feedback. Many thanks also to
Justin Salomon and Karol Piczak, who kindly provided all requested information
about their papers.

Santiago Álvarez-Buylla Puente, Gothenburg, June 2018

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Literature review . 2
1.3 Aim . 2
1.4 Research questions . 2
1.5 Outline . 3

2 Theory 4
2.1 Artificial neural networks . 4

2.1.1 Relation to biological neurons and human nervous system . . . 4
2.1.2 Feedforward neural networks 6
2.1.3 Activation functions . 7
2.1.4 Loss functions . 9
2.1.5 Gradient descent . 10
2.1.6 Convolutional neural networks 12

2.1.6.1 Convolution and cross-correlation operation 13
2.1.6.2 Why convolutional neural networks? 14
2.1.6.3 Pooling layers . 15

2.1.7 Capacity, Over-fitting and Underfitting 16
2.1.8 Regularization methods . 17

2.1.8.1 Weight decay . 18
2.1.8.2 Dropout . 19

2.2 Feature generation . 21
2.2.1 Fourier transform . 21
2.2.2 Spectrogram and STFT . 22
2.2.3 Mel-frequency spectrogram . 23

3 Methods 25
3.1 Software . 25
3.2 The dataset: UrbanSound8K . 25
3.3 Audio files processing . 27
3.4 Multi-label dataset generation . 27
3.5 Input features to the networks . 28

ix

Contents

3.6 Network arquitectures . 29
3.6.1 Single-label classification . 29
3.6.2 Multi-label classification . 30

3.7 Dataset variations for the single-label classification task 30
3.7.1 Undersampling . 31
3.7.2 Data augmentation with noise 31
3.7.3 Amplitude scaling . 31

3.8 Input corruption for the single-label classification task 32
3.8.1 Noise addition . 32
3.8.2 Amplitude scaling . 33

3.9 Training procedure and hyperparameter search 33
3.9.1 Single-label classification task 33
3.9.2 Multi-label classification task 34

4 Results 35
4.1 Network classification performance 35

4.1.1 Baseline . 35
4.1.2 Dataset variations . 37

4.1.2.1 Undersampling . 37
4.1.2.2 Data augmentation with noise 38
4.1.2.3 Amplitude scaling 39

4.2 Network robustness to input corruption 39
4.2.1 Noise addition . 40
4.2.2 Amplitude scaling . 41

4.3 Multi-label classification . 43

5 Conclusion 45

Bibliography 47

x

List of Figures

2.1 Anatomy of a neuron . 5
2.2 Synapse between two neurons . 5
2.3 Sketch of a four-layer feedforward neural network 6
2.4 Node of a feedforward neural network 7
2.5 Bias term helps performing linear regression 7
2.6 The rectified linear activation function 8
2.7 Logistic sigmoid function . 9
2.8 The logarithmic loss function . 10
2.9 Gradient descent algorithm . 11
2.10 Critical points, in 1-D . 11
2.11 Global minimum, local minima and plateaus 12
2.12 Different network arquitectures . 12
2.13 CNN arquitecture . 13
2.14 Cross-correlation . 14
2.15 Sparse connectivity . 15
2.16 Max pooling . 15
2.17 Overfitting and underfitting vs capacity 16
2.18 Model’s representation for different capacities 17
2.19 Dropout . 20
2.20 Representations matter . 21
2.21 Fourier transform of a sine wave . 22
2.22 Spectral leakage . 23
2.23 Hanning window . 23
2.24 Mel-frequency scale . 24
2.25 Triangular filterbanks . 24

3.1 UrbanSound8K slices . 26
3.2 Multi-label dataset generation . 28
3.3 Spectrograms of different classes (single-label 29
3.4 Spectrograms of different classes (multi-label) 29
3.5 Single-label network arquitecture . 30
3.6 Multi-label network arquitecture . 30
3.7 Mel-spectrogram amplitudes . 32

4.1 Baseline confusion matrices . 36
4.2 Undersampling confusion matrix . 38
4.3 Data augmentation with noise confusion matrix 39

xi

List of Figures

4.4 Noise corrupted inputs confusion matrix 40
4.6 Mel-spectrum magnitudes . 42
4.5 Amplitude corrupted inputs, confusion matrices 42
4.7 Amplitude corrupted inputs, confusion matrices for Version2 43

xii

List of Tables

3.1 UrbanSound8K total audio slices . 26
3.2 UrbanSound8K one second duration audio slices 26
3.3 UrbanSound8K two seconds duration audio slices 26
3.4 UrbanSound8K three seconds duration audio slices 27
3.5 Number of audio files per folder . 28
3.6 Version E audio samples . 31
3.7 Hyperparameters, baseline . 33
3.8 Folder arrangement during training 33
3.9 Hyperparameters, noise augmented model 34
3.10 Hyperparameters, multi-label model 34

4.1 Training and test accuracy results, baseline 35
4.2 Undersampling results . 37
4.3 Training and test accuracy results, noise augmented model 38
4.4 Training and test accuracy results, amplitude scaled model 39
4.5 Accuracy decrease for noise corrupted inputs 40
4.6 Accuracy decrease for noise corrupted inputs 41
4.7 Accuracy decrease for amplitude corrupted inputs 41
4.8 Accuracy decrease for amplitude corrupted inputs (for the two versions) 43
4.9 Multi-label model performance . 44
4.10 Random multi-label classifier performance 44

xiii

List of Tables

xiv

1
Introduction

This chapter will give an introduction to the master thesis, starting with a background
to the subject and a literature review, followed by aim and research questions. There-
after the outline of the document will be presented to provide a clearer understanding
of the structure of the thesis.

1.1 Background

In the recent past many technological revolutions have been observed. Cloud com-
puting, the Internet of Things (IoT) or big data analytics are now, among many
others, common terms and common technologies used in people’s daily lives. Ad-
ditionally, the advent of low-cost and low-power transceivers has made possible the
deployment of wireless sensor networks, allowing cities to monitor all kinds of events
and trends in real time.[1] Smart cities aim to make use of all these technologies,
obtaining large amounts of information that can then be processed using computa-
tion technologies, in order to better understand the problems present in twenty-first
century cities, with the primary objective of improving citizen’s welfare. Sadly
enough, many citizens still suffer nowadays from exposure to inadequate noise levels
that can lead to annoyance, sleep disturbance, and related increases in the risk of
hypertension and cardiovascular disease.[2]

This thesis originated from the idea of extracting valuable information from street
audio recordings. Even though it is clear that noise levels are a useful measure
to obtain from any audio signal, being able to detect which are the sound sources
present in the signals would further increase the usefulness of any audio recording.
This would allow to characterize every single sound source present in the recorded
signals, and consequently, in the city. Having this type of information, city agencies
could more efficiently address issues related to undesired sound pressure levels and
propose corrective measures grounded on solid evidence.
Artificial neural networks are computing systems that have been widely used for
image recognition problems. Recent research[3–6] has proved that these systems are
also suitable for audio recognition problems. This master thesis aims to contribute
to the task of mitigating this overlooked but widespread noise problem, exploring
how the use of artificial neural networks can help to identify the sources present in
recorded environmental sounds.

1

1. Introduction

1.2 Literature review
The topic of environmental sound classification using artificial neural networks has
received increasing interest over the last few years. In [4] and in [5], the authors
used convolutional neural networks for environmental sound classification, making
use of the public Urbandsound8K dataset, which is also the dataset used for study
in the present document. Using different architectures they achieved average test
accuracy results of 73% and 79% respectively, the latter using different data aug-
mentation techniques. The authors of [6] used two well-known convolutional deep
neural networks for image recognition, AlexNet and GoogleNet, using the spectro-
gram of the audio signals as input feature to the networks. In [7] the authors used
deep recurrent neural networks for the same purposes of audio scene classification
achieving state-of-the-art accuracy results in the LITIS Rouen dataset, confirming
the validity of this type of arquitecture for the audio classification task. In [8] the
authors approached the same problem from a multi-task point of view, suggesting
that recognition accuracy may improve when using a multi-task model rather than
multiple task-specific models.
Although it can be seen that extensive research has been carried out on single-label
audio classification, little or none attention has been paid to the task of multi-
label classification, where the goal is to predict more than one possible class label.
Robustness evaluation of the models to input corruptions has not received much
attention either, despite being a clear problem to face in real-world applications.

1.3 Aim
This master thesis has three main goals. Firstly, investigate the theory and con-
struction of artificial neural networks for single-label audio classification. Secondly,
study the robustness to noise and level differences of the model when trained on
the UrbanSound8K dataset, and test different techniques to improve this robust-
ness. Lastly, study the reliability of multi-label environmental classification using a
generated version of UrbanSound8K.

1.4 Research questions
In order to attain these aims, a different number of research questions will be an-
swered:

• How do different noise levels in the input signals affect the classification pre-
diction accuracy of the trained neural network?

• How do level differences in the input signals affect the classification prediction
accuracy of the trained neural network?

• How do data augmentation and data preprocessing techniques help to improve
network robustness to these input corruptions?

• Is it possible to solve the multi-label classification task for environmental
sounds using the UrbanSound8K dataset?

2

1. Introduction

1.5 Outline
This master thesis is divided into five chapters. After the introduction, Chapter 2
presents the general theory regarding artificial neural networks and feature gener-
ation methods for audio signals. In Chapter 3 the method is described, explaining
how every step of the project was carried out, providing all necessary information
for their possible recreation. In Chapter 4 the results are presented, explained and
interpreted. Chapter 5 presents the conclusions derived from this academic work
and suggesting future research directions.

3

2
Theory

In this chapter, a study on the theory about artificial neural networks will be pre-
sented. Thereafter, the theory necessary to understand the feature generation from
the audio files will be explained.

2.1 Artificial neural networks
An artificial neural network is a massively parallel distributed processor composed
of simple processing units (neurons) that is able to store experiential knowledge and
make it available for use.[9] Artificial neural networks are computing systems based
on a biological model: the organization of the human nervous system.[10] These
computational systems resemble the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning
process.

2. Interneuron connection strengths, known as synaptic weights, are used to store
the acquired knowledge.

These systems are not a recent discovery. In the formative years of neural networks
(1943-1958), several researchers stand out for their pioneering contributions:[9]

• McCulloch and Pitts (1943) for introducing the idea of neural networks as
computing machines.

• Hebb (1949) for postulating the first rule for self-organized learning.
• Rosenblatt (1958) for proposing the perceptron as the first model for learning

with a teacher (i.e., supervised learning).

2.1.1 Relation to biological neurons and human nervous sys-
tem

The fundamental processing unit in the human brain is a neuron, or nerve cell.[10]
Neurons in the human brain are composed of a cell body, or soma, along with fibers
called dendrites that receive electrical impulses from other neurons, and other, long
fibers known as axons that conduct impulses away from the cell. Put in computer
terminology, dendrites act as input devices for a neuron, while output to other
neurons occurs via axons. The interface between an axon and another neuron to
which it transmits information occurs across a tiny gap called a synapse. An elec-
trical impulse sent down an axon causes the release of certain chemicals, called
neurotransmitters, into the synapse. Depending on the nature and amount of these
chemicals that are released, the receiving neuron is either excited or inhibited. Each

4

2. Theory

individual dendrite may receive excitory or inhibitory stimuly, and the overall effect
on these stimuli on the neuron is algebraically additive. If the net effect of the exci-
tory neurotransmitters minus the net effect of the inhibitory ones exceeds a certain
electrical threshold called the action potential, then the neuron will fire, otherwise,
it will remain inactive. While the functionality of an individual neuron is simple,
the connections between neurons are very complex and organized into hierarchical
layers. It is these connections that define the functionality of the nervous system.
In Figures 2.1 and 2.2 the anatomy of a biologic neuron and the synapse between
two neurons can be seen.

Figure 2.1: Anatomy of a neuron. Picture taken from [11].

Figure 2.2: Simplified sketch of the synapse between two neurons. Picture taken
from https://commons.wikimedia.org/wiki/File:Figure_09_01_02.jpg.

5

https://commons.wikimedia.org/wiki/File:Figure_09_01_02.jpg

2. Theory

2.1.2 Feedforward neural networks
The goal of a feedforward neural network is to find a non linear function that maps
the space of the inputs x to the space of the outputs y.[12] In other words, to learn
the function

f ∗ : Rm −→ Rn, f ∗(x; θ) (2.1)
that can approximate:

y ≈ f ∗(x; θ) (2.2)
where θ are the parameters of the network. A feedforward network learns the value
of the parameteres θ that result in the best function approximation, by solving the
equation:

θ ← arg min
θ

L(y, f ∗(x; θ)) (2.3)

where L is a loss function chosed for the particular task. These models are called
feedforward because information flows through the function being evaluated from x,
through the intermediate computations used to define f and finally to the output y.
Feedforward neural networks are called networks because they are usually repre-
sented by composing together many different functions. For instance, there might
be three functions f (1), f (2) and f (3) connected in a chain to form:

f(x) = f (3)(f (2)(f (1)(x))) (2.4)
In this case, f (1) is called the first layer of the network, f (2) is called the second
layer, and so on. The final layer of a feedforward network is called the output
layer. During neural network training, f(x) is driven to match f ∗(x). Each training
example x is accompanied by a label y ≈ f ∗(x). The training examples specify
directly what the output layer must do at each point x ; it must produce a value that
is close to y. The behavior of the other layers is not specified by the training data,
but the learning algorithm must decide how to use those layers in order to produce
the desired output. It is for this reason that these layers are called hidden layers.[12]
In Figure 2.3 , an image of a four-layer feedforward neural network with two hidden
layers can be seen:

Figure 2.3: Sketch of a four-layer feedforward neural network.

6

2. Theory

These types of networks are densely connected, meaning that to each node of layer [l]
in the network correspond as many weights as nodes are on the previous layer [l−1].
These weights are multiplied elementwise by the outputs of the previous layer (or
the inputs to the network if a node from the first hidden layer is being considered),
and the result is arithmetically added. A bias term is added to the result and then
a non-linear activation function is applied. The output of this activation function
is then fed to the next layer or taken as the prediction if a node of the last layer is
being considered. This procedure is depicted in Figure 2.4:

Figure 2.4: Sketch of the operations taking place in one node of a feedforward neural
network. Picture taken from [13].

Expressed in a mathematical form, the activation (or output) a of certain node i
belonging to certain layer l is computed as:

a
[l]
i = h(W [l]T

i a[l−1] + b
[l]
i) (2.5)

where W is the vector of weights of that specific node, b the bias term and h the
activation function operation. The role of the bias is to add more flexibility to
the network by allowing shifts of the activation function. By looking at the simple
example shown in Figure 2.5 it can be seen that without the bias term it would not
be possible to fit a line that would approximate as good to the data as with the bias
term.

Figure 2.5: An example of how introducing a bias term helps performing linear
regression.

2.1.3 Activation functions
Activation functions are used to introduce non-linearity in the system. This is done
in order to increase the hypothesis space, i.e. the set of functions that the learning
algorithm is allowed to select as being the solution.[12]

7

2. Theory

A linear function could be chosen as activation function. However, if that would be
the case, then the feedforward network as a whole would remain a linear function of
its input. It would not make sense then having more than one neuron, since it could
learn the same function f ∗ as a feedforward network with ten thousand neurons
having linear activation functions.
In modern neural networks, the default recommendation is to use the rectified linear
unit or ReLU[12] defined by the activation function g(z) = max{0, z} and depicted
in Figure 2.6.

Figure 2.6: The rectified linear activation function.

Applying this function to the output of a linear transformation yields a nonlinear
transformation. However, the function remains very close to linear, in the sense
that is a piecewise linear function with two linear pieces. It is for this reason that
they preserve many of the properties that make linear models easy to optimize with
gradient based methods.[12]
The activation function plays a crucial role in the output layer of the network.
For tasks that require predicting the value of a binary variable y, like classification
problems with two classes, a logistic sigmoid function is usually chosen as activation
function since this function squashes the output values to the range (0,1), i.e. to
probabilities. By using this output activation function, the network is modelling a
probability distribution over a binary variable, where the goal is to produce a single
number

ŷ = P (y = 1|x) (2.6)

that quantifies the conditional probability of y being equal to 1 given x. It follows
then that

1− ŷ = P (y = 0|x) (2.7)

The logistic sigmoid function is defined as

h(z) = 1
1 + e−z

(2.8)

and it is depicted as

8

2. Theory

Figure 2.7: Logistic sigmoid function.

When the goal is to represent a probability distribution over a discrete variable with
K possible values, i.e. a multinouilli distribution, the softmax function is used. This
function can be seen as a generalization of the sigmoid function. It is defined as:

h(z)j = ezj∑K
k=1 e

zk
(2.9)

where j = 1, 2, ...K indexes the different output units. It can be seen that the
softmax function normalizes a K dimensional vector z of arbitrary real values into
a K dimensional vector h(z) whose components add up to 1 (in other words, a
probability vector).[14] For this reason this is the default activation function used in
classification tasks where the classes are mutually exclusive, i.e. where the goal is
to predict one single label.

2.1.4 Loss functions
The central goal in network training is not to memorize the training data, but rather
to model the underlying generator of the data, so that the best possible predictions
for the output vector y can be made when the trained network is subsequently
presented with a new value for the input vector x.[15]
The error function or loss function is a function that the network wants to minimize.
This is often represented as the difference between the target and the network’s
output. Different loss functions implement different notions of "distance" between
the target and the network output, but the general idea remains the same: the cost
function gives a distance metric, and the network tries to make the distance as small
as possible.
One of the most common loss functions when it comes to classification tasks is the
logarithmic loss function or simply log loss. It can also be found under the name
logistic loss or cross-entropy loss. When dealing with classification problems for
more than two classes, this loss function is often termed categorical cross entropy or
multi-class logarithmic loss[16]. It is defined as:

L(y, p) = − 1
m

m∑
i=1

C∑
c=1

yi,c · log (pi,c) (2.10)

where m is the number of instances, C is the number of possible labels (classes),
yi,c is a binary indicator of whether or not label c is the correct classification for

9

2. Theory

instance i, and pi,c is the model probability of assigning label c to instance i.
For a binary classification problem, equation 2.10 simplifies to:

L(y, p) = − 1
m

m∑
i=1

(yi log pi + (1− yi) log (1− pi)) (2.11)

By looking at the plot of this function an intuition of its behaviour can be gained.
The plot shown in Figure 2.8 shows the logarithmic loss contribution from a single
positive instance where the predicted probability ranges from 0 (the completely
wrong prediction) to 1 (the correct prediction). It is apparent from the gentle
downward slope towards the right that the loss gradually declines as the predicted
probability improves. Moving in the opposite direction though, the log loss ramps up
very rapidly as the predicted probability approaches 0. This means that the log loss
heavily penalizes classifiers that are confident about an incorrect classification. For
example, if for a particular observation, the classifier assigns a very small probability
to the correct class then the corresponding contribution to the log loss will be very
large indeed. Naturally this is going to have a significant impact on the overall loss
for the classifier.[17]

Figure 2.8: Log loss function for a single example for different predicted probabilities
when the true label is 1.

2.1.5 Gradient descent
Most deep learning algorithms, such as artificial neural networks, involve optimiza-
tion of some sort. If the optimization goal is to minimize a function, then this
function is called the cost or the loss function.[15]
Suppose the goal is to optimize a function y = f(x), where both x and y are
real numbers. The derivative of this function is denoted as f ′(x) and it gives the
slope of f(x) at the point x. In other words, it specifies how to scale a small
change in the input in order to obtain the corresponding change in the output:
f(x + ε) ≈ f(x) + εf ′(x). It is possible thus to reduce f(x) by moving x in small
steps with opposite sign of the derivative. This technique is called gradient descent.
For higher dimensional functions, each parameter is updated independently and the

10

2. Theory

steps lead in the direction of the steepest descent. This is how each of the parameters
θi of the learning algorithm is updated in order to find the solution to Equation 2.3:

θi ← θi − α
∂L

∂θi
(2.12)

An example of this technique is shown in Figure 2.9.

Figure 2.9: An illustration of how the gradient descent algorithm uses the derivatives
of a function can be used to follow the function downhill to a minimum. Picture
taken from [12].

When f ′(x) = 0 the derivative provides no information about which direction to
move. These points where f ′(x) = 0 are called critical points. A local minimum is a
point where f(x) is lower than at all neighbouring points, so it is no longer possible
to decrease f(x) by making infinitesimal steps. A local maximum is a poing where
f(x) is higher than at all neighbouring points, thus is not possible to increase f(x)
by making infinitesimal steps. Critical points that are neigher maxima nor minima
are called saddle points.[12] These three types of critical points are illustrated in
Figure 2.10.

Figure 2.10: Examples of the three types of critical points, in 1-D. Picture taken
from [12].

It is normally the case to optimize functions that may have many local minima that
are not optimal, and many saddle points surrounded by very flat regions. All of
this makes optimization very difficult, especially when the input to the function is
multidimensional. It is therefore usually settled to find a value of f that is very low,
but not necessarily the global minimum, as illustrated in Figure 2.11.

11

2. Theory

Figure 2.11: Optimization algorithms may fail to find a global minimum when there
are multiple local minima or plateaus present. Solutions are generally accepted even
though they are not truly minimal, so long as they correspond to significantly low
values of the cost function. Picture taken from [12].

2.1.6 Convolutional neural networks

Convolutional neural networks (hereafter CNNs or Convnet) are very similar to the
already presented feedforward neural networks. They are made up of neurons that
have adjustable weights and biases. Each neuron receives some inputs, performs
a elementwise product, adds a bias term and performs a non-linear activation. A
loss function is computed and the parameters are updated using gradient descent
optimization on this function. However, CNNs present some new characteristics
that make them more suitable arquitectures when working with images as inputs.
These characteristics will be described in the following subsections. In Figure 2.12
a typical arquitecture of a CNN is depicted:

Figure 2.12: Left: A regular 3-layer neural network. Right: A ConvNet arranges
its neurons in three dimensions (width, height, depth), as visualized in one of the
layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output
volume of neuron activations. Picture taken from [13].

Another typical ConvNet arquitecture is shown in Figure 2.13, which shows the use
of two new types of layers: convolutional and pooling layers. The depth of the 3D
volumes corresponds in this image to the dimension going into the plane.

12

2. Theory

Figure 2.13: Arquitecture of a CNN having convolutional, pooling and fully con-
nected layers.

2.1.6.1 Convolution and cross-correlation operation

CNNs introduce a new layer operation, called convolution. Convolution is a formal
mathematical operation, just as multiplication, addition, and integration. Addition
takes two numbers and produces a third number, while convolution takes two signals
and produces a third signal.
In 2-D, the discrete convolution of two images I and K is defined as:

F (i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.13)

where m and n are the dimensions of the kernel (or filter), and i and j are the
indexes for each pixel. In convolutional network terminology, the first argument to
the convolution is often referred to as the input (I) and the second argument as the
kernel (K). The output is referred to as the feature map (F). The commutative
property of convolution arises because of the flipped kernel relative to the input, in
the sense that as m increases, the index into the input increases, but the index into
the kernel decreases. However, this is not usually an important property of a neural
network implementation.
Cross-correlation is the same as convolution but without flipping the kernel:

F (i, j) = (I ∗K)(i, j)
∑
m

∑
n

= I(m,n)K(i+m, j + n) (2.14)

Technically speaking, cross-correlation is the operation applied in convolutional lay-
ers, and not convolution. An example is shown in Figure 2.14. An input I is
convolved with a kernel K and a feature map is obtained. The number of feature
maps will depend on the number of kernels that the designer chooses for each par-
ticular convolution layer. The last layers of a convolutional network are regular fully
connected layers.

13

2. Theory

Figure 2.14: An example of 2-D cross-correlation between a kernelK and an input I,
creating a feature map. The area highlighted in red is called the receptive field of the
input. Picture taken from https://github.com/PetarV-/TikZ/tree/master/2D.

2.1.6.2 Why convolutional neural networks?

CNN architectures make the assumption that the inputs are images, which allows the
encoding of certain properties into the architecture that make the forward function
more efficient to implement and vastly reduce the amount of parameters in the
network. In particular, CNNs leverage two important ideas:[12]

• Sparse connectivity

• Parameter sharing

When processing an image, it might have thousands or millions of pixels, but it is
possible to detect small, meaningful features such as edges with kernels that occupy
only tens or hundreds of pixels. This means that fewer parameters are needed, which
both reduces the memory requirements of the model and improves its statistical
efficiency. This is what is meant by sparse connectivity.

Parameter sharing refers to the use of the same parameters (filters) for more than
one function in a model. It is based on the assumption that if one feature is useful
to detect at some spatial position, then it should also be useful to detect at a
different position on the input.[13] In a traditional neural network, each element of
the weight matrix is used exactly once when computing the output of a layer. It is
multiplied by one element of the input and then never revisited. In a convolutional
neural network, each member of the kernel is used at every position of the input.
The parameter sharing used by the convolution operation means that rather than
learning a separate set of parameters for every location, the network learns only one
set.

14

https://github.com/PetarV-/TikZ/tree/master/2D

2. Theory

Figure 2.15: Sparse connectivity, viewed from below: One input unit is highlighted,
x3, and also the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by
x3. (Bottom)When s is formed by matrix multiplication, connectivity is no longer
sparse, so all of the outputs are affected by x3. Picture taken from [12].

2.1.6.3 Pooling layers

After each convolution operation, it is common to periodically insert a Pooling layer
in a ConvNet architecture. The Pooling layer operates independently on every depth
slice of the input and its function is to progressively reduce the spatial size of the
representation to reduce the amount of parameters and computation in the network,
and hence to also control overfitting. A pooling function replaces the output of the
network at a certain location with a summary statistic of the nearby outputs. For
example the max function, which reports the maximum output within a rectangular
neighborhood. Other functions like average can also be applied.
The most common form is a pooling layer with filters of size 2x2 applied with a
stride of 2 along both width and height, discarding 75% of the activations of each
depth slice. Stride is by how many input units the pooling filter is shifted for each
pooling operation. Every max operation would in this case be taking a max over 4
numbers. This process is depicted in Figure 2.16.

Figure 2.16: The most common downsampling operation is max, giving rise to max
pooling, shown in this picture with a stride of 2. That is, each max is taken over 4
numbers.

15

2. Theory

2.1.7 Capacity, Over-fitting and Underfitting
The main challenge in machine learning is to perform well on new, previously unseen
inputs, not just those on which the model was trained. The ability to perform well
on previously unobserved inputs is called generalization.[12]
When training a model, an error measure on the training set called the training error
is computed, and the goal is to reduce this training error. This may look simply
like an optimization problem. What separates machine learning from optimization
is that the generalization error, also called the test error, is desired to be low as
well. The generalization error is defined as the expected value of the error on a new
input. Here the expectation is taken across different possible inputs, drawn from
the distribution of inputs it is expected for the system to encounter in practice.
The factors determining how well a machine learning algorithm will perform are its
ability to:[12]

• Make the training error small, which correspond to a model with low bias.
• Make the gap between training and test error small, which corresponds to a

model with low variance.
These two factors correspond to the two central challenges in machine learning:
underfitting and overfitting. Underfitting occurs when the model is not able to
obtain a sufficiently low error value on the training set. Overfitting occurs when the
gap between the training error and test error is too large. It is possible to control
whether a model is more likely to overfit or underfit by altering its capacity. A
model’s capacity is its ability to fit a wide variety of functions. Models with low
capacity may struggle to fit the training set. Models with high capacity can overfit
by memorizing properties of the training set that do not serve them well on the test
set.
In Figure 2.17 these two phenomena are illustrated for different model capacities.

Figure 2.17: As capacity increases, bias tends to decrease and variance tends to
increase. Picture taken from [12].

One way to control the capacity of a learning algorithm is by choosing its hypothesis
space, i.e. the set of functions that the learning algorithm is allowed to select as
being the solution. For example, a linear regression algorithm has the set of all linear
functions of its input as its hypothesis space. If linear regression is generalized to
also include polynomials, rather than just linear functions in its hypothesis space,
the model’s capacity would be increased.

16

2. Theory

Machine learning algorithms perform best when their capacity is appropriate for
the true complexity of the task they need to perform and the amount of training
data they are provided with. Models with insufficient capacity are unable to solve
complex tasks. Models with high capacity can solve complex tasks, but when their
capacity is higher than needed to solve the present task they may overfit.
In Figure 2.18 this principle is shown. The picture shows a linear, quadratic and
degree-9 predictor attempting to fit a problem where the true underlying function
is quadratic. The linear function is unable to capture the curvature in the true
underlying problem, so it underfits. The degree-9 predictor is capable of representing
the correct function, but it is also capable of representing infinitely many other
functions that pass exactly through the training points. There is little chance of
choosing a solution that generalizes well when so many different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of the
task so it generalizes well to new data.

Figure 2.18: Three models with different capacities being fitted to a training set.
Picture taken from [12].

2.1.8 Regularization methods
Deep neural networks contain multiple non-linear hidden layers and this makes them
very expressive models that can learn very complicated relationships between their
inputs and outputs. With limited training data, however, many of these complicated
relationships will be the result of sampling noise, so they will exist in the training set
but not in real test data, even if it is drawn from the same distribution. However,
as it was already mentioned, the goal of network training is not to learn an exact
representation of the training data itself, but rather to build a statistical model of
the process which generates the data. This is important if the network is to exhibit
good generalization.[15] Regularization can be thought of as any modification made
to a learning algorithm that is intended to reduce its generalization error but not
its training error.[12]
In Figure 2.18 three situations with different model’s capacities were illustrated.
Each of them, ordered from left to right, was characterized by:

1. Excluding the true data generating process (corresponding to underfitting and
inducing bias).

2. Matching the true data generating process.

17

2. Theory

3. Including the generating process but also many other possible generating pro-
cesses (the overfitting regime where variance rather than bias dominates the
estimation error.

The goal of regularization is to take a model from the third regime into the second
regime.[12]

2.1.8.1 Weight decay

Many regularization approaches are based on limiting the capacity of the models by
adding a parameter norm penalty Ω(θ) to the loss or the cost function J :

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ) (2.15)

One of the simplest forms of regularizer is called weight decay and consists of the
sum of the squares of the adaptive parameters in the network

Ω = 1
2
∑
i

w2
i (2.16)

where the sum runs over all weights and biases.
As it was shown in Figure 2.18, to produce an over-fitted mapping having regions of
large curvature requires relatively large values for the weights. A network mapping
having small values of the weights is less prone to overfitting.
A weight decay regularized model has the following total objective function:

J̃(w;X, y) = α

2w
Tw + J(w;X, y) (2.17)

with the corresponding parameter gradient

∇wJ̃(w;X, y) = αw +∇wJ(w;X, y) (2.18)

where α is a tunable parameter than controls the amount of regularization to be
included in the model. To take a single gradient step to update the weights, the
following update is performed:

w ← w − ε (αw +∇wJ(w;X, y)) (2.19)

which can also be written as

w ← (1− εα)w − ε∇wJ(w;X, y)) (2.20)

It can be seen from the previous equation that the addition of the weight decay
term has modified the learning rule to multiplicatively shrink the weight vector by
a constant factor on each step, just before performing the usual gradient update.
Therefore, by using a regularizer of the form Eq.2.16 the weights are encouraged to
be small.

18

2. Theory

2.1.8.2 Dropout

The term dropout refers to dropping out some of the units (neurons) in a neural
network. Dropping a unit out means temporarily removing it from the network,
along with all its incoming and outgoing connections, as shown in Figure 2.19. The
choice of which units to drop is random. In the simplest case, each unit is retained
with a fixed probability p independent of other units, where p can be chosen using
a validation set or can simply be set at 0.5, which seems to be close to optimal for
a wide range of networks and tasks.[18]

Applying dropout to a neural network corresponds to sampling a thinned network
from it. The thinned network consists of all the units that survived the dropout
operation (Figure 2.19b). A neural network with n units can be seen as a collection
of 2n possible thinned neural networks which share weights. For each presentation
of each training case, a new thinned network is sampled and trained. So training
a neural network with dropout can be seen as training a collection of 2n thinned
networks with extensive weight sharing, where each thinned network gets trained
very rarely, if at all.
Recall that the feed-forward operation of a standard neural network can be described
as

z
[l+1]
i = w

[l+1]
i a[l] + b

[l+1]
i , (2.21)

a
[l+1]
i = h(z[l+1]

i), (2.22)

where a[l] denotes the vector of activations from the previous layer, w[l+1] and b[l+1]

are the weights and biases of layer [l + 1] and h denotes the activation function
operation. With dropout, the feed-forward operation becomes:

r
[l]
j ∼ Bernoulli(p), (2.23)

ã[l] = r[l] ∗ a[l], (2.24)

z
[l+1]
i = w

[l+1]
i ã[l] + b

[l+1]
i , (2.25)

a
[l+1]
i = h(z[l+1]

i). (2.26)

where, for any layer l, r[l] is a vector of independent Bernoulli random variables each
of which has probability p of being 1. This vector is multiplied elementwise with the
outputs of that layer, a[l], to create the thinned outputs ã(l). The thinned outputs
are then used as input to the next layer.

19

2. Theory

Figure 2.19: Dropout Neural Net Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout to the
network on the left. Crossed units have been dropped. Picture taken from [18].

20

2. Theory

2.2 Feature generation
In this section the main theory behind the process of feature generation for the audio
files used for the training of the models will be presented.
Feature generation is the process of taking raw, unstructured data and defining
features, i.e. variables, for potential use in the statistical analysis. This is a really
important step in order to provide the machine learning algorithm with the best pos-
sible data to perform in the best possible way. An example showing the importance
of this step is shown in Figure 2.20.

Figure 2.20: Example of how different representations may turn an impossible task
(separating the two categories drawing a straight line) into an easy task for a com-
puter to solve. Picture taken from [12].

2.2.1 Fourier transform
The Fourier transform allows the conversion of signals between the time and the
frequency domains. The continuous Fourier transform of a signal s(t) is defined as

S(ω) =
∫ ∞
−∞

s(t)e−jωtdt (2.27)

The discrete counterpart, i.e. the Discrete Fourier Transform (DFT) is defined as

S(k) =
N−1∑
n=0

s(n)e−j 2π
N
kn (2.28)

where k refers to the Fourier component number, or frequency bin, and n to the
sample number.[19] In general, S(k) is complex valued, and usually the only inter-
esting part is the magnitude of it. This is called a magnitude spectrum

∣∣S(ω)
∣∣. A

power spectrum is calculated by squaring the magnitude spectrum, i.e.
∣∣S(ω)

∣∣2.
The frequency step ∆f of a DFT is calculated as the sampling frequency fs divided
by the number of frequency components Nf in the spectrum.

∆f = fs
Nf

= 1
∆t ·Nf

(2.29)

21

2. Theory

The number of frequency components Nf is identical to the number of samples of
the signal used in the transform. However, the FT returns a double sided spectrum
containing negative frequencies which are usually discarded. This means that the
single sided spectrum contains half the number of frequency bins than the number
of samples in the time domain.

The product ∆t ·Nf is equal to the period time T, and hence:

∆f = 1
T

(2.30)

An important conclusion from this last formula is that the sampling rate of the
signal has no direct influence in the frequency resolution of the corresponding FT.
However, the sampling rate does have an influence in the frequency coverage of the
FT. Higher sampling frequency allows for higher frequency coverage as established
by the Nyquist-Shannon sampling theorem. In Figure 2.21 a picture showing the
fourier transform of a sine wave can be seen.

Figure 2.21: Fourier transform of a sine wave of frequency 12 kHz, showing both
negative and positive frequencies.

2.2.2 Spectrogram and STFT

The DFT assumes the signal to be transformed as being periodic. That is, the end of
the signal is connected to the beginning of the signal. This can cause discontinuities
at the signal edges, that would show up in the spectrum as non-zero amplitudes at
other frequencies than the ones present in the signal.[19] This spread of the amplitude
caused by the assumed periodicity of the signal is commonly referred to as leakage.

22

2. Theory

Figure 2.22: An example of how the DFT periodicity assumption might lead to
spectral leakage. Picture taken from [20].

One solution to avoid this leakage is to window the signal before taking the DFT.
One commonly used window is the Hanning window, which is defined as:

h(n) =
1− cos

(
2πn
N+1

)
2 n = 1, 2, ..., N (2.31)

where n is the sample number and N the total number of samples. A Hanning
window function is depicted in figure 2.23.

Figure 2.23: Hanning window function, N = 50

The spectrogram is nothing but several DFT stacked together, which allows to
visualize how frequencies change over time. In order to do so, a time window needs
to be chosen for which to compute the DFT. This time window is usually chosen to
overlap with the following time frame. This is done to preserve all the information of
the signal that would otherwise be lost due to two consecutive windowing operations.

2.2.3 Mel-frequency spectrogram
The mel scale is a logarithmic frequency scale that tries to better adapt to human
hearing. It was developed by experimenting with the human interpretation of pitch
in 1940’s with the sole purpose of describing the human auditory system on a linear
scale.[21] The experiment showed that the pitch is linearly perceived in the frequency
range 0-1000 Hz. Above 1000 Hz, the scale becomes logarithmic. An approximated
formula widely used for mel-scale is shown below:

fmel = 2595 log10

(
1 + fHz

700

)
(2.32)

23

2. Theory

where fmel is the resulting frequency on the mel-scale measured in mels and fHz is
the frequency measured in Hz. The plot of this function can be seen in Figure 2.24.

Figure 2.24: Mel frequency scale vs linear frequency scale

Basically the mel-frequency spectrogram is the regular spectrogram of a signal,
mapped onto the mel-frequency scale. In addition to that, the mel-spectrogram
is usually grouped into frequency bands. This grouping is obtained by multiplying
the discrete spectrogram with a mel-scaled filterbank made up of several overlapping
triangular windows. The discrete frequency bins are therefore mapped into a pre-
defined number of mel-frequency bands.
Since the frequency range of the signal, determined by its sampling rate, is dis-
tributed in uniformly-spaced bands along the mel-scale, this has the consequence
that low frequencies are emphasized over high frequencies, for which a more coarse
frequency resolution is obtained. In Figure 2.25 the distribution of the different
triangular filterbanks over the two frequency scales can be seen.

Figure 2.25: Schematic plot of different triangular filterbank implementations. The
filters are either uniformly distributed on the mel-warped spectrum, or non uniformly
at the original spectrum. Picture taken from [21].

24

3
Methods

In this section, all the crucial steps performed for the development of this master
thesis will be described. With the information presented in this chapter, the reader
will have enough information to understand the procedure and to potentially apply
it to their own project.

3.1 Software
All the programming was performed in Python, version 3.6.3. Besides all the general
libraries used for data processing and analysis in Python such as Numpy or Mat-
plotlib, four specific libraries were used in this project: The library SoundFile was
used for reading and writting audio files. The audio analysis library Librosa[22] was
used for the resampling of the audio files as well as for generating the mel-frequency
spectrograms that were fed as training data to the network. For the neural network
programming part, Google’s library Tensorflow was used, version 1.1.0. The library
Scikit-learn was used for calculating the confusion matrixes shown in Chapter 4,
Results.
All the code used in this project can be found in https://github.com/santigijon/
Audio-event-classification-using-neural-networks.

3.2 The dataset: UrbanSound8K
UrbanSound8K is the dataset used in this project. It is an open source dataset,
published by Justin Salomon, Christopher Jacoby and Juan Pablo Bello.[3] The
dataset contains 8732 labeled sound excerpts of less than or equal to four seconds
duration of urban sounds from 10 classes: air conditioner, car horn, children playing,
dog bark, drilling, enginge idling, gun shot, jackhammer, siren, and street music.
All excerpts are taken from field recordings uploaded to www.freesound.org. The
files are pre-sorted into ten folds to help in the reproduction of and comparison with
classification results reported in other works.
All 8732 audio files of urban sounds are in WAV format. The sampling rate, bit
depth, and number of channels are the same as those of the original file uploaded
to Freesound, and hence, they vary from file to file.
In Figure 3.1 a graph showing the distribution of foreground and background slices
per class is shown. This characterization of the audio files is a subjective judgment
by the authors of the dataset.

25

https://github.com/santigijon/Audio-event-classification-using-neural-networks
https://github.com/santigijon/Audio-event-classification-using-neural-networks

3. Methods

Figure 3.1: Slices per class in UrbanSound8K, breakdown by foreground (FG) /
background (BG). Picture taken from [3].

The total values of the histogram shown in Figure 3.1 can be seen in table 3.1.

Class Air conditioner Car horn Children playing Dog bark Drilling
Slices 1000 429 1000 1000 1000
Class Engine idling Gun shot Jackhammer Siren Street music
Slices 1000 374 1000 929 1000

Table 3.1: Number of total audio slices for the different classes in UrbanSound8K
dataset

A more thorough study of the dataset was performed by analyzing the different file
lengths present in the dataset, for the different classes. The files were splitted into
one, two and three seconds duration clips. The number of obtained clips resulted in
the distributions shown in Tables 3.2, 3.3 and 3.4.

Class Air conditioner Car horn Children playing Dog bark Drilling
Slices 3994 953 3951 2989 3449
Class Engine idling Gun shot Jackhammer Siren Street music
Slices 3915 444 3513 3617 4000

Table 3.2: Number of one second duration slices for the different classes in Urban-
Sound8K dataset

Class Air conditioner Car horn Children playing Dog bark Drilling
Slices 1997 439 1971 1427 1676
Class Engine idling Gun shot Jackhammer Siren Street music
Slices 1946 129 1697 1801 2000

Table 3.3: Number of two second duration slices for the different classes in Urban-
Sound8K dataset

26

3. Methods

Class Air conditioner Car horn Children playing Dog bark Drilling
Slices 997 218 980 697 829
Class Engine idling Gun shot Jackhammer Siren Street music
Slices 973 34 838 901 1000

Table 3.4: Number of three second duration slices for the different classes in Urban-
Sound8K dataset

It can be observed that there are clear differences in the duration of the audio files
between classes. For example, all the audio excerpts belonging to the class Street
music are longer than three seconds, whereas only 34 audio excerpts of the class
Gun shot are longer than three seconds.

3.3 Audio files processing

In order to have all the audio files with the same characteristics, they were all
resampled to a sampling rate of 22050 Hz and converted to mono channel. This
sampling rate allows for a frequency coverage up to 10 kHz, which is more than
necessary, as shown in [23]. The amplitude range of most of the audio files is (-1,1),
although there are certain floating point file formats that contain values greater than
(-1,1). However, this was observed just for very few of the examples.
The network arquitectures considered in the present study do not accept inputs of
different sizes, therefore it is required that all inputs have the same duration. This
duration was chosen to be three seconds. Therefore a last step in the processing
of the audio files was to zero-pad all the files that did not reach the three seconds
duration. Comparing tables 3.4 and 3.1 it can be seen that a different proportion of
zero-padded audio files per class is obtained with this method. The authors of [4]
used a different technique for extending the audio files. They appended the same
file as many times as needed until reaching the desired three seconds file duration.

3.4 Multi-label dataset generation

UrbanSound8K is a dataset of individual environmental sounds. In order to study
the multi-label classification task, a dataset where sounds are combined was needed.
This dataset was obtained by combining audio samples of the UrbanSound8K dataset.
This was done in such a way that combinations of two classes are present in each of
the new audio samples. The distribution of files per folder for the different classes is
shown in Figure 3.5. The lowest number of instances of one class across folders was
chosen as the number of instances of each class and folder considered for the new
dataset generation.

27

3. Methods

Table 3.5: Number of audio files per folder. The lowest number of files of one class
in a folder is highlighted in green.

The organizational structure of the 10 folders was maintained. A combination of 28
audio files per class per folder was created where, for each of the 28 elements of one
class in one folder, a combined file was created by combining this element with one
of the elements of each other class in that same folder. Thus, since there are ten
classes, for a set of one example per class (ten examples), ∑9

n=1 n = 45 combinations
are created. In Figure 3.2 a picture summarizing the process is provided, where
A to J represent the ten different classes in the dataset. The combination of the
28 files per folder for the 10 different folders led to a dataset of 12600 audio files,
which keeps the size of the dataset within a reasonable size compared to the original
dataset and therefore does not vastly increment computational requirements.

Figure 3.2: Sketch showing how the multi-label dataset generation was performed.

3.5 Input features to the networks

For both the single-label and multi-label tasks the input features to the network are
mel-frequency spectrograms of 60 frequency bands and three seconds duration. The
spectrograms were calculated with a window (Hanning) size of 1024 samples and a
hop size of 512 samples. The mel-spectrogram was chosen since it provides a finer
resolution at lower frequencies, where most of the relevant acoustic information is
present.[23]
In Figure 3.3 some of the images that were fed to the network for training can be
seen. The units are in dB relative to the maximum value of the power spectrogram
of each sample.

28

3. Methods

Figure 3.3: Mel-frequency spectrograms of ten random samples belonging to the ten
different classes of UrbanSound8K.

In Figure 3.4 two mel-frequency spectrograms of two random samples belonging to
the dataset generated for the multi-label task can be seen. This was the type of
training data used for the multi-label classification task.

Figure 3.4: Mel-frequency spectrograms of two mixed samples.

3.6 Network arquitectures
In this section the two network arquitectures used in the study are presented.

3.6.1 Single-label classification
In Figure 3.5 a sketch of the network arquitecture used for the single-label classi-
fication task can be seen. In the figure, Conv stands for convolutional layer, Pool

29

3. Methods

stands for pooling layer, and FC stands for fully connected layer. The letters f
and s stand for filter size and stride. And ReLU and Softmax are the activation
functions of the specified layer. The model has a total of 151290 parameters.

Figure 3.5: Network arquitecture for the single-label classification task.

3.6.2 Multi-label classification
In Figure 3.6 a sketch of the arquitecture used for the multi-label classification task
can be seen. The model has a total of 299386 parameters.

Figure 3.6: Network arquitecture for the multi-label classification task.

3.7 Dataset variations for the single-label classi-
fication task

In this section three variations of the UrbanSound8K dataset are explained. These
variations were considered after observing the first results of the baseline model and
the results after evaluating it on noise and amplitude corrupted inputs. The model
was then trained on these variations in order to study different behaviours:

30

3. Methods

• Undersampling: To test whether reducing the number of instances per class
improves accuracy or not.

• Data augmentation with BG noise: To find out how does data augmentation
with noise affect robustness to noise intrusions.

• Random amplitude scaling: To find out if the network is capable of learning
relative pattern differences in the audio files, or it can just rely on absolute
values. To find out if it is possible to force the network to learn patterns in
the audio signals.

3.7.1 Undersampling
A first attempt to reduce the effect of overfitting was to reduce the number of
training examples in the classes where overfitting was more present, i.e. where the
difference between training and test accuracy is the greatest. According to the results
illustrated in Figure 4.1, these classes were judged to be Air conditioner, Engine
idling and Jackhammer. Additionally, two other variations were implemented.
The A-E versions were obtained as follows: A is a modified version of UrbanSound8K
where 651 audio files of the class Air conditioner were discarded. In B, 677 files of
the class Engine indling were discarded. In C, 261 files of the class Gun shot were
discarded. In D, 660 files of the class Jackhammer were discarded. In all A, B, C
and D the files were discarded using a 66% random discard rule.1
In version E, a reduction of all the classes was performed. This was made to get
an approximately balanced dataset and study the consequences. The resulting total
number of audio examples per class can be seen in table 3.6. The total number of
examples in the dataset was reduced from 8732 to 3355 examples.

Class Air conditioner Car horn Children playing Dog bark Drilling
Slices 335 295 342 333 339
Class Engine idling Gun shot Jackhammer Siren Street music
Slices 330 374 344 321 342

Table 3.6: Number of audio examples for the different classes in version E of the
UrbanSound8K dataset

3.7.2 Data augmentation with noise
The dataset was augmented with pink noise levels of SNR +0 dB, i.e. for every
three-seconds audio sample, another sample was created by adding pink noise to it.
Thus the resulting dataset had 17464 audio samples.

3.7.3 Amplitude scaling
Two different scaling versions of the inputs to the network were considered:

1In Python: if random.random > 0.33, then discard example.

31

3. Methods

• Version 1: the samples were scaled so that their average mel-spectrogram
magnitudes per class lied within the same amplitude range. This was done
according to Figure 3.7.

• Version 2: the same first step as in Version 1 was applied, and then a second
step was performed, where the samples were rescaled by a random factor
f ∼ U(1, 16). This was done to increase amplitude variance in the dataset, in
an attempt to encourage the network to learn relative amplitude patterns.

Figure 3.7: Original mel-spectrogram amplitudes averaged across instances of the
same class, relative to class Engine.

3.8 Input corruption for the single-label classifi-
cation task

In this section the two considered variations of the original dataset for a posterior
evaluation to these variations are explained.

3.8.1 Noise addition

In order to study how different noise levels influence the accuracy prediction of the
network, the original audio samples were combined with noise.
Pink noise was generated using the Voss-McCartney algorithm, and the SNR (signal
to noise ratio) differences were calculated with respect to rms values as in:

SNR = 10 log10

(
rmssignal
rmsnoise

)
(3.1)

This was done for six different SNR values: -5 dB, -2 dB, 0 dB, +2 dB, +5 dB and
+8 dB. The lowest SNR was -5 dB, which was a very strong noise level in the signal
as judged by the writer.
The noise was added to the files in two different ways. Firstly it was added only to
the duration of the original file. In the second version the noise was added to the
whole three seconds of the file.

32

3. Methods

3.8.2 Amplitude scaling
The second input corruption considered was amplitude scaling of the audio signals,
in order to study how robust the network is to level differences. Four different level
differences with respect to the original signal were considered: -12, -6, +6 and +12
dB, as in:

Leveldifference = 20 log10

(
scaledsignal
originalsignal

)
(3.2)

3.9 Training procedure and hyperparameter search
In this section, the details corresponding to the training procedure of the networks
are explained. Adam[24] algorithm was used for the optimization of both tasks.

3.9.1 Single-label classification task
In Table 3.7, the final hyperparameter choice used for training of the baseline model
is shown.The hyperparameter search was performed on a single folder due to com-
putational reasons. A more thorough search of hyperparameters could be done by
10-fold cross validating for every choice of hyperparameters, but this was not the
case in this work.

Learning rate Batch size Epochs Weight decay
factor

Dropout
probability

0.001 50 50 0.0025 0.5

Table 3.7: Final choice of hyperparameters used during training.

Once the final set of hyperparameteres was chosen, the model was trained using 10-
fold cross validation. During training one folder was always discarded in order to be
consistent with previous research studies where they used this folder for validation
purposes. The training was performed as shown in Table 3.8:

Discarded folder fold0
Test folder fold1

Training folders fold2-fold9

Table 3.8: Folder arrangement for training, validation and testing.

For each new step of the cross-validation procedure, every folder index of Table 3.8
was incremented by one.
The dataset augmentation with background noise was the only variation where the
hyperparameters were changed from the baseline model. A limited search of hyper-
parameters was performed and the resulting parameters are shown in Table 3.9.

33

3. Methods

Learning rate Batch size Epochs Weight decay
factor

Dropout
probability

0.001 50 40 0.005 0.5

Table 3.9: Hyperparameters used in training for the model with noise augmented
dataset.

3.9.2 Multi-label classification task
The final hyperparameter choice used for training of the model is shown in Table
3.10.

Learning rate Batch size Epochs Weight decay
factor

Dropout
probability

0.001 40 120 0.00 0.5

Table 3.10: Final choice of hyperparameters used during training

The 1260 files corresponding to the combined files from folder 9 were used as test
set, and those corresponding to folder 8 were used as validation set. 10080 files were
therefore used as training set.

34

4
Results

In this chapter the results to the study will be presented. Each result is accompanied
by a posterior discussion where the results are interpreted.

4.1 Network classification performance
In this section the prediction accuracy results for the baseline model and the three
different variations are presented.

4.1.1 Baseline
The obtained results for the single-label classification task using the UrbanSound8K
dataset are shown in Table 4.1. Following the same procedure as [4], accuracy was
calculated as the average of the individual prediction accuracies across the 10 folders.
The results reveal a high degree of overfitting to the training data, measured by the
difference between training and test accuracy. The different explicit regularization
techniques tried out during the hyperparameter search, i.e. dropout and weight
decay, did not help to reduce this generalization gap, suggesting that generalization
is a difficult task on this particular dataset. It is prone to overfitting due to the low
intra-class variance of some of the classes. The main reason for this low variance is
the fact that many of the sound excerpts of each class were extracted from the same
audio file when the dataset was created.[3]
This bias is more pronounced for those classes whose original sound recordings had
longer duration. It is less likely to find a sound recording of 20 seconds duration for
the class Gun shot, whereas for the classes Jackhammer or Air conditioner that is
many times the case.

Training accuracy Test accuracy
90.60 % 64.82 %

Table 4.1: Training and test accuracy results (10-fold cross validated).

In Figure 4.1 the normalized confusion matrices for the training and test sets can be
seen. This gives a clearer picture about the overfitting distribution over the different
classes. The differences between training and test accuracies reveal the degree of
overfitting present in the model for each class. A big difference means that the
network is memorizing the training samples, but is not able to generalize well to

35

4. Results

new unseen test samples. Air conditioner, Engine idling and Jackhammer are the
classes where the highest degree of overfitting is observed. Gun shot, Dog bark and
Street music are the classes where the lowest degree of overfitting is observed.

Figure 4.1: Training (left) and test (right) confusion matrices of the baseline model.

The following observations can be drawn from these results. For the three classes
with the highest degree of overfitting:

• According to the aforementioned observations about the original duration of
the audio files, these three are the classes presenting the lowest intra-class
variance.

• All of them present a noisy sound nature (see Figure 3.3), making it difficult
for the network to learn meaningful patterns.

• The highest confusions when classifying each of these classes occur between
these three classes and also the class Drilling. This is a proof of the similarity
of these four classes and the consequent difficulty of differentiating between
them.

As for the classes with the lowest degree of overfitting:
• These are either transient sounds or classes with high degree of intra-class

variance, such as Street music.
• The instances of the class Street music might have been extracted from the

same audio file. However, they will still present a high degree of variance since
music is a non-stationary process.

• A high variance among class instances forces the network to learn meaningful
features of each class, since it cannot rely on any particular characteristic
common only to the training data. Therefore the lower degree of overfitting
for the Street music class.

By looking at Figure 3.1 it can be seen that the classes Siren and Car horn are the
only classes where a higher number of background instances are present, compared
to foreground instances. This explains why, besides being a transient (Car horn)
and, in theory (see Figure 3.3), an easily identifiable sound (Siren), the network
occasionally confuses them with sounds like Street music or Children playing, which
are common background city noises.

36

4. Results

4.1.2 Dataset variations

The results obtained when training the model on the three dataset variations intro-
duced in Section 3.7 are presented in this subsection.

4.1.2.1 Undersampling

In Table 4.2 the changes in prediction accuracy per class when performing under-
sampling of the dataset can be seen. The values shadowed in color were calculated
as: accuracy versioni − baseline accuracy, where i ∈ (A,E).

Table 4.2: Change in prediction accuracy (%) per class for different variations of
the training set.

The study reveals that undersampling is not a good procedure for this particular
dataset. Some classes remained unaltered to the variations, like Dog bark, Siren
or Street music, whereas other classes like Air conditioner were singnificantly in-
fluenced. None of the variations had an overall positive influence in prediction
accuracy.

An example of how reducing the training data can have dangerous consequences is
shown in Figure 4.2. When the amount of samples of the class Engine is reduced,
the accuracy of the class Air conditioner remains unaltered. However, it can be seen
than now the network is confusing the Engine sounds with the class Air conditioner.
This gives an intuition about how close some classes are to others and the consequent
difficulty for the network to differentiate between them. Thus, reducing the amount
of information about one of these classes makes the network more likely to get
confused when trying to identify other classes that are similar to the class whose
samples were reduced.

37

4. Results

Figure 4.2: Change in prediction accuracy (%) when performing undersampling of
class Engine. Calculated as: cnf matrix version B - cnf matrix baseline, normalized.

A remarkable observation is that in all versions B, C and D, reducing the samples
of the corresponding class had a negative consequence on the prediction accuracy of
that class. But when the reduction is done proportionally with other classes (version
E), the accuracy of these classes did not decrease with respect to the baseline,
suggesting that many of the audio slices are redundant and the network does not
learn additional information from them. In fact, all these samples are doing is
contributing to the overfitting of the network.

4.1.2.2 Data augmentation with noise

The results of the model when training the network on the augmented dataset are
shown in table 4.3.

Training
accuracy

Overall test
accuracy

Test accuracy
on clean inputs

Test accuracy
on noisy inputs

91.06 % 63.24 % 64.23 % 62.06 %

Table 4.3: Training and test accuracy results for the noise augmented model
(10-fold cross validated).

Comparing this table to table 4.1 it can be seen that a reduction in the generalization
gap has not been achieved, suggesting that this kind of data augmentation is not
favorable for this particular dataset when applied to all classes. In Figure 4.3 the
confusion matrix comparison between baseline and background noise augmented can
be observed. It can be seen that the prediction accuracy of some classes such as
Air conditioner was negatively influenced by the noise augmentation, whereas for
other classes like Children playing or Drilling it was improved. This suggests that
applying class-conditional data augmentation would improve the results. A reason
for the no improvement of the overall predictions may be that this particular noise
has a similar structure to the noise present in certain classes, consequently biasing
the predictions towards those classes, like Drilling or Children playing. Therefore

38

4. Results

applying data augmentation with different noise types and levels would most likely
improve the results.

Figure 4.3: Change in prediction accuracy (%) per class when performing data
augmentation with noise. Calculated as: cnf matrix augmented - cnf matrix baseline,
normalized.

4.1.2.3 Amplitude scaling

The results after training on the scaled dataset are shown in Table 4.4 for the two
versions presented in Section 3.7.3.

Version Training accuracy Test accuracy
1 90.46 % 66.56 %
2 86.36 % 63.57 %

Table 4.4: Training and test accuracy results (10-fold cross validated) for the
amplitude scaled model.

The results to Version1 show that the generalization gap was reduced by 2% with
respect to baseline (see Table 4.1). This suggests that having the input scales in
a smaller range helps the learning process of the network. The results to Version2
do not bring any significant conclusion in terms of accuracy, but they do in terms
of robustness to amplitude corruption of the inputs as it will be shown in the next
section.

4.2 Network robustness to input corruption

In this section the results obtained after evaluating the different models with two dif-
ferent types of input corruptions are presented. These two types of input corruption
are noise addition and amplitude scaling.

39

4. Results

4.2.1 Noise addition
In Table 4.5 the different accuracy drops when noise is added to the inputs are shown
for both noise configurations.

SNR (dB) -5 -2 +0 +2 +5 +8
Noise applied to original
sound duration 44.82 24.04 11.85 4.91 0.58 0.38

Noise applied to the 3 sec-
onds extended audio file 46.58 26.48 14.24 6.45 1.41 0.73

Table 4.5: Decrease in prediction accuracy (%) when the audio files are corrupted
with pink noise. Differences with respect to baseline (see Table 4.1).

Looking at the results, it can be concluded that SNR levels from +5 dB and above
have no meaningful effect in the prediction accuracy of the network. On the contrary,
SNR levels below +2 dB have a very pronounced effect in the prediction accuracy. To
get a wider picture of the effect that these noise additions have into the classification
accuracy, the confusion matrix for one of the considered noise levels is shown in
Figure 4.4.

Figure 4.4: Normalized confusion matrix evaluated on noise corrupted inputs of
SNR -5 dB. Calculated as the difference between the evaluated-on-corrupted-input
confusion matrix and the baseline confusion matrix, normalized.

Looking at the confusion matrix, a clear decrease in accuracy for all the classes is
observed. However, it can be seen that not all classes are influenced alike. Air
conditioner is the class attracting the majority of confusions, which indicates that
the network has learned to detect some features corresponding to this class that are
common to the noise used in the input corruption. This explains also why this class
is the least affected by the noise corruption, its recall has increased but its precision
has decreased.
In Table 4.6 the prediction accuracy results of the data augmented model when eval-
uated on noise corrupted inputs are shown. In order to make the results comparable
to those in Table 4.5, the network was evaluated on noise corrupted inputs only.

40

4. Results

Comparing the results from Tables 4.5 and 4.6, it is clear that performing data
augmentation with noise substantially helps dealing with noise corrupted inputs.
As expected, the network has become more invariant to this type of inputs, being
able to correctly identify them, no matter the presence of the noise. And it has not
only helped to improve robustness to the noise level used in the data augmentation,
but also to other noise levels.
The negative values observed on the table are due to the comparison with the overall
accuracy test of the model. Since the model predicts with more accuracy clean inputs
(see Table 4.3), as the corrupted audio files approach clean inputs (higher values of
SNR) the 64.23 % accuracy observed on clean inputs is approached, and thus the
difference 63.24 %− 64.23 % = −0.99 %.

SNR (dB) -5 -2 +0 +2 +5 +8
Noise applied to original
sound duration 25.98 4.94 1.18 -0.45 -0.59 -0.75

Table 4.6: Decrease in prediction accuracy (%) when the audio files are corrupted
with pink noise. Differences with respect to augmented baseline (see Table 4.3,
column 2).

4.2.2 Amplitude scaling
In Table 4.7 the decrease in prediction accuracy when the network is evaluated on
amplitude scaled versions of the inputs is shown. The variations in the prediction
accuracies when the network is evaluated on amplitude corrupted inputs indicate
that the network is sensitive to level differences. Meaning that the network is not
learning relative amplitude patterns . However, it might have learned that certain
class A usually have a strong energy band at 1 kHz for example. And now when
increasing the levels of all the inputs, some other class B with previously medium-
level energy at 1 kHz gets amplified, and then the network confuses it with the class
A. It does not necessarily mean that the network only learned absolute amplitude
patterns. It might have learned to localize where those patterns occur, even if it has
not learned to identify relative amplitude patterns, which would be the ideal case.

Level difference -12 dB -6 dB +6 dB +12 dB
Accuracy decrease 17.06 % 4.76 % 1.68 % 8.46 %

Table 4.7: Decrease in prediction accuracy when the audio files were scaled in am-
plitude. Differences with respect to baseline (see Table 4.1).

In Figure 4.5 the confusion matrices when the network was evaluated on ampli-
tude corrupted inputs can be seen. By looking at the +12 dB level differences, the
two most pronounced changes happen for the class Jackhammer getting confused
with the class Engine, and the class Children playing getting confused with the
class Street music. Looking at Figure 4.6 it can be seen that on average, the class
Children playing has lower amplitude values than the class Street music, and both

41

4. Results

Figure 4.6: Mel-spectrum magnitudes averaged across instances of the same class,
relative to class Engine, from the original dataset.

classes have a similar sound structure. This has probably lead the network to con-
fuse between these two classes. The same confusion might have happened between
Jackhammer and Engine, confirming that the network has learned some absolute
amplitude frequency related features.

Figure 4.5: Normalized confusion matrices with respect to baseline when the baseline
model is evaluated on amplitude corrupted inputs for different levels, -12 dB (left)
and +12 dB (right).

In Table 4.8 the accuracy drops when evaluating the two models on amplitude
corrupted inputs are shown. Version1 had no overall difference regarding robustness
to amplitude corruption of the inputs with respect to the drops in the baseline
model. However, Version2 presented improved robustness to amplitude corruptions
when the amplitude was increased. On the contrary, it performs worse than the
baseline when the scaling factor is <1.
In Figure 4.7 two confusion matrices when evaluating the model Version2 on cor-
rupted inputs are shown. It can be seen that, when evaluating the model on higher
levels corrupted inputs, the only class whose accuracy noticeably decreases is Air
conditioner. The model is really sensitive to reductions in the input levels, as there
is a clear bias towards the class Siren whose origin is hard to explain.

42

4. Results

Level difference -12 dB -6 dB +6 dB +12 dB
Accuracy decrease

Version1 17.90 % 5.58 % 1.99 % 8.25 %

Accuracy decrease
Version2 30.73 % 16.48 % 1.11 % 0.40 %

Table 4.8: Decrease in prediction accuracy when the audio files were scaled in am-
plitude. Differences with respect to corresponding test results (see Table 4.4).

Figure 4.7: Normalized confusion matrices with respect to Version2 (see Table 4.4)
when the model Version2 is evaluated on amplitude corrupted inputs for different
levels, -12 dB (left) and +12 dB (right).

4.3 Multi-label classification

The multi-label prediction results are shown in Table 4.9. The results show that the
task of multi-label classification of environmental sounds is clearly feasible. Neural
networks are capable of learning representations in complicated mixed environments
where more than one sound source is present. This is a powerful and important
ability of neural networks because having more than one sound source would always
be the case in real environmental sound classification scenarios.
Due to the nonexistence of previous studies on this task using the UrbanSound8K
dataset, a benchmark for result comparison was generated considering the accuracy
metrics for a random classifier that would indicate the presence of each class, 50 %
of the time. This gives the results shown in Table 4.10.
Further research is needed to draw any conclusions on this but, the positive results
on the multi-label task may suggest that, even when using a limited dataset where
only 280 instances of each class were considered, the multi-label task is likely to
introduce some inherent regularization that encourages the network to learn more
robust and features of each class, since some of the input features are masked at
times.

43

4. Results

Precision Recall F1 Score
70.56 % 58.37 % 63.89 %

Table 4.9: Classification results for the multi-label task.

Precision Recall F1 Score
20.00 % 50.00 % 29.00 %

Table 4.10: Multi-label classification benchmark generated with a random classifier
following a Bernoulli distribution with p = 0.5.

44

5
Conclusion

A convolutional neural network arquitecture was developed for the single-label mul-
ticlass classification task using the UrbanSound8K dataset, achieving an overall
prediction accuracy of 65%. Studies on undersampling of the dataset did not show
any improvement in overall performance of the classifier, but revealed that a high
proportion of the samples for most of the classes are not contributing to the learning
of the network, which confirms the low degree of intra-class variance of this particu-
lar dataset and the consequent high overfitting. The confusion matrix of the baseline
results revealed that foreground and background instances have a big impact on the
classifier confusion of certain classes with other common environmental sounds, like
Street music or Children playing.
Studies on noise corruption and amplitude scaling of the inputs revealed how sen-
sitive these systems are to input variations, showing significant prediction accuracy
drops for SNR levels lower than 5 dB. Noise data augmentation techniques and am-
plitude scaling of the training set showed to significantly improve the robustness of
the classifier to these input variations.
A multi-label environmental sound classifier was developed using a variation of the
UrbanSoun8K dataset, in which 280 instances per class were combined to give a
dataset of 12600 samples. Despite the reduced number of samples, a recall of 58 %
was obtained, leaving generous room for improvement in this task.
Further research is needed to draw any conclusions on this but, the positive results
on the multi-label task suggest that, even when using a limited dataset where only
280 instances of each class were considered, the multi-label task is likely to introduce
some inherent regularization that encourages the network to learn more robust and
features of each class, since some of the input features are masked at times.
Since no previous benchmark is available at the time of writing for the multi-label
classification task using the UrbanSound8K dataset, this study sets the stage for
further research in this field.

45

5. Conclusion

46

Bibliography

[1] Charlie Mydlarz, Justin Salamon, and Juan Pablo Bello. “The implementa-
tion of low-cost urban acoustic monitoring devices”. In: Applied Acoustics 117
(2017), pp. 207–218.

[2] EEA. Noise in Europe. Tech. rep. ISSN 1977-8449. Kongens Nytorv 6, 1050
Copenhagen K, Denmark: European Environment Agency, 2014.

[3] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. “A dataset and
taxonomy for urban sound research”. In: Proceedings of the 22nd ACM inter-
national conference on Multimedia. ACM. 2014, pp. 1041–1044.

[4] Justin Salamon and Juan Pablo Bello. “Deep convolutional neural networks
and data augmentation for environmental sound classification”. In: IEEE Sig-
nal Processing Letters 24.3 (2017), pp. 279–283.

[5] Karol J Piczak. “Environmental sound classification with convolutional neural
networks”. In: Machine Learning for Signal Processing (MLSP), 2015 IEEE
25th International Workshop on. IEEE. 2015, pp. 1–6.

[6] Venkatesh Boddapati et al. “Classifying environmental sounds using image
recognition networks”. In: Procedia Computer Science 112 (2017), pp. 2048–
2056.

[7] Huy Phan et al. “Audio scene classification with deep recurrent neural net-
works”. In: arXiv preprint arXiv:1703.04770 (2017).

[8] Yuni Zeng et al. “Spectrogram based multi-task audio classification”. In: Mul-
timedia Tools and Applications (2017), pp. 1–18.

[9] Simon S Haykin et al. Neural networks and learning machines. Vol. 3. Pearson
Upper Saddle River, NJ, USA: 2009.

[10] Joseph D Dumas II. Computer architecture: fundamentals and principles of
computer design. CRC Press, 2016.

[11] Steven K Rogers and Matthew Kabrisky. An introduction to biological and
artificial neural networks for pattern recognition. Vol. 4. SPIE Press, 1991.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[13] Convolutional Neural Networks for Visual Recognition. http : / / cs231n .
github.io/convolutional-networks/. Accessed: 2018-06-01.

[14] The Softmax Function, Neural Net Outputs as Probabilities, and Ensemble
Classifiers. https://towardsdatascience.com/the-softmax-function-
neural-net-outputs-as-probabilities-and-ensemble-classifiers-
9bd94d75932. Accessed: 2018-06-03.

[15] Christopher M Bishop. Neural networks for pattern recognition. Oxford uni-
versity press, 1995.

47

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
 https://towardsdatascience.com/the-softmax-function-neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932
 https://towardsdatascience.com/the-softmax-function-neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932
 https://towardsdatascience.com/the-softmax-function-neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932

Bibliography

[16] Improving the way neural networks learn.
http : / / neuralnetworksanddeeplearning . com / chap3 . html. Accessed:
2018-04-04.

[17] Making sense of Logarithmic Loss. http://www.exegetic.biz/blog/2015/
12/making-sense-logarithmic-loss/. Accessed: 2018-04-04.

[18] Nitish Srivastava et al. “Dropout: A simple way to prevent neural networks
from overfitting”. In: The Journal of Machine Learning Research 15.1 (2014),
pp. 1929–1958.

[19] Patrik Andersson. Lab 4: Signal Analysis Task. Sound and Vibration Measure-
ments. Oxford university press, 2005.

[20] John G Proakis and Dimitris G Manolakis. Digital signal processing. Pearson
Education, 2013.

[21] The mel frequency scale and coefficients. http : / / kom . aau . dk / group /
04gr742/pdf/MFCC_worksheet.pdf. Accessed: 2018-05-25.

[22] Brian McFee et al. “librosa: Audio and music signal analysis in python”. In:
Proceedings of the 14th python in science conference. 2015, pp. 18–25.

[23] Karol J. Piczak. “The details that matter: Frequency resolution of spectro-
grams in acoustic scene classification”. In: Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2017 Workshop. Munich, Ger-
many, 2017.

[24] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

48

http://neuralnetworksanddeeplearning.com/chap3.html
http://www.exegetic.biz/blog/2015/12/making-sense-logarithmic-loss/
http://www.exegetic.biz/blog/2015/12/making-sense-logarithmic-loss/
http://kom.aau.dk/group/04gr742/pdf/MFCC_worksheet.pdf
http://kom.aau.dk/group/04gr742/pdf/MFCC_worksheet.pdf

	List of Figures
	List of Tables
	Introduction
	Background
	Literature review
	Aim
	Research questions
	Outline

	Theory
	Artificial neural networks
	Relation to biological neurons and human nervous system
	Feedforward neural networks
	Activation functions
	Loss functions
	Gradient descent
	Convolutional neural networks
	Convolution and cross-correlation operation
	Why convolutional neural networks?
	Pooling layers

	Capacity, Over-fitting and Underfitting
	Regularization methods
	Weight decay
	Dropout

	Feature generation
	Fourier transform
	Spectrogram and STFT
	Mel-frequency spectrogram

	Methods
	Software
	The dataset: UrbanSound8K
	Audio files processing
	Multi-label dataset generation
	Input features to the networks
	Network arquitectures
	Single-label classification
	Multi-label classification

	Dataset variations for the single-label classification task
	Undersampling
	Data augmentation with noise
	Amplitude scaling

	Input corruption for the single-label classification task
	Noise addition
	Amplitude scaling

	Training procedure and hyperparameter search
	Single-label classification task
	Multi-label classification task

	Results
	Network classification performance
	Baseline
	Dataset variations
	Undersampling
	Data augmentation with noise
	Amplitude scaling

	Network robustness to input corruption
	Noise addition
	Amplitude scaling

	Multi-label classification

	Conclusion
	Bibliography

