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Abstract
There are billions of dollars that are lost to fraudulent credit card transactions every
year. Many of these transactions are never noticed which causes a tremendous pres-
sure on the economical system for the financial and credit institutions of interest. In
addition to this, the usage of credit cards and thus e-business are in its arise, which
together causes a threat in parallel with new developed data infringement meth-
ods. The research and progress within Machine Learning (ML) algorithms has been
seen as an useful tool for the fraud investigators. However, there are still lacking
robust frameworks which provides accurate and reliable methods within the field of
ML:s. This thesis examines how the Multivariate Generalized Pareto distribution
(MGPD) performs with regards to anomaly detection within a pre-processed data
set consisting of credit card transactions in Europe for a month, compared to the
supervised ML algorithm Feedforward Fully Connected Neural Network (FFCNN)
and the two unsupervised ML algorithms Isolation Forest (IF) and Support Vector
Machine (SVM), respectively. The pre-processing of the data set has been done a
priori by means of Principal Components Analysis (PCA). The MGPD is fitted and
simulated such that it has generators with independent Gumbel generators, whereas
it is constructed in 3 dimensions consisting of standard exponentially transformed
anomaly threshold excesses from the IF algorithm, L2 and L-Supremum metrics.
The comparison is mainly done by means of Precision-Recall (PR) curves and Re-
ceiver Operating Characteristic (ROC), Area under ROC (AUROC) and Area under
PR curves (AUPRC), whereby most emphasis in the comparison has been put on
the AUPRC value, due to the nature of the highly imbalanced data set. It is found
that the MGPD outperforms both of the unsupervised algorithms; IF and SVM
under the assumption of 0.2% anomalies in the training set. Moreover, it is slightly
under performing the IF when assuming 1% anomalies in the training set. The
supervised FFCNN performs best within all of the models, due to its supervised
nature. Nevertheless, trained and tested with respect to the same data set, the
MGPD significantly outperforms both of the unsupervised algorithms. The results
from this thesis provides promising future research with respect to the MGPD within
unsupervised anomaly detection.

Keywords: Multivariate Generalized Pareto, Support Vector Machine, Artificial
Neural Network, Isolation Forest, Unsupervised, Supervised, Anomaly, Credit Card,
Fraud, Machine Learning.
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Nomenclature

Below is the nomenclature of the most frequently indices, sets, parameters, and
variables that have been used throughout this thesis.

Indices

i,j Indices for number of instances of a sequence
t Index for a time discrete step
µ Input patterns
l Left node of an Isolation Tree
r Right node of an Isolation Tree

Sets

A Set of anomaly scores of L2, L-Supremum and Isolation Forest
based on TTr

AIF Set of the anomaly scores with the origin from the Isolation Forest
algorithm

ASVM Set of the anomaly scores with the origin from the Support Vector
Machine algorithm

AL2 Set of the anomaly scores with the origin from the L2-norm
AL−Sup Set of the anomaly scores with the origin from the L-Supremum

norm
ETransTr Set of SED transformed excesses of the training set
ETransTest Set of SED transformed excesses of the test set
T Set of the total number of credit card transactions
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Parameters

γ Shape parameter for the GPD
σ Scale parameter for the GPD
u Threshold parameter for the GPD
u Threshold vector for the MGPD
Y Excess vector for the MGPD
U Generator vector for the MGPD
T Node of an Isolation Tree
L(·) Harmonic number
c(·) Average path-length
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σ(·) Softmax function
g(·) Activation function
O(·) Output function
β,α Lagrangian multipliers for the SVM
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actions
ρ Offset for the SVM algorithm
β Location parameter for the MGPD
α Scale parameter for the MGPD

Variables

X Stochastic variable
wjk Weights between the inputs and the first hidden layer in FFCNN
θi Thresholds for the FFCNN
Θ Output threshold for the FFCNN
wmj Weights between the two hidden layers
wm Weight between the connection of the last hidden layer and the
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Vj, Vm Hidden layers in the FFCNN
ξi Slack variables for the SVM algorithm
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1
Introduction

This thesis examines how different Machine Learning (ML) algorithms, both
supervised and unsupervised, performs against the Multivariate Generalized

Pareto Distribution (MGPD) that will be fitted, in rigor of anomaly detection within
credit card transactions. The comparison of the performance is done by means of sta-
tistical metrics, such as Precision-Recall (PR) curves, area under the Receiver oper-
ating characteristic (ROC), i.e., (AUROC) and area under the PR curve (AUPRC),
whereas main emphasis is put on the AUPRC due to the highly imbalanced data
set. Chapter 1 declares the aim of this thesis and its contribution for the financial
institutions and overall its contribution for anomaly detection within other fields
for the academy and different engineering principles. Chapter 2, the background,
enlightens some of the fundamental properties and facts regarding anomaly detec-
tion, credit card frauds and Machine Learning. Furthermore, the theory presented in
Chapter 3 possesses the required mathematical and technical aspects for the thesis -
which enables the reader to have a clear understanding behind the different Machine
Learning algorithms and the Generalized Pareto Distribution (GPD) and thus also
the MPGD. Chapter 4, the method, presents the different frameworks and functions
that has been deployed for the numerical computations and training of the data.
This also includes model setup. Furthermore, Chapter 5 presents the results from
the comparison of the various implementations and finally Chapter 6 present the
conclusions of this thesis. Finally, a possible future research based on this thesis is
provided.

1.1 Research aim
The aim for this thesis is to investigate how today’s Machine Learning algorithms,
both supervised and unsupervised, perform against the MGPD that will be fitted and
simulated, by means of unsupervised anomaly detection within credit card trans-
actions. Furthermore, it proposes a new fundamental tool for anomaly detection
within other engineering principles. This, of course, enlightens the generalization of
this research regarding the MGPD and its applications for different purposes within
anomaly detection.

1.2 Contribution
The main contribution of this thesis is to give the financial and credit institutions a
new model by means of the Multivariate Generalized Pareto Distribution for unsu-
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1. Introduction

pervised anomaly detection within credit card transactions. Moreover, this research
enlightens also that the MGPD can be used within other fields when considering
anomaly detection. The reason for introducing such a statistical model to the in-
stitutions is because, today’s ML algorithms mostly functions as a black box. This
means that, these institutions cannot employ these ML:s easily due to ethical as-
pects. In addition to this, ML algorithms require extremely high maintenance and
expertise - which of course the latter also yields for the MGPD, however, the black
box dilemma is avoided.

2



2
Background

For being able to have an intuitive understanding for how different Machine
learning algorithms and statistical models, such as the GPD and MPGD, can

be used for anomaly detection within credit card transactions and thus anomaly
detection in general, one must address the issues and challenges within this area.
For this purpose, one must know what a credit card fraud is, how it can be detected
and how today’s financial institutions are dealing with this unwanted phenomenon.
Moreover, one must also define the meaning of a Machine learning algorithm and
further what negative impacts fraud can lead to. Below sub-sections treat these
topics and prepares the reader for the advanced mathematical concepts in the coming
chapters. The novice reader might consider to jump directly to the results and
omitting the theory - the latter is presented in Chapter 3.

2.1 Fraud
Fraud is an old phenomenon, which has been existing as long as the human being
itself. When thinking about fraud, it might enlighten different scenarios for every
person of interest, thus making the definition unclear. However, when considering
a fraud - there are always one counterpart that looses something and the other one
stealing a property that is not theirs. Fraud is a crime where the main purpose is
to, by means of different techniques and methods, to overcome money or a property
that does not belong to the fraudster. According to the Association of Certified
Fraud Examiners (ACFE), fraud is defined as [1]:

“The use of one’s occupation for personal enrichment through the delib-
erate misuse or misapplication of the employing organization’s resources
or assets.“

There are various types of fraud in today’s society. Some of these can be referred
to as management frauds, which is also known as a financial statement fraud, tax
fraud, which can be carried out by a individual or an organization [2] - but also
other frauds as for instance credit card frauds. The latter type of fraud is the one
that will be considered throughout this thesis. However, ACFE divides typically
fraud into two sub-categories as external and internal fraud [4]. Where the first one
is for instance when an employee commits some sort of fraud against its employer,
that is, its current working organization or business. Whereby the external fraud, is
typically against an another company/organization or the government. Regardless

3



2. Background

the origin of the fraud, one must have in mind that fraud can cause tremendous of
harm for the source of trust and the economical system that today exhibit. As a
consequence to prevent such fraudulent instances, extensive amount of money and
resources are deployed - all this putting an enormous economical pressure for the
governments and financial/insurance institutions. In addition to this, parallel to the
increasing use of the internet, new and unique methods are being developed by the
fraudsters to commit frauds through [3]. As the use of internet is strictly increasing,
it opens up several new methods and techniques for the fraudster to infringement
personal information and thus reach sensitive information.

2.2 Credit Card Fraud
Today, there are billions of dollars in losses due to fraudulent credit card transac-
tions. In addition to this, the use of credit cards are strictly increasing in society
whereas almost no physical cash is used. This situation is of course the utopia for
the fraudsters that are committing these frauds. In parallel to this, at stated be-
fore, new techniques for committing these fraudulent credit card transactions are
evolving [3].This thesis aim to focus on how these credit card frauds can be detected
a priori and thus be prevented. A credit card fraud is basically a sort of banking
fraud where the fraudster manages to obtain information regarding the cardholders
physical credit card and thus commit frauds. Fraudulent credit cards transactions
is defined as [5]:

”The unauthorized use of an individual’s confidential information to
make purchases, or to remove funds from the user’s account”

To have an understanding on how a credit card fraud might be executed - one must
first know what a credit card is and its technical function. That is, not only its
physical appearance and usability, but also the machinery behind the rectangular
simple card that has been in the market for decades.

A credit card is a sort of payment card that is issued to the cardholder by a finan-
cial institution or a credit union, which enables the cardholder to pay a merchant
for the goods of interest, but also other services, such as Forex transactions [6].
Furthermore, the card issuer usually creates an account which grants an amount of
credit to the credit cardholder, by this, they can borrow money for a payment or
as a cash advance. This implies that the credit card itself is connected to the is-
suer and hence when the cardholder is executing a payment, the transaction usually
does not withdraw directly from the balance. Thus, the cardholder will complete
the transaction in a later prescribed time than the actual purchase. Therefore, the
cardholder and the transaction itself is exposed for a threat by means of unnoticed
amount of money that can be withdrawn, before the bank notices this [7].

Credit card frauds may of course occur in various ways and forms [8]. As a few exam-
ples, one addresses stolen card fraud, application fraud and cardholder-not-present
fraud (CNP). Whereby, the latter one is one of the most significant one appearing in
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today’s society. In particular, since the COVID-19 pandemic, it has been overtaking
the field of credit card frauds [9], since ordering food and other supplies has risen
significantly due to lock-downs. A stolen credit card fraud was one of the most
common frauds committed, i.e., the cardholder physically lost its card and then
the fraudster rapidly tries to spend as much money as possible. Moreover, one has
an application of fraud. That is, when the fraudster tries to apply false personal
information regarding the cardholder. However, those frauds are not that present
anymore, since the websites usually provide some additional steps to be fulfilled
before a purchase can be done, for instance, fingerprint or a password. The CNP
is however very usual. This phenomenon can usually be observed in e-business, as
stated above, have and is always increasing due to the popularity of online shopping
goods and services. Here, the fraudster usually is dependent on the information
that the credit card has - but not the physical credit card itself. Therefore, the
owner might not notice anything strange going on with its balance sheet, unless
they checks it. During this time, of course, the fraudster commits abnormal pur-
chase activity with the credit card. The methods that fraudsters uses to obtain the
card information differs. However, the most common ones is to use some sort of
software. These softwares are usually called malware. To mention a few types of
malwares; one has spyware, ransomware and cryptoworms [10]. These softwares are
then implemented in some sort of channel. That is, for instance a website or more
specifically into an advertisement in that website. Thus, regarding the spyware,
where it is used by keyloggers in the background of yours device to monitor your
online activity and thus extract the information you are typing on your keyboard.
If you are unlucky, that might be some sensitive information in terms of important
passwords. Furthermore, one also notices various types of phishing e-mails, that is,
form of social engineering, where the fraudster imitates and acts as an important
person via fake e-mail and attracts you to open the fraudsters mail. If and when
that is done, then there is a high probability that you have downloaded some sort
of malware to your computer that will try to extract sensitive information [10].

These mentioned types of frauds are, however, not the only ones. As stated above,
the forms of committing frauds are continuously evolving [3]. Therefore, it is impor-
tant to develop new techniques to overcome fraudsters. Moreover, it is important
to exchange different tools for this purpose, but to have in mind that, it is not that
easy. This come from the fact that, the fraudsters try to learn how the counterpart
is combating and thus making new trials for data infringement. For a more general
discussion on different types of fraud and properties around the topic, the interested
reader can be referred to e.g. [11].

2.3 The impact of credit card frauds
The impact of credit card frauds are today tremendous and is causing billions of
dollars every year in financial losses. The exact numbers of the total financial losses
are not known due for confidentiality reasons. To give some numbers, the frauds
involving credit cards worldwide are estimated to have a reached to a total of $27
billion in 2018 - with the prediction for this number to become $35 in five years and
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$40 billion in 10 years [12]. Moreover, one must note that the numbers regarding the
losses that are official is only the fraction of the losses that have been successfully
detected. In addition to this, some frauds might be noticed too late or go unnoticed
- which of course is not registered to the official numbers [13].

One aspect of the losses that is a consequences from the fraudulent cases is that,
it is not only the merchants and the banks that are being affected. When such
fraudulent instances appear in the long term, the financial institutions and insur-
ance companies, will be forced to increase service fees in their organizations. For
instance, if the cardholder uses a trading platform or has a bank-loan, due to the
financial losses that is caused to the bank by fraudulent cases can imply that inter-
est rates and trading-fees increases in price. As a consequence, the cardholder or
the person that is paying interest for its loan may suffer from an overall increase in
prices. In addition to this, the financial institutions may also obtain a bad reputa-
tion of their security towards frauds, causing insecurity for the service receiver i.e.,
the cardholder. This implies indirectly that the bank of interest can lose market
share.

To give some more numbers on the impact of credit card frauds, one can refer
to the Association for Payment Clearing Services (APACS). They have estimated
on the amount of credit card losses in the United Kingdom between 1997-2010 to
have grown from £122 million in 1997 to £440.3 million in 2010 [14]. Moreover,
in 2012, the European Central Bank (ECB) reported that every €1 in €2.650 that
were spent via credit and debit cards issued within SEPA (the European Union,
Iceland, Liechtenstein, Monaco, Norway and Switzerland) was lost to fraud [15].
In particular, 60% of these frauds where of the nature of CNP:s - which has been
defined above in section 2.2.

2.4 Today’s credit card fraud detection systems
The efforts to prevent fraud within the area of credit cards are divided into two
categories. These are, fraud prevention and fraud detection [16]. The difference
between the two definitions is that, prevention is often referred to when the fraud is
prevented a priori, on the other hand, fraud detection is defined as to be noticed a
posteriori. Today, there are several methods regarding the prevention of the frauds.
Two example of these is for instance Personal Identification Number (PIN) and Card
Verification Number (CVN), where both of these two methods is number based i.e.,
pre-determined numbers that is a code to lock up access to the card. Financial in-
stitutions, such as banks and credit unions, use a combination of different methods
for prevention purposes. That is, methods to both prevent frauds a priori and a
posteriori. For this purpose, they use filters that are typically constructed by the
fraud investigators - which are usually supported by data mining methods such as
ML algorithms [17].

Financial institutions today are in the era of using machine learning algorithms
within fraud detection. However, they are still in wide use of so called expert driven
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detection [18]. That is, a group of investigators, usually with a mathematical back-
ground that sets up rule based fraud prevention system by means of very easy and
interpretable decision making rules. This type of prevention system is of course easy
to implement and to understand. However, in a dialogue with an employee at the
ICA Banken which is working with the implementation of these prevention systems
- it showed that it involves some problems. It was argued that the rules that are
set-en up by the investigators might be biased and per definition differ what one
investigator thinks of as a good rule versus the other one in the same group, leading
to different opinions. In additions to this, frauds are often correlated in both time
and space. Hence, the fraudster typically tries to commit frauds in the same market
several times during a short time. In parallel to this, the experts, usually cannot
think more than three dimensions, making it hard to realize fraudulent patterns.
Moreover, with the evolving society with regards to the use of credit cards, there
are thousands of credit card transactions occurring everyday - which makes it im-
possible for a human being to investigate every possible fraudulent instance. This
is also confirmed by the worker at ICA Banken, without given any name due to
confidentiality reasons.

2.5 Machine Learning

Machine learning is known as the practice of programming computers such that the
programs can learn from data [19]. Today, ML makes a wide range of contribution
within many scientific disciplines. Moreover, ML is today used for many applica-
tions within different fields. For instance, fraud detection, weather prediction and
medical diagnosis. Fundamentally, ML aim is to learn from large data sets by sta-
tistical methods and thus be able to predict on new unseen data. Typically, one
defines training set and test set. Where the training set is the data set on which the
algorithm is trained on and the latter one in where the performance and accuracy
in terms of statistical metrics are measured to be able to see how well it predicted
the unseen data. Furthermore, ML is closely related with fields such as pattern
recognition and statistics - but also with computer science, due to the fact that all
of the fields has a huge contribution to the ML algorithms and their development [20].

Machine learning is typically divided into two categories; supervised and unsuper-
vised [20]. In supervised learning the aim is to learn a mapping from the input data
to an output, where the correct outputs is referred to be under supervision, that is,
the output variable or so called response variable is labeled. This means that the
true outcome of a series in observations is known a priori. On the other hand, in
unsupervised learning, there is no supervisor, just unlabeled input data. The aim
becomes to find regularities in the input data, learn from it during the training of
the algorithm, and then test it on new unseen data [20]. However, and especially
for credit card transactions, the availability of data is scarce - and unsupervised
learning is needed and is an advanced topic. In addition to this, if one has a large
data set with labels, one can still train the data without the labels and check the
unsupervised algorithms performance towards the true labels.
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2.6 Fraud Detection System within credit card
transactions

As mentioned above in sub-section 2.4, today’s fraud detection system is mainly
expert driven. When considering a so called more data driven fraud detection sys-
tem, one typically builds the system using one or an another kind of ML algorithms.
The fraud detection system (FDS), consisting of ML:s, mainly relies on the analysis
of huge sample of credit card transactions. By the use of ML algorithms, the load
on the fraud investigators can be significantly eased, since ML algorithms that are
build into the FDS:s have the ability to detect fraudulent patterns in higher dimen-
sions, process large amount of data, predict new types of frauds and also adapt to
distribution changes. There are also disadvantages of ML algorithms. To mention
a few, the algorithms are often very mathematically advanced which requires deep
knowledge. Moreover, for the training of the data to be reliable and thus predict
correctly, the data sets must be large - which is relatively hard to find, due to con-
fidentiality reasons. However, the main purpose of FDS is to provide an useful tool
for the investigators by means of presenting them a small fraction of possible frauds
that needs to be examined - and thus making the overall detection of frauds more
precise and effective. This is since, the ML algorithms can extract a fraction of sus-
picious instances and thus only inspect a fraction of the data and not all of it. As
an example, Jamie Damon, CEO of J.P Morgan, stated in 2019 that the bank could
have saved up to $150 million if they would have used Machine Learning algorithms
for detecting credit card frauds [55].

2.7 Anomalies and anomaly detection
Anomalies or outliers are substantial variations from the norm - where the norm is
set to be the normal state [21]. Within various scientific research and engineering
principles, the processes that are considered, usually follow some sort of behaviour
and rules, which is implied by the nature and resulting in the state of a system
[21]. These systems usually formalizes observable data - which upon one must for-
mulate hypothesis regarding the underlying distribution of the data. When this is
verified, then the observed state and its corresponding distribution that the system
implies can be assumed to be the normal state. That is, any instance deviating from
the normal distribution will be seen an abnormal instance. This phenomenon is of
course expected, since the assumed distribution will never be identical to the real
raw data and thus anomalies will must likely appear. The fundamental property
and task of anomaly detection is to discover such instances in the observed data,
that is, anomalies. However, there is no trivial definition and path to follow for
the approach to find anomalies. In addition to this, there is no simple and unique
definition to evaluate how similar two points or instances are to each other [22].

“...there is an inherent fuzziness in the concept of outlier and any outlier
score is an informative indicator than a precise measure.”
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Anomaly detection is a wide area. Its use is applicable in many engineering princi-
ples - even though this thesis aims to find anomalies within credit card transactions.
To mention a few applications of anomaly detection, one can for instance consider
malware detection. Then, one for example consider today’s pattern and behaviour
of the malwares and assume that the observed state is normal. Then, one can by
some anomaly detection algorithm discover variations if new instances appears in
the normal state i.e., on new data. That is, for instance if the malwares tries out new
infringement methods to fool the detection filters in later prescribed days. Moreover,
one also has the application of anomaly detection in bankruptcy prediction. That is,
analyzing for instance earnings over time or other metrics such as increasing loans
to loan-holders, to evaluate what the different risks are for bankruptcy. This yield
of course also for other fields, such as within insurance companies. For more cases
and examples, the interested reader is referred to [21].

When implementing and applying anomaly detection algorithms, there are often
three possible cases that are examined and considered [21].

• False Positives: This occurs when the process continues to be normal but val-
ues that are not expected are observed. Usually as a consequence of noise.

• False Negatives: The process itself becomes abnormal, but the outcomes does
not appear to be registered in the abnormal data. This is often due to the sig-
nal of abnormality being weaker compared to the noise in the observed system.

• Correct Detection: The amount of abnormalities in the observed data is ex-
actly as the amount of real abnormal instances.

Without going into more details regarding the statistical metrics, which will be
reviewed in Chapter 3, the key takeaway from this section is to know that; anomaly
detection is a wide scientific and engineering field with many applications and there
is no unique way of finding anomalies.

2.8 Issues and Challenges with FDS
There are many sources of errors and challanges when constructing a FDS. Some of
the challenges are for instance: (I) concept of drift; (II) skewed class distribution,
(III) large amount of data [18]. Where firstly, the concept of drift refers to the
problem that the model when it has been trained on a fixed pattern and it drasti-
cally differs if the cardholder changes its buying behaviour. Secondly, the problem
regarding skewed class distribution comes from the fact that typically only a very
small fraction of the collected data instances are in fact abnormal and the wasp
majority are normal instances. This phenomenon is also known as class imbalance.
Of course, there exist today many algorithms that enables pre-processing of the raw
data which can give a better performance for the ML algorithms and statistical
models. However, one must have in mind that for every intervention the raw data
is exploited to, the more lead error will there be and the models will most likely be
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over-fitted for the particular set of data. Thirdly, even though large data sets is a
good property to have within this research, without loss of generality, it implies com-
plexity for the models that are developed. Therefore, as in this research, the data
set is often reduced in dimension by means of Principal Component Analysis (PCA).
Hence, when developing models for future prediction, one must always have in mind
the different possible sources of errors that will be in the background. Therefore, as
stated above in section 2.6, the FDS:s should be considered as a powerful tool for
the fraud investigators, and not as a substitute.
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3
Theory

This chapter will describe the theory behind the mathematical models that are
considered in this thesis. It prepares the reader for the methods that are used

in the next chapter. First, the Univariate Generalized Pareto Distribution (UGPD)
and the Multivariate Generalized Pareto Distribution (MGPD) are introduced. Sec-
ond, the unsupervised machine learning algorithms: Support Vector Machine (SVM)
and Isolation Forest (IF) and the supervised machine learning algorithm, Feedfor-
ward Fully Connected Neural Network (FFCNN) are presented. Third, the statisti-
cal metrics that will be employed for performance comparison between models are
shown.

3.1 Univariate Generalized Pareto Distribution
The Pareto distribution (PD) is named after the Italian economist, civil engineer
and sociologist Vilfredo Pareto [23]. The PD was first introduced in 1906 by Pareto
itself. The PD is a power-law probability distribution. The use of the PD appears in
various fields of engineering and scientific principles, such as financial risk, quality
control and geophysics [24]. However, the Univariate Generalized Pareto Distribu-
tion UGPD or the Generalized Pareto Distribution GPD in general was introduced
in 1975 by Pickands. The GPD is a family of continuous probability distributions
and often used to model tails of an another distribution i.e., extreme events over
some threshold of the observed data.

Theorem 3.1.1 (Univariate Generalized Pareto Distribution). Let X1, X2, ..., Xn be
a sequence of independent and identically distributed random variables with common
distribution function, let

Mn = max{X1, ..., Xn}, (3.1)
be the maximum of the variables X1, . . . , Xn. Further, denote an arbitrary variable
in the above sequence by X. Moreover, suppose it holds that for some sequence of
constants {an > 0} and {bn} such that

P
{
Mn − bn
an

≤ z
}
→ G(z) as n→ ∞, (3.2)

for a non-degenerate distribution function G. Then G has a Generalized Extreme
Value (GEV) distribution function

G(z) = exp
{
−
[
1 + γ

(
z − µ
σ

)]− 1
γ
}
, (3.3)
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for some µ ∈ (−∞,∞), σ>0 and γ ∈ (−∞,∞) and for {z : 1 + γ(z− µ)/σ}. Then
the distribution function of (X − u), conditional on X > u, converges to a GPD
function

H(x) = 1−
(

1 + γx

σ̃

)− 1
γ

, (3.4)

for some σ̃ > 0, γ ∈ (−∞,∞) and for {x : x > 0, (1 + γx
σ̃
> 0)} γ for (3.3) and

(3.4) are same.

Note that, (3.4) is the cumulative distribution function (CDF) of the GPD. A full
proof is given e.g in [25] or see Appendix A.1. The probability density function
(PDF) of the GPD, is obtained by taking the derivative H(x) with respect to x, and
is

h(x) = dx
dxH(x) = 1

σ

(
1 + γx

σ

)− 1
γ
−1
. (3.5)

Remark 1. For γ < 0 the GPD has left-endpoint 0 and right-endpoint σ
|γ| . For

γ ≥ 0 the GPD has left-endpoint 0 and ∞ for the right. For the special case γ = 0
one recovers to the memoryless exponential distribution with scale parameter σ̃.

3.2 Univariate Peaks Over Threshold (PoT) method
What is the purpose of introducing such a model as the GPD within anomaly de-
tection, one might wonder? The answer for this question relies on Extreme Value
Statistics (EVS). For this purpose, the Peaks over Threshold (PoT) method was
introduced by Smith in 1984 [26].

Suppose that one has a sequence of measurements {y1, ..., yn} and a high threshold
u. Then the threshold excesses are defined as xj = yj − u for y > u, and one only
consider the positive excesses and models it with a GPD.

Remark 2. One has to make the correct choice of the threshold, u. That is, one
must account for the trade-off between the bias and variance between a high respec-
tively low threshold choice. Too low threshold choice will must likely violate the
asymptotic basis of the GPD model which will as a consequence imply a bias. On
the other-hand, a too high threshold will lead to few instances of exceedances for
which is needed to fit the GPD model, hence, it will imply a higher variance in the
final model that might not be reliable.

Remark 3. There are various methods for choice of threshold modeling. However,
the majority are automatic. The interested reader is referred to [25].
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3.3 Multivariate Generalized Pareto Distribution
In this sub-section, the theory behind the Multivariate Generalized Pareto Distri-
bution MGPD is introduced. As proposed in section 3.1 and 3.2 , the UGPD and
the PoT of the univariate case has been widely used within different engineering
principles and applications, such as for instance estimating the Value at Risk (VaR)
and the Expected Shortfall (ES) in financial engineering [27]. However, often, as
proposed in real world applications, the outcome of different events in nature, for
instance flooding or financial engineering, are not only dependent on one dike re-
garding flooding or one financial instrument. They depend on several variables. For
example, assume that one holds S shares of a derivative on the underlying asset
A, then the price fluctuations will most like depend on the asset but also the stock
index, and depending in which segment, also on other aspects such as the price of
the oil, electricity or interest rates. In this context, the MGPD can be used. Today,
the theory regarding the applications of the MGPD is scarce [28], there are some
contributions out there, such as [29] - however, the majority does not use these as
statistical models [28]. This thesis hence is one of the first contributions for unsuper-
vised anomaly detection with the MGPD, in particular, within highly imbalanced
data.

3.4 Multivariate Peaks Over Threshold (PoT) method
The Multivariate Generalized Pareto Distribution PoT method was first introduced
in [29][32][33]. The intuitive reasoning for the MGPD PoT method is the same as
for the univariate case. That is, one want to model the excesses of some high level
thresholds u for some random vector Y. However, in the multivariate case, one
defines a vector of thresholds u,

u = (u1, ..., ud), (3.6)

from a random vector
Y = (Y1, ..., Yd), (3.7)

and obtains excesses defined as

X = Y− u = (Y1 − u1, ..., Yd − ud), (3.8)

where d is the dimension of the considered MPGD. For instance, d = 1 one recov-
ers the univariate PoT approach. If at least one random observation Yi in (3.8) is
Yi > ui, i.e., larger than its threshold, then X is considered as positive [30].

Under general conditions, the joint distribution of the positive excess vectors, de-
fined above, is asymptotically a GPD as the thresholds ui→∞. More on this in [29].

Next, some basic properties of the MPGD. Without loss of any generality, we assume
that d = 3 and recovers the Three Dimensional Generalized Pareto distribution, ab-
breviated as TGPD. However, note that it holds for any dimension d. In [31] there
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are four representations that are developed for the density of MGPD. However, here,
the so called U -representation will be used see. Further, the marginals of the distri-
butions here are assumed to be standard exponential distributions [see Section 3 in
Kiriliouk et al., 2019] [28].

For the thresholds ui for i = 1, . . . , d where d is referred to the dimension of the three
dimensional generalized multivariate distribution, u will operate component-wise on
the Y . Denote a 3-dimensional random vector u which has finite first moment of
its maximum exponential, E[emax(U)] < ∞, which will be called the generator, and
where we define max(U) by

max(U) = max{(U1, U2, U3)}. (3.9)

This should not to be confused with the threshold vector, u. Further, assume that
this random vector admits a pdf by fU. Moreover, denote the distribution and
density functions of Ui for i = 1, 2, 3 as Fi and fi.The density function of the three
dimensional MGPD with Standard Exponential margins generated by U, are given
by

hU(x) =
1{x�0}

E[emax(U)]

∫ ∞
0

fU(x + log(t))dt, (3.10)

where the indicator function

1{x�0} =

1, if at least one component of x are positive.
0, otherwise.

(3.11)

and where we for x = (x1, x2, x3) define x + log(t) = (x1 + log(t), x2 + log(t), x3 +
log(t)). It is stressed that, different distributions of the random vector U will imply
different MGPD models [30].

Moreover, if U = (U1, U2, U3) with Ui, for i = 1, 2, 3 independent and distributed
according to a Gumbel distribution with parameters αi and βi. The marginal density
fi is given by

fi(xi) = αie
−αi(xi−βi)e−e

−αi (xi−βi), (3.12)
where αi > 1 since E[emaxU ] < ∞ and βi ∈ R for i = 1, 2, 3. Moreover, to ensure
identifiability, the first component of the location parameter β1 is set to zero, β1 = 0
[30].

3.5 Isolation Forest (IF)
The Isolation Forest (IF) or iForest is an unsupervised ML algorithm which was
created in 2007 by Fei Tony Lui [34]. The method builds an ensemble of iTrees for
a given data set where anomalous instances are those which have short total path
lengths h in the iTrees. The general basis for anomaly detection using IF takes ad-
vantage of two fundamental characteristics of anomalies: (I) Anomalies are minority
in the data set; (II) They have values deviating from normal instances. The pro-
posed method requires the choice of two variables, number of iTrees t to construct
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for each sub sample and the sub-samplings ψ [34].

The training stage, i.e., building the iTrees, is done by a random and recursive
partitioning of the training data without replacement and by using sub-samples ψ
of the training set until all the instances are isolated to an External Node in the
iTree. The partitioning is done by randomly selecting a feature q (column) from
the sampled training set and then randomly selecting a split value p between the
maximum and minimum selected feature [34] as

min(q) < p < max(q). (3.13)

Depending on the split value p, one divides the values in the feature to the left or
right in an Internal Node in the iTree, which in turn, is a Proper Binary Tree, as

Tl := {T ′ : q ∈ Q, q < p} and Tr := {T ′ : q ∈ Q, q ≥ p}, (3.14)

where Q is the set of features from the sampled training set T ′. The outcome of
the partitioning will imply that anomalous instances will have shorter total path
length h(x) in the iTree structure. Thus, when the iForest consisting of random
iTrees collectively generates shorter path lengths for some instances, those will be
regarded as anomalous. The reason is that, normal instances will in general require
more partitions to be isolated, resulting in a longer path length in the iTree struc-
ture. The number of partitions required to isolate an instance is the same as the
path length from the root node to a terminating node (External Node), see Figure
3.1. Moreover, the anomaly scores for the instances are derived from the mean path
length h̄(x) and average path length c(ψ).

When the iTree is fully grown, each instance is isolated to an external node, see
Figure 3.1, in which case the number of external nodes is ψ and the number of
internal nodes is ψ − 1; the total number of nodes of an iTree is 2ψ − 1.

The testing stage passes each test instance through all the iTrees in the iForest
from the training stage to obtain an anomaly score for each instance. The anomaly
score Ascore is obtained by the mean path length h̄(x) and computing the average
path lengths over the number of iTrees built. A single path length h(x) is derived by
counting the number of edges e from the root node to an external node as instance
x traverses through an iTree, see Figure 3.1 [34].

Since external node termination in an iTree equals unsuccessful search in a Binary
Search Tree, the average path length is

c(ψ) = 2L(ψ − 1)− 2(ψ − 1)
n

, (3.15)

where L(i) ≈ ln(i) + 0.5772156649 is the harmonic number, 0.5772156649 is known
as the Euler’s constant, ψ is the sample size and n is the total number of test in-
stances, see [34].
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The average path length c(ψ) can be considered as a normalization entity. It is
the average path length to reach an arbitrary node in the iTree whereas the mean
path length h̄(x) is the mean path length to reach an external node in the iTree.
The anomaly scores Ascore for each instance are computed by

Ascore(x, ψ) = 2−
h̄(x)
c(ψ) . (3.16)

Remark 4. One notes that:

• As h̄(x)→ ψ − 1, Ascore(x, ψ) → 0.

• As h̄(x)→ c(ψ), Ascore(x, ψ) → 1
2 .

• As h̄(x)→ 0, Ascore(x, ψ) → 1.

By (3.16), when Ascore(x, ψ) ≈ 1, the instance x is most likely to be an anomaly.
The other two results follows analogously. For Ascore(x, ψ) ≈ 0, the instance x is
most likely not an anomaly and for Ascore(x, ψ) ≈ 1

2 the instances are most likely to
be regarded as a normal [34].

Root node

Internal Node

External Node External Node

Internal Node

Child

External Node External Node

External Node

Figure 3.1: Proper Binary Tree (PBT) with its corresponding nodes.
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3.6 Support Vector Machine (SVM)
Originally, the Support Vector Machine SVM was developed as a supervised ML
algorithm by the Russian mathematician Vladimir Vapnik at the company AT&T
Bell Technologies in 1995 [36].

The unsupervised SVM was introduced by Shölkopf et.al in 2001 [37]. This algo-
rithm does not attempt to estimate any probability density of the underlying data.
The unsupervised SVM estimates a binary function f that is supposed to capture
regions in the input space I where the probability density lives i.e., its support.
This function will produce a region R in the feature space F where most of the data
are.

Consider a training set xi ∈ TTr with unknown underlying probability distribution
P for i = 1, ..., n, xi ∈ Rd where n ∈ N is the number of observations. During the
test stage, one checks if a test observation xi is distributed according to P or not.
This is done by determining a region R of the input space I where the probability
of a test observation drawn from P lies outside of R is bounded by some a priori
specified value ν ∈ (0, 1). To determine the region, a decision function f needs to
be estimated. This will imply that test observations falling outside the region will
have negative values as

f(x) > 0 if x ∈ R and f(x) < 0 if x /∈ R. (3.17)

Using a non-linear function Φ: I → F the training vectors x are mapped via a
kernel function

〈Φ(xi),Φ(xj)〉 = k(xi,xj), (3.18)

from the input space I to a higher dimensional feature space F , where k(xi,xj) is
chosen to be the Gaussian Radial Basis function given by

kσ(xi,xj) = e−
||xi−xj ||

2

2σ2 . (3.19)

In this new space, the training vectors now follow an underlying distribution P ′
and one wants to determine a region R′ in the feature space F of the probability
distribution for the training data. Thus, R′ will be the region where most of the
training points will be within. The origin in the feature space is assumed to be where
the anomalous observations will be [37]. To separate the anomalous instances, a
hyperplane is introduced. The hyperplane will create the maximum margin from the
origin. The maximum margin is found by solving the primal Quadratic Optimization
Problem 

min
w∈F,ξ∈Rn,ρ∈R

1
2 ||w||

2 + 1
νn

n∑
i=1

ξi − ρ

subject to 〈w,Φ(xi)〉 ≥ ρ− ξi, ξ ≥ 0,
(3.20)

where ξi are slack variables which penalize the objective function to allow some of
the points to be on the wrong side of the hyperplane, ρ is the offset, w is the weight
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vector and the parameter ν ∈ (0, 1] controls the trade of between maximizing the
distance from the origin and containing most of the data in the region which was
created by the hyperplane [37]. Hence, if ρ and w solves the primal problem (3.20),
then the decision function f is given by

f(x) = sgn(〈w,Φ(x)〉 − ρ). (3.21)

Thus, test observations mapped into the feature space that does not lie withinR′ will
have negative values by (3.21) and vice versa. However, due to the high dimensional
of w in the primal problem, one considers the easier Dual problem. Introducing
Lagrangian multipliers αi, βi ≥ 0 one obtains the Lagrangian, denoted by L as

L(w, ξ, ρ,α,β) = 1
2 ||w||

2 + 1
νn

n∑
i=1

ξi − ρ

−
n∑
i=1

αi(〈w,Φ(xi)〉 − ρ+ ξi)−
n∑
i=1
βiξi.

(3.22)

Setting the primal derivatives wrt. D̄ = {w, ξ, ρ} to be equal to zero, one obtains

w =
n∑
i=1

αiΦ(xi), (3.23)

and
αi = 1

νn
− βi ≤

1
νn
,

n∑
i

αi = 1. (3.24)

The dual problem is obtained by injecting (3.23) and (3.24) into the Lagrangian
problem given in (3.22). This gives

min
α

1
2

n∑
i,j=1

αiαjk(xi,xj)

subject to 0 ≤ αi ≤
1
νn
,
n∑
i

αi = 1.
(3.25)

Solving the dual problem with the kernel given in (3.19) the decision function be-
comes

f(x) = sgn(
n∑
i=1

αik(xi,x)− ρ). (3.26)

Remark 5. The hyperplane in feature space F becomes non-linear in the input space
I.
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3.7 Feedforward Fully Connected Neural Network
(FFCNN)

The Feedforward Fully Connected Neural Network (FFCNN) is a supervised ML
algorithm. The FFCNN is a subset of Artificial Neural Networks and which its ap-
plications are strictly increasing within different engineering principles. The main
characteristic of the FFCNN is that the information in the learning process are only
forwarded in the network [38].

The property of the FFCNN is that, for some inputs/observations and bias or thresh-
old and by random uniformly initializing the weights, pass it forward in the net
through activation functions, g, and then forward it to the last output layer which
in turn also has an activation function that makes the final decision on which class
a particular observation belongs to [38].

The supervised nature of the FFCNN requires that the data set must be labeled
a prior the training process. For understanding the FFCNN architecture, one con-
siders an input layer which receives the training observations. The dimension of
the input layer will be equal to the dimension of your training set. Further, the
input layer is connected via weights to the hidden layer (there can be several hidden
layers) which consists of McCulloch-Pitts neurons and have pre-defined activation
functions. This processes is repeated until the final layer i.e., the output layer is
reached and the inference can be made. The outputs of the output layer are posterior
probabilities if one considers the softmax activation function in the output layer [38].

The setup for the FFCNN in this thesis will consist of two hidden layers. The
first hidden layer will have 10 neurons and the second one 2 neurons. The reason
for the choice of two neurons in the second hidden layer is since we have a binary
classification problem. The hidden layers in the first one is set to ten by default
in various applications, to avoid the over-fitting issue [38]. Hence, the FFCNN will
have the following architecture, see Figure 3.2.

Figure 3.2: Feedforward Fully Connected Neural Network architecture. The neural
network have 29 inputs due to the dimension of the input data. The first hidden
layer has 10 neurons whereas the second one has 2 neurons.
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The activation function for the first and second hidden layers is the popular Rectified
Linear Unit (ReLU) function. The ReLU function is defined as follows

f(x) = x+ = max(0, x), (3.27)

where x is an input to a neuron.
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Figure 3.3: Rectified Linear Unit (ReLU) function

Hence, f(x) returns the positive value of its argument from the neuron before.

For the output-layer, the softmax σ(·) activation function will be used. The softmax
function σ : RK → (0, 1)K , K > 1, is given by

σ(b(x))i = ebi(x)∑K
j=1 e

bj(x) , for i = 1, .., N (3.28)

where K = 2 is the number of classes for the classification problem. The term in
the numerator of (3.28) is applied to each local field bi output. If the input bi is
negative, the result from the term in the numerator will be small and it will be large
if the input is positive and large. The term in the denominator is the normalization
quantity. It assures that the outputs from the softmax function will be in the range
0 ≤ σ(b(x))i ≤ 1. Further, the sum of the outputs sum to unity as∑K

j=1 σ(b(x))i = 1,
which constitutes a probability. Hence, the softmax function will give outputs in
terms of probabilities where those probabilities that are σ((b(x))i ≈ 1 can be con-
sidered that the FFCNN is quiet certain that the input xi belongs to class i in terms
of targets/class labels, say class 1 i.e., a fraudulent credit card transaction [38].

The below plot shows that the softmax function give outputs in the range [0, 1].
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Figure 3.4: Softmax output-layer activation function

Consider a sequence of training samples that are fed to the input layer, given by the
vector

x(µ) =


x

(1)
1

x
(2)
2
...
x(p)
n


T

, (3.29)

where n = 29 denotes the dimension of the data. These input terminals are referred
to the leftmost part of Figure 3.2 and where µ = 1, ..., p denotes the different pat-
terns that an instance passes through the neural network via the different weight
connections between the input layer until termination at the output layer. Denote
the first and second hidden layers Vj and Vm respectively. Moreover, each of these
two hidden layers will have a ReLU activation function given in (3.27). Hence, each
of the two hidden layers will compute

Vj = g(bj), bj =
∑
k

wjkxk − θj, (3.30)

Vm = g(bm), bm =
∑
j

wmjVj − θm, (3.31)

where g is the activation function, θ is the threshold for the hidden neurons and
b is the local field. The variables wjk and wmj are the weights. The indices for
wmj, can interpreted such that index m is the neuron that makes the computation
and index j labels all neurons that connect to neuron m. The other one follows
analogously. In particular, wjk are the weights between the input and the first
hidden layer and wmj are the weights between the two hidden layers, see Figure 3.2.
Thus, the classification problem is to approximate the class label vector t i.e., the
list of corresponding labels or target values, with the output function O(x). Hence,
one considers the matrix

[x(µ), t(µ)], for µ = 1, ..., p (3.32)
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where the targets t(µ)
i

t(µ) =


t
(1)
1

t
(2)
2
...
t
(p)
N

 , (3.33)

are the real classes labels for a given data set. Hence, the training samples x(µ)
i are

trained against their target t(µ)
i and the output layer will compute

O(x) =
∑
m

wmg
(∑

j

wmjg
(∑

k

wjkxk − θj
)
− θm

)
−Θ, (3.34)

for each observation, where wm and Θ is the weight respectively the threshold be-
tween the connection of the last hidden and output layer. In particular, (3.34) is
the local field that (3.28) is applied on to obtain the classification probabilities [38].

3.8 Statistical Metrics
To compare the models that have been presented in this section, one needs to use
statistical metrics that can be applied to all of the models. The metrics that will be
used here are the recall, precision, Area under the Receiver Operating Characteris-
tics Curve (AUROC) and Area under the Precision-Recall curve (AUPRC) metrics.
However, both of the curves and the metrics are obtained through the confusion
matrix [40], see Table 3.1. The AUROC metric is derived from the Receiver Op-
erating Characteristic curve, or ROC curve. The ROC curve itself, is obtained by
plotting the true positive rate (TPR) against the false positive rate (FPR) for some
threshold setting [41]. The ROC curve is shown below
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Figure 3.5: Receiver Operating Characteristic Curve
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Where the TPR and FPR are defined as

TPR = TP

P
= TP

TP + FN
, (3.35)

and
FPR = FP

N
= FP

FP + TN
. (3.36)

The AUROC is thus the area under the ROC shown above. The value of AUROC
ranges between [0,1] where 1 is referred to be the optimal prediction performance of
the model [41].

Standard methods to compare performance of binary classification problems in-
clude positive and true negative rates and receiver operating characteristics curves
[30]. However, when dealing with highly imbalanced data sets, such as anomalous
credit card transactions, these mentioned methods can be less informative. Saito
and Rehmsmeier [39], argued that Precision-Recall (PR) curves are more informa-
tive when working with imbalanced data sets. Hence, one considers the PR curve,
shown below
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Figure 3.6: Precision-Recall Curve

and the AUPRC is the area under the PR curve. This area is usually approximated
by the Trapezoid rule. The value of AUPRC ranges in [0,1] where 1 is the optimal
prediction performance of the model.
Precision and recall are defined as

Precision = True Positive (TP )
TruePositive (TP ) + False Positive (FP ) (3.37)

Recall = True Positive (TP )
TruePositive (TP ) + False Negative (FN) (3.38)
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Recall is a metric that quantifies the number of correct positive predictions made
out of all positive predictions that could have been made. Precision quantifies the
number of correct positive predictions made. The quantities in (3.37) and (3.38) are
obtained through the confusion matrix, Table see 3.1.

Table 3.1: Confusion matrix of a classification problem with predicted class on the
rows and actual class on the columns. n′ and n are predicted and actual negatives.
p′ and p are predicted respectively actual positives.

P
re
di
ct
io
n

O
ut
co
m
e

Actual Value

n p

n′
True
Negatives
(TN)

False
Negatives
(FN)

N′

p′
False
Positives
(FP)

True
Positives
(TP)

P′

N P
where

• False Positives: Also known as Type I errors, false alarms, overestimates. This
is when the prediction classifies for instance a credit card transaction as fraud-
ulent - when in fact it is not.

• False Negatives: Also known as Type II errors, miss, underestimates. This
metric is the opposite to the false positives. The prediction that has been
made has classified a credit card transaction as non-fraudulent - when it ac-
tually is.

• True Positives: These are the cases when the prediction and the actual value
both are true, i.e., if the prediction has classified a transaction as fraudulent
and it actually is fraudulent.

• True Negatives: This metric is opposite to the true positives. If the prediction
and the actual value both are "false", i.e., if the prediction has classified a
transaction as non-fraudulent - when it actually is non-fraudulent.
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Methods

After processing the necessary theory behind the models used in this thesis the
aim is to implement these models into the needed programming languages and

thus simulate to obtain the results that will be compared and discussed in Chapter
6. This section describes the methods used to obtain the thresholds for the UGPD,
model fit of the UGPD and MGPD, training and testing procedures of the supervised
FFCNN and unsupervised IF and SVM machine learning algorithms.

4.1 Data set
The data set that is used in this thesis contains credit card transactions made by
credit card holders in Europe in September 2013. It includes transactions that
occurred during two consecutive days. The original data has been transformed by
means of Principle Component Analysis (PCA) due to confidential reasons. This
means that, some data features has been removed for the public use. PCA is a
method that is used to reduce the dimensionality of large data sets. This is done
by transforming a large set of variables into a lower dimensional that still contains
the relevant information, see e.g [43]. The PCA processed data set contains 284.807
observations and 30 input variables, where 492 of the observations are fraudulent
transactions i.e., 0.172% of the data set is the amounted to be fraudulent. The new
variables are named "V1" "V2" etc. The only two features that still has attribute
names are the variables "Time" and "Amount". The variable/feature "Time" contains
the seconds elapsed between each transaction and the first transaction in the data
set. However, since the time in seconds for the first transaction is not given - this
variable is uninformative. The feature "Amount" is the amount of the transaction
that has been occurred. This data set is labeled, which means that we exactly know
which transaction is fraudulent and not. The labels are assigned to the variable name
"Class" in the data set where "1" is fraudulent observation and "0" is non-fraudulent.
The data can be downloaded from [42].

4.2 Training and test set
The credit card transactions data was equally partitioned into a training and test
set. By removing one observation, the training and the test set has 142.403 credit
card transactions each. Denote the observations in the training set by TTr and those
for the test set by TTest. See Table 4.1 below.
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Table 4.1: Number of credit card transactions for the test set TTest and the training
set TTr. The rightmost column are number of anomalies.

Data set Transactions Anomalies

TTr 142.403 269

TTest 142.403 223

4.2.1 Simulation Equipment
The simulations regarding the training and testing of the ML algorithms were mainly
executed in the Proprietary Multi-Paradigm Programming language MATLAB. The
model fits of the UGPD and MGPD together with the goodness of fit plots were
done in R. The tables below shows the PC specifications and the programming
versions.

Table 4.2: Hardware specifications for the PC. Operating system: macOS Catalina
10.15.7.

Component Specifications

RAM 4GB @1600MHz DDR3

CPU @2.5GHz Dual-Core. Intel Core i5

Table 4.3: The programs used and their corresponding versions.

Program Version

MATLAB R2019b

R R4.0.3

The model fit of the MGPD is done by the program written in [30][54].

4.3 Standardizing
In addition to the anomaly scores obtained from the ML algorithms, the anomaly
scores from the L-Supremum and L2 -norm were analyzed. The latter one is also
known as the Euclidean-norm. To construct these two anomaly scores, the data set
is first standardized. Consider the observations xi,j ∈ T for i = 1, . . . , N where N
is the number of the credit card transactions i.e., N = 284.806 and j = 1, . . . , n,
and n is the number of columns, so that n = 29. The standardization is done for
each xi,j ∈ T . For this, the column-wise mean and the standard deviation for each
column is

x̄·j = 1
N

N∑
i=1

xi,j, (4.1)
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respectively the standard deviation

σ̄·j =

√√√√ 1
N − 1

N∑
i=1

(
xi,j − x̄·j

)
. (4.2)

The standardization can be done by re-location and re-scaling with the mean and
standard deviation as follows

x?i,j = xi,j − x̄·j
σ̄·j

, (4.3)

where x?i,j is the standardized credit card transactions.

The L2 and L− Supremum norm are as follows.

Definition 4.3.1 (L2-norm). Let x? = {x?i,1, . . . , x?i,n} ∈ RN×n, where RN×n =
{(x?i,1, . . . , x?i,n) : x?i,1, . . . , x?i,n ∈ R} for i = 1, . . . , N denotes the n-dimensional
Euclidean Space. Then the L2-norm of the standardized credit card transactions x?
are defined as its Euclidean length

||x?i,j||L2 =
√
{x?2

i,1 + . . .+ x?2
i,n}, (4.4)

where n is the dimension of the row-vector in R.

Similarly, the L− Supremum norm is defined as

Definition 4.3.2 (L-Supremum norm for finite dimensional vector). Let x? =
{x?i,1, . . . , x?i,n} ∈ RN×n, where RN×n = {(x?i,1, . . . , x?i,n) : x?i,1, . . . , x?i,n ∈ R} for
i = 1, . . . , N denotes the n-dimensional row-vector space. Then the L− Supremum
of the standardized credit card transactions x? is given by

||x?i,j||Lsup = max{|x?i,1|, . . . , |x?i,n|}, (4.5)

where n is the dimension of the vector in R

This yields for i = 1, . . . , N and j = 1, . . . , n row-wise. One then obtains two column
vectors, one for L2 and L − Supremum respectively, where the size of the vectors
are N × 1.

4.4 Isolation Forest - Model setup
The anomaly detection using the IF is done in two stages, the training stage and the
testing stage [52]. The training stage builds Isolation trees (iTrees) by the algorithm
iTree using sub-samples of the training set and then building an ensemble of iTrees in
the algorithm iForest, thus the iForest will contain t number of iTrees. Further, the
testing stage passes through the test instances i.e., credit card transactions through
the trained iTrees contained in the iForest. The anomaly scores for each instance are
obtained with help of the total average and mean path lengths in the iTrees. The IF
algorithm was trained with the assumption of 0.2% respectively 1% anomalies in the
training set. The reason for this is to see differences in the prediction performance.
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4.4.1 Isolation Forest - Training
By passing the training set TTr, Table see 4.1, into the IF algorithm, the training
is done. The training is done by recursively partitioning the given training set by
sampling until the credit card transactions are isolated to an external node or a
specific iTree height l is reached. In that case, the training process terminates. The
height limit l, of the iTree is automatically set by the sub-sampling size ψ as

l = ceiling(log2ψ). (4.6)

The sub-sampling size ψ is chosen empirically in [34] to 256 and MATLAB uses this
as default.

The IF algorithm works well even without increasing ψ. Thus, memory size and
processing time can be seen to kept low [34]. This is of course a good property when
working with large data sets.

The iForest algorithm below builds a forest by the t number of iTrees that have
been constructed during the training stage, as discussed in section 3.5.

Algorithm 1 iForest(TTr, t, ψ)
Inputs: TTr − input data, t− number of iTrees, ψ − sub sampling size
Output: A set of t iTrees

1: Initialize Forest
2: set height limit l = ceiling(log2ψ)
3: for i=1 to t do
4: T ′Tr ← sample(TTr, ψ)
5: Forest← Forest ∪ iT ree(T ′Tr, 0, l)
6: end for
7: return Forest

where TTr and T ′Tr are the training and sampled training sets respectively, t is the
number of iTrees in the forest (iForest) and l is the height limit of the iTree. The
iTree algorithm below, is used to construct the Isolation Trees (iTrees) which is
contained in the forest (iForest).
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Algorithm 2 iT ree(TTr, e, l)
Inputs: TTr − input data, e− current iTree height, l − height limit
Output: An iTree

1: if e ≥ l or |TTr| ≤ 1 then
2: return exNodeSize← |TTr|
3: else
4: let Q be a list of attributes in TTr
5: randomly select an attribute q ∈ Q
6: randomly select a split point p from max and min values of attribute q ∈ TTr
7: TTr,l ← filter(TTr, q < p)
8: TTr,l ← filter(TTr, q ≥ p)
9: return inNode{Left← iT ree(TTr,l, e+ 1, l),

Right← iT ree(TTr,r, e+ 1, l), SplitAtt← q, SplittV alue← p}
10: end if

where the number of iTrees t will control the forest (iForest) size and e is the current
height/length of the iTree. The default setting of t this is found to be t = 100. This
is since, it has been shown that the path lengths of the iTrees usually converge well
before t [34]. Thus, more iTrees t will not imply better performance. The default
MATLAB setting is also t = 100. Next, an anomaly score Ascores needs to be derived
for each credit card transaction.

4.4.2 Isolation Forest - Testing
In the testing stage, the aim is to obtain an anomaly score, Ascore, for each of the
credit card transaction x from the test set TTest. The anomaly score for an credit
card transaction x is derived from the mean h̄(x) and average c(ψ) path lengths, as
discussed in section 3.5.

The anomaly score itself is obtained by passing the credit card transactions from the
test set through the created iTrees in Algorithm 1 which in turn is found in the
iForest-algorithm, see Algorithm 2. Further, by using the function PathLength
in Algorithm 3, a single path length h(x) is derived by counting the number of
edges from the root node to an external node T as x traverses through an iTree in
the forest (iForest), see Figure 3.1. This means that, each credit card transaction is
initiated from the root node, see Figure 3.1, and then forwarded until it terminates
at an external node. The depth of this distance in the iTree will be the path length.
The anomaly score Ascore, is thus computed by (3.16) and such that Ascore ∈ [0, 1].
The output vector of the anomaly scores is

Ascore =



A1
score

A2
score

...

ANscore


, (4.7)
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for i = 1, . . . , N , where N is the number of credit card transactions xi ∈ TTest. The
algorithm for computing the path length is

Algorithm 3 PathLength(x, T, e)
Inputs: x− an instance, T − an iTree , e− current path length
Output: path lenght of x

1: if T is an external node then
2: return e+ c(T.size)
3: end if
4: a← T.split.Att
5: if xa < T.splitV alue then
6: return PathLength(x, T.Left, e+ 1)
7: else{xa≥ T.splitValue}
8: return PathLength(x, T.Right, e+ 1)
9: end if

4.5 Support Vector Machine - Model setup
In the training stage of the SVM, the aim is to solve an Quadratic programming
problem, given in (3.20). The minimization is done by the modified Sequential
Minimal Optimization that was proposed in 1990 by Platt for classification problems.
Having the optimization done, the decision function provided in (3.26) is used to
obtain a decision region Rw,ρ. Hence, during the testing stage, any new credit
card transaction t drawn from an unknown probability P is expected to fall within
the decision region Rw,ρ. If not, with some certain priori choice of the parameter
ν ∈ (0, 1), the credit card transaction is considered as an anomaly. The parameter ν
is set to its default value ν = 0.50 in MATLAB [53]. In this thesis, the SVM algorithm,
as for the IF algorithm, is trained under the assumptions of 0.2% respectively 1%
anomalies in the training set.

4.5.1 Support Vector Machine - Training
Consider a set of training samples consisting of credit card transactions ti ∈ TTr for
i = 1, . . . , n and ti ∈ Rd. Suppose these are distributed according to some unknown
probability distribution P . Then, for any new credit card transaction from the test
set, we want to know if it is distributed according to P or not. This is done by
estimating a decision region Rw,ρ of the training sequences in the input space, such
that the probability that a credit card transaction drawn from P is bounded by ν.
The decision function will output the values f(t) > 0 if t ∈ Rw,ρ and f(t) < 0 if
t /∈ Rw,ρ. Thus, to define the decision region Rw,ρ, f must be estimated.

Assume that the training data is not perfectly separable in the input space I, using
the kernel trick: the training data in TTr is mapped by a non-linear Radial Basis
kernel function Φ : TTr → F to a higher dimensional space F . In this new space, the
training sequences follow an underlying distribution P ′, hence we want to determine
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a region R′w,ρ of F that captures most of the training data. Since the origin in the
feature space is considered belonging to the anomalous credit card transactions, we
want to separate the mapped vectors using a hyperplane with maximum margin
from the origin [37].

The maximum margin from the origin is found by solving the following dual problem
of (3.20) as


min
α

1
2

n∑
i,j=1

αiαjk(ti, tj)

subject to 0 ≤ αi ≤
1
νn
,
n∑
i

αi = 1,
(4.8)

where the estimated decision function is given in (3.26) and the induced decision
region in the feature space is

R′w,ρ := (t : fw(t) ≥ ρ), (4.9)

and ρ is the offset.

Remark 6. The priori parameter ν ∈ (0, 1) can be adjusted when training the
algorithm and thus make a trade off regarding the fraction of the anomalies that will
be assimilated in contrast to minimizing the total are of R′w,ρ. Training vectors t
for f(t) ≤ 0 are called support vectors. For f(t) = 0 are called support vectors and
non-margin support vectors for which f(t) < 0.

4.5.2 Support Vector Machine - Testing
The main part of the SVM algorithm is done during the training progress. In par-
ticular, the SVM is heavy during its training progress since optimization problems
have to be solved. The testing stage consists of checking whether new unseen credit
card transactions, taken from the test set TTest, will, or will not lie within the in-
duced decision region R′w,ρ ∈ F [37].

The anomaly scores denoted by ASVM are obtained by mapping the test sequences
into the feature space F and see if they falls inside the induced region R′w,ρ. The
anomaly scores are appointed as,

f(t)w > 0 if t ∈ R′w,ρ and f(t)w < 0 if t /∈ R′w,ρ. (4.10)

Therefore, the anomaly scores ASVM will be positive within the region R′w,ρ and
negative on its complement and be in the range−∞ < ASVM < +∞. Strict negative
scores indicates that the observation is far away from the hyperplane separating the
anomalies and normal instances i.e., closer to the origin.
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4.6 Univariate Generalized Pareto Distribution -
Model setup

To being able to fit and simulate the MGPD, the thresholds u = {u1, u2, u3, u4}
must be determined. For convenience, write u1 = uIF , u2 = uSVM , u3 = uL2, u4 =
uL−Sup, for the thresholds of the anomaly scores from the IF, SVM, L2 and L-
sup, denoted, hereafter by, AIF , ASVM , AL2,AL−Sup. Moreover, assuming that the
threshold excesses of the anomaly scores obtained from the SVM, IF, L2 and L-Sup
are independent and identically distributed. Then the parameters γ and σ of the
cdf of the UGPD

H(x) = 1−
(

1 + γx

σ

)− 1
γ

, (4.11)

can be estimated by ML method. Therefore, the thresholds u for the four models
must be chosen.

4.7 Univariate Generalized Pareto Distribution -
Threshold Selection

The threshold selection is done by means of the mean residual life plot and by map-
ping the parameter estimates against a sequence of thresholds numerically, Threshold
Parameter Stability Method. However threshold selection is not trivial and that the
mentioned approaches are standard methods [25], hence there is no unique approach
and a compromise needs to be done. A too low threshold u will violate the asymp-
totic basis of the model, leading to bias, and a too high threshold u will not generate
enough exceedances to give good parameter estimates. The first step for the UGPD
model is to choose the threshold to each of the models. The reasoning behind the
threshold parameter stability method is as follows; if Theorem 3.1.1 applies, i.e,
if a GPD is a reasonable model for excesses yi of a high threshold u0, then it is also
true that an excess of higher threshold u > u0 follows a GPD. Moreover, the shape
parameter γ of the two distributions u and u0 are identical, and letting σu denote
the scale value of the GPD for the threshold u, then by (4.11) it holds that

σu = σu0 + γ(u− u0). (4.12)

This means that the scale parameter σu will change with respect to u unless the
shape parameter is γ = 0. However, the parameter

σ? = σu − γu, (4.13)

is in fact constant for high enough u by virtue of (4.12). However, due to sampling
variability these estimates will not be exactly constant. Thus one plots the param-
eter estimates σ̂? and γ̂ against the threshold parameter value together with the
estimated confidence intervals (CI) and select u0 as the lowest value for u which the
estimates σ̂? and γ̂ remain approximately constant. Hence, one uses two plots for
each of the set of anomaly scores to choose a threshold. The threshold parameter
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stability method is given in Appendix A.2.

The second method for threshold selection to use, is the mean residual life plot
MRLP [25]. The two graphical methods complement each other. If H has a GPD
with parameters γ and σ then the mean of the distribution is

E[H] = σ

1− γ , (4.14)

provided that the shape parameter is γ < 1, while the mean is infinite for γ ≥ 1.
Assuming that the GPD is a valid model for the excesses yi of a sufficiently high
threshold, then the conditional expectation of the excesses are given by

E[A− u|A > u] = σu
1− γ , (4.15)

where A is the anomaly score and σu is the scale parameter corresponding to the
excesses of the threshold u. Hence, if the GPD is a valid model for the higher excesses
for a high level threshold u0, then (4.15) holds also for the thresholds u > u0 for
appropriate change of the scale parameter σu0 . Thus for u > u0

E[A− u|A > u] = σu
1− γ = σu0 + γu

1− γ . (4.16)

Therefore, it is expected that the estimates γ and σu should change linearly with
respect to the thresholds u where the GPD is a valid model for the excesses [25].
Hence, one plots 

u, 1
nu

nu∑
i=1

(Ai − u)
 1{Ai>u}

, (4.17)

where Ai are the anomaly scores and nu is the number of observations that exceed u.
The interpretation of (4.17) is that, one plots a sequence of thresholds u against the
mean of the threshold excesses. Further, one looks for the value above u0 to identify
linearity in the plot itself. Indeed, if the GPD assumption is correct, then the plot
should be linear with its intercept σu0

1−γ and gradient γ
1−γ , before it becomes unstable

due to low number of data points. Confidence intervals can also be included in the
plots. Finally, it is also good to have in mind that the plots always converge to the
point (Amax, 0). The mean residual life plot for the anomaly scores from the four
models can be viewed in Appendix A.2.

Having the thresholds u = {u1, u2, u3, u4} = {uIF , uSVM , uL2, uL−Sup} set, it might
still be good to check how well the thresholds have been chosen. For this purpose,
model checking is done, see section 4.9.

Below is the threshold for each of the four models that has been chosen. Each unique
threshold has been chosen in such a way that it yields y ≈ 1000 excesses. See Table
4.4 below.
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Table 4.4: Determined threshold u for each of the four models; L-Sup, L2, IF and
SVM.

Model u

L-Sup 9.500

L2 17.000

IF 0.615

SVM -0.400

4.8 Univariate Generalized Pareto Distribution -
Parameter Estimation

When the threshold selection is done, the next step is to find parameter estimates
for the four sets of anomaly threshold excesses.

The parameter estimates can be done by several methods [47]. Depending on the
statistical model of interest, there are various of numerical methods to estimate the
parameters γ and σ of the GPD such as: Probability Weighted Moments method,
Pickands Estimator, Moment method and Maximum Likelihood Estimation [47].
However, the ML method is the only numerical approach that combines theoretical
efficiency and provides a general basis for inference [47]. The likelihood for a GPD
is given by

L(σ, γ) =
nu∏
i=1

h(yi;σ, γ), (4.18)

where h denotes the pdf of H, given in (3.5) and the log-likelihood is

`(σ, γ) = log(L(σ, γ)) =
nu∑
i=1

log(h(yi;σ, γ)), (4.19)

where σ and γ are the parameters to be estimated for the anomaly scores obtained
from the IF and SVM algorithms and L2 and L-Sup transformations and the chosen
thresholds. In more detail, the estimates are obtained by considering a sequence of
excesses yi for i = 1, . . . , nu of a high level threshold parameter value u, such that
for γ 6= 0 the log-likelihood with respect to the parameters γ and σ is

`(σ, γ) = −nu log(σ)− (1 + 1
γ

)
nu∑
i=1

log
(

1 + γ
yi
σ

)
, (4.20)

provided that (1 + γ yi
σ

) > 0 for i = 1, . . . , nu; otherwise `(σ, γ) = −∞ [25]. Note
that, in the case of γ = 0 the log-likelihood is

`(σ) = −nu log(σ)− 1
σ

nu∑
i=1

yi, (4.21)
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where both of the above log-likelihoods must be maximized numerically to obtain
the parameter estimates σ̂ and γ̂. Standard errors and confidence intervals for the
generalized Pareto distribution are obtained by standard likelihood theory [25]. The
table below gives the parameter estimates and negative log-likelihoods for each of
the four models.

Table 4.5: Parameter estimates for each of the four models; L-Sup, L2, IF and
SVM together with their negative log-likelihood. The values in brackets are the stan-
dard errors of the estimates.

Model γ̂ σ̂ Neg. log-likelihood

L-Sup 0.1706344(0.034) 4.4844074(0.198) 3154.735

L2 0.245571(0.046) 6.973362(0.385) 3302.424

IF -0.29393901(0.028) 0.04489504(0.002) -2555.593

SVM -2.079071(2e-08) 8.828754(2e-08) 631.6619

Remark 7. Note that the IF and SVM models will have right end-point limit σ
|γ|

since γ < 0 and left end-point 0. Analogously, the L2 and L-Sup excesses will have
∞ as right end-point, since γ ≥ 0, and 0 as left end-point.

4.9 Univariate Generalized Pareto Distribution -
Goodness of fit

Next, one needs to check whether the fitted UGPD models are reasonable as models
for the excesses yi of uj for j = {SVM, IF, L2, L − Sup}. For this purpose, the
Quantile-Quantile (QQ), Probability-Probility (PP), Return Level (RL) and Kernel
Density plots were used. Additional model checking plots are provided in Appendix
A.3.

The PP plot shows the points

{
(

i

nu + 1

)
, Ĥ(yi); i = 1, . . . , nu}, (4.22)

where

Ĥ(y) = 1−
(

1 + γ̂y

σ̂

)− 1
γ̂

, (4.23)

provided that γ̂ 6= 0. Again, assuming that γ̂ 6= 0, the QQ plot shows the points

{(Ĥ−1
(

i

nu + 1

)
, yi)}; i = 1, . . . , nu}, (4.24)
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where
Ĥ−1(y) = u+ σ̂

γ̂

[
y−γ̂ − 1

]
. (4.25)

If the generalized Pareto model is reasonable for modeling excesses of u, then both
the PP and QQ plots should be approximately linear [25].

Finally, the obtained UGPD models for the respective models i.e., IF and SVM
respectively L2 and L-Sup metrics is compared to the estimated probability density
function that is obtained from the excesses. Here, the actual probability density is
estimated by a Kernel Density Estimate with some kernel function, for instance as
the Gaussian, Epanechnikov or Triweight. The kernel density estimate provides a
smooth estimate of the pdf, see [49]. In this case, the popular Gaussian kernel were
used. The estimated GDP pdf is

h̃(y) = 1
σ̂

(
1 + γ̂y

σ̂

)− 1
γ̂
−1
. (4.26)

Hence, one considers a smooth estimate of the pdf rather than the usual approach
of only plotting the excesses in an histogram. The kernel density estimate for an
unknown univariate density f is given by

f̂(Y ; b) = 1
nb

n∑
i=1

K
(
y − yi
b

)
, (4.27)

for some non-negative kernel function K and where b > 0 is a smoothing parameter
so called the bandwidth [50]. If the kernel function K is Gaussian, then K is defined
as

K(y) = 1√
2π
e−

1
2y

2
. (4.28)

For more information, see e.g. [48].

4.10 Multivariate Generalized Pareto Distribution
- Simulation & Model fit

Having the parameter estimates and thresholds from the UGPD fit for the four
models IF, SVM, L2 and the L-Sup metrics, the next step is to fit a MGPD for the
IF, L2 and L-Sup excesses and compute the negative log-likelihood in the test data.

Recall that the MGPD is a model for the excesses of the high thresholds determined
for the models IF, L2 and the L-Sup, that operates components wise on a random
vector X = {X1, X2, . . . , Xd} to give the excess vector Y = (X1 − u1, . . . , Xd − ud).
Moreover, the excess vector Y is considered as positive and is included in the model
fitting if at least one of the components exceeds its threshold, see [30].

To fit the MGPD model, the univariate threshold excesses of the IF, L2 and L-Sup
are transformed to an approximate standard exponential distribution. If Y has a
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univariate GPD with parameters σ and γ then

1
γ
ln
(γ
σ
· Y + 1

)
, (4.29)

has a standard standard exponential distribution as can be seen from the following
computation

P
[1
γ
ln(γ

σ
· Y + 1)]≤ x] = P

[
ln(γ

σ
· Y + 1)]≤ γx] = P

[γ
σ
· Y + 1≤ eγx

]
, (4.30)

P
[γ
σ
·Y +1≤ eγx

]
= P

[
Y ≤ σ

γ
(eγx−1)

]
= 1−

(
1+ γ

σ

σ

γ
(eγx−1)

)− 1
γ = 1−e−x. (4.31)

Hence, if we transform the observed excesses {y1, y2, . . . , yn} to

X1 = 1
γ̂
ln
( σ̂
γ̂
· y1 + 1

)
, . . . ,

1
γ̂
ln
( σ̂
γ̂
· yn + 1

)
= Xn, (4.32)

then {X1, X2, . . . , Xn} will be approximately standard exponentially distributed and
ln is the e-logarithm.

Next, by the goodness of fit diagnostics in Appendix A.4 it shows that positive
transformed SVM excesses do not have a standard exponential distribution. Hence,
the MGPD is fitted to the 3-dimensional vector of transformed IF, L2 and L-Sup
excesses for which at least one component is positive.This yields, NUTr = 1559 3-
dimensional vectors. We denote this new data set ETransTr . Further, the previous
procedure is repeated on the test set using the thresholds and parameter estimates
of IF, L2 and L-Sup from the the training set, see Table 4.5. This yielded a second
data set consisting of NUTest = 1566 3-dimensional vectors. This data set is denoted
by ETransTest . A 3-dimensional MGPD with independent Gumbel generators and
density given by (3.10)

hU(x) =
∫∞

0
∏d=3
i=1 αi(texi−βi)−αie−(texi−βi)−αidt∫∞
0

(
1−∏d=3

i=1 e
−(t/eβi )−αi

)
dt

, (4.33)

is then fitted to the ETransTr data using ML estimators. As discussed in section 3.4,
β1 was set to be 0. The fitted 3-dimensional MGPD was then used to calculate the
negative log-likelihood for each observation in the data set ETransTest . The expecta-
tion is to obtain high values of negative log-likelihood correspond to the anomalous
observations, whereas normal observations i.e., non fraudulent cases are expected to
have lower values of negative log-likelihood.

4.11 Feedforward Fully Connected Neural Net-
work - Model setup

The FFCNN progresses through the same stages as the two unsupervised IF and
SVM ML algorithms. The algorithm is trained on the same training set TTr and also
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tested on the same test set TTest. However, the difference is that, the class labels
of the data set will be used during training. The training samples will be trained
against the targets and during the test stage check if it can classify anomalous and
normal instances correctly. The model setup is done in MATLAB [51].

4.11.1 Feedforward Fully Connected Neural Network - Train-
ing

The training is done by mapping the training matrix XN,n against the vector of
class labels t that contains the labels for each credit card transaction. There will be
n = 29 input layers to the FFCNN, which can be viewed in Figure 3.2. The credit
card transactions in the training set and its features gives a 29 × 142.403-matrix
XN,n

XN,n =



x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
... ... . . . ...

xN,1 xN,2 · · · xN,n


, (4.34)

which is then trained against the class label vector t as

t =



t1

t2
...

tN


. (4.35)

The next step is to randomly initialize the weights wij, where i refers to the neuron
that does the computation and j is all the neurons that connect to neuron i, and then
forward the credit card transactions through the hidden layers which have activation
functions g, as discussed in section 3.7. The weights wij are random uniformly and
independently initialized at each layer as

wij ∼ U
[
− 1√

l
,

1√
l

]
, (4.36)

where l is the size of the layer in number of neurons. The biases are set to zero
[45]. Thus, the credit card transactions are forwarded through the net until they
reach the output layer, given in (3.34). This process is then repeated while simulta-
neously minimizing the Cross Entropy, which is derived particularly with respect to
the softmax function [38]. The minimization is done by Limited-Memory Broyden-
Fletcher-Goldfarb-Shanno minimization method [44]. Thus, the FFCNN will adjust
its weights for each iteration until the cross entropy is minimized. The intuitive rea-
soning behind minimizing the cross entropy, is because the cross entropy is minimal
when the output values of the softmax function gives correct predictions. For details

38



4. Methods

of the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno algorithm, see e.g. [44].

Under the assumption that the FFCNN is not over fitted during training, such as not
using overwhelming many neurons and hidden layers, then with obtained optimal
weights through the cross entropy minimization, the FFCNN is expected to perform
well on unseen data.

4.11.2 Feedforward Fully Connected Neural Network - Test-
ing

When the FFCNN is trained and optimal weights for the network are obtained by
Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton minimization a
prediction on the test set TTest is done. The aim during the testing is to make the
correct prediction with the softmax outputs O(µ)

i for every credit card transaction i
in the test set, where µ denotes the different patterns that the test instance passes
through the neural network via the different weight connections between the input
layer and the output layer.

For K = 2 classes in the data set, the softmax output unit i is assumed to represent
the posterior probability that the input xi for i = 1, . . . , n credit card transactions
is in class i when having that the class labels; t(µ)

i = 1 while t(µ)
k = 0 for k 6= i. For

instance, having that O(µ)
i ≈ 1, then the FFCNN is quiet certain that the observation

xi is in class i e.g. that class i is fraudulent, then the corresponding class label for
a given credit card transaction is t(µ)

i = 1. The classification scores are posterior
probabilities and is given in a two column vector of size N ×2 - one column for each
class.
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5
Results

This chapter describes the results that have been obtained in this thesis. This
includes performance comparison metrics and the final models that have been

used to fit the Multivariate Generalized Pareto Distribution with independent Gum-
bel generators and its parameter estimates. Moreover, the parameter estimates ob-
tained from the UGPD by the anomaly threshold excesses originating from IF, L2,
SVM and the L-Sup are presented. Goodness of fit plots for these are also provided
in Appendix A.3. In particular, this chapter provides the results that are obtained
when assuming 1% and when assuming 0.2% anomalies in the training set for the
SVM and IF. The results are presented by PR curves and AUPRC values. ROC
curves, AUROC values and confusion matrices can be viewed in Appendix A.5. For
additional results obtained on different training and test sets, see also Appendix
A.5. The discussion in Chapter 6, will mainly be based on the content of the PR
curves and AUPRC values. The reason is since that, the ROC curves and AUROC
values do not provide good comparison in highly imbalanced data sets, as discussed
in section 3.8.

5.1 Parameter Estimates - UGPD
By the goodness of fit plots in Appendix A.4 for the SVM model, it did not show a
good fit of the standard exponential distribution after transformation of the anomaly
threshold excesses. The threshold for the models are shown in Table 5.1 below.

Table 5.1: Determined threshold u for each of the four models; L-Sup, L2, IF and
SVM.

Model u

L-Sup 9.500

L2 17.000

IF 0.615

SVM -0.400

Also for other threshold choices for the SVMmodel, the transformed anomaly thresh-
old excesses were not standard exponentially distributed and hence the SVM was
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not used in the MGPD model fitting. Hence, the MGPD was fitted to the stan-
dard exponential transformed anomaly threshold excesses from the L2, L-Sup and
IF models.

The parameter estimates for anomaly threshold excesses of the UGPD with re-
spect to the L-Sup, L2, IF and SVM together with their standard error estimates
and negative log-likelihood is shown below, see Table 5.2. Note that the anomaly
scores obtained from the IF and SVM algorithms is done under the assumption of
1% anomalies in the training set.

Table 5.2: Parameter estimates for the four models; L-Sup, L2, IF and SVM
together with their negative log-likelihood. The values in brackets are the standard
error of the estimates.

Model γ̂ σ̂ Neg. log-likelihood

L-Sup 0.1706344(0.034) 4.4844074(0.198) 3154.735

L2 0.245571(0.046) 6.973362(0.385) 3302.424

IF -0.29393901(0.028) 0.04489504(0.002) -2555.593

SVM -2.079071(2e-08) 8.828754(2e-08) 631.6619

The goodness of fit plots for the models with the parameter estimates in Table 5.2
are given in Appendix A.3.

5.2 Parameter Estimates - MGPD

The following table shows the parameter estimates of the 3-dimensional MGPD
with independent Gumbel generators that was fitted to the standard exponential
transformed anomaly threshold excesses of L-Sup, L2 and IF.

Table 5.3: Parameter estimates of the 3-dimensional MGPD with independent
Gumbel generators, fitted to the standard exponential transformed anomaly threshold
excesses of L-Sup, L2 and IF on the set ETransTr and the negative log-likelihood. The
location parameter β1 was set to β1 = 0 in the ML estimation.

Model α̂1 α̂2 α̂3 β1 β̂2 β̂3 Neg. log-likelihood

MGPD 7.70 3.36 2.05 0 0.03 -1.07 4729.781

That αi > 1 and βi ∈ R for i = 1, 2, 3 is consistent with theory.
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5.3 PR curves & AUPRC values for 0.2% and 1%
anomalies in the training set

The PR curves and AUPRC values for FFCNN, IF, SVM, L2, L-Sup and MGPD
are shown in Table 5.4 and Figure 5.1. The assumption about the percentage of
anomalies in the training set TTr is 0.2% and 1% for the SVM and IF. The other
methods do not require that one chooses a percentage of anomalies.

Table 5.4: AUPRC for each of the six models; MGPD, L-Sup, L2, IF, SVM and
FFCNN. Note that the FFCNN is supervised.

Model AUPRC

MGPD 0.0938

L-Sup 0.0797

L2 0.1070

IF 0.2% 0.0858

IF 1.0% 0.1350

SVM 0.2% 0.0010

SVM 1.0% 0.0018

FFCNN 0.6870

The PR curves for the AUPRC values shown above is given in Figure 5.1 below.
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(a) PR Curve IF 0.2% on TTest. (b) PR Curve IF 1% on TTest.

(c) PR Curve 0.2% SVM on TTest.(d) PR Curve 1% SVM on TTest.

(e) PR Curve L-Sup on TTest. (f) PR Curve MGPD on ETransTest .

(g) PR Curve L2 on TTest. (h) PR Curve FFCNN on TTest.

Figure 5.1: Precision-Recall (PR) curve for the six models; IF, SVM, L-Sup,
MGPD, L2 and FFCNN. The MGPD is fitted on the training set ETransTr and tested
on ETransTest . The other models are trained on TTr and tested on TTest respectively.
The SVM and IF are trained under the assumption of 0.2% and 1% anomalies
respectively in TTr. Note the different y-scale in the plots.
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Results based on the models when tested on the training set can be found in Ap-
pendix A.5.
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6
Conclusion & Discussion

This chapter discusses important aspects of the results obtained in this thesis and
a general outlook on today’s fraud detection systems and unsupervised anomaly

detection is presented. The results in Chapter 5 regarding performance comparison
is discussed and benefits versus drawbacks with the models examined are discussed
in detail - whereas a conclusion regarding the best model is uplifted. Finally, sug-
gestions for possible future research within unsupervised anomaly detection and ML
is provided.

6.1 General Outlook
Anomaly detection in general is hard. In particular, in field of unsupervised anomaly
detection there are still lacking robust methods of detecting anomalous instances in
large and highly imbalanced data sets. There are occurring fraudulent transactions
each every day in today’s society where the use of credit cards and e-business is
increasing rapidly. In addition to this, as mentioned in section 2.2, the ways of
committing data infringement into peoples computers and thus extracting sensitive
information with regards to for instance credit card information are under devel-
opment and is creating a threat towards the economical system of interest. As
described in section 2.3, the predictions for the amount of financial losses due to
credit card frauds are rising. Therefore, an effective, where effective referrers to
un-expensive and robust, framework for anomaly detection needs to be contributed
to the financial institutions. If this is not done, there will be ongoing frauds that
will hurt the economical system in the long term and also hurt the reputation of the
finance institutions that are exposed more frequently to credit card frauds.

Today’s mainly expert driven fraud detection systems i.e., the fraud investigators,
as put in perspective in section 2.4, is lacking. The main reason is that the rules that
are put up by the fraud investigators are static, biased and can differ from investi-
gator to investigator. Often the investigators are not able to track new fraudulent
patterns where unnoticed fraudulent cases emerge. However, it is not said that fraud
investigators are unnecessary - but they need robust and accurate assistance where
suspicious observations from the large data sets consisting of credit card transac-
tions can reliably be brought to their attention. This is where the new framework
regarding unsupervised anomaly detection must step in and contribute and thus be
an useful tool to the financial and credit institutions but it can not be a complete
replacement. If new frameworks of unsupervised anomaly detection can extract a
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fraction of the previously unnoticed suspicious credit card transactions in large data
sets, this can without any hesitation be seen as an important contribution.

6.2 Model Discussion
By Figure 5.1 and Table 5.4 it is clear that the supervised ML algorithm FFCNN
is the model with the best Precision-Recall curve and AUPRC value i.e., the model
that can most accurately identify the anomalous instances and classify them cor-
rectly in the test set. Under the assumption that the financial institutions and the
credit unions gives out credit cards to the same group of customers, one can expect
the same transaction patterns year to year. Thus, if the supervised FFCNN model
is well trained on a data set, in terms of not over-fitting it, then it is likely to be
applicable on other test sets originating from the same group of card holders. This
means that, labeled data sets can be manufactured by the financial and credit card
institutions such that they can implement supervised algorithms on these labeled
data sets. In particular, the investigators can tune their models by adding new
anomalous instances into the test sets and optimize their models accordingly - and
in parallel not over fitting the considered models. However, one must still beware
that, new infringement methods will be developed by the fraudsters and that these
can fool the trained model. So, one can never be sure that the normal or anomalous
profile in the training set will be the same as in a new data set.

Even though the supervised FFCNN ML algorithm show significantly better perfor-
mance compared to the IF, SVM, L2, MGPD and L-Sup, one must have in mind
that, having large labeled data sets is often not realistic and it requires a lot of
resources to maintain such data sets with new qualitative data. Therefore, if the
financial institutions and credit unions gives out credit cards to other groups of card
holders or/and if the buying behaviour changes within the group, even worse, if new
data infringement methods are used, then the trained models will most likely per-
form less well and costly false positives and negatives will probably occur. For this
reason, unsupervised models, applied on non-labeled data sets must be considered
for cost and time effectiveness, and for keeping watch against not yet seen types of
frauds.

The unsupervised ML algorithms IF and SVM shows interesting results. Before dis-
cussing, one should recall some important aspects of the performance comparison
metrics. First, note that the ROC and thus AUROC curve can be misleading, in
particular with so for to the AUROC e.g. the area under the ROC for the FFCNN in
Table A.4. This in fact illustrates that the ROC curve is not a suitable performance
metric with regards to highly imbalanced data sets. The reason for this is that the
FPR does not decrease steeply when the total amount of real negatives is huge. The
PR curve is sensitive for false positives and is neglecting the total amount of actual
negatives in the data set, see (3.37). Overall, the PR curve is as stated in section
3.8 more suitable for understanding anomaly detection in highly imbalanced data
sets. This is also exhibited by means of the AUPRC in Table 5.4 compared with
the AUROC in Table A.4 i.e., that the AUPRC for the FFCNN is greater than the
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others even though its AUROC smaller.

The SVM in an unsupervised setting was not able to predict any anomalies in
the test set, regardless of the assumed amount of anomalies in the training set i.e.,
0.2% or 1%. The reason is that the SVM operates by creating a decision boundary
between the two classes in its mapped feature space, where it tries to capture most
of the assumed normal instances within a broad region, see section 4.5.1. Having a
highly imbalanced data set makes it extremely difficult to create such a boundary
that is sensitive to the minority class. For this purpose, the samples at the boundary
of the decision boundary/hyperplane are more likely to be classified to the major-
ity class. Hence, the predicted classes from the SVM algorithm underestimates the
observations on the border of the decision region. One option could be to decide a
posteriori distance to the hyperplane/decision region, based on the anomaly scores
originating from the SVM under the assumption of the percent anomalies in the
data set, where one manually classifies the instances that are close to the boundary
of the decision region as anomalous. This may explain why the SVM performance is
poor in this thesis where the data set is highly imbalanced consisting of only 0.172%
of the minority class. Examining the anomaly scores, there is an evidence that the
SVM appoints smaller anomaly scores for the observations at the border, which is
consistent with theory. Moreover, the anomalous instances often have very similar
characteristics as the normal instances, which makes it possible for them to be in
the same region as the normal instances.

Another important aspect from the result regarding the performance of the SVM,
which also holds for all of the models considered, is that the data was pre-processed
by PCA. This means that, the PCA processing may have removed qualitative in-
formation regarding the anomalous instances that could make the two classes more
separable in terms of their characteristics, since the PCA makes dimension reduc-
tion and thus implies information loss. Applying another kernel function than the
Gaussian radial basis function could be a choice for better model performance of
the SVM. However, that was not further investigated.

With the assumption of 0.2% anomalies in the training set, the IF was outper-
formed by the L2 and MGPD by PR curve and the AUPRC metric. On the other
hand, the IF outperforms the L2, L-Sup, SVM and MGPD under the assumption of
1% anomalies in the training set and hence seem sensitive to the assumption of the
anomaly rate. Moreover, this also leads to significant amount of false positives, since
the anomalous rate is usually far below 1%, in fact, it is often below 0.1%. The poor
outcome of the IF model, is most likely due to the fact of the PCA processing of the
data set and thus that the profile of the anomalous instances becomes similar to the
normal ones, due to information loss. The negative impact of the PCA also affects
the other models in the same fashion. As mentioned in section 3.5, the IF takes
advantage of the anomalous characteristics and their minority within the data set
and therefore with the information loss due to PCA, the characteristics of anoma-
lous instances might be weaker than in the raw original data set. This will thus
lead to difficulties when the IF tries to separate the observations into the external
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nodes i.e., both of the classes will have similar total path length due to similar values.

The most surprising outcome of the benchmarking are the results coming from the
L2 and L-Sup. When considering the L2 under the assumption of 0.2% anomalies
in the training set for the IF and SVM, L2 outperforms the IF, SVM and MGPD
models. The L-Sup is slightly outperformed by the IF, see Table 5.4. These results
are of course captivating, since the L2 and L-Sup are very simple anomaly scores
obtained by standardizing the data set and then computing the L2 and L-Sup.

As for the MGPD, it is outperforming both of two unsupervised algorithms; IF and
SVM, when assuming 0.2% anomalies in the training set by the AUPRC metric,
while it is slightly under performing against the L2. When assuming 1% anomalies
in the training set for the IF and SVM, it is outperformed by the IF algorithm, see
Table 5.4. However, the assumed amount of anomalies in that comparison is very
different from the true amount of anomalies. Further, when all of the models are
trained and tested with respect to the training set, the MGPD outperforms all of the
models, except for the supervised FFCNN, see Table A.2. High values of the trans-
formed standard exponential anomaly threshold excesses leads to high scores of the
negative log-likelihood, indicating anomalous instances. However, there are plenty
of anomalous instances which have similar anomaly scores as the normal instances.
Since the MGPD builds on the L2, L-Sup and IF anomaly scores, this affects the
quality of the predictions from the results obtained with the MGPD model. Further,
one must note that the fitting of the 3-dimensional MGPD:s five parameters i.e.,
αi and βj for i = 1, 2, 3 and j = 1, 2 is done by means of an extremely time con-
suming minimization procedure, the Nelder-Mead method. It remains to be studied
to what extent poorly estimated parameters can effect the MGPD method. When
the minimization problem was executed with different maximum iterations, this re-
sulted in quiet different parameter estimates and thus also quiet different negative
log-likelihoods for each fitting and testing.

In conclusion, unsupervised anomaly detection is hard and the research within this
area is scarce, so far. Even well developed unsupervised algorithms such as the IF
and SVM have difficulties predicting anomalous instances in highly imbalanced data
sets. The MGPD outperforms both of the unsupervised ML algorithms in terms of
the IF and SVM with respect to 0.2% anomalous instances in the training set, which
is the true amount of anomalous instances in the credit card transaction data set.
Moreover, the MGPD is also outperforming the unsupervised models when trained
and tested with respect to the same data set. The results from this thesis indicate
that unsupervised anomaly detection with the MGPD is well worth further study.
In particular, if the research can be conducted with higher dimensional data that
has not been pre-processed by any means.
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6.3 Future Research
There are many questions within unsupervised anomaly detection and ML prediction
that needs further studies. First, concerning to supervised learning, the FFCNN;
it would be of interest to see how the model originating from the training set will
perform when injecting new anomalous instances from a different distribution into
the test set. Second, oversampling and undersampling methods could be considered
and see how the supervised FFCNN would perform during those circumstances.
Third, the anomaly scores from the SVM can be further examined and see how well
these in fact describe anomalous observations at the border of the decision region
and also consider other kernel functions. Fourth, extend the MGPD dimension
i.e., d > 3, together with new anomaly scores obtained from; L1, Minkowski,
Cosine − Distance, Manhattan − Distance and Mahalanobis − Distance space
metrics and/or their inverse values which measure how close two observations are
to each other. Fifth, examine how the minimization problem for the MGPD can be
improved, by for instance trying out other minimization methods and then also try
to understand how the estimated parameters of the MGPD effects the predictions.
Finally, proceed new research with complete and un-processed data set with all of its
attributes known would be a very important contribution to research in this area.
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A
Proofs, Threshold Selection,

Goodness of Fit Diagnostics and
Performance comparison Metrics

This appendix provides some proofs for the theoretical concepts that have been
used throughout this thesis, threshold selection plots, goodness of fit diagnos-

tics, comparison metrics such as the AUPRC and AUROC values, ROC and PR
curves and also confusion matrices. In particular, performance metrics when the
models have been tested on the training data set can be found.

A.1 Proofs
Theorem A.1.1 (Univariate Generalized Pareto Distribution).

Proof. Let X have distribution function F. By the assumption of Theorem 3.1 in
[25], for large enough n,

F n(z) ≈ exp

−
1 + γ

(
z − µ
σ

)− 1
γ
 (A.1)

for some parameters µ, σ > 0 and γ. Hence,

n logF (z) ≈ −
1 + γ

z − µ
σ

− 1
γ

(A.2)

But for large values of z, a Taylor expansion implies that

logF (z) ≈ −{1− F (z)} (A.3)

Substitution of (A.3) into (A.2), followed by algebraic rearrangement, gives

1− F (u) ≈ 1
n

1 + γ
(
u− µ
σ

)− 1
γ

(A.4)
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for large u. Similarly, for y > 0,

1− F (u+ y) ≈ 1
n

1 + γ
(
u+ y − µ

σ

)− 1
γ

(A.5)

Hence,

P[X > u+ y|X > u] ≈ n−1[1 + γ(u+ y − µ)/σ]−
1
γ

n−1[1 + γ(u− µ)/σ)]−
1
γ

(A.6)

=
1 + γ(u+ y − µ)/σ

1 + γ(u− µ)/σ

− 1
γ

(A.7)

=
1 + γy

σ̃

− 1
γ

(A.8)

where
σ̃ = σ + γ(u− µ), (A.9)

as required [25]. And we are done. �

Definition A.1.1 (Separable data set). A data set

{x1, . . . , xn} (A.10)

is called separable if there exists some w ∈ F such that 〈w, xi〉 > 0 for i ∈ n.

Proof. If one uses a Gaussian kernel RBF, see (3.19), then any data set {x1, . . . , xn}
is separable after it has been mapped into a feature space F . To observe this,
one notes that k〈xi, xj〉 > 0 for ∀i, j; thus, all inner products between the mapped
patterns are positive, which implies that all patterns lie inside the same orthant.
Moreover, since k〈xi, xi〉 = 1 for ∀i, they exhibit the same unit length. In fact, they
are separable from the origin [37]. And we are done. �

Definition A.1.2 (Supporting Hyperplane). If the data set of interest, see (A.10),
is separable, then there exist a unique supporting hyperplane with the proporties as
follows; (I) It separates all data from the origin, and (II) Its distance to the origin
is maximal among all such hyperplanes. For any ρ > 0, it is given by

min
w∈F

1
2 ||w||

2 subject to 〈w, xi〉, i ∈ n (A.11)

Proof. Due to the separability, the convex hull of the data does not contain the
origin. Moreover, the existence and uniqueness of the hyperplane then follow from
the supporting hyperplane theorem, presented in (Bertsekas, 1995) [37]. Further,
separability implies that there exists some threshold ρ > 0 and a normal w ∈ F
such that 〈w, xi〉 ≥ ρ for i ∈ n. Hence, of the hyperplane {z ∈ F : 〈w, z〉 = ρ}
to the origin is ρ

||w|| . Therefore, the optimal hyperplane is obtained by maximizing
||w|| subject to these constraints, that is, by the solution of (A.11) [37]. And we are
done. �
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A.2 Threshold Selection - UGPD

(a) TPSM for L-Sup wrt. UGPD. (b) TPSM for L2 wrt. UGPD.

(c) TPSM for IF wrt. UGPD. (d) TPSM for SVM wrt. UGPD.

Figure A.1: Threshold Parameter Stability Method (TPSM) applied on L-Sup,
L2, IF and SVM anomaly scores with respect to the training set TTr and UGPD.
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(a) MRLP for L-Sup wrt. UGPD. (b) MRLP for L2 wrt. UGPD.

(c) MRLP for IF wrt. UGPD. (d) MRLP for SVM wrt. UGPD.

Figure A.2: Mean Residual Life Plot (MRLP) applied on L-Sup, L2, IF and SVM
anomaly scores with respect to the training set TTr and UGPD.
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A.3 Goodness of Fit Diagnostics - Univariate Gen-
eralized Pareto Distribution

(a) QQ for L-Sup wrt. UGPD. (b) QQ for L2 wrt. UGPD.

(c) QQ for IF wrt. UGPD. (d) QQ for SVM wrt. UGPD.

Figure A.3: Quantile-Quantile (QQ) plot for the fitted UGPD anomaly threshold
excesses from L-Sup, L2, IF and SVM with respect to the training set TTr.
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(a) QQ for L-Sup wrt. UGPD. (b) QQ for L2 wrt. UGPD.

(c) QQ for IF wrt. UGPD. (d) QQ for SVM wrt. UGPD.

Figure A.4: Model simulated Quantile-Quantile (QQ) plot for the fitted UGPD
anomaly threshold excesses from L-Sup, L2, IF and SVM with respect to the training
set TTr.
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(a) PP for L-Sup wrt. UGPD. (b) PP for L2 wrt. UGPD.

(c) PP for IF wrt. UGPD. (d) PP for SVM wrt. UGPD.

Figure A.5: Probability-Probability (PP) plot for the fitted UGPD anomaly
threshold excesses from L-Sup, L2, IF and SVM with respect to the training set
TTr.
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(a) RL for L-Sup wrt. UGPD. (b) RL for L2 wrt. UGPD.

(c) RL for IF wrt. UGPD. (d) RL for SVM wrt. UGPD.

Figure A.6: Return Level (RL) Plot for the fitted UGPD anomaly threshold ex-
cesses from L-Sup, L2, IF and SVM with respect to the training set TTr.
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(a) KDP for L-Sup wrt. UGPD. (b) KDP for L2 wrt. UGPD.

(c) KDP for IF wrt. UGPD. (d) KDP for SVM wrt. UGPD.

Figure A.7: Kernel Density Plot (KDP) for the fitted UGPD anomaly threshold
excesses from L-Sup, L2, IF and SVM with respect to the training set TTr.
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A.4 Goodness of Fit Diagnostics - Standard Ex-
ponential Distribution

(a) QQ for L-Sup wrt. SED. (b) QQ for L2 wrt. SED.

(c) QQ for IF wrt. SED. (d) QQ for SVM wrt. SED.

Figure A.8: Quantile-Quantile (QQ) plot for the transformed Standard Exponen-
tial Distributed (SED) anomaly threshold excesses of L-Sup, L2, IF and SVM.
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Table A.1: Estimated scale parameter β̂ for the transformed standard exponential
anomaly threshold excesses of; L-Sup, L2, IF and SVM. The values in brackets are
the estimated standard error.

Model β̂

L-Sup 0.9999(0.029)

L2 0.9999(0.031)

IF 1(0.030)

SVM 1.490414(0.038)
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(a) QQ for L-Sup wrt. SED. (b) QQ for L2 wrt. SED.

(c) QQ for IF wrt. SED. (d) QQ for SVM wrt. SED.

Figure A.9: Model Simulated Quantile-Quantile (QQ) plot for the transformed
Standard Exponential Distributed (SED) anomaly threshold excesses of L-Sup, L2,
IF and SVM.
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(a) PP for L-Sup wrt. SED. (b) PP for L2 wrt. SED.

(c) PP for IF wrt. SED. (d) PP for SVM wrt. SED.

Figure A.10: Probability-Probability (PP) plot for the transformed Standard Ex-
ponential Distributed (SED) anomaly threshold excesses of L-Sup, L2, IF and SVM.
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(a) KDP for L-Sup wrt. SED. (b) KDP for L2 wrt. SED.

(c) KDP for IF wrt. SED. (d) KDP for SVM wrt. SED.

Figure A.11: Kernel Density Plot (KDP) for the transformed Standard Exponen-
tial Distributed (SED) anomaly threshold excesses of L-Sup, L2, IF and SVM.
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A.5 Performance Comparison Metrics

(a) PR Curve IF 0.2% TTr. (b) PR Curve IF 1% TTr.

(c) PR Curve SVM 0.2% TTr. (d) PR Curve SVM 1% TTr.

(e) PR Curve L-Sup TTr. (f) PR Curve MGPD ETransTr .

(g) PR Curve L2 TTr. (h) PR Curve FFCNN TTr.

Figure A.12: Precision-Recall (PR) curve for the six models; IF, SVM, L-Sup,
MGPD, L2 and FFCNN. The MGPD is fitted and tested on ETransTr . The other
models are trained and tested on TTr. The SVM and IF are trained under the
assumption of 0.2% and 1% anomalies respectively in TTr. Note the different y-scale
in the plots.
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Table A.2: AUPRC for each of the six models; MGPD, L-Sup, L2, IF, SVM and
FFCNN shown in Figure A.12 above. Note that the FFCNN is supervised

Model AUPRC

MGPD 0.2110

L-Sup 0.1390

L2 0.2060

IF 0.2% 0.1520

IF 1.0% 0.1790

SVM 0.2% 0.0222

SVM 1.0% 0.0204

FFCNN 0.7670
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(a) ROC Curve IF 0.2% TTr. (b) ROC Curve IF 1% TTr.

(c) ROC Curve SVM 0.2% TTr. (d) ROC Curve SVM 1% TTr.

(e) ROC Curve L-Sup TTr. (f) ROC Curve MGPD ETransTr .

(g) ROC Curve L2 TTr. (h) ROC Curve FFCNN TTr.

Figure A.13: Receiver Operating Characteristic (ROC) curve for each of the six
models; IF, SVM, L-Sup, MGPD, L2 and FFCNN. The MGPD is fitted and tested
on ETransTr . The other models are trained and tested on TTr. The SVM and IF are
trained under the assumption of 0.2% and 1% anomalies respectively in TTr.
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Table A.3: AUROC for each of the six models; MGPD, L-Sup, L2, IF, SVM and
FFCNN shown in Figure A.13 above. Note that the FFCNN is supervised.

Model AUROC

MGPD 0.7182

L-Sup 0.9402

L2 0.9485

IF 0.2% 0.9453

IF 1.0% 0.9455

SVM 0.2% 0.0858

SVM 1.0% 0.0834

FFCNN 0.9939
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(a) ROC Curve IF 0.2% TTest. (b) ROC Curve IF 1% TTest.

(c) ROC Curve 0.2% SVM TTest.(d) ROC Curve 1% SVM TTest.

(e) ROC Curve L-Sup TTest. (f) ROC Curve MGPD ETransTest .

(g) ROC Curve L2 TTest. (h) ROC Curve FFCNN TTest.

Figure A.14: Receiver Operating Characteristic (ROC) curve for each of the six
models; IF, SVM, L-Sup, MGPD, L2 and FFCNN. The MGPD is fitted on the
training set ETransTr and tested on ETransTest . The other models are trained on TTr
and tested on TTest respectively. The SVM and IF are trained under the assumption
of 0.2% and 1% anomalies respectively in TTr.
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Table A.4: AUROC for each of the six models; L-Sup, L2, IF, FFCNN, SVM and
MGPD in Figure A.14. Note that the FFCNN is supervised.

Model AUROC

MGPD 0.6578

L-Sup 0.9540

L2 0.9590

IF 0.2% 0.9600

IF 1.0% 0.9630

SVM 0.2% 0.0504

SVM 1.0% 0.0541

FFCNN 0.9290

XX



A. Proofs, Threshold Selection, Goodness of Fit Diagnostics and Performance
comparison Metrics

(a) CM IF 0.2% TTr. (b) CM IF 1% TTr. (c) CM SVM 0.2% TTr.

(d) CM SVM 1% TTr. (e) CM FFCNN TTr. (f) CM L-sup 1% TTr.

(g) CM L2 1% TTr. (h) CM uL−Sup = 18 L-
sup TTr.

(i) CM uL2 = 30 L2 TTr.

Figure A.15: Confusion matrices (CM) for; IF, SVM and FFCNN trained and
tested on TTr. Confusion matrices for L-Sup and L2 are obtained by directly test-
ing on TTr. The IF and SVM are trained under the assumption of 0.2% and 1%
anomalies respectively. The confusion matrices for L-Sup and L2 are obtained by
the thresholds determined in Table 5.1 and with uL−Sup = 18 respectively uL2 = 30
to approximately obtain 210-260 anomalies on the half of the data set.
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(a) CM IF 0.2% TTest. (b) CM IF 1% TTest. (c) CM SVM 0.2% TTest.

(d) CM SVM 1% TTest. (e) CM FFCNN TTest. (f) CM L-sup 1% TTest.

(g) CM L2 1% TTest. (h) CM uL−Sup = 18 L-
sup TTest.

(i) CM uL2 = 30 L2 TTest.

Figure A.16: Confusion matrices (CM) for; IF, SVM and FFCNN trained on TTr
and tested on TTest. Confusion matrices for L-Sup and L2 are obtained by directly
testing on TTest. The IF and SVM are trained under the assumption of 0.2% and 1%
anomalies respectively. The confusion matrices for L-Sup and L2 are obtained by
the thresholds determined in Table 5.1 and with uL−Sup = 18 respectively uL2 = 30
to approximately obtain 210-260 anomalies on the half of the data set.
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