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Modeling and analysis of artificial neural network convergence.
Linear and non-linear neural network models implementation analyses, followed by
discretization methods and the comparison between them and already existing built-
in Matlab functions.
Apostolos Anastasiadis
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This thesis project is a research endeavor to analyse artificial neural network model
training convergence, regarding the input and output data in numerous forms of im-
plementation. The update function for the ANN (artificial neural network) model
is generated using SGD - stochastic gradient descent method. At first, some simple
linear single input - single output neural network simulations are evaluated. After-
wards, various types of activation functions (like for instance linear or sigmoid) are
applied to the existing single input - single output model. The resulting non-linear
differential equation behaviour and convergence, in accordance to the data input -
output label, is tested. We then start investigating multiple input - multiple output
systems, from mega to mini batches. The second part of the thesis focuses on solv-
ing the numerical integration problem arising in the MIMO nonlinear differential
equations. As such, we implemented Crack Nicolson and Euler methods, in order
to be compared them with already existing built-in Matlab functions. Accuracy,
runtime, and convergence properties are analyzed.

Keywords: artificial, neural network, convergence, data, linear, non-linear, dis-
cretization, method.
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1
Introduction

Artificial neural networks(ANNs) and their background were first formulated in the
late nineteenth century. This consisted primarily of interdisciplinary work in physics,
psychology and neurophysiology. This early step emphasized general theories of
vision, learning, condition and etc., without including any mathematical model of
neuron operation. However, this step invigorated the specific field and during the
last two decades, a great amount of papers have been published, resulting to the
investigation of a significant amount of ANN models. Since then, neural networks
have been applied to various and sometimes, completely diverse fields, including
aerospace, banking, automotive, medical, telecommunications, transportation and
many others. [1]
In this research project, an attempt to experiment and analyse the efficiency of
artificial neural network’s training convergence, in accordance with a plethora of
data types, specific each time, and their corresponding output, is made. The research
question behind this endeavor, is to further investigate whether neural networks can
perform efficiently, in terms of convergence, for different kinds of data sets and
activation functions, or not. It is the search for the appropriate methodology, for
the corresponding regression problem and neural network model, that has driven
this specific scientific research. It is the need for analysing the behaviour of a neural
network on multiple linear and non-linear scenarios, using multiple kinds of input
data and feeding them in different ways to the analogous model that precedes this
thesis, in order to determine what the possibilities are, regarding future applications.
During this project, many existing theorems and implementations are mentioned,
analysed and taken into account as the scientific background and groundwork to
work with. Furthermore, various forms of researching actions take place, such as
forming methodologies and testing them on directly, or as in its final part, comparing
them with existing, already tested, implementations and analysing their results and
capabilities, for present and future purposes.
Specifically, different methods for updating the learning method (it is later referred
as update function H) where applied, leading to diverse learning behaviours, pro-
viding us necessary information regarding the model’s competence. In addition, an
obstacle and a scientific question at the same time, that showed up later on during
this research, is whether it is possible or not, to discretise and solve, using existing
discretisation techniques, the non linear systems of the differential equations that
constitute the update function of the corresponding, constructed model. This step
is taken so that, in turn, the neural network models of such non linear nature can be
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1. Introduction

explored on their optimisation and robustness potential, by either keeping, adjusting
or replacing pre existing methods for solving these systems.
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2
Theory

2.1 Artificial Neural Networks

Figure 2.1: Artificial Neural Network model visualisation, [13]

Artificial neural networks(ANNs) are biologically inspired computational networks.
These networks emulate a biological neural network but they use a reduced number
of concepts from biological neural networks. Specifically, ANN models stimulate the
electrical activity that takes place in a brain and a nervous system. They consist of
elements that carry out all the required processes, called neurons. A neuron can be
connected to all the other neurons of the model, or a subset of those. This kind of
connection simulates the synaptic connections of the brain. Commonly, the neurons
are arranged in a vector, called layer, with the output of one layer serving as input to
the next layer and, possibly, other layers. Data signals, most of the times weighted,
while entering a neuron, are in turn, simulating the electrical excitation of a nerve
cell and therefore, the information transfer within the brain or a general, biological
neural network.
The input values to a neuron, or a layer of neurons, with a data structure of 1xN ,
are multiplied by the weight wi,j , that simulates the strengthening or weakening of
the neural pathways in the brain.Then the bias bi,j is added to this value.

ω = wi,jxi,j + bi,j (2.1)

3



2. Theory

Where ω is the output of this procedure, where, if no activation function is applied
is equal to xi+1,j+1. i is the neuron index and j the layer one.
It is by adjusting and re-adjusting over time, the corresponding connection weights,
that learning through an ANN, is achieved. All the weight,bias-adjusted input of
values to the corresponding neuron or layer of neurons, are then aggregated using a
vector to a scalar function such as averaging, summation, input maximum or others,
to produce a single input value for the upcoming neuron or layer. Afterwards, as
soon as the input is calculated, it is then fed to the analogous activation function
to produce its output, which of course is the input signal for the next neuron or
layer. The activation function transforms the neuron’s or layer’s input value. It is
therefore a pivotal tool that guides the model’s performance and nature. Typically,
the activation function involves the use of a sigmoid, ReLu, Heaviside, or other non
linear function. This procedure is repeated between the layers of neurons until a
final output value or vector of values, is calculated by the model.

xi+1,j+1 = O(ω) (2.2)

Where O defines the implementation of the corresponding activation function and
ω refers to 2.1.
Theoretically, to simulate the asynchronous activity of the human nervous system,
the processing elements - neurons, should behave and act in an asynchronous manner
as well. However, most software and hardware implementations of ANNs enforce a
discretized method, to ensure that each neuron is activated once and only, for each
set of inputs. [2]

2.2 Continuous Gradient Descent - Gradient Flow
The most vital method applied to the artificial neural network in order for it to be
taught and led to convergence, is the gradient descent method. Gradient descent
is an optimization algorithm used to minimise some function (in most cases, a loss
function) by iteratively moving in the direction of the steepest descent as defined
by the negative of the gradient. In artificial neural networks, machine learning and
in this project, gradient descent is used to update the parameters of the respective
model.

To make it more clear, a simple single input - single layer neural model, without an
activation function, has the following attributes,

ω = wx+ b (2.3)

L(ω, t) = 1
2(t−O(ω))2 (2.4)

Where, x is the input data, t is the target/output label and L is the quadratic loss
function for scalar output and O is the corresponding activation function.
A loss function (or Cost function) is analyzed to depict the model’s performance, in
terms of making predictions for a specific set of parameters. Hence, the optimization
of the Loss function’s through stochastic gradient descent is essential for updating

4



2. Theory

our parameters through time and finding the minimum of it, which will lead to a
more accurate model.
As mentioned already, the loss function is to be directed towards its minimum, at
each and different scenario, using the gradient descent method. The only thing
that is controlled, is the parameters w and b. Since we need to consider how each
parameter affects the final prediction made by our model, the partial derivatives of
the loss/cost function, with respect to those parameters, are calculated. For the
sake of the analysis we are not using any activation function, so O(ω) = ω.

∂L
∂w

= x(b− t+ wx) (2.5)

∂L
∂b

= b− t+ wx (2.6)

What has been calculated above is the gradient we were aiming for. The point of
which is to make our loss function, gradually, minimum. The gradient of course, will
always point upslope, therefore making our loss function growing bigger over time.
The way to avoid that and at the same time, achieve optimization, is by following
the negative gradient, through gradient flow.
Gradient flow, by definition, is a curve that depicts the direction of steepest descent
of a function. In our case, our function is L and the gradient flow of which, FL, goes
as following,

FL(t) = −∇L(w, b) = −[Fw,t, Fb,t]T (2.7)

Which leads to,
Fw,t = −x(b− t+ wx) (2.8)

Fb,t = −b+ t− wx (2.9)

2.3 Lipschitz Continuity
The beginning of all our research purposes, for defining and converging to the optimal
values for the parameters used in our neural network modeling, is the gradient
descent. Calculating the gradients of the loss/energy function is required. So, before
moving on with applying our methods, we have to make sure that these gradients
follow a continuous, data-related curve that allows logical numerical approximations
and therefore, solutions to our updates. If that is not the case, then small changes
in the data can cause large changes in the solution, and thus, our calculations may
produce meaningless results. Lipschitz continuity is a way to ensure that this is not
happening to our corresponding update function.
Let us now start with defining a Lipschitz continuous function. [9]
Given two metric spaces (X, dX) and (Y, dY ), where dX and dY denote the metric
on the set X and Y respectively, a function f: X −→ Y is called Lipschitz continuous
if there exists a constant M ≥ 0 such that, for all x1 and x2 in X,

dY (f(x1), f(x2)) ≤MdX(x1, x2) (2.10)

5



2. Theory

Any such M is referred to as a Lipschitz constant for the function f. A real valued
f:R −→ R, in particular, is called Lipschitz continuous if there exists a positive real
constant M such that, for all real x1, x2,

|f(x1)− f(x2)| ≤M|x1 − x2| (2.11)
This inequality is trivially satisfied when x1 = x2, but we are interested in all of
the rest cases, for all x1 6= x2. Therefore, one can define a function to be Lipschitz
continuous if and only if there exists a constant M ≥ 0 such that, for all x1 6= x2,

|f(x1)− f(x2)|
|x1 − x2|

≤M (2.12)

2.4 Euler’s Method
Since the group of gradient flow equations as appeared in 2.2 is not the one we are
working with, because an activation function is always applied, we are therefore in
need of a method to help us deal with the ODEs(ordinary differential equations)
that are describing each and every neural network model.
Assuming we have a function g and a differential equation,

∂y

∂z
= g(y, z) (2.13)

We will now proceed by applying the Euler method for this differential equation.
Euler’s method assumes that our solution is written in the form of Taylor series,

y(z + h) ≈ y(z) + h
∂y

∂z
+ h2

2!
∂2y

∂z2 + h3

3!
∂3y

∂z3 + ... (2.14)

For Euler’s Method we keep only the first two terms. By also substituting the term
y
′ we result in,

y(x+ h) = y(x) + hg(y, z) (2.15)
We can also replace x+h with new while removing x and we end up with an equation
that solves iteratively,

ynew = y + hg(y, z) (2.16)
Where now ynew is the estimated next value, y is the current value, h is the interval
between the steps(the step size), g is the derivative of function y(z), and z is time

2.5 Phase portraits
To assess the efficacy of all the methodologies applied, one cannot simply run some
experimental tests and evaluate the outcome. For situations like this, at first, a
phase vector of the specific ODE (ordinary differential equation) of the system, is to
be calculated. A phase portrait is a geometric representation of the trajectories of
a dynamical system in the phase plane. Each set of initial conditions is represented

6



2. Theory

by a different curve, or point. [4] For instance, using the equations (2.7,2.8,2.9) for
specified x0, t0 we can calculate the gradient of the parameters at each and every
combination of the parameters and thus, plot the sum of the phase trajectories which
is the phase portrait required.
However, what is needed the most is a visualization of the trajectory of our ODE
given a certain initial condition. That is exactly what a phase portrait is. The phase
portrait is a geometric representation of the trajectories of a dynamical system in
the phase plane(i.e. a visual display of certain characteristics of certain kinds of
differential equations). It is a display of the trajectory after a period of time/steps,
given a specific initial condition, that evaluates in practice, the robustness of the
system.

2.6 Average loss function
A different implementation in MATLAB ® is to be made, changing the methodol-
ogy of our update functions criteria and providing us with an alternative scientific
approach. At first with the help of the built in function ode45.m and later on with
different methods to solve the corresponding non-linear differential system.
At first, the input data(i.e. a vector of length N) are being generated solely, by
which, the true label data are also generated as a function of the former. Then, the
method for the calculation of the gradients is calculated as followed.
The standard gradient of the loss function is,

∇L =


∂L
∂w

∂L
∂b


Now, the average gradient of each data point is to be calculated, with the intention
of reducing this average loss function instead of the regular one.

∇Lsum =


∂L
∂w

∂L
∂b


x=x1

+


∂L
∂w

∂L
∂b


x=x2

+ ...+


∂L
∂w

∂L
∂b


x=xN

∇Laverage = ∇Lsum

N

With all the above in mind, our parameters are being updated like this,[
wnew

bnew

]
=

[
wold

bold

]
+H

Where H is the update function resulting from the negative gradient of the loss
function and the learning rate,

H = −η∇Laverage

Afterwards, the average loss function is numerically computed, at each time step i
of the chosen solver and over all the k=1,2,..,N data points, as followed. Setting

7



2. Theory

S(ω)i,k as the corresponding update function,

Li,k = 1
2(yi,k − S(ω)i,k)2

ΣL =
N∑

k=1
Li,k

And therefore, the average loss function,

Laverage = ΣL
N

This average loss function is now to be tested and analyzed for many different sce-
narios, directly showing us the efficiency of the corresponding model. For instance,
different number of data points are to be used, different output/true labels, various
learning rate values and activation functions.

2.7 Newton’s Method
In numerical analysis, Newton’s method [11], also known as the Newton–Raphson
method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm
which produces successively better approximations to the roots (or zeroes) of a real-
valued function. The most basic version starts with a single-variable function f
defined for a real variable x, the function’s derivative f , and an initial guess x0 for
a root of f . If the function satisfies sufficient assumptions and the initial guess is
close, then

x1 = x0 −
f(x0)
f(x0)′

is a better approximation of the root than x0. Geometrically, (x1, 0) is the inter-
section of the x-axis and the tangent of the graph of f at (x0, f(x0)): that is, the
improved guess is the unique root of the linear approximation at the initial point.
The process is repeated as

xn+1 = xn −
f(xn)
f(xn)′

until a sufficiently precise value is reached. The number of correct digits roughly
doubles with each step. The method can also be extended to complex functions and
to systems of equations.

2.8 Crank-Nicolson
In numerical analysis, the Crank–Nicolson method is a finite difference method used
for numerically solving the heat equation and similar partial differential equations. It
is a second-order method in time. It is implicit in time, can be written as an implicit
Runge–Kutta method, and it is numerically stable. The method was developed by
John Crank and Phyllis Nicolson in the mid 20th century. [10]

8



3
Methods

3.1 Euler Method - Gradient Descent
Now we arrive to a point where we get to introduce an applied method to make use
of the continuous gradient descent equations.
Now, expressing our gradient flow equation,(2.8,2.9), as the derivative of our param-
eters,

ẇ = −∂L
∂w

(3.1)

ḃ = −∂L
∂b

(3.2)

Applying the Euler method(2.4) to these two functions we end up with,

wnew = w − η ∂L
∂w

(3.3)

bnew = b− η∂L
∂b

(3.4)

Where η is a step size of our choice. This step size is commonly known as the
learning rate of our neural network. The use of these update functions is to iterate
and upgrade the parameters, following the steepest gradient that minimizes the Loss
function of our neural network model.
This process is continued until it is no longer possible to move further down, to lower
loss values (i.e when a local minimum is found). It is noteworthy to mention that,
the value of η determines the way our model parameters go towards the direction
specified. The smaller the value of η, the more iterations the model will need to
reach the desired outcome. However, a big enough value of η may lead to a "jump"
and overshooting of the corresponding minimum that the model is in search of.

3.2 Lipschitz continuity
Now, let’s call the loss function L(w, b) (given specific input data and target). For a
single neuron network and a sigmoid activation function applied we get the following,

O = wx+ b

S = 1
1 + e−O

9



3. Methods

L(w, b) = 1
2(t− S)2

L(w, b) = 1
2(t− 1

1 + e−(wx+b) )2

With t being the label target.
First of all, we have to ensure that L is Lipschitz continuous(both in direction of w
and b) so that it can be differentiated for the use of gradient descent method.
So we have to ensure that, for every w value,

|L(w, bi−1)− L(w, bi)|
|bi−1 − bi|

≤M1

Where M is a real number and greater than 0.
Now, we have to do the same for the direction of w parameters. For every b param-
eter,

|L(wi−1, b)− L(wi, b)|
|wi−1 − wi|

≤M2

Now, in order to achieve the existence and uniqueness of the solution of the gradient
descent method, we have to repeat the process, and define the weight and bias
upgrade functions as Lipschitz continuous functions in a specified range of values.
Therefore, let’s denote the upgrade of the weight parameters as ∆W (w, b) = −η ∂L

∂w

and the upgrade of the bias parameters as ∆B(w, b) = −η ∂L
∂b
.Then we made sure

that the following stood (for every constant value of b),

|∆W (wi−1, b)−∆W (wi, b)|
|wi−1 − wi|

≤M3

While as well, for every constant value of w,

|∆B(w, bi−1)−∆B(w, bi)|
|bi−1 − bi|

≤M4

Where of course,for all the above, M1,M2,M3,M4 > 0

Algorithm 1 Lipschitz Continuity
1: Loss function and update function=set
2: for j = 1 : length(data) do
3: for i = 2 : length(data) do
4: Defining the Lipschitz Continuity constraints for both the Loss
5: function and the update function.
6: |Li−1 − Li| ≤M1|bi−1 − bi| for the direction of b.
7: |Li−1 − Li| ≤M2|wi−1 − wi| for the direction of w.
8: |∆Wi−1 −∆Wi| ≤M3|bi−1 − bi| for the direction of w.
9: |∆Bi−1 −∆Bi| ≤M4|wi−1 − wi| for the direction of b.

10: end for
11: If all the above are always True then Lipschitz Continuity exists.
12: end for
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3.3 Phase portraits
In this section, the way the phase portrait figures were produced, will be analyzed.
Firstly, a list of figures of a combined phase vector - phase portrait, for single
neuron - single layer neural network, constant input data (labelled ’x’) and a sigmoid
activation function applied, is to be presented in the "Results" part of this project.
The list of the figures that are to be displayed, are calculated using MATLAB®
and the built-in function ode45.m . It is also of high importance to mention that, in
these first experiments, while running the ode45.m, the gradient of the input data
with respect to time, is fed to the ordinary differential system.

The sigmoid function takes the form of,

S(ω) = 1
1 + e−ω

Where ω in our neural network is,

ω = wx+ b

w, b being the parameters.
The quadratic loss function then comes to be,

L = 1
2(t− S(ω))2

L = 1
2(t− 1

1 + e−wx−b
)2

The gradients of which, with respect to our model parameters,are,

∂L

∂w
= ηxe−wx−b

t− 1
(e−wx−b+1)

(e−wx−b + 1)2 (3.5)

∂L

∂b
= ηe−wx−b

t− 1
(e−wx−b+1)

(e−wx−b + 1)2 (3.6)

In that way, we get the equivalent update function,

H =
[
H1
H2

]
=

[
−η ∂L

∂w

−η ∂L
∂b

]
(3.7)

This way, with a pre-specified step size η , in our case η = 1, we can use these
differential equations for the update of our model and solve iteratively using the
MATLAB® built-in functions to produce the phase vector and phase portrait plots.
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Algorithm 2 Phase Portraits
1: initial conditions=set
2: for w0 = 1, 2, . . . do
3: for b0 = 1, 2, . . . , N do
4: Define the time span and run ode45.m
5: Compute all the values of w,b by iterations and plot them.
6: end for
7: end for

3.3.1 Nonlinear trajectories
The method however does seem to be applicable to a lot more complex implementa-
tions and forms. To start with, input data can be time variant. In such a case, phase
vectors are of low importance, since they are computed for the initial conditions of
the ODE system and not for each time step (e.g phase vectors are now a dynamic
object and therefore, impossible to display). With that in mind, from now on, the
plots and displays of our simulations are going to be in the form of phase portraits,
excluding the non important part of the phase vectors.
In the corresponding section, 4.1 in displaying the results from this methodology. It
is highly essential and noteworthy, to mention that the use of the built in function
ode45.m is used for the production of all of the upcoming figures. When, later on,
the use of ode45.m is to be neglected or altered, it is going to be noted.

3.3.1.1 Sinusoidal trajectories

In this subsubsection, the results of the non linear trajectories subsection 3.3.1, are
to be displayed.
The input data used for the results below is

x = x0 sin 10z

With z corresponding to time and x0 ,t varying.

3.3.1.2 Exponential Trajectories

Another interesting pile of non linear scenarios of input to output relationship, is
the exponential input data, and the way the training in our neural network works.
In order to get a substantial result that can provide us with scientific importance,
it is again needed to evaluate the over time development of the loss function. After
all, the loss function is the key factor when it comes to detecting convergence in the
training process.
The input data for the below figures is to be given as following,

x = x0e
10−3z

As previously, z variable is corresponding to time.
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3.3.2 Target/Label related to input
While many of the different above examples are extremely useful to display and
analyse, a direct relationship between the target/label and the input needs to be
implemented. A function connecting the input x with the label t, that enables us
to simulate many "physical" scenarios.

3.3.2.1 Second order functions

The fact that we were able to analyse different scenarios of various linear and non
linear functions shaping our neural network and determining the convergence of it
was great. However, it is now time to address the convergence of a specific set of
functions that "govern" the neural network. What we will be tuning now is the
learning rate η and the number of iterations of our ode45 solver.
At first, we are using the non linear set of equations,

x = x0sin(10z)
t = f(x) = x2 − 0.5

The step size that is being chosen for our ode45 solver to run is varying, while using
the below initial conditions.

x0 = 1, t0 = −0.5
η = 0.005→ η = 0.05

3.4 Average loss function
The current implementation takes place in accordance to theory 2.6,by applying a
sigmoid activation function to our sinusoidal, here, data.

S(ω)i,k = 1
1 + e−(wkxk+bk)

Li,k = 1
2(yi,k − S(ω)i,k)2

ΣL =
N∑

k=1
Li,k

So, the average loss function to be actually implemented is,

Laverage,sigmoid = ΣL
N

This average loss function is tested with various data sizes and iterations/simulation
durations.
For starters, we begin by creating our input as a vector of N=10 data points.

x = [−10,−7.77,−5.55,−3.33,−1.11, 1.11, 3.33, 5.55, 7.77, 10]
t = sin(x)

Where t is the true label data. η = 0.005 and solver iterations = 5000. The results
are being displayed in the corresponding chapter.

13
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3.4.1 Increasing the dataset points
Our next step now involves expanding the dataset and increasing the number of data
points from 10 to N=1000, expanding and broadening our view on this analysis. So
now we are going to work with the following,

x = [−10,−9.98, ..., 9.98, 10]

t = sin(x), x ∈ [−10, 10]

3.5 Batched gradient descent
Now that a clear implementation of the previous method has been shown, it is time
for a next step method, keeping the same structure with the previous one, i.e. the
one shown in 3.4. The input and output data are to be divided into small subsets
called batches, using the results of each batch, as initial parameter data for the next
one, using of course ode45.m multiple times. The gradient is computed every time
for each batch and the point of this method is to lead to faster and more accurate
convergence of our training model.
Let us now denote p as index of the number of batches, where p = 1, 2, ..., q and q is
the number of batches used. In addition, n is equal to the length of each batch(i.e.
the number of data points contained in each batch) and k = 1, 2, ..., n.
We then have,

w1,p = wn,p−1

b1,p = bn,p−1

And then, after each batch calculation, calculating the corresponding average loss
function over the time steps used in ode45.m (or any other solver),with respect to,
of course, the sum of the all data points of each and every batch used.
The average loss function is computed in the same way that it was in 3.4, with the
exception now, that the whole dataset is used for it’s calculation at each specific
time step.
To make that clear,taking the activation function for granted,

L(N)p,k = 1
2(y(N)p,k − S(N)p,k)2

ΣL =
N∑

k=1
L(k)p,k

Laverage,p = ΣL
N

Where now,
N = qn

Now, for a number of batches, q = 10 and data points stored in each batch, n = 128
we get the resulting trajectories and corresponding loss functions in Figure 4.14.
Here, a sinusoidal dataset is used, with a sigmoid for an activation function and an
average loss function for the whole dataset at each batch.
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3.6 Discretization of the non linear differential,
continuous system

The system of equations that derives from an artificial neural network with an
activation function, a sigmoid in that case, is a non linear one with the form of:

∂y1

∂z
= η · xe(−y2−y1x) (t− 1

e(−y2−y1x)+1)
(e(−y2−y1x) + 1)2 (3.8)

∂y2

∂z
= ηe(−y2−y1x) (t− 1

e(−y2−y1x)+1)
(e(−y2−y1x) + 1)2 (3.9)

With y1, y2 = w, b respectively, z being time and t the output target/ true label.

An endeavor of discretizing the corresponding differential system is to be displayed,
first by presenting some discretization methods to be used, and secondly by applying
those methods and demonstrating their results.

3.6.1 Newton’s Method
Newton’s method is an algorithm for approximating and then solving iteratively, non
linear equations [5].The starting point for Newton’s method is the general nonlinear
vector F(y) = 0. The idea is that F is approximated around y− by a linear function
F̂, calculated by the first two terms of a Taylor expansion of F. In our multivariate
case, those two terms become,

F (y−) + J(y−)(y − y−),

where J is the Jacobian of F, defined by

Ji,j = ∂Fi

∂yj

.

The original non linear system is then approximated by,

F̂ (y) = F (y−) + J(y−)(y − y−) = 0,

which is linear in y and can be solved in a two-step procedure,
· First solve Jδy = −F (y−) with respect to δy.
· Update y = y− + δy until convergence.
A relaxation parameter can also be added and used,

y = y− + ωδy

.

15
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3.6.2 Crack Nicolson - Discretization method
The Crack-Nicolson discretization method is a well-known method for discretizing
non linear differential systems [5]. The scheme of the non linear system (3.8,3.9)
reads,

yn+1
1 − yn

1
∆z = ηxe(−y

n+ 1
2

2 −y
n+ 1

2
1 x)

(t− 1

e
(−y

n+ 1
2

2 −y
n+ 1

2
1 x)+1

)

(e(−y
n+ 1

2
2 −y

n+ 1
2

1 x) + 1)2
(3.10)

yn+1
2 − yn

2
∆z = ηe(−y

n+ 1
2

2 −y
n+ 1

2
1 x)

(t− 1

e
(−y

n+ 1
2

2 −y
n+ 1

2
1 x)+1

)

(e(−y
n+ 1

2
2 −y

n+ 1
2

1 x) + 1)2
(3.11)

Replacing (yn+1
1 , yn+1

2 ) with (y1, y2), (yn
1 , y

n
2 ) with (y−1 , y−2 ), respectively, multiplying

by ∆z and moving all terms to the left-hand side, we get,

y1 − y−1 −∆z(η · xe(−y
n+ 1

2
2 −y

n+ 1
2

1 x)
(t− 1

e
(−y

n+ 1
2

2 −y
n+ 1

2
1 x)+1

)

(e(−y
n+ 1

2
2 −y

n+ 1
2

1 x) + 1)2
) = 0 (3.12)

y2 − y−2 −∆z(ηe(−y
n+ 1

2
2 −y

n+ 1
2

1 x)
(t− 1

e
(−y

n+ 1
2

2 −y
n+ 1

2
1 x)+1

)

(e(−y
n+ 1

2
2 −y

n+ 1
2

1 x) + 1)2
) = 0 (3.13)

The terms yn+ 1
2

1 , y
n+ 1

2
2 are to be computed using the linear interpolation, as followed,

y
n+ 1

2
1 ≈ 1

2(yn+1
1 + yn

1 ) (3.14)

y
n+ 1

2
2 ≈ 1

2(yn+1
2 + yn

2 ) (3.15)

Now, replacing (3.14) and (3.15) to (3.12) and (3.13) we get,

y1 − y−1 −∆z · η · xe− 1
2 (y2+y−2 +(y1+y−1 )x)

(t− 1
e
− 1

2 (y2+y−2 +(y1+y−1 )x)+1
)

(e− 1
2 (y2+y−2 +(y1+y−1 )x) + 1)2

= 0 (3.16)

y2 − y−2 −∆z · η · e− 1
2 (y2+y−2 +(y1+y−1 )x)

(t− 1
e
− 1

2 (y2+y−2 +(y1+y−1 )x)+1
)

(e− 1
2 (y2+y−2 +(y1+y−1 )x) + 1)2

= 0 (3.17)

Which is of the form,
F (y) = 0

And can be solved numerically using Newton’s Method[3] & 3.6.1.
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3.6.3 Euler discretization method
The equations (3.8) , (3.9) are now subjected to the Euler’s discretization method
[6], with the outcome of,

yn+1
1 = yn

1 + ∆zf(zn, y
n
1 ) (3.18)

yn+1
2 = yn

2 + ∆zf(zn, y
n
2 ) (3.19)

Now, from equations (3.8) , (3.9), one can derive function f.

f(zn, y
n
1 ) = ηxe(−yn

2−yn
1 x)

(t− 1
e

(−yn
2−yn

1 x)+1
)

(e(−yn
2−yn

1 x) + 1)2

f(zn, y
n
2 ) = ηe(−yn

2−yn
1 x)

(t− 1
e

(−yn
2−yn

1 x)+1
)

(e(−yn
2−yn

1 x) + 1)2

Replacing now the function f we get to our final system of equations when Euler’s
discretization method is applied,

yn+1
1 = yn

1 + ∆z(η · xe(−yn
2−yn

1 x)
(t− 1

e
(−yn

2−yn
1 x)+1

)
(e(−yn

2−yn
1 x) + 1)2 ) (3.20)

yn+1
2 = yn

2 + ∆z(η · e(−yn
2−yn

1 x)
(t− 1

e
(−yn

2−yn
1 x)+1

)
(e(−yn

2−yn
1 x) + 1)2 ) (3.21)

Moving all terms to the left hand side, we get the following expression,

yn+1
1 − yn

1 −∆z(η · xe(−yn
2−yn

1 x)
(t− 1

e
(−yn

2−yn
1 x)+1

)
(e(−yn

2−yn
1 x) + 1)2 ) = 0 (3.22)

yn+1
2 − yn

2 −∆z(η · e(−yn
2−yn

1 x)
(t− 1

e
(−yn

2−yn
1 x)+1

)
(e(−yn

2−yn
1 x) + 1)2 ) = 0 (3.23)

Which is, yet again, of the form
F (y) = 0

And can be solved numerically with the Newton’s method (ref).

3.6.4 Single input- single output method
The equations already mentioned in this section can be used as they are for a specific,
initial scenario. A specific constant input x and a constant output label t can be fed
with the outcome of producing the desirable trajectory of the parameters w,b (here
mentioned as y1, y2).
The methodology for this is as followed, Providing (3.16), (3.17) or (3.20),(3.21) with
the constant input x and constant output t, the yn+1

i is computed for the specified
value of ∆z in time. Following the same principle, one can loop over the number
of steps and calculate the desired trajectory(i.e. the parameters w,b with respect to
time).
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For this method’s application, the mathematics were calculated using Matlab’s Sym-
bolic Math Toolbox [7].

Algorithm 3 Single Input - Single Output
1: SET (y0 = [w0, b0], η = 1,∆z)
2: SET input x and target t
3: for i=1:steps number do
4: if i=1 then
5: yold = y0
6: end if
7: if i 6= 1 then
8: yold = ynew

9: end if
10: Solve numerically using Newton’s method
11: ynew = solutions
12: Calculate the values of the sigmoid loss function that is used.
13: end for

A first implementation of the Crack Nicolson, Euler and ode45.m solution methods
are to be displayed in the corresponding, results’ chapter, part, for a single input
x and a single output t, a sigmoid activation function, a learning rate η = 1 and a
step size ∆z, after i iterations for our discretization methods.

Variants i ∆z w0 b0
Fig. 4.16 500 0.005 0.5 0
Fig. 4.17 50 0.005 0.5 0
Fig. 4.18 50 0.5 0.5 0

Table 3.1: Single input - Single output simulation parameters

3.6.5 Multiple input - multiple output
In this method, a predefined input vector x is created, with a corresponding function,
predefined as well, that generates the output data vector t.
The specific method requires a differentiation from the defined equations (3.16),
(3.17) for Crack Nicolson scheme or again, for Euler’s (3.20),(3.21).

For a data input vector x=[x1, x2, .., x10] of length N and an output vector
t=[t1, t2, ..., t10] we have,

F (y)|x=x1,t=t1 + F (y)|x=x2,t=t2 + ...+ F (y)|x=x10,t=t10

.N
= 0 (3.24)

Which can of course be simplified to,
∑N

i=1 F (y, xi, ti)
N

= 0 (3.25)
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The equation (3.25) needs to be dealt with, the exact same way, as in the previous
subsection 3.6.1, i.e. solving it with Newton’s method. Afterwards, looping over a
specific amount of time steps will produce the trajectories aimed.
The mathematics in this method were calculated using Matlab’s Function handle
function [8].

Algorithm 4 Multiple Input - Multiple Output
1: SET (y0 = [w0, b0], η = 1,∆z)
2: input vector x = [−10, ..., 10] and target vector t = sinusoidal(x)
3: for i=1:steps number do
4: if i=1 then
5: yold = y0
6: end if
7: if i 6= 1 then
8: yold = ynew

9: end if
10: Solve numerically using Newton’s method
11: ynew = solutions
12: Calculate the values of the sigmoid loss function that is used.
13: end for

In the analogous Results section, the results of this method are to be shown, in
comparison with, this time, three different continuous time solvers, ode45, ode15s
and ode23. The discretatization methods Crack Nicolson and Euler, are to be com-
pared with all three of the continuous solvers at different variants of the simulation
with an input vector x, an output vector t, a sigmoid activation function, a learning
rate η = 1 and a step size ∆z, after i iterations for our discretization methods and
only (the continuous built-in functions choose their own number of steps). More
details about those variants are described in Table 3.2.

Variants i ∆z w0 b0
Fig. 4.19 200 0.005 0.5 0
Fig. 4.20 500 0.005 0.5 0
Fig. 4.21 2000 0.005 0.5 0
Fig. 4.22 20 0.5 0.5 0
Fig. 4.23 200 0.5 0.5 0
Fig. 4.24 2000 0.5 0.5 0
Fig. 4.25 50 2 0.5 0

Table 3.2: Multiple input - Multiple output simulation parameters

3.6.6 Experiments motivation
In the next chapter, the figures and plots presented at each section, are directly
correlated with the method applied to them and therefore, with the section that
this corresponding method is previously mentioned. In that way, everything is to be
connected in the exact way that the research and work for this project took place.
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4
Results

In this chapter, the results of the project are going to be displayed. The comments
made for each and every plot/figure are presented in the following chapter[5].

4.1 Phase portraits
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Figure 4.1: Trajectories for different values of input ’x’ and target ’t’ and a sigmoid
activation function

The trajectories of five different initial points (the ones circled) are shown in Fig.
4.1, where these points end up after 15 steps in time, in the squared ones. The
outcome was expected as the model is linear and the input and output data are
single.
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4.1.1 Nonlinear trajectories - Sinusoidal trajectories
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Figure 4.2: Trajectories for sinusoidal input data x and a sigmoid activation func-
tion
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Figure 4.3: Sinusoidal trajectories and corresponding loss functions

In the above figure 4.3, it can easily be concluded that the corresponding loss func-
tion is fluctuating and not converging over time, as far as the specified characteristics
of the data are taken into account.
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4.1.2 Exponential trajectories
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Figure 4.4: Exponential trajectories and corresponding loss functions

Keeping the same format and idea, since the loss functions are having, even in
their state space behaviour, pretty high values, we are now displaying the trajectory
simulation for a different target, one corresponding to our sigmoid’s output range(i.e.
from 0 to 1).
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Figure 4.5: Exponential trajectories and corresponding loss functions. (x0, t0) =
(1,−0.5)
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4.1.3 Target/Label related to input
4.1.3.1 Second order functions
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Figure 4.6: Non linear trajectories and their corresponding loss functions. Varying
learning rate.

As it is highly logical, now, a different input-output relation is used so that we can
guide the output label to belong in the range of [0,1], so that our corresponding
sigmoid activation function can cover for it.
So,

x = x0sin(10z)

t = f(x) = x2

x0 = 1→ t0 = 0
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Figure 4.7: Non linear trajectories and their corresponding loss functions. Changed
function.
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4. Results

4.2 Average Loss Function
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Figure 4.8: Sinusoidal data - Average loss function method. Number of steps =
5000 , N=10
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Figure 4.9: Sinusoidal data - Average loss function method. Number of steps =
50.000, N=10
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4. Results

4.2.1 Increasing the dataset points
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Figure 4.10: Sinusoidal data-Average loss function method. Number of steps/it-
erations=5000, N=1000

Nothing seems to be drastically changing after the plots in Figure 4.10. We shall
continue however, with the same thinking as previously, increasing the iterations to
50000.
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Figure 4.11: Sinusoidal data-Average loss function method. Number of steps/it-
erations=50000, N=1000
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4. Results

4.2.2 Various initial parameters conditions
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Figure 4.12: Implementation with various initial b paramater values, with sigmoid
activation function.
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Figure 4.13: Implementation with various initial b parameter values, without any
activation function.
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4. Results

4.3 Batches Method

This section is in correspondence to the methods section 3.5.
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Figure 4.14: Various trajectories, using the batches method, and their correspond-
ing average loss function, for sinusoidal input.
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Figure 4.15: Various trajectories, using the batches method, and their correspond-
ing average loss function, for linear input.
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4. Results

4.4 Discretization of the non linear differential,
continuous system

4.4.1 Single input - Single output
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Figure 4.16: Single input - Single output implementation of the discretization
methods and the continuous ode45.m case. Simulation No.1 .

0.46 0.465 0.47 0.475 0.48 0.485 0.49 0.495 0.5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Discretized vs Continuous : Parameters Trajectory

Crack Nicolson

Euler

ode45

0 0.05 0.1 0.15 0.2 0.25
0.182

0.184

0.186

0.188

0.19

0.192

0.194
Discretized vs Continuous : Loss function - time

Crack Nicolson, cputime = 15.25

Euler, cputime = 11.1562

ode45, cputime = 0.32822

Figure 4.17: Single input - Single output implementation of the discretization
methods and the continuous ode45.m case. Simulation No.2 .

33



4. Results

-0.6 -0.4 -0.2 0 0.2 0.4

0

0.2

0.4

0.6

0.8

1

1.2

Discretized vs Continuous : Parameters Trajectory

Crack Nicolson

Euler

ode45

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Discretized vs Continuous : Loss function - time

Crack Nicolson, cputime = 12.4375

Euler, cputime = 8.8438

ode45, cputime = 0.03135

Figure 4.18: Single input - Single output implementation of the discretization
methods and the continuous ode45.m case. Simulation No.3 .
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Figure 4.19: Multiple input - Multiple output implementation of the discretization
methods and the continuous cases. Simulation No.1 .
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Figure 4.20: Multiple input - Multiple output implementation of the discretization
methods and the continuous cases. Simulation No.2 .
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Figure 4.21: Multiple input - Multiple output implementation of the discretization
methods and the continuous cases. Simulation No.3 .
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Figure 4.22: Multiple input - Multiple output implementation of the discretization
methods and the continuous cases. Simulation No.4 .
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Figure 4.23: Multiple input - Multiple output implementation of the discretization
methods and the continuous cases. Simulation No.5 .
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Figure 4.24: Multiple input - Multiple output implementation of the discretization
methods and the continuous cases. Simulation No.6 .
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Figure 4.25: Multiple input - Multiple output implementation of the discretization
methods and the continuous cases. Simulation No.7 .
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5
Discussion

Here, in this chapter, some comments regarding the outcome of the Results chap-
ter[4], are to be made.

As a starting point, one can easily tell from Fig. 4.1 that there is limited information
as far as convergence is concerned. In order to move forward, some experimental
trajectories accompanied by their loss functions over time, are going to be displayed
and shed light on the matter.

With a brief look on Figure 4.2, one cannot directly imply anything about the con-
vergence, before more information is acquired.The model seems to be continuously
fluctuating. Analysing the loss fuction figures further on, we can tell that there is
no convergence achieved.

Considering the results of 4.1.2, what can be commented with certainty is that after
plotting Fig. 4.4 the above exponential trajectories, no matter what the initial
conditions and targets are, cannot be subjected to training convergence, at least
not after the specific amount of time given at the ode45 Matlab solver. It’s also
noteworthy to mention, that the loss function plots seem to be ending up at a
state space value and not fluctuate, in contrast to what was happening when a
sinusoidal input was given. This is probably due to the algorithm being stuck in a
local minimum. To sum things up, this behaviour is expected when a single-neuron
neural network is to be trained. One cannot expect to get convergence of a complex
nonlinear input with a single weight and bias parameter. The technique/method
used and the characteristics of our experiment ( initial value, gradient of the input
data function, etc) may also be to blame.
The same behaviour is now witnessed in Fig. 4.5, with the difference that in this
case, the loss functions seem to be converging in a lot lower values than previ-
ously(Fig. 4.4).

Moving on with the average loss function section, in the plots of Figure 4.9, when
comparing them with the previous from Figure 4.8 what can be concluded is that
the behaviour of the loss function does not seem to be changing. The 3 dimensional
plot seems to have a little differentiation, which is normal, taking into consideration
the fact that the ode45.m has been running for a longer period of time. Finally,
comparing the trajectories plots we can clearly now see the convergence of five of
the trajectories and the certain divergence of the sixth, cyan coloured trajectory.
After increasing the dataset points, what is of great importance after analyzing the
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last plots from Figure 4.11, is that the sixth trajectory, the cyan coloured, now joins
the others and is led to convergence and at the same time, it’s corresponding loss
function seems, as expected, to be decreasing significantly, until stabilization.
We can now, with certainty say that this increase in the number of the data points
used for the training of our neural network, led to an increase of the range of con-
vergence for the trajectories with different initial values of our weight and bias
parameters.

Using the batches method, as it is expected, in Figure 4.14, the average loss function
seems to be fluctuating at first, but finally, it converges for every trajectory at the
same value, meaning that this method seems to be working in the most desirable of
the ways.
Another comment to be made on this figure, is the fact that the convergence value
seems to be higher than some loss function values from previous time steps. The
reason for this, is that the average loss function used, tries to lower exactly that, the
average loss for the whole dataset, and at times, for a specific batch, it might get to
lower values, but it’s impossible to retain them while moving on to the next batches.

Now on to the discretization part. It is clear from Figures 4.16, 4.17 that the
discretization methods both work efficiently in that running times, with low step
size ∆z, even though the cputime for the ode45 is vastly smaller. However, when
we start testing bigger running times (Fig. 4.18), while trying to retain a similar
cputime difference by increasing the step size, we start detecting dissimilarities,
which are mostly visible in the Loss function - time plot.
It is also very important to mention that the computation time for our methods, is
extremely big, as it is expected due to using symbolic functions [7]. Hereby, we are
moving to the next section to continue and discuss our experiments, in the general,
more precise scope of the multiple input - multiple output field, where we will be
using function handle for our discrete time computations.

In the above figures (Fig. 4.19,4.20,4.21,4.22,4.23,4.24,4.25), what can easily be
commented, is that for the specified characteristics, ode45 seems to be covering the
curvature in a more precise manner, since it is using smaller step size, whereas,
ode23 is the one that is a lot faster, missing of course some information. However,
in this case ode15s is neither fast nor precise.
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At first, introducing and creating neural networks consisting only of one neuron has
been a takeaway that we can say with confidence was a strong stepping stone for
the rest to come. The trajectory of the model would align entirely with the phase
vectors even though many different input data points were tested.

This is the point were we started testing out the performance of the, single neuron,
neural network when it faced more exquisite, non linear scenarios of data progres-
sion over time. At the beginning, some simple single input data with sinusoidal
gradient over time are being fed to the network. The result of this experiment led
us to a conclusion that we cannot really lead this model to convergence (through
loss function reduction) with only one neuron in it, due to the periodical nature of
the data.

We continued, sticking to the single neuron model, with exponential gradient data
that could actually be led to some sort of convergence, but not giving us the required
loss function values. Still, the single neuron model could not keep up with this steep
change of the input.

We then moved on with attributing a connection between the target and the input
data, keeping the single neuron - single layer model as is. The outcome of that was
a clear convergence, at first not at the desired values due to the output target but
finally, at loss function values around zero.

Next milestone in this research was, introducing the average loss function in our
model, in order to produce a more well established and generic training procedure
that covers various types of input data with accuracy. At the beginning of this at-
tempt, the results were not satisfying enough to cover for our convergence criteria.
Increasing both the data set points(moving away from the single neuron - single
layer neural network to a multiple neuron - single layer model) and the training
iterations the outcome was clearly improved, leading to convergence although with
a loss function not that close to zero.

An extra step to that was including the batches method to our endeavor which sure
was a big improvement in our results.

As a final attempt, a discretization of the non linear differential continuous equa-
tions for the update function, where calculated. The point of this pursuit was to try
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not to rely on the Matlab ODE (ordinary differential equation) solvers and seek a
unique and original solution. Hence, the comparison of the discretized solutions and
the Matlab solver ones, gave us a huge insight regarding this scientific direction, in
this research project. To sum up, the main takeaway of this final part is that the
solutions that this research provided were usually equally good at constructing the
parameters’ trajectories and in some cases even better (Fig. 4.25). The weak point
of this try, which is a substantial one of course, is the computing time of our solvers.
That is were the Matlab solvers would, mainly because they have a shifting learning
rate η, be greatly more competent.

As a future potential research on top of this one, one can directly suggest that
there are plenty of options. Although that more neurons have been used in this
research, it is highly likely that more layers can provide a lot more robust solutions
and convergence competent models. In addition, regarding the discretized solvers at
the end, a shifting learning rate could really be of aid, when it comes to computing
time. The usage of an alternate η during the training of the network could hugely
avoid unnecessary computing of parts of the trajectory where the gradient does not
really change.
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