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Abstract

In this Master Thesis we investigate the presence of stochastic volatility in interest rate
dynamics and its effect on pricing interest rate derivatives. Different stochastic volatility
models are compared to each other and to models where the volatility is constant. The
models are calibrated to the short rate with the EMM procedure. The models are also
calibrated to market data like the yield curve and swaption prices with the Kalman fil-
ter method and by minimizing the sum of squares. We find that stochastic volatility is
very much present in interest rate dynamics, and that models are improved by adding
a stochastic volatility process. The pricing capabilities of the models are on the other
hand not improved by adding a stochastic volatility factor but instead make the models
considerably slower.



v



Acknowledgements

We would like to thank our supervisor Patrik Albin for his help and encouragement, as
well as for the interesting discussions we have had. We would also like to thank the many
people in the mathematics building that have helped us during our thesis work. Last but
not least, we would also like to thank our friends and families for their support.



vii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Financial Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Interest Rate Caps and Floors . . . . . . . . . . . . . . . . . . . . . 4
2.3 Interest Rate Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Swaptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Bond Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Interest Rate Models . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Models for Stochastic Volatility . . . . . . . . . . . . . . . . . . . . 14
3.2 The Heston Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 The Heston Model with Fourier Transform . . . . . . . . . 18
3.3 Complex Stochastic Volatility Models . . . . . . . . . . . . . . . . . 19

4 Fitting an Interest Rate Model . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Discretization Approximation . . . . . . . . . . . . . . . . 21
4.1.2 Efficient Method of Moments . . . . . . . . . . . . . . . . 23

4.2 Market Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Two-Factor CIR with Kalman Filter . . . . . . . . . . . . 25
4.2.2 Calibration of Complex Models . . . . . . . . . . . . . . . 27
4.2.3 Calibration of Heston Model . . . . . . . . . . . . . . . . . 29

5 Evaluating the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Evaluating the Short-Rate Model Dynamics . . . . . . . . . . . . . 32

5.1.1 A Rank Test . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 Stationary Distribution Tests . . . . . . . . . . . . . . . . 34
5.1.3 A Likelihood Test . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Evaluating Market behaviour . . . . . . . . . . . . . . . . . . . . . 39
5.3 Goodness-Of-Fit Test using Coefficient of Determination (R2) . . . 44

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1 Asset Pricing and Related Theorems . . . . . . . . . . . . . . . . . 48
7.2 Heston Model Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3 Risk Neutral Parameter Estimates . . . . . . . . . . . . . . . . . . 49

viii



ix



1 Introduction

The interest rate is a factor that affects almost every individual on an economic level. For
instance, the interest you receive on deposits in your bank account or the interest that you
need to pay when you borrow money. The interest rate causes the amount of money to
grow as the time goes by. If you are able to lend money out, it usually comes back with
a reward which is the interest. This concept can also be described as the time value of
money: An amount of money received today is worth more than the same amount of money
received in the future. This kind of simple interest rate process is called the money-market
account, which represents a risk-less investment. This process follows the dynamics of the
stochastic differential equation (SDE),

dB(t) = B(t)r(t)dt, B(0) = B0,

where B(t) is the money-market account and r(t) is short rate which change according to
time t. The solution this equation is

B(t) = B0e
∫ t

0
r(s)ds,

and the interest rate equation can also be approximated as

B(t+∆t)−B(t)

B(t)
= r(t)∆t.

This equation shows that money grows in every time step. Moreover, Figure 1 illustrates
how the interest rate behaves as a stochastic process by showing the U.S. Treasury 3 month
yield.

Even if you have not taken a mortgage loan to finance your home, the rent you pay is
still affected by the level of the interest rate. Larger businesses and corporations can be
extensively affected from the change in interest rate, as they are usually financed by debt
to some extent. To them, the interest rate level can mean the difference between a healthy
profit or a loss. The interest rate is thus the source of a lot of risk within the company
and has to be managed so that the company does not make a big loss, or even worse, faces
bankruptcy. This is often done by the use of interest rate derivatives such as interest rate
swaps, caps, floors or swaptions that are traded over-the-counter (i.e. not in an exchange).

To manage interest rate efficiently, one needs to know how the interest rate behaves. How
likely is it that the interest rate will increase by a certain amount in the future, and what is
the expected future level of the interest rate? These are questions that need to be answered
in order to manage interest rate risk, and which depend mainly on economic factors. These
questions can often be answered to some extent by interest rate models, that are calibrated
to either historical data or to current market prices.
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Figure 1: Three month U.S. Treasury yield from 1993 to 2012

The most common models for describing the interest rate dynamics are mathematical dif-
fusion models. They assume that the interest rate is a stochastic diffusion process with a
large diffusion component and a small (or sometimes non-existent) drift component. The
most simple example of these models assume that the size of the diffusion component
(commonly called volatility) is constant. Others assume that volatility is only related to
the level of the interest rate, if the interest rate goes up so does volatility and vice versa,
a so called level effect. These models are most often not accurate enough for interest rate
modelling and pricing purposes. They often fail to capture different phenomena, like the
extreme spike in volatility that occurred during the credit crunch, or the changing expec-
tations about the future levels of the interest rate.

In this thesis we will aim to extend these models by modelling volatility as a stochastic
process. By doing this we aim to increase the models accuracy in describing interest rate
dynamics as well as their accuracy in pricing. The models we will look at are mainly
stochastic volatility models for the short rate, but also the Heston model, which does not
model the short rate but instead tries to model bonds and bond option dynamics directly.
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2 Financial Theory

In this section we will discuss basic theory of interest rate derivatives and mathematical
models of the interest rate. We will start with bonds and then move on to more complex
products like swaps, caps, floors and swaptions.

2.1 Bonds

A bond is a financial debt security in which the issuer owes the the holder a debt. There
are two main types of bonds, coupon bonds and zero coupon bonds. Coupon bonds pay
the holder coupons of fixed size at specific times until maturity when the entire debt,
known as the nominal or face value, is paid back to the holder. Zero coupon bonds as the
name implies pay no coupons, the entire debt is repaid upon maturity. When a bond is
issued and subsequently sold, it is traded like any other security and can change holders
arbitrarily many times until maturity.

Bonds are issued by companies as well as governments in order to finance debt. Govern-
ments are by far the the largest group of issuers of bonds, the US as well as the Swedish
government for example sell bonds every week. This makes government bonds very liquid
which in turn means better price data.

The price of a zero coupon bond at time t with maturity at time T is B(t, T ) = e−Y (t,T )(T−t)

where Y (t, T ) is the yield to maturity. If we assume that there exists a bond with infinites-
imal time to maturity, call this bond B(t, t + δ), then the limit lim

T→t+
Y (t, T ) exists, and is

equal to the short rate, r(t). The price of a bond can then be written as

B(t, T ) = e−
∫ T

t
r(u)du.

The problem here is that r(u) is unknown for u > t which means that r(u) and the integral
of r(u) are random variables. To be able to price this Bond correctly we define

B(t) = B(0)e
∫ t

0
r(u)du,

as the value of a self financing portfolio that holds bonds B(t, t+ δ) with infinitesimal time
to maturity. Thus B(t) also represents the value of a bank account that pays the short
rate with continuous compounding. If under some probability measure Q the portfolio
X(t) = B(t, T )/B(t) is a Q-martingale, then according to the no arbitrage pricing formula
(stated in the appendix), we have

B(t, T )

B(t)
= EQ

[

1

B(T )
|Ft

]

,
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which means that the price of a bond under the probability measure Q is

B(t, T ) = EQ

[

B(t)

B(T )
|Ft

]

= EQ
[

e−
∫ T

t
r(u)du|Ft

]

.

Here, Ft is a filtration at time t, which essentially can be seen as the amount of available
information up until time t. Thus EQ[...|Ft] means: The expectation of something given
the information that is available at time t. To price a coupon bond, each coupon can be
viewed as a separate zero coupon bond with maturity at the time of coupon payment. In
this way the price of the coupon bond becomes the sum of the prices of zero coupon bonds
plus the price of the notional end payment. In the above equations, the probability mea-
sure Q is very important, it is not the same as the real world measure. This is a different
measure that is used to account for the risk averse behaviour of investors, and the current
risk premium. Using the empirical probability measure would cause us to ignore the risk
premium, yielding consistently higher prices than quoted in the market.

2.2 Interest Rate Caps and Floors

An interest rate cap is a financial product that puts an upper limit on the interest rate
the buyer pays over a specific time period. At the end of each period, the buyer receives
a payment such that the total interest paid on the notional is equal to or less than the
strike rate, K. A floor is instead a lower limit on the interest rate received by the buyer.
These caps and floors are useful in hedging when a borrower who is paying interest on a
loan according to some interest rate, for example LIBOR (London Interbank Offered Rate)
can protect himself against interest rate fluctuations by buying a cap at x% fixed interest
rate, the strike rate. If the interest rate exceeds x% then he can use the amount he gained
from the caps to pay for the interest as shown in Figure 2. Conversely, the interest rate
floor is useful when a lender who is receiving LIBOR wanted to secure himself/herself if
the interest happened to drop too low as shown in Figure 3.

Mathematically, the payments are received at specific times during the life of the cap, at
which the holder receives

Ycaplet(ti) = N(e
∫ ti
ti−1

r(t)dt − e
∫ ti
ti−1

Kdt
)+,

where K is the fixed interest strike and N is the notional. The holder of the floor receives

Yfloorlet(ti) = N(e
∫ ti
ti−1

Kdt − e
∫ ti
ti−1

r(t)dt
)+.

The present value of each of these cash flows from the cap are

Πcap(t) = NEQ
[

e−
∫ ti
t r(t)dt(e

∫ ti
ti−1

r(t)dt − e
∫ ti
ti−1

Kdt
)+|Ft

]

,

= Ne
∫ ti
ti−1

Kdt
EQ

[

e−
∫ ti−1

t r(t)dt(e
−
∫ ti
ti−1

Kdt − B(ti−1, ti))
+|Ft

]

,

= N
′

iP (t, B(ti−1, ti), K
′

i , ti),

4



Figure 2: The hedging of interest rate caps with LIBOR.

Figure 3: The hedging of interest rate floors with LIBOR.

where P (t, B(ti−1, ti), K
′

i , ti) denotes the value of a European put option on the bond
B(ti−1, ti). Hence, the discounted values of these cash flows are the same as the value of
N

′

i European put options with strike K
′

i on the zero coupon bond B(ti−1, ti). The value of
a cap is thus

Πcap(t) =

n
∑

i=1

N
′

iP (t, B(ti−1, ti), K
′

i , ti).
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In the same way, the value of a floor is

Πfloor(t) =

n
∑

i=1

N
′

iC(t, B(ti−1, ti), K
′

i , ti),

where C(t, B(ti−1, ti), K
′

i , ti) denotes the value of a European call option.

2.3 Interest Rate Swaps

An interest rate swap is a financial contract in which two parties agree to exchange interest
rate cash flows on a pre-specified value called the swaps notional or face value. The usual
setup is that a fixed interest rate is exchanged for a floating rate, the party that receives
the fixed rate from the swap is called the receiver and the party that receives the floating
rate is called the payer as shown in Figure 4.

Figure 4: The swap between the method of payment between parties.

The parties exchange cash flows on agreed times during the life of the swap, this could be
every three months, every six months or in unusual cases another interval length. This
gives the following formula for the receiver cash flow for each payment,

Y (ti) = N
(

e
∫ ti
ti−1

[K−r(t)]dt − 1
)

,

where N is the notional, K is the fixed rate and r(t) is the floating rate. Hence, the
discounted payoff during the life of the swap, and thus its value is for the receiver,

Πreceive(t) = N
n

∑

i=1

e−
∫ ti
t r(t)dt

(

e
∫ ti
ti−1

[K−r(t)]dt − 1
)

.

6



The payer receives the opposite cash flow, which in discounted terms equals

Πpay(t) = N
n

∑

i=1

e−
∫ ti
t r(t)dt

(

e
∫ ti
ti−1

[r(t)−K]dt − 1
)

.

One can also take the options of the interest rate swap which is called swaption. Theoret-
ically, buying swaption along with engaging in interest rate swap could help decrease the
risk of making a loss. This is of course at the cost of buying a swaption.

2.4 Swaptions

Swaption is the industry term for a swap option, it is a financial derivative that gives the
holder the right but not the obligation to enter an interest rate swap. Thus the price of a
call option on a receiver swap with strike X at time t is

Πcall = EQ
[

e−
∫ T

t
r(t)(Vreceive(τ)−X)+|Ft

]

,

= EQ
[

e−
∫ τ

t
r(t)((N

n
∑

i=1

e−
∫ ti
τ
r(t)dt(e

∫ ti
ti−1

[K−r(t)]dt − 1))−X)+|Ft

]

.

Another over-the-counter traded derivative is the bond option.

2.5 Bond Options

An option is a financial contract that gives the holder the right but not the obligation to
buy (or sell) an underlying asset in the future at a fixed strike price. A European option
can only be exercised at maturity while an American option can be exercised at any time
before or at maturity. A call is an option to buy the underlying asset while a put is an
option to sell the underlying asset. The value of a put and a call at maturity are thus
P (X) = (0, K −X)+ and C(X) = (0, X −K)+ respectively, where X is the asset and K is
the strike price. The price of an option is according to the no arbitrage pricing formula is

Π(t, T ) = EQ
[

e−
∫ T

t
r(u)duh(X)|Ft

]

,

where h(X) is the payoff at maturity, i.e. (0, B(T1, T2) − K)+ for a European call with
maturity T1 on a bond with maturity T2.

Investors usually buy a call bond option when he/she believes that the interest rate will
fall as the bond price increases with the decreasing interest rate. In contrast, when it is
believed that the interest rate will rise, people tends to buy a put bond option as the bond

7



price decreases with the increasing interest rate.

All of mentioned financial instruments are risky and need to be carefully used in order to
benefit from them. Hence, many economists and mathematicians came up with different
methods in order to capture all the data process and express them in the models. People
can, thus, forecast the future and understand the past events to be more cautious with the
investment. In the next section, we will elaborate on how financial theory can be applied
into the mathematical models.

2.6 Interest Rate Models

Interest rates are often modelled in continuous times by a stochastic differential equation
(SDE), most often with an ordinary diffusion as the source of randomness. The diffusion
process is scaled by a volatility factor that can be either constant, deterministically time
dependent or stochastic. It is generally believed in finance that the volatility factor is
stochastic, and in turn driven by another SDE.

One of the most important concepts when talking about interest rate models is the time-
value of money which can be represented by using yield curve. The yield to maturity of a
zero coupon bond is defined as the factor Y(t,T) that makes the bond price fit the equation

B(t, T ) = B(T, T )eY (t,T )(T−t),

and is thus the average yield of the bond until its maturity. The yield to maturity is most
often quoted as a discretely compounding yearly interest rate. The yield curve or term
structure is a relationship between the time to maturity and the yield to maturity. When
Y (t, T ) is graphed as a function of the time to maturity (T − t) one obtains the yield curve.
When fitting an interest rate model it is important that the model fits the initial term
structure. As can be seen from the equation above, the term structure at time t can easily
be inferred from the market prices of bonds by using the relationship

Y (t, T ) =
log( B(t,T )

B(T,T )
)

(T − t)
.

There are many models that try to capture the dynamics of interest rates. For example,
Vasicek, Dothan, CIR, Hull-White and many more but in this section, we will only discuss
Vasicek [14] and CIR [6] in details.

Vasicek: dr(t) = (b− ar(t))dt+ σdW (t)

CIR: dr(t) = (b− ar(t))dt+ σ
√

r(t)dW (t)

where W (t) is a standard Wiener process and σ is a standard constant volatility. In these
models the price of a bond is a function of time and the current short rate

B(t, T ) = E
[

e−
∫ T

t
r(t)dt|Ft

]

= f(t, r(t)).

8



Because D(t)B(t, T ) = D(t)f(t, r(t)) is a martingale, we can use Its’ formula to obtain a
PDE describing the bond price dynamics

d(D(t)f(t, r)) = dD(t)f(t, r) +D(t)df(t, r),

= D(t)[−rf + f
′

t + βf
′

r +
γ2

2
f

′′

rr]dt+D(t)γf
′

rdW (t).

As this process is a martingale, the dt term has to equal zero which by using the Feynman-
Kac theorem gives us the PDE

f
′

t (t, r) + βf
′

r(t, r) +
γ2

2
f

′′

rr(t, r) = rf(t, r),

with the terminal condition
f(T, r) = 1 for all r.

This PDE has the solution
f(t, r) = e−rC(t,T )−A(t,T ),

where

C(t, T ) =
1

a

[

1− e−a(T−t)
]

,

A(t, T ) = (
b

a
− σ2

2a2
)[C(t, T )− T + t]− σ2

4a
C2(t, T ).

Thus there exists a closed-form for solution for the price of a bond in the Vasicek model.
In the CIR model, we have the parameters β = (b− ar(t)) and γ = σ

√

r(t) which gives us
the PDE

f ′

t(t, r) + (b− ar)f ′

r(t, r) +
σ2r

2
f ′′

r r(t, r) = rf(t, r).

This PDE has a solution of the same form as the Vasicek model, with

C(t, T ) =
sinh(γ(T − t))

γ cosh(γ(T − t)) + a
2
sinh(γ(T − t))

A(t, T ) = −2b

σ2
log

[ γe
1

2
a(T−t)

γ cosh(γ(T − t)) + a
2
sinh(γ(T − t))

]

where γ = 1
2

√
a2 + 2σ2.

To see how well the closed-form solution fits the actual data, we estimated parameters using
the U.S. Treasury yield data in different interest rate models. They are plotted on Figure 5.

From Figure 5, the blue curve with the squares is the plot of the actual data while the red
curve is the plot of the actual interpolated data. These two line resemble almost perfectly.
The green curve is the estimation using Vasicek model while the black curve is the estima-
tion using CIR process. Vasicek seems to follow more closely to the actual data than CIR

9
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Figure 5: The plot of yield curve from different stochastic volatility model estimation

in this yield plot, especially at the first 10 years. However, the difference made in each
model are not so critical since they are still going into the similar direction.

These models both capture the autoregressive tendencies of interest rates, which can be
explained economically. For example, if the interest rate is low, people tend to increase
their investments and borrowings. This leads to higher demand on capital investments and
after some time, it raises the interest rate. On the other hand, if the interest rate is high,
people tend to decrease their investments and borrowings which causes the production
rate to fall and thus, the interest rate decreases. The Vasicek model however suffers from
the drawback that it allows interest rates to become negative. The CIR model allows the
interest rates to become zero though never negative but compared to the Vasicek model it
suffers from less analytical tractability. There are still drawback with the models, like the
fact that they do not fit the initial term structure of the interest rates.

Hull and White made improvements to both these models by letting the parameters a,
b and σ be time dependent instead of constant. This leads to the Hull-White extended
Vasicek model and the Hull-White extended CIR model:

Extended Vasicek: dr(t) = (b(t)− a(t)r(t))dt+ σ(t)dW (t)

Extended CIR: dr(t) = (b(t)− a(t)r(t))dt+ σ(t)
√

r(t)dW (t)

When the parameter b(t) is time dependent it can be chosen such that the model fits
the initial yield curve. In this thesis, we choose to keep the parameters a and b constant

10



and instead aim to evaluate how interest rate models are affected by modelling σ(t) as a
stochastic process.
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3 Stochastic Volatility

One of the most famous mathematical tools for option pricing is the Black-Scholes model.
The basic idea behind this model is to set up a hedging portfolio in which the underlying
asset is bought and sold to reflect the option dynamics in order to eliminate risk. It was
the first to introduce the closed-form solution to the option pricing. Black-Scholes model
can be applied not only to option pricing but also to other derivatives instrument. The
solution for Black-Scholes partial differential equation is as follows:

ct(t, S(t)) + rS(t)cx(t, S(t)) +
1

2
σ2S2(t)cxx(t, S(t))− rc(t, S(t)) = 0,

where c(t, x) is value of call at time t and the stock price at that time is S(t) = x while
r and σ are the model parameters which is interest rate and stock volatility, respectively.
By using terminal and boundary conditions, the Black-Scholes formula for Call options is
formulated as:

C(t, S(t)) = S(t)Φ(d1)−Ke−rτΦ(d2),

where

d1 =
ln(S(t)

K
) + τ(r + σ2

2
)

σ
√
τ

,

d2 = d1 − σ
√
τ ,

and K is the strike price, τ is the time to maturity and Φ denotes the cumulative standard
normal distribution.

However, the model is limited with some explicit assumptions such as that the model’s
stock price follows a geometric Brownian motion with constant drift and volatility. This
is impossible to apply to stock option pricing in reality specifically after the 1987 crash.
The volatility of stock prices tend to move more and more stochastically after this inci-
dent. This has lead to the development of several stochastic volatility models and another
unique method of introducing white noise, ARCH/GARCH. The fact that volatility is not
constant but behaves stochastically gives rise to certain unexpected effects. One of those
is the volatility smile, and is related to the Black-Scholes formula.

When one uses the Black-Scholes formula to infer future volatility from the price of a call
(the implied volatility), he or she finds that the volatility is a function of the strike price.
A graph of future volatility as a function of the strike price will often be convex with
a minimum around the ATM (At The Money) strike price and higher around the In The
Money and Out of The Money as in Figure 6. This is known as the volatility smile. Having
a model that fits the implied volatility structure is important both for pricing reasons and
for hedging. Stochastic volatility models have the ability to fit the volatility smile and are
extensively used in the equity area of finance. To see a clearer picture of option pricing,

12



Figure 6: Volatility Smile

the implied volatility is considered an extrinsic value of the option’s market price while the
underlying stock contribute to the intrinsic value of the option’s market price as shown in
Figure 7.

Figure 7: The ITM Option Prices Components

In the fixed income part of finance, implied volatility is the value of the volatility parameter
that makes the Black caplet formula fit the market price. The Black caplet formula is based
on assumptions about the dynamics of forward rates and is displayed below

13



Πcaplet(0) = B(0, T + δ)[f(0, T )Φ(d+)−KΦ(d−)],

where

d± =
1

√

∫ T

0
σ2(t, T )dt

[

log
f(0, T )

K
± 1

2

∫ T

0

σ2(t, T )dt
]

.

Here, f(0, T ) is the current forward rate, σ(t, T ) is the forward volatility at time t,
B(0, T + δ) is the price of a bond with maturity at time T + δ and K is the strike price [3].

3.1 Models for Stochastic Volatility

As mentioned earlier, volatility changes randomly according to some stochastic process
which explains why options with different strikes and maturities have different implied
volatilities. The Black-Scholes model uses a standard geometric Brownian motion which
gives the SDE:

dS(t) = µS(t)dt+ σS(t)dW (t),

where µ is a constant drift, σ is a standard constant volatility and W (t) is a standard
Wiener process. Stochastic volatility models replace the constant volatility σ with the
process

√

V (t) yielding the SDE’s:

dS(t) = µS(t)dt+
√

V (t)S(t)dW1(t),

dV (t) = α(s, t)dt+ β(s, t)dW2(t),

where α(s, t) and β(s, t) are function parameters which varies depending on each model.
Furthermore, dW2(t) is the differential of a Brownian Motion that is correlated with dW1(t)
through ρdt =< dW1(t), dW2(t) >. In 1987, Hull & White [10] first introduce a Stochastic
volatility model using the geometric Brownian motion for the variance process. How-
ever, this method causes the variance to grow exponentially instead of decaying over time.
Stein & Stein [13], in 1991, incorporate the Ornstein-Uhlenbeck process to solve the mean-
reverting behaviour. However, this Ornstein-Uhlenbeck has a main disadvantage that the
variance can become negative which is impossible in reality. In 1993, Heston [8] comes up
with a model assuming there is a correlation between the underlying assets process and
variance process. The variance process is assumed to follow the square root process or
Cox-Ingersoll-Ross (CIR) process. However, this model still unable to predict the extreme
events that could happen.

In interest rate products, there are several ways to account for the volatility smile. One is
to model the short rate and let the volatility of the interest rate process be a stochastic
process. Another way is to model the interest rate as the sum of several stochastic processes,
so called multi-factor models. If one chooses to model the implied volatility using the first
alternative, one usually ends up with the following general equations
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dr(t) = β(v, r, t)dt+ γ(v, r, t)dW1(t),

dv(t) = α(v, r, t)dt+ φ(v, r, t)dW2(t),

The price of a bond or of an interest rate derivative is a function of the interest rate and
follows the equation below

d(D(t)f(v, r, t)) = D(t)df(v, r, t) + dD(t)f(v, r, t),

where
dD(t) = −r(t)D(t)dt,

and

df(v, r, t) = f ′

vdv + f ′

rdr + f ′

tdt+
1

2
f ′′

vv(dv)
2 +

1

2
f ′′

rr(dr)
2 + f ′′

vrdvdr,

=
[

αf ′

v + βf ′

r + f ′

t + γφf ′′

vr +
φ2

2
f ′′

vv +
γ2

2
f ′′

rr

]

dt+ φf ′

vdW2(t) + γf ′

rdW1(t).

Using the Feynman-Kac theorem, this leads us to the general PDE for interest rate assets
in stochastic volatility models

αf ′

v + βf ′

r + f ′

t + ργφf ′′

vr +
φ2

2
f ′′

vv +
γ2

2
f ′′

rr = rf.

3.2 The Heston Model

In 1993, Steven Heston has proposed a Stochastic volatility model that has a closed-form
solution to the Black-Scholes model of pricing options [8]. It is assumed that the spot asset
at time t follows:

dS(t) = µS(t)dt+
√

V (t)S(t)dW1(t),

dV (t) = κ[θ − V (t)]dt+ σ
√

V (t)dW2(t),

where W1(t) and W2(t) are Wiener processes and they are correlated by ρ. S(t) and V (t)
are stock price and square root mean reverting volatility processes, respectively. θ is a
long-run mean, κ is rate of reversion and σ is the volatility of volatility.

Using Ito’s lemma, the Heston model must satisfy the partial differential equation, of any
value U ,

1

2
V S2∂

2U

∂S2
+ ρσV S

∂2U

∂S∂V
+

1

2
σ2V

∂2U

∂V 2
+ rS

∂U

∂S

+[κ(θ − V )− λ(S, V, t)]
∂U

∂V
− rU +

∂U

∂t
= 0,
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where λ(S, V, t) represents the price of volatility risk and r is assumed to be a constant
interest rate. The market price of volatility risk is defined as

λ(S, V, t) = kσV (t), for some constant k.
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Figure 8: The implied volatility simulated using Heston model

Under the risk-neutral measure, λ should be eliminated, which gives the exact PDE equa-
tion that can be derived from Heston formula. To solve the PDE equation for a European
call option with strike price K and maturing time T . Analogously, with the Black-Scholes
formula, it is guess that the solution is of the form

C(S(t), V (t), t) = S(t)P1 −Ke−rτP2
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Figure 9: The implied volatility surface with different values of strike, K and maturity
time, τ where κ = 1.5, θ = 0.05, σ = 0.1, ρ = 0.7, V0 = 0.04, r = 0.03 and S0 = 1

which can be solved analytically using PDE and its proof is in the appendix. Hence, we
obtained the solution:

fj(x, V, t;φ) = exp(C(τ ;φ) +D(τ ;φ)V + iφx),

where

C(τ ;φ) = rφiτ +
a

σ2

[

(bj − ρσφi+ d)τ − 2ln

(

1− gedr

1− g

)]

,

D(τ ;φ) =
bj − ρσφi+ d

σ2

(

1− edr

1− gedr

)

,

and

g =
bj − ρσφi+ d

bj − ρσφi− d
,

d =
√

(ρσφi− bj)2 − σ2(2ujφi− φ2),

by solving explicitly. To obtain the desired solution, we invert the characteristic functions,

Pj(x, V, T,K) =
1

2
+

1

π

∫

∞

0

Re

(

e−iφln(K)fj(x, V, T ;φ)

iφ

)

dφ.

By using the closed-form solution, we can directly plot the implied volatility using the
available option prices in the market. The example of implied volatility surface in different
value of parameters.
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3.2.1 The Heston Model with Fourier Transform

In estimating the price of the stock options, there exists several ways, for example, simu-
lations, finite difference method and many more. However, according to empirical studies,
one of the fastest computational method is to use Fourier transform. Another advantage
is using the Fourier transform is that the characteristic functions and the FFT do not
require the knowledge of the distribution of the underlying [8]. The characteristic function
is defined as

F (φ) = E[eiφx] =

∫

∞

−∞

eiφxf(x)dx.

According to [11], this is the Fourier transform of the function f(x), F [f(x)] and the inverse
of the Fourier transform is

F [F (φ)] =
1

2π

∫

∞

−∞

e−iφxF (φ)dφ = f(x).

Let xt be the log price, ln St, and denote k as the log of strike price K. Hence, the Call
options value is

CT (k) = e−rT
∫

∞

k

(exT − ek)fT (xT )dxT ,

and we let

cT (k) = eαkCT (k),

where α is a damping factor. By Carr and Madan [4], consider the Fourier transform of
cT (k),

FcT (φ) =

∫

∞

−∞

eiφkcT (k)dk,

and

cT (k) =
1

2π

∫

∞

−∞

e−iφkFcT (φ)dφ.

Thus, by substituting the inverse Fourier term into the Call price with damping factor, the
Call options price is represented as

CT (k) = e−αk
1

π

∫

∞

0

e−iφkFCT
(φ)dφ,
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According to Hong [9], the forward characteristic function, FCT
is

FCT
(φ) = eA(φ)+B(φ)+C(φ),

where

A(φ) = iφ(x0 + rT ),

B(φ) =
2ζ(φ)(1− e−ψ(φ)T )V0

2ψ(φ)− (ψ(φ)− γ(φ))(1− e−ψ(φ)T )
,

C(φ) = −κθ
σ2

[

2ln

(

2ψ(φ)− (ψ(φ)− γ(φ))(1− e−ψ(φ)T )

2ψ(φ)

)

+ (ψ(φ)− γ(φ))T

]

,

ζ(φ) = −1

2
(φ2 + iφ),

ψ(φ) =
√

γ(φ)2 − 2σ2ζ(φ),

γ(φ) = κ− ρσφi.

It is much more convenient to convert this kind of integral into summation and use FFT
which is an efficient algorithm to calculate such summation:

w(k) =

N
∑

j=1

e−i
2π
N

(j−1)(k−1)x(j).

The Call option price can be approximated into similar form in order to solve using FFT
method, by using Simpson’s rule,

CT (ku) ≈
e−αku

π

N
∑

j=1

e−i
2π
N

(j−1)(u−1)eibvjFcT (vj)
η

3
(3 + (−1)j − δj−1).

3.3 Complex Stochastic Volatility Models

In this section we describe stochastic volatility models, that we have chosen to denote
“complex stochastic volatility models” because of the fact that none of them have analytical
solutions to bond prices and prices of derivatives. They are models with two coupled
SDE’s, with one SDE describing the interest rate dynamics, while the other one describes
the stochastic volatility dynamics. For simplicity, we chose only to look at the CIR SDE as
a model for the interest rate dynamics, while varying the models for stochastic volatility.
The first model we look at is the CIR model, which is defined by the SDE

dv(t) = (d− cv(t))dt+ η
√

v(t)dW (t).
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If we unlike the Heston model assume that the variance process has a quadratic variation
proportional to the variance and not the volatility, we obtain the GARCH diffusion model
with the SDE

dv(t) = (d− cv(t))dt+ ηv(t)dW (t).

In the 3/2 model the quadratic variation of the variance process is assumed to be propor-
tional to the spot variance raised to 3/2, giving the SDE for the interest rate and variance
process

dv(t) = (d− cv(t))dt+ ξv
3

2 (t)dW (t).

This SDE experiences a phenomenon called volatility induced stationarity (VIS) where the
volatility itself induces the stationarity in the dynamics. Basically, as the variance grows
bigger so does the quadratic variation of this process. This increases the probability of
reaching lower levels again, where the quadratic variation decreases due to the level effect.
Thus at lower levels, the probability of reaching higher levels decreases, the process is kept
at low levels and thus stationary.

The last model is the CKLS model, which is very similar to the previous models, with the
exceptions that the level parameter, γ (1/2 for the CIR model, 1 for the GARCH model
and 3/2 for the 3/2 model) is not fixed. It is instead allowed to vary, with the possibility
of fitting the dynamics even better. The SDE for this model is

dv(t) = (d− cv(t))dt+ ξvγ(t)dW (t).

As mentioned before, there exists no analytical solutions to the prices of financial contract
using any of these models. Obtaining a price will thus require numerical solution of the
price, either by using Monte Carlo simulations or by solving the PDE that is obtained
by martingale pricing. These methods require a lot of computational power and are thus
potentially very time consuming. Hopefully this will be outweighed by a better description
of interest rate dynamics and more accurate pricing.
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4 Fitting an Interest Rate Model

When fitting an interest rate model one needs to take into account the market information
that is available. Depending on what is being modelled, one needs to take into account
different kinds of market data. For example if it is only the interest rate that is being mod-
elled as a stochastic process, then the interest rate can be modelled using historical data. If
on the other hand it is financial assets that are of interest, on needs to take into account the
current market price of risk as well as expectations about future levels of the interest rates
and volatility, which can be inferred from the yield curve and traded interest rate products.

4.1 Parameter Estimation

To begin with, the parameters of the models are estimated under the empirical measure.
The market price of interest rate and volatility risk is then calculated so that the model
fits the yield curve and thus follows the risk neutral dynamics.

4.1.1 Discretization Approximation

When estimating the parameters under the empirical measure one needs only to look at
the short rate. We choose to do this in the same way that is done by Nowman [12]. In the
limit lim

∆t→0
r(t) is Gaussian allowing us to use maximum likelihood on the normal probability

function. From the SDE governing the interest rate process,

dr(t) = (b− ar(t))dt+
√

v(t)
√

r(t)dW (t),

we can obtain an approximation of the interest rate as a function of t,

r(t) = e−at(r(0) +
b

a
(eat − 1) +

∫ t

0

eat
√

v(t)
√

r(t)dW (t)).

Because we are in the limit ∆t = δ we can assume that v(t) and r(t) are approximately
constant on the interval t ∈ [t, t +∆t]. We set

√

v(t) = σ(ti) and r(t) = r(ti) obtain

r(t) = e−a∆t(r(ti) +
b

a
(ea∆t − 1) + σ(ti)

√

r(ti)

∫ t

0

eatdW (t)).

We can now calculate the conditional expectation and variance of r(t).

E[r(t)] = e−a∆tr(ti) +
b

a
(1− e−a∆t),

m2
tt = V ar[r(t)] =

σ(ti)
2r(ti)

2a
(1− e−2a∆t).
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Knowing that the increments are approximately Gaussian, we get the likelihood function

L(θ) =

N
∑

i=1

−2 log(mtt)−
(r(ti)− e−a∆tr(ti−1)− b

a
(1− e−a∆t))2

m2
tt

.

We can thus calculate close approximations of the parameters in the interest rate model
by maximizing this likelihood function. To later be able to model the variance process,
we choose to initially model it as a GARCH(2,1)-process to obtain measurements of the
underlying variance. In the GARCH(2,1)-model, the variance follows the discrete-time
process

σ(ti)
2 = p0 + p1σ(ti−1)

2 + p2σ(ti−2)
2 + p3ε(ti−1)

2,

where ε(ti) is the i
th residual of the interest rate model. This initial step will give us the

parameters for the interest rate process and a close approximation of the variance at each
discrete time, ti.

Next we repeat the procedure to model the parameters for the variance process. Here, we
obtain the equations

v(t) = e−c∆t(v(ti) +
d

c
(ec∆t − 1) + ηv(ti)

γ

∫ t

0

ectdW (t))

E[v(t)] = e−c∆tv(ti) +
d

c
(1− e−c∆t)

m2
tt = V ar[v(t)] =

η2v(ti)
2γ

2c
(1− e−2c∆t)

L(θ) =

N
∑

i=1

−2 log(mtt)−
(v(ti)− e−c∆tv(ti−1)− d

c
(1− e−c∆t))2

m2
tt

The parameters for the variance process are thus obtained by maximizing the approximate
likelihood function, L(θ).

MODEL b a d c η γ
CIR 0.001738 -0.000056 0.000034 0.0109501 0.039348 0.5

GARCH 0.001738 -0.000056 0.021058 95.062057 13.465162 1
3/2 0.001738 -0.000056 0.000012 -0.063316 35.049675 3/2

CKLS 0.001738 -0.000056 0.008792 42.983610 23.896824 1.134004

Table 1: Estimated parameters for the variance models by the discretization method.

As can be seen in the table, the interest rate experiences a positive drift from the parameter
b which would be expected. What is not expected however is that the parameter a, which
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should account for a downward drift at high interest rates, is negative. This will cause the
interest rate to diverge, which is unrealistic in economic terms. It is our belief that the
parameters a and b are not very significant to the model performance and that they could
be discarded.

If one takes a look at the parameters estimated for the volatility process one can see that
all of them are plausible. Most models have drift parameters that make the variance mean
reverting. This is true even for the 3/2 model, because it has elements of volatility induced
stationarity (VIS) where the diffusion process generates mean reversion. It is therefore
entirely possible that the 3/2 variance process has a positive drift parameter.

4.1.2 Efficient Method of Moments

The method described above is an approximation and thus might yield estimates that
deviate from the true values. In an attempt to improve this weakness, the Efficient Method
of Moments (EMM) of Galant & Tauchen was employed [7]. Instead of using the true
transition probability, which in our case is unknown, the EMM method uses an auxiliary
likelihood function. The derivatives of this auxiliary function serve as moment conditions
to which the moments of the structural model i.e. our SDE’s will be matched. The equation
of moments is defined as

m(s, η̂) =

∫

∂ log f(rt|rt−1, η̂)

η
dP (rt|rt−1, s) ≈

1

T

T
∑

t=1

∂ log f(rt(s)|rt−1(s), η̂)

η
= mN(s, η̂),

where s are the parameters of the structural model and η are the parameters of the auxiliary
model. The true parameters of the structural model are given by the equation

ŝ = argmin
s
mN(s, η̂)

′WmN(s, η̂),

where W is a weighting matrix. An optimal EMM estimator is obtained if the weight-
ing matrix is a consistent estimator of the asymptotic covariance matrix for the moment
conditions. The covariance matrix may be estimated through the ‘outer product of the
gradient’ formula [7],

I(η̂) =
1

T

T
∑

t=1

∂ log f(rt(s)|rt−1(s), η̂)

η

∂ log f(rt(s)|rt−1(s), η̂)

η′
.

Our auxiliary model is chosen to be an AR-GARCH-SNP model, as is chosen by Andersen
& Lund [1]. In this auxiliary model, the interest rate process is modelled as an AR(5)-
process, while the volatility is modelled as a GARCH(2,1)-Hermite(6) process. The Hermite
polynomials are added to account for heavy tails and other non-Gaussian behaviour. Thus,
our auxiliary likelihood function looks like
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f(rt|rt−1, η) =
[PK(zt, rt−1)]

2ϕ(zt)

σ2
t

∫

∞

−∞
[PK(x, rt−1)]2ϕ(x)dx

,

where

zt =
rt − µt
σt

,

µt = p0 +

5
∑

i=1

pi(rt−i − p0),

PK(zt, rt−1) = 1 +
6

∑

i=1

aiz
i
t,

σ2
t = α0 + α1σ

2
t−1 + α2σ

2
t−2 + α3z

2
t−1.

Here, the function ϕ(zt) denotes the standard normal probability density and PK(zt, rt−1)
denotes the Hermite polynomial.

The Auxiliary model as described above led the optimization to parameter values that were
deemed infeasible and caused interest rates to diverge, just as in the previous section. It
is probable that the maximum likelihood estimation of the auxiliary model points to this
unnatural diverging behaviour. We believe that this estimate is the result of statistical
uncertainty and that the parameter estimates of the drift are just noise. We therefore
discard the mean parameter in the above model and set µt = 0.

When calibrating the auxiliary model, parameters were estimated through maximum like-
lihood. This was done several times with different random starting points to ensure that
the optimization did not exit in a local optimum. The EMM estimation was the started
at the parameters obtained from the discretization approximation. The results from the
EMM estimation are listed in Table 2 and 3.

MODEL b a d c η γ
CIR 0 0 0.00002469 0.02298355 0.00995850 0.5

GARCH 0 0 0.01158281 103.64424329 17.11198308 1
3/2 0 0 0.00001214 -0.06992139 32.57322946 3/2

CKLS 0 0 0.00581664 41.69924781 25.57455124 1.12722799

Table 2: Parameter estimates obtained by the EMM method.
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Parameters b1 a1 σ1 b2 a2 σ2
0 0.00003546 0.00739025 0.00192166 0.00001646 0.02075589

Table 3: Parameter estimates for the Two factor CIR model obtained by EMM.

4.2 Market Calibration

In this section, we calibrate the models to a current market data. The CIR model with
the Kalman filter is calibrated to present and historical value of the yield curve, whereas
the other models are calibrated to the current yield curve.

4.2.1 Two-Factor CIR with Kalman Filter

The two factor CIR model is given by:

r(t) = x1(t) + x2(t),

dxi(t) = κi(θi − xi(t))dt+ σi
√

xi(t)dWi(t), i = 1, 2,

where W (t) is an independent Brownian motions. As derived previously and according
to [5], the solution to this differential equation in the two-factor CIR is

P (τ) = A1(τ)A2(τ)e
−B1(τ)x1−B2(τ)x2 ,

where

Ai(τ) =

[

2γie
(κi+λi+γi)τ/2

(κi + λi + γi)(eγiτ − 1) + 2γi

]2κiθi/σ2i

,

Bi(τ) =
2(eγiτ − 1)

(κi + λi + γi)(eγiτ − 1) + 2γi
,

where γi =
√

(κi + λi)2 + 2σ2
i . The parameters are defined as following: mean reversion

of volatility κ, long-term volatility mean θ, volatility of volatility σ, price of volatility risk
λ and the risk-free rate r. In order to eliminate risk using delta hedging, the no arbitrage
principle should hold. However, for every unit of volatility risk, there is are λ units of
extra return. On the other hand, it is argued that λ should be independent and could
be determined by any volatility-dependent asset and used it to price other assets. The
continuously compounded yield for discount bond for each different period, τi, is

Y (t, T ) =
B1(τi)x1

τi
+
B2(τi)x2

τi
− lnA1(τi)

τi
− lnA2(τi)

τi
, τi = T − ti.
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To estimate the model numerically, we use the state space model with Kalman filter ad-
justment for unobservable variables. The continuous time model is expressed as:

yt = C +Dyt−1 + νt,

zt = A+Byt,

where yt is the mean value and

C =

[

θ1(1− e−κ1∆t)
θ2(1− e−κ2∆t)

]

,

D =

[

e−κ1∆t 0
0 e−κ2∆t

]

,

Bi =
[

B1(τi)
τi

B2(τi)
τi

]

,

Ai = − lnA1(τi)

τi
− lnA2(τi)

τi
,

and variance of yt is

Q =

[

q1 0
0 q2

]

,

where qi =
σ2i
κi
(e−κi∆t − e−2κi∆t)yt +

θiσ
2

i

2κi
(1− e−κi∆t)2. According to [5], the parameters are

typically estimated by the method of maximum likelihood using the Kalman filter. The
basic theory behind Kalman filter is the cycle of time updates that projects the current
state estimate ahead in time or “predicts”, and a measurement update that adjusts the
projected estimate by an actual measurement at that time or “correct”. The predicting
step equations are:

y−t = C +Dyt−1,

v−t = Dvt−1D
T +Q,

where the negative power y−t indicates the prior knowledge and the correcting step equa-
tions are:

Kt = v−t B
T (Bv−t B

T +R)−1,

yt = y−t +Kt(xt −By−t ),

vt = v−t (I −KtB),
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where R is the measurement error covariance and xt is the actual measurement. Eventually,
the parameters are estimated using by maximizing the following log-likelihood function:

L = −N ·m
2

ln(2π)− 1

2
(ln(Det(Bv−t B

T +R)) + (xt − By−t )
T (Bv−t B

T +R)−1(xt −By−t )).

The two-factor CIR parameters are estimated using Kalman filter from the total of 87
loops, where we calibrated using the yield curve and obtained parameters as shown in
Table 4.

Parameters Estimates
κ 0.960009182 (0.080480847) 0.049776547 (0.002295931)
λ -0.102155613 (0.005670062) -0.050607585 (0.00313773)
σ 0.213243831 (0.033279424) 0.099290394 (0.010696689)
θ 0.097197115 (0.008878529) 0.00099276 (0.00004773)
σ̂1 0.006172291 (0.782156219)
σ̂2 0.152029436 (0.922952245)
σ̂3 -0.033713879 (0.843342428)
σ̂4 0.006736857 (0.746635426)
σ̂5 0.132825503 (1.003501827)
σ̂6 -0.121600789 (0.866313306)

Table 4: Parameter estimations for the Heston model

From Table 4, the values in the parenthesis are standard deviation of each parameters. The
number in front for κ, λ, σ and θ are the first factor and the later is the second factor. By
using this parameters, we plotted the yield curve of two-factor CIR along with the actual
data.

Figure 10 illustrates that the two-factor CIR model follows the actual data closely in the
same trend but not perfectly coincide with the actual value. We can briefly conclude that
two-factor CIR model using Kalman filter to estimate the parameters produced well re-
sults. Seeing as the modelled values do not deviate much from the actual one. We can see
the evaluation of this results later in the model evaluation part.

4.2.2 Calibration of Complex Models

Because the CIR model with stochastic volatility has no analytical solution for the yield
it is infeasible to find the market price of parameter risk as is done with a Kalman filter
in the Heston model. Instead, the model is recalibrated with risk-neutral parameters. In
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Figure 10: The plot of yield curve of two-factor CIR with the actual data

this way the market price of risk will be reflected in the parameter estimates themselves,
instead of being an independent parameter. This is done by minimizing the L2-norm of
the difference between the model yield and the current yield curve. Here, the yield for the
model is calculated using Monte Carlo simulation.

The current short rate is obtained from the yield curve, whereas the current volatility
is measured as the unexplained variance of the last few measurements of the short rate.
N=104 trajectories of the interest rate are then simulated over the relevant time span,
τ = T − t, and the yield is calculated. The models we have chosen to investigate cannot
fit all the complex shapes of the yield curve. If we would not fit the models to the relevant
time span they would perform less ideally. This is because they would either not take into
account all the available information from the market or they would provide an average fit
to a too long time span. For example, if a derivative with expiration within four years is
to be priced, the model is calibrated to the first four years of the yield curve. The market
expectations about the time after the maturity of the derivative is irrelevant for the pricing
of said derivative. As the calibrated parameters are only valid for the actual day of cal-
ibration and because there are numerous sets of parameters they are listed in the appendix.

To get a good view of the models’ potentials, they are also calibrated to swaption prices.
Because there is a possibility that the yield curve does not contain all relevant market
information, the models might not come as close to the swaption prices as their flexibility
allows. Therefore we also investigate how well the models can fit swaption prices by cali-
brating the models directly to the swaption prices. This will paint a better picture of the
actual flexibility of the models.
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4.2.3 Calibration of Heston Model

Heston model is calibrated using the Caplet price. The data is obtained on May 14th,
2012 for the options time to maturity range of 1 month, 3 month, 6 month, 1 year, 2 years
and 3 years with the underlying time to maturity of 1 year, 2 years, 3 years, 4 years, 5
years, 7 years, 10 years and 15 years. The Heston model is convenient as it has the closed-
form solution hence we can obtain the Caplet price directly from the model, then use it
the calibrate the model to be more precise. The parameters obtained are shown in Table 5 .

κ θ σ ρ v0
1 Year 0.525435261 0.999930024 0.000015872 -0.000000102 0.000000003
2 Years 1.550679426 0.999124088 0.025168180 -0.004255795 0.000398513
3 Years 1.178803788 0.990197632 0.000554063 -0.020030888 0
4 Years 5.839651686 0.597719620 2.512773095 -0.339826433 0.012415896
5 Years 11.261378543 0.999997735 0.001474514 -0.000093182 0.995735899
7 Years 10.674520823 0.851867993 0.085842532 -0.012758259 0.000021683
10 Years 0.999349794 0.414769050 0.245768553 -0.000000394 0.000049043
15 Years 4.843913448 0.682357856 2.041824346 -0.999975226 0.860885106

Table 5: Parameter estimates obtained by the Heston method.

By applying these parameters back to the model to get the Caplet price, we have the re-
sults as shown in Figure 11 and 12. The dotted line is the calibrated Heston Caplet price,
the dashed line is the calibrated FFT Heston Caplet price and the solid line is the actual
price of the Caplet.

From Figure 11 and 12, it is clear that the model cannot resemble the actual price perfectly
but still, they are going in the same trend, mostly. This can be implied that Heston model
is better when calibrated with the call option prices as many other papers have done so.
The average time taken for all to calibrate the model and the time difference between using
the normal Heston model and Fourier transform method are shown in Table 6.

Calibration Heston FFT Heston
Time(sec) 57.39973038 0.646965875 0.34137575

Table 6: Time taken for the Heston method.
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(a) 1 year maturity time.
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(b) 2 years maturity time.
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(c) 3 years maturity time.
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(d) 4 years maturity time.

Figure 11: The calibrated Heston Caplet price for 1-4 years maturity time.
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(a) 5 years maturity time.
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(b) 7 years maturity time.
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(c) 10 years maturity time.
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(d) 15 years maturity time.

Figure 12: The calibrated Heston Caplet price for 5, 7, 10 and 15 years maturity time.
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5 Evaluating the Model

In the previous sections we have calibrated the models in two ways for two different pur-
poses. In this section we will investigate how the models perform with respect to the two
purposes, i.e. describing the interest rate dynamics and pricing interest rate assets.

5.1 Evaluating the Short-Rate Model Dynamics

In evaluating the short term model dynamics, the transition function of the SDE’s play a
big role. If the transition function of the model closely matches the empirical transition
function then the model performs well. In general, the closer the match the better the
model. We will investigate the transition function using a simple rank test. We will also
look at the long term distribution of the variance and investigate the distance from the
empirical variance distribution.

5.1.1 A Rank Test

To test how the different models perform in describing the interest rate dynamics we choose
a general rank test that works for all models. For each time interval, [t-1,t], we simulate
M trajectories of the interest rate starting in state (rt−1, vt−1). The true value, rt is then
ranked among the endpoints, xt of the simulated interest rate. Denote Rt the rank of rt at
time t, then

P (Rt = q) = pt,q =
1

M + 1
, q = 1, ... ,M + 1; t = 2 + l, ... , N

where l is the number of lags required for the measurement of the variance. To simplify
we assume that the probability is independent of time, meaning that pt,q = pq. This leads
to the equality

p̂q =
ΩN−1(q)

N − 1
q = 1, ... ,M + 1

where

ΩN−1(q) =
N
∑

t=2

I{Rt = q}; q = 1, ... ,M + 1

Under the hypothesis that the interest rate is generated from our model, we have

E
[

p̂q
]

= E

[

ΩN−1(q)

N − 1

]

=
1

M + 1
.

We use the test statistic

X2 =
M+1
∑

q=1

(ΩN−1(q)− N−1
M+1

)2

N−1
M+1

,
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which is under H0 asymptotically distributed as χ2(M).

To obtain an appropriate starting point (rt−1, vt−1) we need to measure the variance at that
time. It is impossible to observe the variance, so the best we can do is to approximate it.
This is done by using a GARCH process as before and assuming that σ̂2

t−1 =
√

r(t)
√

v(t).
The fact that we cannot observe the variance directly and have to use a proxy is going to
affect our goodness of fit test. In an attempt to reduce this influence we choose to evaluate
the estimated SDE’s over time intervals of differing size. Our assumption here is that the
longer the the time interval, the lower the affect of the initial value. This is because of the
autocorrelation of the variance which decays rather quickly. Because the autocorrelation
decays quickly the importance of the starting position will also decrease rapidly with time.
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Figure 13: An illustration of the rank test for one data point.

Five time intervals were arbitrarily chosen: 1, 5, 10, 15 and 20 days. According to Bak,
Nielsen and Madsen the χ2 approximation fails when the expected rank frequencies are
low, and there is a consensus that this expected frequency should be no lower than 5 [2].
This means that the number of simulated trajectories and thus the degrees of freedom, M,
are less than or equal to N−1

5
− 1, where N is the number of time intervals. The results of

the simulations are summarized in the table below.

As can be seen in table 7, both the CIR model and the 3/2 model give substantially lower
χ2-values than the GARCH and CKLS models. The P-values in table 8 that correspond to
the χ2-tests tell us that the CIR model is the only model that is reasonably close to the true
marginal distribution. The striking thing is that the CIR model outperforms the CKLS
model. This should not be the case because the CKLS model is more flexible and should
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end up with the same parameter estimates as the CIR model, if these were the most feasible.

TIME INTERVAL 1 5 10 15 20
MODEL/χ2(N) χ2(953) χ2(188) χ2(93) χ2(61) χ2(45)

CIR 2800.07 229.65 88.39 66.20 53.08
GARCH 7910.16 959.04 378.29 225.13 143.92

3/2 2960.64 253.87 146.06 101.91 58.10
CKLS 5831.87 887.18 365.18 200.50 135.29

Table 7: χ2-values for the different models in the rank test.

MODEL / TIME INTERVAL 1 5 10 15 20
CIR 0 0.0206 0.6185 0.3022 0.1908

GARCH 0 0 0 0 0
3/2 0 0.001 0.0004 0.008 0.091

CKLS 0 0 0 0 0

Table 8: Corresponding P-values to the χ2-tests.

5.1.2 Stationary Distribution Tests

In our interest rate model, the increments divided by the square root of the current interest
rate are stationary. This means that as the number of normalized increments increases,
they will converge in distribution. A criterion for our SDE model to be correct is that
the increments converge to the same distribution as the one observed from the data. We
measure this by comparing the Kolmogorov-Smirnov distance.

For this test to work, we need to have so many data points that they are deemed indepen-
dent from the starting value of the process. To see how long time this might take, we look
at the autocorrelation function of the variance process. We choose to discard a burn in
period of the first N values that are deemed affected by the starting point of the process.

It can be seen in Figure 14 that the autocorrelation function of the variance goes toward
zero at around 150 lags in the CIR model. Values that are separated by more than 150
days will thus be uncorrelated and the state of a simulated Markov Chain that is longer
than this will be independent of its starting value. The other models did not express au-
tocorrelation to the same degree as the CIR model, why the CIR model is the limiting
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factor in choosing a burn in period. To be on the safe side we choose to discard the first
500 values of our simulations.
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Figure 14: Autocorrelation of the CIR Variance Process

Model CIR GARCH 3/2 CKLS Two factor CIR
KS Statistic 0.113101 0.123462 0.109700 0.118534 0.131148
L2 Norm 9.3171·10−5 8.1715·10−4 3.7261·10−4 7.4806·10−4 2.6048·10−4

Table 9: KS statistics and the distance between model distributions and the empirical
distribution as measured by the L2-Norm.

As can be seen in Table 9, the CIR model is the one that performs the best with the lowest
L2 norm. The KS statistic is on the other hand not the best and in addition is very high. A
plausible explanation is that this is caused by the data, which has many increments of size
zero. This because bonds and thus the interest rate are limited in how small increments
can be. The allowed tic size (in effect the smallest size of increments in bond prices) is
1/32 percent. This result is that interest rate exhibits increments of zero size. As can be
seen in the empirical distribution functions, the empirical distribution takes a jump in the
middle. The largest distance in distribution, which is exactly what is measures by the KS
statistic, will thus be at this point. The KS statistic is thus not optimal as a goodness of
fit measure, the L2 norm will most likely give a more fair description of goodness of fit.

In Figure 15 one can see that all but the CIR models have a rather poor fit to the empirical
dustribution. For the two factor CIR model this is probably due to limitations in the model
itself, as it does not support stochastic volatility. For the GARCH, 3/2 and CKLS models
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we suspect that parameter estimation has not worked as well as it could have. Especially
the CKLS model should in a worst case scenario perform just as well as the CIR model.
This is because the lever parameter γ is not fixed but can take any value. This makes it a
more flexible model than the others and lets it take any parameter set that the CIR model
does. Therefore it should be at least as good and in most cases better Then the CIR model.

When simulating the GARCH, 3/2 and CKLS, there is a risk of obtaining extreme spikes
in volatility if the time step is not short enough. If this happened during parameter esti-
mation in the EMM method it could cause big damage to the estimates, because the EMM
method is not very robust. For illustrative purposes, estimated variance processes from
the different models as well as from the data are shown in Figure 16. As can be seen in
the pictures, the CIR variance process in the only one that resembles the variance process
of the data. This leads only increases our suspicion that parameter estimation has not
worked as it was supposed to for the GARCH, 3/2 and CKLS models.
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(b) GARCH Distribution

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Simulation
Real data

(c) 3/2 Distribution
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(d) CKLS Distribution

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
Simulation
Real data

(e) Two Factor CIR Distribution

Figure 15: Cumulative stationary distributions of the volatility models compared to the
empirical volatility.
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(b) GARCH Variance Process
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(c) 3/2 Variance Process
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(d) CKLS Variance Process
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(e) Two Factor CIR Variance Process
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(f) Empirical Variance Process

Figure 16: Estimation of Simulated and Empirical Variance Processes
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5.1.3 A Likelihood Test

The last test that is performed on the interest rate dynamics is a multidimensional likeli-
hood test. Using the calibrated models, N=100 trajectories of each process are simulated.
The variance process of each trajectory is then estimated using a GARCH process, as is
done in previous sections. Then, for each time step in the trajectory the transition density
function from time t to t+ 1 is estimated by simulating from the model SDE and fitting a
non-parametric pdf using the MATLAB function “fitdist”. Each increment in the trajec-
tory is then given a likelihood value using the estimated transition density. For each of the
100 trajectories, the likelihood values are logarithmized and summed to give one likelihood
value for each trajectory. The same process is then performed using the simulated model
transition density but on the real interest rate data, to obtain a likelihood value based on
the fitted model.

When all trajectories, including the real interest rate process are scored with a likelihood
value, they are compared against each other. If the empirical likelihood is somewhere
around the mean value of the simulated log likelihoods this is considered excellent. If it
on the other hand is much lower than all simulated log likelihoods, this points towards the
model being wrong. The empirical density functions of the likelihood values are visualized
below, with the likelihood value of the real interest rate process marked in red. In these
functions, the 100 likelihood values obtained from the simulation are smoothed with the
MATLAB function “fitdist” to give a better illustration of the actual density.

As in the previous tests, Figure 17 shows that it is the CIR model that seems to perform
best. The GARCH model Likelihood value is extremely much lower that the likelihood
values from the simulations, indicating that this model is wrong.

5.2 Evaluating Market behaviour

In this section we look at how well the different models perform in the pricing of interest
rate derivatives. We have chosen to look at the pricing of swaptions because of the mar-
ket’s liquidity and the possibility of obtaining good market data. The performance of the
models is evaluated using the mean average percentage deviation (MAPD) of model prices
from market prices. The reason for using this measure is because prices will increase with
the tenor (which is the time span of the underlying swap). This will cause models that
perform well on shorter tenors to appear perform worse than they actually do, i.e. a bias
in performance evaluation.

The options on the swaps have different times to maturity, ranging from 1 month to 30
years. We have chosen to limit the evaluation to contracts that do not range further into
the future than around 20 years. This means that that the time to maturity of the option
plus the time span of the underlying swap have to be less than or equal to 20 years. For
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(c) 3/2 Likelihood Density

0.7 0.8 0.9 1 1.1 1.2 1.3

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

(d) CKLS Likelihood Density

Figure 17: Densities from likelihood evaluations of simulated models. The likelihood of
the real interest rate process according to the given model is marked as a square.

example a swaption with time to maturity of 5 years with underlying swap ranging 15 years
equals a total of 20 years. The models were tested on swaptions with time to maturity of
1 month, 1 year and 5 years with underlying swaps of different maturities. The results are
shown in Table 10 and are as mentioned before in the form of MAPD.

It can be seen in table 10 that the models perform quite poorly, especially the two factor
CIR which deviations of up to 1200 percent, which is absolutely awful. The other models
perform better, but are nowhere near an acceptable fit. Here again, it is the two-factor
CIR stochastic volatility model that performs the best, with the best value showing 11.22
percent deviation from the market price on average.

We suspect that not all market information is available in the yield curve and that it is
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T0 / Model CIR GARCH 3/2 CKLS CIR2 CIR2(Kalman)
1m 35.29 34.43 41.60 37.37 206.01 30.63
3m 27.31 46.04 53.74 39.55 293.52 11.22
6m 38.93 62.61 49.00 45.46 374.45 31.34
1y 37.89 68.55 72.03 44.46 416.00 20.54
2y 62.95 48.95 69.78 68.98 829.26 14.83
3y 63.96 33.87 71.37 67.45 1194.05 14.76

Table 10: Mean average percentage deviation of the model price from market swaption
prices, calibrated to the yield curve.

this that causes the awful prices above. When calibrating to the yield curve, it seems that
it is mostly the average level of the interest rate that is take into account, not so much the
volatility. This is supported by the good results of the two factor CIR model calibrated
with the Kalman filter. In this method, the model is calibrated to not only the current
yield curve, but the historical evolution of the yield curve over time. The Kalman filter
will thus capture volatility of not only the short rate, but the entire yield curve which is
why it performs so well in pricing.

To get a better evaluation of the models than the one above, we choose to calibrate the
model directly to swaption prices to see how flexible the model is. As we saw before, the
model was not flexible enough to fit the yield curve, it could only produce a simple curve.
In Table 11, the MAPD values for this procedure are illustrated. Here swaption prices
have been calibrated to all swaptions within a 5 year as well as a 15 year horizon.

Range / Model CIR GARCH 3/2 CKLS CIR2 CIR2(Kalman) Heston
5 years 9.36 12.78 13.74 18.09 11.94 12.84 11.71
15 years 14.09 16.74 15.46 16.55 8.97 9.37 13.23

Table 11: Mean average percentage deviation of the model price from market swaption
prices, calibrated to swaption prices.

In the above Table 11 as well as in Figure 19 we can see that model and market prices
coincide much better. Using this method of calibration the two factor CIR model is by far
the most accurate model, with an average deviation of 8.97 percent over a 15 year period.
These results point toward the conclusion that the models should be calibrated against
swaption prices, or even to swaption prices and the yield curve simultaneously.
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Figure 18: Predicted swaption prices form the respective models against real swaption
prices.
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Figure 19: Model swaption prices against market prices.
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The GARCH, 3/2 and CKLS models perform worse than the other models here again.
As was mentioned before, we suspect that is has to do with the difficulty in simulating
the models, as well as the optimization procedure used. When simulating these processes
some parameter combinations tend to cause the variance process to produce an extreme
spike. These parameter sets need a shorter time step when simulated in order to not pro-
duce a spike. It is possible that spikes have occured during the optimization procedure
that caused faulty parameter estimates here as well. The optimization algorithm might
also have caused problems, this is because a gradient-free algorithm had to be used. This
gradient-free algorithm can only hadle nice, convex problems and it is entirely possible
that the optimization algorith converged to a local minimum.

5.3 Goodness-Of-Fit Test using Coefficient of Determination (R2)

As the unknown parameters in Heston model are estimated using least squared method,
the goodness-of-fit is better evaluate using similar principle. So, in this model, we choose
R2 method to see the goodness-of-fit of the model. R2 is defined by

R2 = 1− SSE

SST
,

where
SSE =

∑

(y − ŷ)2 and SST =
∑

(y − ȳ)2,

where R2 value describe how the model price describe the actual market price in the
percentage form. Here we use the results obtained from the Heston model comparing with
the actual Caplet price. The evaluation of the model are as shown in Table 12

T0 R2 R2 (FFT)
6m 90.21 91.17
1y 98.76 98.32
2y 76.15 71.57
3y 53.16 28.03

Table 12: Coefficient of determination (R2) percentage that the Caplet price can be ex-
plained by Heston model.

From Table 12, it can be seen that at 6 months and 1 year options time to maturity, the
Caplet price can be explained by Heston model exceptionally well at 90.21% (91.17%) and
98.76% (98.32%) respectively and FFT value is in the parenthesis. The ability to explain
decreases down at longer options time to maturity. Comparing the method of FFT and
the quadratic one, quadratic seems to perform better by looking at the results overall.
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However, if we look at the table 6, the quality of quadratic estimation came with the price
of time taken. Hence, it purely depends on the user to decide which method suits best for
ones’ purpose.

We also test this goodness-of-fit method with other models and the results are shown in
Table 13.

Range / Model CIR GARCH 3/2 CKLS two factor CIR
5 years 98.85 90.69 91.57 92.67 98.95
15 years 98.59 95.74 96.97 97.43 98.80

Table 13: Coefficient of determination (R2) for the respective models, calibrated to swap-
tion prices.
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6 Conclusion

In the tests of the short range dynamics it seems that the CIR model is the only model
that cannot be rejected. It seems to work very well in all tests and when looking at a
CIR variance process trajectory it closely resembles the empirical variance process. As the
two factors CIR model for the interest rate has (nearly) constant volatility we can draw
the conclusion that models of the interest rate dynamics are greatly improved by adding a
stochastic volatility process.

As we suspect that the parameter estimates have been compromized for the GARCH, 3/2
and CKLS models we cannot really draw any conclusions about the effectiveness of these
models. The only thing we can say is that the CIR model is considerably easier to simulate.
In order to get good dynamics without any spikes, the CIR model requires only one time
step per day. The other stochastic volatility models require at least 100 time steps per
day in order to not produce spikes. For these small time steps the models are considerably
slower than the CIR model, on the border of being infeasible if used on a regular PC.
Because of the suspicious parameter estimates we recommend the GARCH, 3/2 and CKLS
models be evaluated again to see if they perform better with new parameter estimations.

We could see that the CIR stochastic volatility model performed just as well as the two
factor CIR model with constant volatility when it came to pricing. The GARCH, 3/2 and
CKLS stochastic volatility models performed a bit worse, but were not far behind. This
makes the choice of pricing model very easy, namely the two factor CIR model. The two
factor CIR model has an analytical solution for the yield as well as to some derivatives,
because of this it only takes a few minutes to calibrate. The CIR stochastic volatility
model on the other hand takes many hours to calculate.

A thing that was not investigated was the numerical solution of the pricing PDE for the
stochastic volatility models. This might have shortened the calibration time in that solving
the PDE is potentially faster than simulating the really complex models.

While Heston model which is a stochastic volatility model assumes that the volatility is
not constant but, on the other hand, randomized, has a closed-form solution. Using a sim-
ple statistical data test R2 of model explanation, Heston seems to be working fine except
when it encounters zero value. However, we could not say much if the precision is actually
improved because of the stochastic process. In our opinion, we think Heston model is
useful when all the information are available to incorporate into the model. As mentioned
before, the heston model does not model interest rates, but instead it models bonds and
bond options directly. In spite of this, the model performs very well in comparison.

In conclusion, it seems that stochastic volatility is not so significant to interest rate dy-
namics when used for pricing. The short rate dynamics are on the other hand greatly
improved and the accuracy in pricing is nearly the same as with a constant volatility. We,
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therefore, recommend modelling the stochastic volatility when the goal is accurate short
rate dynamics, but to leave it constant when using interest rate models for pricing.

We are not certain that short rate models are the best way to go when trying to price
interest rate derivatives. The two factor CIR calibrated with the Kalman filter method
tries to capture the dynamics of the entire yield curve. As this model performed very well,
we feel that modelling the dynamics of the yield curve might be a better method than using
a short rate model. This points in the direction of LIBOR market models that model the
evolution of forward rates.

47



7 Appendix

7.1 Asset Pricing and Related Theorems

The Feynman-Kac Theorem. Consider the stochastic differential equation

dX(t) = β(t, X(t))dt+ γ(t, X(t))dW (t)

Let h(y) be a Borel-measurable function. Fix T>0, and let t ∈ [0,T] be given. Define the
function

g(t, x) = Et,x
[

h(X(T ))
]

(We assume that Et,x
∣

∣h(X(T ))
∣

∣ < ∞ for all t and x.) Then g(t,x) satisfies the partial
differential equation

g
′

t(t, x) + β(t, x)g
′

x(t, x) +
1

2
γ2(t, x)g

′′

xx(t, x) = 0

and the terminal condition
g(T, x) = h(x) ∀ x

The No Arbitrage Pricing Formula. Assume there exists an equivalent martingale
measure for Q and let Y be an attainable contingent claim. Then for each time t, 0≤ t ≤ T ,
there exists a unique price Π(t) associated with Y, i.e.,

Π(t) = E
[

D(t, T )Y |Ft

]

7.2 Heston Model Proof

C(S(t), V (t), t) = S(t)P1 −Ke−rτP2

and by letting x = ln S, the derivatives are

∂C

∂t
= ex

∂P1

∂t
−Kre−rτP2 −Ke−rτ

∂P2

∂t
,

∂C

∂x
= exP1 + ex

∂P1

∂x
−Ke−rτ

∂P2

∂x
,

∂2C

∂x2
= exP1 + 2ex

∂P1

∂x
+ ex

∂2P1

∂x2
−Ke−rτ

∂2P2

∂x2
,

∂C

∂V
= S

∂P1

∂V
−Ke−rτ

∂P2

∂V
,

∂2C

∂V 2
= S

∂2P1

∂V 2
−Ke−rτ

∂2P2

∂V 2
,

∂2C

∂x∂V
= ex

∂P1

∂V
+ ex

∂2P1

∂x∂V
−Ke−rτ

∂2P2

∂x∂V
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By substituting these derivatives into PDE equation and set K = 0 and S = 1, we obtain,

1

2
V
∂2P1

∂x2
+ ρσV

∂2P1

∂x∂V
+

1

2
σ2V

∂2P1

∂V 2
+ (

1

2
V + r)

∂P1

∂x
+ [κ(θ − V )− λV + ρσV ]

∂P1

∂V
+
∂P1

∂t
= 0

and by setting S = 0, K = −1 are r = 0, we get,

1

2
V
∂2P2

∂x2
+ ρσV

∂2P2

∂x∂V
+

1

2
σ2V

∂2P2

∂V 2
+ (−1

2
V + r)

∂P2

∂x
+ [κ(θ − V )− λV ]

∂P2

∂V
+
∂P2

∂t
= 0

which can be expressed by

1

2
V
∂2Pj
∂x2

+ ρσV
∂2Pj
∂x∂V

+
1

2
σ2V

∂2Pj
∂V 2

+ (ujV + r)
∂Pj
∂x

+ (a− bjV
∂Pj
∂V

+
∂Pj
∂t

= 0

for j = 1, 2, where

u1 = 1/2, u2 = −1/2, a = κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ.

7.3 Risk Neutral Parameter Estimates

Below are the risk neutral parameter estimates from section 4.1.4. The estimates were
obtained by minimizing the distance from the model yield to the yield curve.

Term / Param. b a d c η γ
1 0.00104415 0.00042391 0.00002770 0.02927969 0.01048674 1/2
2 0.00088370 0.00044635 0.00002850 0.03147365 0.01107118 1/2
3 0.00088370 0.00046867 0.00002850 0.03147365 0.01107118 1/2
4 0.00094369 0.00050966 0.00002652 0.03340273 0.01027645 1/2
5 0.00108839 0.00048020 0.00002570 0.03624724 0.00963793 1/2
7 0.00135051 0.00037725 0.00002599 0.03178235 0.00965817 1/2
10 0.00160118 0.00038089 0.00002424 0.03049744 0.00926495 1/2
15 0.00175196 0.00033543 0.00002377 0.03443598 0.00893111 1/2
20 0.00174837 0.00033713 0.00002449 0.03495618 0.00891611 1/2

Table 14: Risk neutral parameter estimates for the CIR model
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Term / Param. b a d c η γ
1 0.00001205 0.00000462 0.00011839 1.10540005 0.19369786 1
2 0.00000976 0.00000510 0.00012303 1.10690552 0.20359387 1
3 0.00000944 0.00000534 0.00012740 1.09829954 0.20183879 1
4 0.00000979 0.00000505 0.00012900 1.11427707 0.20475900 1
5 0.00001063 0.00000496 0.00013447 1.18076907 0.18626191 1
7 0.00001362 0.00000426 0.00013382 1.00918410 0.17252970 1
10 0.00001612 0.00000353 0.00010616 1.04670545 0.19721594 1
15 0.00001581 0.00000244 0.00011035 1.24193492 0.19528274 1
20 0.00001575 0.00000243 0.00011153 1.26541525 0.19751018 1

Table 15: Risk neutral parameter estimates for the GARCH model

Term / Param. b a d c η γ
2 0.00095362 0.00040501 0.00001269 -0.05398962 45.20501400 3/2
3 0.00093454 0.00041635 0.00001304 -0.05172206 46.47075440 3/2
4 0.00094143 0.00040764 0.00001327 -0.05252701 46.08809818 3/2
5 0.00103056 0.00037730 0.00001363 -0.05188089 47.92409507 3/2
7 0.00129995 0.00032119 0.00001296 -0.05076395 49.28744057 3/2
10 0.00151917 0.00026672 0.00001265 -0.05055119 52.97489909 3/2
15 0.00160287 0.00025318 0.00001246 -0.04974459 56.37307076 3/2
20 0.00158003 0.00025623 0.00001261 -0.05034401 56.71412784 3/2

Table 16: Risk neutral parameter estimates for the 3/2 model

Term / Param. b a d c η γ
1 0.00122305 0.00057165 0.00597972 44.41835977 27.93390488 1.12951698
2 0.00099081 0.00060063 0.00648536 47.10722789 28.97191671 1.12848968
3 0.00093724 0.00064651 0.00653192 47.54272668 29.80602119 1.12892813
4 0.00101601 0.00061768 0.00616414 51.26663158 30.00697509 1.12876705
5 0.00110051 0.00052169 0.00636981 57.09936238 29.24757752 1.12860603
7 0.00136956 0.00044727 0.00655155 49.44138959 27.72786965 1.12963578
10 0.00155533 0.00033762 0.00613510 52.48279727 29.39393076 1.13010149
15 0.00168626 0.00030741 0.00624735 52.72508959 29.77721213 1.13035793
20 0.00169009 0.00031434 0.00638622 52.89269606 29.78293456 1.12919458

Table 17: Risk neutral parameter estimates for the CKLS model
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Term / Param. b1 a1 σ1 b1 a1 σ1
1 0.00001068 0.00004184 0.00729997 0.00114187 0.00001746 0.02023978
2 0.00001058 0.00004486 0.00762195 0.00086688 0.00001914 0.02101880
3 0.00001042 0.00004652 0.00760068 0.00082793 0.00001923 0.02227276
4 0.00001056 0.00004756 0.00763829 0.00082953 0.00001957 0.02269377
5 0.00001048 0.00004970 0.00755190 0.00091066 0.00001967 0.02167231
7 0.00001096 0.00004388 0.00695753 0.00112392 0.00001899 0.02108767
10 0.00001086 0.00004780 0.00667100 0.00129536 0.00001811 0.02160815
15 0.00001090 0.00004795 0.00685929 0.00130379 0.00001817 0.02167784
20 0.00001125 0.00004644 0.00714662 0.00121355 0.00001872 0.02255263

Table 18: Risk neutral parameter estimates for the two factor CIR model
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