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Precision localization in dense point cloud maps
GUNNAR BOLMVALL
MÅNS ÖSTMAN
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Today autonomous vehicles are a very hot topic within the technology industry.
Traditional car and software companies are striving towards the same goal of de-
livering fully autonomous cars within a near future. To have a safe and durable
autonomous vehicle, accurate real time localization in the environment is crucial.
Global Navigation Satellite System (GNSS) based localization typically struggles
in urban environments as the signal quality is worse than in open areas. By using
LiDAR sensors, high accuracy localization can be achieved even in these areas. In
order to evaluate these algorithms a ground truth is needed, in the case of urban
environments this might be hard to compute due to the limitations of GNSS. An
alternative approach to computing ground truth would be to utilize the onboard
LiDAR sensor(s) to find the location within a dense point cloud map.

In this thesis we propose a method to perform offline localization, using point cloud
data from a test vehicle, within a dense point cloud map. The method computes
a transformation using the Generalized ICP algorithm which aligns a LiDAR scan
with the point cloud map. The transformation is then modeled as measurements in
a RTS-smoother which estimates bias along the trajectory in six degrees of freedom.
The bias is then added to the initial trajectory to get the refined trajectory.

The results shows the refined trajectory to be more accurate than the initial tra-
jectory, however not precise enough to be used for ground truth computation. The
largest limiting factor is thought to be that the Generalized ICP transformations
are sensitive to noise, such as dynamic objects, in the LiDAR data. This makes
the algorithm heavily dependent on removing all false transformations, which has
been a hard problem to solve. With some modifications the algorithm could proba-
bly be made robust and accurate enough for the intended purpose of ground truth
computation.

Keywords: Localization, LiDAR, RTS-smoothing, Generalized ICP
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1
Introduction

This chapter introduces the problem this thesis aims to solve, along with some
relevant background.

1.1 Background

Today autonomous vehicles are a very hot topic within the technology industry.
Traditional car and software companies are striving towards the same goal of deliv-
ering fully autonomous vehicles within a near future. To reach the goal, universities
and companies are conducting research to find new technologies that ensures safety
and durability of the vehicle. SAFER Vehicle and the Traffic Centre at Chalmers is
one example of a cooperative competence center for research and innovation within
the Swedish industry, academia and authorities [1].

Between 2016 and 2018, SAFER is financing the Campusshuttle Cooperative Per-
ception and Planning Platform (COPPLAR) project, which aims to take the first
steps towards a cooperative self-driving vehicle that can handle challenging city
traffic and changing weather conditions [2]. The project is a cooperation between
SAFER, Chalmers University of Technology, University of Gothenburg, Volvo Car
Corporation, Veoneer, Zenuity and AstaZero. The developed self-driving vehicle is
supposed to navigate the route between Chalmers’ two campuses.

An autonomous vehicle requires many systems in order for it to work independently.
One such system is tasked with localization of the vehicle. Localization has typically
been done using Global Navigation Satellite System (GNSS) sensors, however these
are rather bad at handling localization withing urban areas due to a loss of signal
quality. As the COPPLAR project has to handle urban driving, other localization
methods has to be used. One popular approach is to use Light Detection And
Ranging (LiDAR) sensors paired with a pre-collected point cloud reference map in
order to accurately compute the vehicle location. LiDAR based localization that is
used online in a vehicle has to compromise accuracy in order for the computations
to be able to run in real time. This means that in order to evaluate how accurate an
algorithm is, ground truth data is needed. This is traditionally obtained by post-
processing GNSS data which poses a problem as even with post-processing, the
inaccuracies in urban areas are likely to persist. The solution to computing ground
truth data could be to utilize the LiDAR data when post-processing the location of
the vehicle, as most of the time, not all of it is utilized in online algorithms. This
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1. Introduction

thesis will examine such an approach for computing ground truth data.

1.2 Objective/Purpose

The purpose of this thesis is to create a high precision localization algorithm that can
be used to compute ground truth data for localization. In order to fulfill the purpose,
a vehicle trajectory has to be estimated in relation to an accurate pre-collected dense
point cloud map. The vehicle poses are to be estimated in six degrees of freedom:
latitude, longitude, altitude, roll, pitch and yaw.

1.3 Scope

Some limitations have been put on the thesis in order to keep the work load from
getting too extensive, these are:

• The pre-collected point cloud map is considered ground truth as the localiza-
tion is to be computed in relation to it. Further the point cloud map will not
be processed in any way to remove occasional noise etc.

• The sensor data from the vehicle is internally filtered by a positioning system
from Applanix that has been installed in the test vehicle. As the output from
the system is a filtered trajectory of the vehicle poses, it won’t be further
processed, instead focus will be on correcting it.

• Post-processing of the LiDAR data will be kept to a minimum. Noise, such as
dynamic objects will not be removed.

1.4 Related work and contribution

There exist some research within the topic of localization using LiDAR-data and sev-
eral different approaches to solving the problem have been proposed. What many
have in common with this Thesis is that they utilize a similar dense point cloud to
localize within.

In [3, 4, 5, 6], a visual method to localize a vehicle within a point cloud map. This
is done by projecting the point cloud data to a proposed location of the camera
and find the most likely position by comparing the synthetic image with the one
captured by the vehicle camera in some manner. Projection of the point cloud has
been explored briefly in this thesis, however, mostly for evaluation purposes. In [7]
a high density point cloud is used for localization and map extraction. Although the
focus of the article is on map extraction, the point cloud dataset has been recorded
by the same third-party company that recorded the data for this Thesis. Some other
articles that deal with point cloud localization include [8], where curbs are extracted
from the vehicle LiDAR-data and matches to a 2D-map of existing curbs. In [9] the
dense point cloud is used to extract landmarks that can be matched with landmarks

2



1. Introduction

extracted from the vehicle LiDAR-data.

All of the mentioned articles have one thing in common, which is that they are
striving towards solutions that operate in real time. This is rather natural as the
demand from the automotive industry lies within real time localization. This means
that most of the algorithms don’t utilize the complete point cloud data. As this
Thesis doesn’t have any constraints on computational complexity, the limits that
most of the articles deal with doesn’t apply, opening up for approaches that are
more computational heavy.

3
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2
Data set and sensors

This chapter describes the used data set, vehicle sensors and the evaluated route.

2.1 Pre-collected dense point cloud map
The dense point cloud map has been collected and post processed by a third party
company. Each point in the map has a global cartesian position, label, color and
intensity. The position is recorded according to the SWEREF99 coordinate sys-
tem which is the Swedish official reference system of mapping geodetic coordinates
to cartesian coordinates [10]. The label is a classification of either ’road surface’,
’ground’ or ’other’.

Along the route, the point cloud has been split into boxes of size 200 × 200m to
facilitate processing of the data. Depending on the number of points captured, each
box may consist of 100 to 35 000 000 points. Figure 2.1 shows an example of what
the point cloud looks like. As can be seen in the figure, ghost objects/silhouettes
of trams, cars and buses can be observed. This is due to limitations in the post
processing software.

Figure 2.1: Point cloud map of the exit from Götaälvbron consisting of 17′221′981
points.

5



2. Data set and sensors

2.2 Vehicle sensors
The test vehicle is a Volvo XC90 equipped with external logging equipment, an Ap-
planix Global Navigation Satellite System (GNSS) and a Velodyne Light Detection
And Ranging (LiDAR). The sensor positon is shown in Figure 2.2. Using these
sensors, a dataset has been generated consisting of global positions and Velodyne
point clouds.

x

y

(mm)

Applanix
Velodyne
Camera

1820

Z
 re

fh

Z
 re

fh

V ref

y

(mm)1801820

Figure 2.2: Position of Applanix (�) and Velodyne (�).

2.2.1 Applanix LV420
The Applanix LV420 is a high accurate GNSS sensor with two external antennas
mounted on top of the car. The sensor can achieve a Root Mean Square (RMS)
accuracy of less than 10cm in (X,Y,Z) and 0.2o in (roll, pitch, heading) under good
conditions [11]. Log frequency is 200Hz. The main purpose of this sensor is to
capture an accurate global position and orientation of the vehicle.

2.2.2 Velodyne HDL-32E
The Velodyne Light Detection And Ranging (LiDAR) is mounted on top of the car
right above the front windshield. The sensor has 32 laser/detector pairs, a range
of up to 70m, 10 Hz frame rate, field of view of 360 degrees and it captures up to
72000 points per frame [12]. Due to the mounting position the car covers about 90
degrees looking backwards of the car, which results in a field of view of about 270
degrees. The main purpose of this sensor is capture the surroundings relative to the
car. Figure 2.3 shows an example of one Velodyne point cloud.

2.3 Route
The route goes between Chalmers’ two campuses in Gothenburg, Campus Johan-
neberg and Campus Lindholmen. In Figure 2.4 the route is marked in both directions
along with the boxes which the dense point cloud has been split into.

6



2. Data set and sensors

Figure 2.3: A point cloud from the Velodyne LiDAR. The range is color coded
with blue close to the sensor goes to red far away. The Velodyne position is marked
with an asterisk (*).
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2. Data set and sensors

Figure 2.4: Cyan trajectory marks route from Johanneberg to Lindholmen and
pink in the opposite direction. The green boxes shows how the dense point cloud
data has been divided into smaller segments.
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3
Theory

This chapter covers relevant theory for the thesis.

3.1 Geometry

Representing a local orientation and position (pose) of an object in a global environ-
ment is a common problem in fields of computer graphics, camera pose estimation,
3D reconstruction and Simultaneous Localization And Mapping (SLAM) etc. To
solve these types of problems one needs a way of transforming the pose of observed
objects in the local coordinate frame to a pose in a global coordinate frame.

The global frame (world frame) {W} is often defined using the Cartesian coordi-
nates and an East, North, Up (ENU) axis convention. Here the x-axis align with
east, y-axis north and the z-axis up as shown in Figure 3.1a.

The vehicle frames {V } on land are often defined using the International Organiza-
tion for Standardization (ISO) 8855 framework. In ISO systems, the x-axis points
in the driving direction, y-axis to the left and z-axis up. The rotations of the body
follows the right hand rule of orientation with roll (θ) in x, pitch (φ) in y and yaw
(ψ) in z. This is shown in Figure 3.1b.

(a) World frame (b) Vehicle frame

Figure 3.1: Coordinate systems of two reference frames.
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3. Theory

3.1.1 Affine transformations
An affine transformation matrix can include any sequence and combination of trans-
lation, rotation, scaling, homothety, shear mapping and composition. When trans-
forming between world and vehicle frames, rotation and translation are primarily of
interests. When performing rotation in 3D, the sequence of rotation is important.
The euler angles (φ, θ, ψ) are measured relative to the world frame and by follow-
ing the right hand rule and ISO standard the final rotation matrix of an vehicle is
calculated as

R = Rz(ψ)Ry(θ)Rx(φ). (3.1)

The translation consists of vector specifying the position of the vehicle frame in
the world frame as t =

[
x y z

]T
. To perform affine transformation for a point

xv ∈ {V } to xw ∈ {W} one combines the rotation and translation as

xw = Rvxv + t. (3.2)

This equation can be more compactly written using homogeneous coordinates. The
definition of a homogeneous coordinate is that an arbitrary point x =

[
x y z

]T
can be multiplied with any scalar λ 6= 0 and still represent the same point. This is
done my adding an extra dimension to the Cartesian coordinate as[

xw
1

]
=
[
Rv t
0 1

] [
xv
1

]
(3.3)

To simplify the equation even more, the following notation is used

x̃w = Tx̃v. (3.4)

Since T becomes an invertable homogeneous transformation matrix, transforming
from xw ∈ {W} to xv ∈ {V } is done by

x̃v = T−1x̃w. (3.5)

Using homogeneous coordinates, consecutive transformations are easily done my
multiplying the transformations in sequence as

x̃w = T1T2x̃v. (3.6)

3.2 Bayesian Filtering and smoothing
Bayesian filtering is used to estimate the states of general probabilistic state space
models [13]. These models consists of a sequence of conditional probability distri-
butions on the form:

xk ∼ p(xk|x1:k−1, y1:k−1)
yk ∼ p(yk|x1:k, y1:k−1)

10



3. Theory

where xk is the state and yk is the measurement at time step k. p(xk|x1:k−1, y1:k−1) is
the process model which describes the dynamics of the system and p(yk|x1:k, y1:k−1)
is the measurement model which describes the distribution of measurements given
the state.

The model is assumed to be Markovian, giving it two certain properties. The first
property is that the state sequence forms a Markov chain, meaning that xk given
xk−1 is independent of all other previous states. The second property is that the
measurements are conditionally independent, this implies that the measurement yk
given the current state xk is independent of all previous states and measurements.
With the use of these properties the process and measurement models can be sim-
plified as

p(xk|x1:k−1, y1:k−1) = p(xk|xk−1)
p(yk|x1:k, y1:k−1) = p(yk|xk).

The aim of Bayesian filtering is to compute the marginal posterior distribution of
the state xk given the measurement history y1:k up to time step k:

p(xk|y1:k).
This can be achieved by recursively computing the predicted distribution p(xk|y1:k−1)
and posterior distribution p(xk|y1:k) using the Bayesian filtering equations. There
are three steps involved in this computation: initialization, prediction and updating.
The recursion start from the prior distribution p(x0), this is the initialization of the
computation. The predicted distribution at time step k can then be computed by
the Chapman-Kolmogorov equation

p(xk|y1:k−1) =
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (3.7)

The postrior distribution can be computed by using Bayes’ rule:

p(xk|y1:k) = 1
Zk
p(yk|xk)p(xk|y1:k−1) (3.8)

where Zk is the normalization constant given by

Zk =
∫
p(yk|xk)p(xk|y1:k−1)dxk. (3.9)

3.2.1 Kalman filter
If the process and measurement models are assumed to be linear Gaussian it is pos-
sible to solve the Bayesian filter equations with a Kalman filter [13]. The simplified
filter model will be on the form

xk = Ak−1xk−1 + qk−1, qk−1 ∼ N (0, Qk−1)
yk = Hkxk + rk, rk ∼ N (0, Rk)

(3.10)

where xk is the state, yk is the measurement, Ak−1 is the transition matrix of the
process model, qk is the process noise, Hk is the measurement model matrix and rk
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3. Theory

is the measurement noise. The posterior distributions for the filtering problem will
under these assumptions also be Gaussian and can be represented by their mean
x̂k|k and covariance Pk|k. The Kalman filter computes the mean and covariance of
the posterior distributions through the following prediction and update steps.

• Prediction

x̂k|k−1 = Ak−1x̂k−1|k−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1

(3.11)

• Update

vk = yk −Hkx̂k|k−1

Sk = HkPk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

x̂k|k = x̂k|k−1 +Kkvk

Pk|k = Pk−1|k−1 −KkSkK
T
k

(3.12)

Recursion is started from prior mean x0 and covariance P0.

3.2.2 Rauch-Tung-Striebel smoother
The Rauch-Tung-Striebel smoother, which is also called the Kalman smoother, can
be used for computing the optimal smoothing solution p(xk|y1:N) to the linear fil-
tering model (3.10) [13]. The difference from the solution computed by the Kalman
filter is that the smoothed solution is conditional on the whole sequence of measure-
ment data y1:N . The Kalman filter on the other hand only utilizes the measurements
obtained up to time step k, that is, y1:k. The smoother works by extending the
Kalman filter with a backward recursion using equations given as

x̂k+1|k = Akx̂k|k

Pk+1|k = AkPk|kA
T
k +Qk

Gk = Pk|kA
T
kP
−1
k+1|k

x̂k|N = x̂k|k +Gk(x̂k+1|N − x̂k+1|k)
Pk|N = Pk|k −Gk[Pk+1|k − Pk+1|N ]GT

k

(3.13)

where x̂k|k and Pk|k are the mean and covariance computed by the Kalman filter. The
recursion is started from the last time step N , with x̂N |N = x̂N |k and PN |N = PN |k.
Note that the first two of the equations are simply the Kalman filter prediction
equations.

3.2.3 Fusion of independent estimates
In [14], it is described how the sensor fusion formula can be used to fuse two di-
rect measurements, y1 and y2, of some parameter x . The formula can be ex-
tended to independent estimates by converting the linear model yk = Hkx + ek to
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equivalent measurements by using a local Weighted Least Squares (WLS) estimate
x̂k = (HT

k R
−1
k Hk)−1HT

k R
−1
k yk with the properties

E(x̂1) = E(x̂2) = x,

Cov(x̃1) = P1,

Cov(x̃2) = P2.

Since the estimates can be interpreted as measurements in a linear model,

x̂1 = x+ x̃1, Cov(x̃1) = P1,

x̂2 = x+ x̃2, Cov(x̃2) = P2,

the WLS estimate gives

P = (P−1
1 + P−1

2 )−1 (3.14)
x̂ = P (P−1

1 x̂1 + P−1
2 x̂2). (3.15)

The formula requires that the two estimates are independent.

3.3 Iterative closest point

The Itarative Closest Point (ICP) algorithm was introduced by Besl and McKay
[15]. The algorithm is used for aligning two corresponding point clouds

A = {ai}i=1...N

B = {bi}i=1...N

where A is denoted as the source cloud and B is denoted as the target point cloud.
The algorithm computes the transformation matrix T that transform the source
cloud to the target cloud given perfect correlation

B = TA. (3.16)

The computation is done iterative in a few steps as follows:

1. The source cloud is transformed according to transformation T.
2. Correspondences are computed for the point clouds by finding the nearest

neighbor for each point.
3. A transformation T is computed that minimizes the distance between the

corresponding points.
4. The computation is terminated once some predefined condition has been ful-

filled.
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The iterations start with T = T0 which is based on prior knowledge about the
transformation. Correspondences between the point cloud are computed in two
steps. First the closest point in B is computed for all points in A, giving proposed
corresponding pairs ai = bi. Since the point clouds rarely fully overlap with each
other there will be points in both cloud not corresponding to any point in the other.
Hence for a proposed pair to be considered corresponding the distance between them
has to be lower than some defined threshold dmax.

bi −Tai < dmax.

Once the set of corresponding points has been computed T is calculated as

T = argmin
T

1
Np

Np∑
i=1
||bi −Tai||2 (3.17)

where ai and bi are corresponding points in homogeneous coordinates. An converging
example of the ICP algorithm is shown in Figure 3.2.

(a) ICP iteration 1 (b) ICP iteration 5

(c) ICP iteration 10 (d) ICP iteration 20

Figure 3.2: Illustration of how a point cloud converges iteratively using the ICP
algorithm. The red cloud represents the source cloud and the black one the target
cloud.
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3.3.1 Generalized Iterative Closest Point
Generalized Iterative Closest Point (GICP) is a modified variant of the standard
ICP that includes the surface information of the two point clouds in a probabilistic
model. This effects the minimization step of the original algorithm while the rest of
the computations remains the same [16].

In GICP the point clouds A and B are assumed to be measurements of some under-
lying set of points where the clouds are indexed according to their correspondences

Â = {âi}i=1...N

B̂ = {b̂i}i=1...N .

Each measured point in A and B can then be drawn from the modeled Gaussian
distribution to represent the uncertainty of the point in the alignment process as

ai ∼ N (âi, CA
i )

bi ∼ N (b̂i, CB
i ).

where {CA
i } and {CB

i } are covariance matrices associated with the measured points.

Since the shape of a surface can be seen as piece-wise differentiable, the clouds sam-
pled from the real world are assumed to be locally planar. With two measurements
of the same scene from two different perspectives, the measurements are not ex-
pected to correspond to the exact same point but close and located on the same
plane. This is modeled using the covariance matrix as

C =

ε 0 0
0 1 0
0 0 1

 (3.18)

where the covariance in the surface normal direction is set to a small constant ε
and the covariance in the plane direction is set to a large constant, 1. To make C
represent the measurement covariance, ε has to be align with the surface normal
vector which is done by rotating the matrix as

Ci = Rυi
CRT

υi
(3.19)

where Rυi
corresponds to the orientation of the surface normal vector υi. Estimat-

ing the surface normal can be done in many ways but one common way is to use
Principle Component Analysis (PCA). First a covariance matrix is calculated of the
k closest points to i and from this matrix the surface normal vector is determined
by the eigenvector with the smallest eigenvalue.

Given perfect correspondences for all points in the point clouds, and the correct
transformation, T∗, we know that

b̂i = T∗âi.
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For an arbitrary rigid transformation T, we define d(T) = bi−Tai, and consider the
distribution from which d(T∗) is drawn,

d(T∗) ∼ N (b̂i − (T∗)âi, CB
i + (T∗)CA

i (T∗)T )
= N (0, CB

i + (T∗)CA
i (T∗)T ).

To find the transformation matrix T, maximum likelihood estimation can be used

T = argmax
T

∏
i

p(d(T)) = argmax
T

∑
i

log(p(d(T))) (3.20)

which can be simplified as

T = argmin
T

∑
i

d(T)T (CB
i + TCA

i TT )−1d(T). (3.21)

This defines the key step in ICP and replaces the old minimization problem.
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This chapter present how the algorithm has been implemented. For the most part
matlab is used as the programming framework. To perform point cloud operations
the C++ library Point Cloud Library (PCL) is used. PCL is a standalone, large
scale library for 3D point cloud processing and has many point cloud algorithms
implemented, including GICP [17].

4.1 Overview

The initial trajectory gathered by the Applanix system gives estimates of the pose
of the vehicle. For each estimate p̂i there is assumed to be some bias bi that when
added to the measurement gives the true vehicle pose pi

pi = p̂i + bi, i ∈ I = {1, 2, ..., N}.

The main idea of the developed algorithm is to estimate the bias bi. The bias is
computed for a subset of trajectory indices by the GICP algorithm. This subset of
bias measurements is used in a RTS-smoother to estimate the bias along the rest of
the trajectory. The final trajectory is computed by fusing the bias with the initial
trajectory.

Initial
trajectory

Input

Velodyne
point cloud

Point
cloud map

Generalized
ICP

Bias estimation
and fusion

Refined
trajectory

Output

Figure 4.1: A simple flow chart of the implemented algorithm.
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4.2 Initial trajectory
The initial trajectory is measured at the location of the rear Applanix antenna,
which is mounted on the roof of the vehicle and performs internal filtering of the
raw measurements.

4.2.1 Trajectory position
The poses of the initial trajectory can be transformed to represent the Velodyne
sensor, instead of the Applanix antenna. This is done by translating the pose by
δ = 1.82m along the x-axis of the vehicle. By using the offset δ, heading ψ and
pitch θ the trajectory offset is calculated using spherical to cartesian coordinates as∆x

∆y
∆z

 =

sin(θ) cos(ψ)
cos(θ) sin(ψ)

sin(θ)

 δ. (4.1)

The velodyne trajectory is then obtained by adding the offset to the initial trajectory
as x

y
z

 =

x
y
z

+

∆x
∆y
∆z

 . (4.2)

4.2.2 Height correction
The GNSS is relatively inaccurate at measuring height, especially where few satel-
lites are in range. Since the position of the Velodyne sensor relative the road surface
is expected to be close to constant and the height of the road is known, a correction
vector can easily be computed as

∆z = h− Zref . (4.3)
Here each index of h is calculated as the average distance from the corresponding
trajectory pose to the 10 closest points labeled as road surface in the point cloud
map. Zref is the distance from the ground to the Velodyne sensor when the vehicle
is stationary. To keep small oscillations due to the vehicle dynamics, the correction
vector is smoothed using moving average with an arbitrary selected window size of
50. Lastly the height is updated by subtracting the correction from the original
measured height as

z = z−∆z. (4.4)

4.3 Velodyne point cloud
The point cloud data captured by the Velodyne sensor is stored without any pro-
cessing and therefore has to be processed somewhat to properly represent the vehicle
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surroundings. The following section describes how the Velodyne data is processed
before it can be used by the GICP algrithm.

4.3.1 Ego-motion compensation
The Velodyne LiDAR is operating at 10Hz, meaning each revolution takes 0.1s to
complete. As the vehicle is moving during the duration of each revolution, the cap-
tured point cloud has to be shifted according to the vehicle movement in order to
correctly correspond to the surroundings. Depending on how late in a scan a point
was captured it will have to be shifted by different amounts. This is done by moving
each point by the same amount as the vehicle has traveled since the start of the scan.

-30 -20 -10 0 10 20 30

-25

-20

-15

-10

-5

0

5

10

15

20

25

Figure 4.2: Birdview of the original velodyne scan in green and the ego-motion
compensated in red.

If the car is assumed to be moving linearly at constant speed during the scan cycle,
calculations are simplified since compensation only has to be made separately along
the local x and z axes. The computation is made by multiplying the time since the
start of a scan by the velocity of the vehicle, which is expressed as

x = xin + 1
2π

(3π
2 −ϕ

)
vt

z = zin + 1
2π

(3π
2 −ϕ

)
vzt

(4.5)
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where v =
√

v2
x + v2

y, t the time it takes to do one scan and ϕ is the angles to the
points. ϕ is calculated by transforming the cartesian x and y coordinates to polar
coordinates, since the scan starts at 3π/2 and rotates clockwise the angle has to be
calculated as 3π/2−ϕ. Figure 4.2 shows the result of the compensation.

4.3.2 Denoise filter
To reduce the noise in the Velodyne cloud, a denoise filter based on k-nearest neigh-
bour is applied. The filter removes points if it has less than 8 neighbouring points
within a radius of 1m. The choice of neighbouring points and radius has been
selected arbitrarily.

4.3.3 Cloud constraints
As most points in the cloud tend to be closer to the vehicle, an upper boundary of
30m from the sensor origin is applied. A lower boundary is also applied of 3m to
remove the vehicle itself from the point cloud as can be seen in Figure 4.2. These
constrains do not discard that much Velodyne data but allows for more of the point
cloud map to be removed when computing biases which reduce the computational
complexity.

4.4 Point cloud map
Since the point cloud map contains about 765 million points, a subset of the cloud
has to be selected before running the GICP algorithm. The subset is selected based
on the pose of Velodyne sensor. This limits the GICP to converge within the likely
region and reduces the risk of converging to a local minima. The point cloud is
also uniformly down-sampled with a ratio η = 0.1 to speed up computations for the
GICP algorithm.

4.4.1 Cloud constrain
Given the pose, the subset is extracted with a radius of r = 35m and height of
−5m ≤ z ≤ 10m. Within this region the GICP will most likely find the global
optimum to fit the Velodyne cloud within the point cloud map. The radius is
selected with a margin of 5m compared to the range in the Velodyne cloud and the
height is based on the highest/lowest point possible in the Velodyne cloud.

4.5 Matching data
The Velodyne and trajectory data are captured by different systems which operate
at different frequencies. Hence there is a discrepancy between the timestamps in
the two datasets. This requires the data to be matched so that the location of the
Velodyne scans can be properly derived.
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4.5.1 Selecting indices for GICP
As the trajectory data is more dense than the Velodyne data, bias computations
using GICP are not possible to make for every index i of the trajectory. A subset
of indices j ∈ J ( I has to be selected from the trajectory that has corresponding
Velodyne measurements. Due to the time discrepancy the measurements will not
perfectly align, hence, each Velodyne scan is associated with the closest trajectory
measurement that fulfills ttrajectory < tvelodyne. The subset J is then created by
choosing trajectory points with associated Velodyne scans spaced 2.5m apart. This
is done to keep the computation time for the GICP down and results in about 20%
of the Velodyne data being utilized.

4.5.2 Shifting input
The time discrepancy may be small, but it has the implication that the trajectory
pose associated with a Velodyne scan does not exactly represent the pose of the
scan. The trajectory data also contains the velocity of the vehicle which can be
used to calculate an approximate pose of the scan. Only the spatial dimensions of
the pose are taken into consideration as there are no available measurements of the
angular velocity and the angles generally change slower. The computation can then
be made as xy

z

 =

xy
z

+

vxvy
vz

∆t, (4.6)

where ∆t = tvelodyne− ttrajectory. This approximation effectively means that the bias
computed by GICP will be computed for the pose corresponding to the velodyne
data, however, it will be associated with the trajectory pose. As the bias is assumed
to change at a slow rate and the time discrepancy is rather small, on average ∆t ≈
0.01s, the poses are assumed to have the same bias.

4.6 Generalized ICP
The purpose of performing ICP is to refine the initial alignment of the Velodyne
(source) cloud AVj to the optimal alignment in the world (target) cloud map BWj .
The two clouds are initially aligned using homogeneous transformation matrices.
From the initial trajectory pose the position and rotational matrix are extracted
and then inserted to one homogeneous transformation each, as

TRj
=
[
R(ψ, θ, φ)j 0

0 1

]
, (4.7)

Ttj =
[
I3 tj
0 1

]
. (4.8)

Using both matrices, the alignment transformation can then be expressed as Tj =
Ttj TRj

. But to avoid numerical errors in the final transformation generated by
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the Generalized ICP algorithm, both clouds are instead transformed to align at the
global origin as

AŴj = TRj
AVj , (4.9)

BŴj = T−1
tj
BWj . (4.10)

From here, the covariance is estimated for each point in both clouds with ε = 0.001
and k = 20 for the surface normal according to eq (3.19). The algorithm then min-
imizes equation (3.21) until it converges or has reached the maximum number of
iterations (20) without converging. The GICP then outputs a homogeneous trans-
formation matrix TGj

, which if the algorithms has converged, transforms the source
cloud optimally such that it aligns with the target cloud

TGj
AŴj = BŴj . (4.11)

4.6.1 Fitness score
There is no guarantee that the GICP algorithm converges to the global optimum,
it might get stuck in a local one or not converge at all. Hence, there has to be some
quality measurement of each output. GICP outputs a vector containing distances
between the points in the source cloud to the closest point in the target cloud. This
distance vector can be used for computing the sum of squared distances as a quality
metric, this is called fitness score. In order to make the fitness score more dynamic,
a maximum allowed distance δ for the distances to be included in the computations,
is set. The fitness score of a transformation can then be expresses as a function

f(δ,d) = 1
n

∑
n

d2
n, dn ∈ d < δ. (4.12)

Generally speaking, lower fitness scores correlates with a better alignment of the
point clouds, however this only applies to point clouds that highly correlate with
each other. If the point clouds contain a lot of noise the fitness score has a tougher
time describing the quality of the alignment.

4.6.2 Fitness score filter
As stated section 4.6.1, there is no guarantee that the computed transformation
matrix perfectly aligns the point clouds. Bad initial alignment, noisy Velodyne data
or a lack of features in the point clouds are all reasons the algorithm might not
converge optimally. In order to solve this problem the output has to be filtered to
remove bad transformations. This is done by first calculating a mean fitness score

fj = 1
n

∑
n

f(δn,dj)

where δn ∈ {0.01, 0.02, . . . , 10}. Properly converged transformations tend to have a
lower fitness score regardless of maximum allowed distance, hence, computing the
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mean of the filter should be more robust. All mean fitness scores that satisfies the
condition

fj < ε (4.13)
are included in the set k ∈ K ( J . In order to calculate a suitable threshold ε, 200
transformations spread out evenly on the trajectory are annotated as +, meaning
a transformation that properly aligns the clouds, as -, meaning a transformation
failing to align the clouds, or as 0, meaning a transformation almost aligns the
cloud properly, but not quite. These annotations are used to create two sets of
mean fitness scores corresponding to the annotated transformations, f+ and f−. A
simple cost function is then used to compute the threshold ε as

ε = argmax
t

α
∑
n

an + β
∑
m

bm

an =

1, if f+
n < t

0, otherwise

bm =

1, if f−m < t

0, otherwise

(4.14)

where α = −2 and β = 1. This is in order to penalize inclusion of bad transforma-
tions more than to incentivize inclusion of good ones.

4.7 Bias Estimation
The last part of the algorithm is to update the trajectory poses using the result from
GICP and then calculate the bias for the full trajectory using RTS-smoothing.

4.7.1 Pose correction
The transformation matrix that the GICP-algorithm calculates transforms the ro-
tated Velodyne point cloud to the translated point cloud map, combining equations
4.10 and 4.11 this is expressed as

TGk
TRk
AVk = T−1

tk
BWk .

In order to update the trajectory poses, the desired transformation is the one that
transforms the Velodyne point cloud to the point cloud map. By multiplying with
T−1
tj on both sides in this transformation matrix is obtained as

TtkTGk
TRk
AVk = BWk .

As the Velodyne data is recorded in the local coordinate system, the updated pose
can be descriped as Tk = TtkTGk

TRk
. This transformation can then be divided

into a 3 × 3 rotation matrix and a 3 × 1 translation vector. The matlab function
rotm2eul is used to convert the rotation matrix to euler angles and the space
coordinates correspond directly to the translation vector. The updated poses are
denoted as p̂uk

23



4. Method

4.7.2 Outlier filter
In addition to the filter described in section 4.6.2, a chi-squared test is performed
to remove very unlikely outputs. This can be viewed as a second step in the task
of removing bad GICP output. The applanix system outputs uncertainties in every
degree of freedom as RMS values, which can be used to create the covariance matrix

Pgnss = diag(
[
x2
rms y2

rms z2
rms ψ2

rms θ2
rms φ2

rms

]
)

for the trajectory pose estimates. A measurement is considered an outlier if it
deviates more than three standard deviations from the trajectory pose uncertainty.
To test whether a measurement is an outlier or not, a chi-squared test is made. This
is done by calculating the squared mahalanobis distance

d2 = ∆pTkPgnssk
∆pk, (4.15)

which is chi-squared distributed, and comparing it to the threshold γ. The threshold
γ is determined as the value for which the cumulative chi-distribution takes on the
probability 0.997, which corresponds to three standard deviations. Indices k that
has a d2 larger than γ, are discarded from the K set.

4.7.3 RTS-Smoothing
The bias along the trajectory is assumed to be changing at a very slow rate that is
uncorrelated with the vehicle motion. This makes a random walk model suitable as
the process model of the RTS-smoother.

The state, denoted as b̂, and measurement vectors are both made up by the biases
in all degrees of freedom of a vehicle pose

b̂, y =
[
bx by bz bφ bθ bψ

]T
.

Since the process model of choice is a random walk model A = I6. The measurement
model H = I6, as the measurements are direct. The measurements yk are calculated
as puk − p̂k.

The process noise covariance is tuned so that the covariance of the estimates in-
creases at a slow rate as the bias has been assumed to change slowly. The measure-
ment noise covariance is determined as

Rk = (fk − fmin) ∗R0

where fmin is the smallest fitness score mean and R0 a covariance matrix that cor-
responds with a near perfect direct measurement of the states. The dimensions
corresponding to position are rotated by the rotation matrix for pk in order to rep-
resent the uncertainty in longitudinal, lateral and height instead of global position.

The RTS-smoother has to be slightly modified as the measurements are more sparse
than the trajectory poses. Usually the filtering part of the RTS-smoother contains
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a prediction and an update step, however, as the trajectory only contains sparse
measurements indexed by K the update step is only to be done at these indices.
This results in the filtering part of the RTS-smoother being modified as follows:

for i = 1 to N do
b̂i|i−1, Pi|i−1← predictionStep(b̂i|i, Pi|i)
if i ∈ K then
b̂i|i, Pi|i← updateStep(b̂i|i−1, Pi|i−1, yk)

else
b̂i|i, Pi|i← b̂i|i−1, Pi|i−1

end if
end for

4.7.4 Fusion of trajectory
The final estimation of the trajectory is obtained by fusing the initial trajectory
estimate with the bias estimates. The sensor fusion formula described in section
3.2.3 can be used for this purpose. By denoting x̂1 = p̂, P1 = Pgnss, x̂2 = p̂+ b̂ and
P2 = P , equation 3.15 can be rewritten as

p̂i = p̂i + (P−1
gnssi

+ P−1
i )−1P−1

i b̂i (4.16)

which is used for computing the estimates of the refined trajectory. The estimates
can be considered independent as the GICP does not depend on the initial estimate
in any other way than as a starting point for alignment.
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5
Results

This chapter presents how the implemented algorithm has been evaluated and what
results were obtained from said evaluation.

5.1 Fitness score and outlier filters
The fitness removal filter and outlier filter are evaluated as a combined filter, as they
both perform the same task of removing bad GICP outputs. They are evaluated by
comparing the annotated labels to the filter classification. As described in section
4.6.2, the filter is tuned with a set of annotated data, further denoted the validation
set. The filter performance is then determined by the classification accuracy on a
test set, which has been annotated in the same way as the validation set, however
for different trajectory poses.

5.1.1 Validation data
The evaluation of the validation set shows the result of the filter tuning. As the filter
either classifies the ICP output as + (Good) or - (Bad), the data annotated as 0
(Ok) will fall into either of those categories. The filter classification of the validation
set is shown in table 5.1.

Table 5.1: Filter classification of the annotated validation set.

Validation set
Filter
classification

Label
Good Bad Ok

Good 42 4 15
Bad 45 57 32
Total 87 61 47

The distribution of the annotated labels along the trajectory is shown in Figure 5.1a.
The distribution of filter classification performance along the trajectory is shown in
Figure 5.1b. As the data annotated as 0 is classified as either + or -, these point are
not regarded as correctly classified for either case, neither can they be false positives
or false negatives.
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(a) Validation set annotations (b) Classification results of validation set

Figure 5.1: Labels of the validation set along the trajectory (a) and filter classifi-
cation performance along the trajectory (b).

5.1.2 Test data
The evaluation of the test set shows the performance of the filter on unseen data.
The results are presented in the same manner as in section 5.1.1.

Table 5.2: Filter classification of the annotated test set.

Test set
Filter
classification

Label
Good Bad Ok

Good 41 2 16
Bad 33 52 50
Total 74 54 66
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(a) Test set annotations (b) Classification results of test set

Figure 5.2: Labels of the test set along the trajectory (a) and filter classification
performance along the trajectory (b).

5.1.3 Complete trajectory
Figure 5.3 shows how the poses along the entire trajectory are classified by the
combined filter.

Figure 5.3: Filter classification along the entire trajectory.
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5.2 Trajectory accuracy
The trajectory accuracy is evaluated by measuring the error between the refined
trajectory and a set of ground truth poses along the trajectory. The ground truth
is generated by first performing GICP on a new subset of poses not used in the
smoothing process. This subset is selected by picking the trajectory poses with cor-
responding Velodyne data that lies the furthest from the poses used for smoothing.
The new GICP output is labeled as either good or bad. The labeling is done by visu-
ally inspecting the alignment of source and target cloud where only the correct ones
are labeled as good. All the good transformations are then used as ground truth and
all false transformations are discarded and not included in the evaluation set. The
evaluation set is split into six parts: Lindholmen, Lundbyleden, Götaälvbron, Cen-
tralstationen, Nya Allén and Aschebergsgatan according to the text labels in Figure
(5.1). The results are then presented in Longitudinal, Lateral, Altitude, Heading,
Pitch and Roll error.

30



5. Results

5.2.1 Longitudinal error
Subfigure (a) shows the absolute longitudinal error of the initial and the final tra-
jectory. No lines implies unavailable ground truth data. Subfigure (b) shows the
statistic metrics, mean value µ, standard deviation ±σ and ±3σ of the longitudinal
error. The metrics are calculated for each part of the trajectory. Subfigure (c) shows
the normalized frequency of the longitudinal error of all evaluation points.

(a) Absolute error

(b) Statistic metrics (c) Normalized frequency

Figure 5.4: Absolute longitudinal error.
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5.2.2 Lateral error
Subfigure (a) shows the absolute lateral error of the initial and the final trajectory.
No lines implies unavailable ground truth data. Subfigure (b) shows the statistic
metrics, mean value µ, standard deviation ±σ and ±3σ of the lateral error. The
metrics are calculated for each part of the trajectory. Subfigure (c) shows the
normalized frequency of the lateral error of all evaluation points.

(a) Absolute error

(b) Statistic metrics (c) Normalized Frequency

Figure 5.5: Absolute lateral error.
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5.2.3 Altitude error
Subfigure (a) shows the absolute altitude error of the initial and the final trajectory.
No lines implies unavailable ground truth data. Subfigure (b) shows the statistic
metrics, mean value µ, standard deviation ±σ and ±3σ of the altitude error. The
metrics are calculated for each part of the trajectory. Subfigure (c) shows the
normalized frequency of the altitude error of all evaluation points.

(a) Absolute error

(b) Statistic metrics (c) Normalized Frequency

Figure 5.6: Absolute altitude error.
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5.2.4 Heading error
Subfigure (a) shows the absolute heading error of the initial and the final trajectory.
No lines implies unavailable ground truth data. Subfigure (b) shows the statistic
metrics, mean value µ, standard deviation ±σ and ±3σ of the heading error. The
metrics are calculated for each part of the trajectory. Subfigure (c) shows the
normalized frequency of the heading error of all evaluation points.

(a) Absolute error

(b) Statistic metrics (c) Normalized Frequency

Figure 5.7: Absolute heading error.
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5.2.5 Pitch error
Subfigure (a) shows the absolute pitch error of the initial and the final trajectory.
No lines implies unavailable ground truth data. Subfigure (b) shows the statistic
metrics, mean value µ, standard deviation ±σ and ±3σ of the pitch error. The
metrics are calculated for each part of the trajectory. Subfigure (c) shows the
normalized frequency of the pitch error of all evaluation points.

(a) Absolute error

(b) Statistic metrics (c) Normalized frequency

Figure 5.8: Absolute pitch error.
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5.2.6 Roll error

Subfigure (a) shows the absolute roll error of the initial and the final trajectory.
No lines implies unavailable ground truth data. Subfigure (b) shows the statistic
metrics, mean value µ, standard deviation ±σ and ±3σ of the roll error. The metrics
are calculated for each part of the trajectory. Subfigure (c) shows the normalized
frequency of the roll error of all evaluation points.

(a) Absolute error

(b) Statistic metrics (c) Normalized frequency

Figure 5.9: Absolute roll error.
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5.3 Visual illustration
To show the visual difference between the initial and smoothed pose two synthetic
images are generated from the point clouds. The Velodyne points are color coded
by the distance to the point starting from blue (3m) to red (70m). The difference is
evident at the flag and light poles where one can see how the points line up in the
smoothed trajectory. It is also evident at the building to the right, where the red
segment aligns with the rectangular shaped windows.

Figure 5.10: Projected point cloud based on initial trajectory pose.

Figure 5.11: Projected point cloud based on smoothed trajectory pose.
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6
Discussion

This chapter includes discussion of the result, drawn conclusions and suggested
future work.

6.1 GICP performance
Overall the GICP performs well and is able to find the transformation that aligns
the Velodyne cloud in the map for multiple scenarios. When the correct transforma-
tion is found, the alignment is close to a perfect fit. However, there are situations
when the GICP fails to find the correct transformation and get stuck in a local
minimum instead. When the test and validation sets in Figures 5.1a and 5.2a were
annotated, primarily four scenarios were identified as likely causes for the incorrect
transformations.

1. Noisy velodyne data is the most common cause of incorrect transformations.
The noise consists mainly of surrounding traffic captured in the Velodyne cloud.
Typical objects are truck trailers, buses and trams which often stands for a large
percentage of the Velodyne points. Without any possibility of excluding those points
the transformation often becomes incorrect.

2. Few longitudinal features is primarily an issue on Götaälvbron. The GICP
often aligns the cloud correct laterally but not longitudinally. This is most likely
due to a lack of tall buildings/structures/edges/corners on the sides of the bridge.
With more surrounding structures like that, the longitudinal positioning becomes
better.

3. Symmetric environments is another issue discovered as the GICP struggles
to find the correct fit when there are several potential fits. The resulting alignment
in these situations often ends up somewhere in the middle between the potential
fits.This is primarily present along Nya Allén where the trees are placed in a sym-
metric pattern.

4. Turns were found to be hard to align as well. Due to the Linear compensation
of the Velodyne point cloud, the vehicle turn rate is not considered resulting in an
inaccurate point cloud representation of the surrounding. and therefore becomes an
inaccurate representation of the surroundings.
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6.2 Filtering of GICP output

As can be seen in Figures 5.1b and 5.2b the fitness score filter combined with the
outlier filter is quite good at correctly classifying the data. By studying tables 5.1
and 5.2 we see that this is mostly due to almost all poses being classified as bad. This
is good as this is the intended behaviour of the filters, to remove the bad output.
This comes at a relative high price however, in both the validation set and test set
approximately half of the good output are false positives. We believe this is mostly
a consequence of noisy Velodyne data, however, noise in the point cloud map and
over-confident estimates from the Applanix system might also contribute to good
data being removed. Regarding the output labeled as ok this is mostly classified
as bad, which is quite good as even though the output has not quite converged to
the true pose. Hence, we believe letting this output through the filter is certainly
better than letting through bad output, however, given a perfect filter it would be
desireable to also remove these.

It is our firm belief that excluding good data is better than including bad data,
however if the ultimate goal is to compute ground truth data either a higher portion
of the output needs to be good, or a filter that is better at distinguishing bad
from good output is needed. A third option is to entirely skip the fitness score
filter, only removing outliers and then determine the covariance of the remaining
output. This solution would, however, require a robust method to determine the
covariance of the output. The current approach of scaling a minimum covariance
with the fitness score does not solve this problem as some of the good output would
be considered unnecessary uncertain while also setting a quite small covariance for
some bad output. If we were to come up with a better way of determining covariance,
removing the fitness score filter would certainly be an interesting approach as it keeps
more information for the RTS-smoother.

6.3 Bias estimation and fusion

From the absolute error plots in section 5.2 it is clear that the refined trajectory is
more accurate than the initial one for all metrics, except maybe roll. It is worth
to keep in mind that the initial trajectory estimates are calculated online and for a
fairer comparison a post processed trajectory might have been preferable. Post pro-
cessing, however, requires licensed Applanix software that was not available during
the course of this thesis.

In broad terms the performance has improved the most in the Lindholmen and As-
chebergsgatan segments, which is especially clear when studying Figures 5.5a and
5.6a. This is probably due to the many quite tall buildings situated close to the
road, reducing the quality of the GNSS signal. Overall these segments also see the
most GICP output being used, as can be seen in Figure 5.3. This is positive as it
proves the concept of bias estimation works as intended. Further, there is a quite
clear correlation between the absence of GICP output and less accurate performance.
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This can be seen in the statistic metrics plot where the segments Lundbyleden, Gö-
taälvbron, Centralstationen and Nya Allén usually have a mean deviating further
from 0 and a larger standard deviation. The fusion of the trajectory brings with it
the fact that a lot of the bias will not be used when the estimate is uncertain or
when the initial estimate is very certain. Hence the inaccuracy in these segments
probably have two sides to them. Firstly there is a lack of measurements of the bias,
leading to the bias smoother outputting high covariance along with the estimate.
The other side is that the initial estimates probably are over-confident in a lot of
these segments, leading to a lot of the initial error being retained in the refined
estimates.

Besides the accuracy of the algorithm there are a couple of other interesting con-
clusions to be drawn from the results. Starting with the altitude it look like the
distribution in Figure 5.6c is slightly biased. This could imply that the reference
height used when correcting the height is a little of and should be measured again
to either confirm or dismiss this suspicion. Looking at the absolute error of the
pitch for the initial estimate it is almost constant, which could imply a constant
bias for this metric as well. By plotting a histogram of the distribution, see Figure
6.1, it becomes clear that there is a bias of approximately 1.75 deg. This could be
accounted for in the preprocessing of the trajectory estimates in order to improve
performance, as without the bias the pitch error would be very low from the start.

Figure 6.1: Normalized frequency of the pitch error for the Applanix estimate.

To conclude the discussion of the bias estimation it can be said that the accuracy of
the refined trajectory is very high when good measurements of the bias exist, however
it falls short in the abscence of measurements, mostly due to the inaccuracies of the
Applanix estimates.
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6.4 Future work
Based on the discussion held previously in this chapter, there are a couple of promis-
ing improvements we believe would make the algorithm more robust and accurate.

6.4.1 Removing noise from Velodyne data
The algorithm proposed in this thesis has shown to be very sensitive to noise in the
Velodyne data. If the noise could be removed, a better accuracy would most likely
be achieved.

6.4.2 Non-linear ego motion compensation of Velodyne point
cloud

The assumption of linear motion when ego-motion compensating the Velodyne data
has been shown to hold poorly when the heading of the car changes rapidly. In order
to solve this we propose to shift the Velodyne data non-linearly instead. As all of
the data regarding how the vehicle has moved is available this should be quite easy
to compute.

6.4.3 Iterative refinement of trajectory
By itertatively refining the trajectory two large benefits are gained. First the con-
vergence rate has been noted to increase when computing GICP for the refined
trajectory, which is done when computing ground truth. This is likely due to the
GICP being less prone to get stuck in local minimas when the initial pose is closer
to the true pose. The second benefit of refining the trajectory iteratively is that con-
vergence times of GICP drop by quite much when the initial pose is better, leading
to the possibility of using more of the Velodyne data in the same amount of time.

6.4.4 Removing cloud constrains
The current removal of point cloud data by imposing constraints on the point cloud
in retrospect seem unnecessary. The only reason this was done in the first place
was to reduce the computational time so that the calculations could be completed
within a reasonable time frame during the development. However, as stated in the
scope of the Thesis, the computational complexity of the solution is not a limiting
factor. These constraints should therefore be removed in order to include as much
data as possible for the ICP-calculations.

It is hard to tell how much this would improve the results of the algorithm, as most
of the Velodyne data is included in the majority of the poses. In some cases, mainly
where the features are sparse, using all of the Velodyne data should definitely yield
better results than when removing data.
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