
LaCl3

LaCl3 LaCl3

LaCl3

LaBr3 LaBr3

LaBr3LaBr3 2.7 cm

2.7 cm

4 cm

6 cm

RESETIDLE FILL

OFFWRAP

SHIFTREAD

OFFREAD

WRAPREAD

GETLOC

READOUT

rst = 0

rst = 1 & CNT_RST = 65

rst = 0 | rst_flag = 1

CNT_FILL=T1

o f f _trg = 1

rst = 0

trg = 1

CNT_OFF = TOTALWRAP

rst = 0⇒ rst_flag = 1

CNT_OFF = 1024

rst = 0⇒ rst_flag = 1

CNT_OFF = 1024

rst = 0⇒ rst_flag = 1

CNT_RD = TWR

rst = 0⇒ rst_flag = 1

CNT_RD = ENDLOC

rst = 0⇒ rst_flag = 1

CNT_RD = WND

rst = 0⇒ rst_flag = 1

IDLE
(default initialization)
D_V = 0
BUSY = 0

DWRITE = 1
A3-A0 = 0000
SRCLK = OFF
RSRLOAD = 0
SRIN = 0
ADC_EN = 0
SROUT_EN = 0
RST_DRS = 0

CNT_OFF = 0
CNT_RD = 0
CNT_FILL = 0

WRAPREAD
BUSY = 1

CNT_RD start

GETLOC
D_V = 0
BUSY = 1

DWRITE = 0
A3-A0 = 1001
SRCLK = ON (except 1st cycle)
RSRLOAD = 1 (1st half cycle)
SROUT_EN = 1

CNT_RD (re)start

READOUT
D_V = 1
BUSY = 1

DWRITE = 0
A3-A0 = 1001
SRCLK = ON
ADC_EN = 1

CNT_RD (re)start

OFFWRAP
BUSY = 1

CNT_OFF start

SHIFTREAD (1024 cycles)
BUSY = 1

DWRITE = 0
A3-A0 = 1011
SRCLK = ON (except 1st cycle)
SRIN = 1 during 1024th cycle

CNT_OFF (re)start
OFFREAD (1024 cycles)
D_V = 1
BUSY = 1

DWRITE = 0
A3-A0 = 1001
SRCLK = ON (except 1st cycle)
ADC_EN = 1

CNT_OFF = (re)start

RESET
BUSY = 1

DWRITE = 0
RST_DRS = 1

rst_flag = 0

CNT_RST start

FILL
BUSY = 1

CNT_FILL start

◦1 ◦1 ◦1 ◦1 ◦1 ◦1 ◦1

◦0 ◦0 ◦0

◦1 ◦1 ◦1 ◦1

◦0 ◦0 ◦0 ◦0 ◦0 ◦0

SUM = 7

SUM = 4

50% DUTY CYCLE

INPUT CLK

OUTPUT CLK

INPUT CLK �1�

SAMPLED �1�

INPUT CLK �0�

SAMPLED �0�

D_V

PPL

D_V

PPL

D_V

PPL

compression_module_chunc.vhd

output_compression.vhd

encoding.vhd

diff_calculator.vhd

data_ind_v clkreset

data_outdv_out

(14 bits)

diff_out

(14 bits)

encoded_out

(14 bits)

bits_out

(4 bits)
new_cnk

(32 bits)

freq (MS/s)
100 200 300 400 500 600 700 800 900 1000

 (
ps

)
σ

0

100

200

300

400

500

600

700

800

900

Different Offset
DT5730 (14 bits)
DT5751 (10 bits)

How to Lighten Experimentalists' Life

with Electronics
Development of Front-End Readout for the CALIFA Detector
Master's thesis in Subatomic Physics

GIOVANNI BRUNI

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2017

MASTER’S THESIS IN SUBATOMIC PHYSICS

How to Lighten Experimentalists’ Life with Electronics

Development of Front-End Readout for the CALIFA Detector

GIOVANNI BRUNI

Department of Physics
Division of Subatomic and Plasma Physics

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2017

How to Lighten Experimentalists’ Life with Electronics
Development of Front-End Readout for the CALIFA Detector
GIOVANNI BRUNI

c© GIOVANNI BRUNI, 2017

ISSN 1652-8557
Department of Physics
Division of Subatomic and Plasma Physics
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
In the center a schematic of the CEPA4 prototype is depicted. On the top, results from studying the time
resolution of phoswich crystals varying the sampling frequency are reported. On the right, the finite state
machine developed for controlling the DRS4 chip is drawn. On the bottom right, signals and their sampling
used in the new clock distribution scheme are depicted. On the bottom left, digitized traces from CEPA4
showing saturation of the photomultiplier tube are plotted. On the left, the block diagram illustrating the
DPTC compression module is given.

Chalmers Reproservice
Göteborg, Sweden 2017

How to Lighten Experimentalists’ Life with Electronics
Development of Front-End Readout for the CALIFA Detector
Master’s thesis in Subatomic Physics
GIOVANNI BRUNI
Department of Physics
Division of Subatomic and Plasma Physics
Chalmers University of Technology

Abstract

Research in subatomic physics covers areas ranging from the investigation of the structure of and the
interactions in atomic nuclei, to developing new materials and new medical treatments. Experiments in this
field often rely on high sampling rates, good time resolution and fast processing of big quantities of data.
This thesis describes work done in developing parts of the CALIFA particle detector, to be located at the
GSI/FAIR-facility, Darmstadt. Several topics are covered: the design of readout procedures for a switched
capacitor array (DRS4), as well as data trace compression algorithms and their implementations in FPGAs. A
new clock delivery system for detectors was investigated and LaBr3-LaCl3 crystals were characterizated. The
work was carried out in collaboration with the Physics Department at the Technical University of Munich
and the Subatomic and Plasma Physics Division at Chalmers.

Keywords: Subatomic physics, nuclear physics, radioactive beams, R3B collaboration, GSI/FAIR, charged
particle detection, phoswich, FPGA, data compression

i

ii

Acknowledgements

Although most of the information about the work is contained in the following pages, this part of the thesis
can surely be considered the most important. Being honest and clear should be one of the first requirements
for a scientist and therefore thanking people and recognising their role in a work is a first step in this direction.
So, let’s start.

First of all I want to thank my parents for their constant support, both moral and material. Thanks to my
relatives for all the parties every time I’m back to Italy.

Second, all the people involved in the making of the thesis need to be thanked:

• The Subatomic Physics Group at Chalmers: Paloma Diaz Fernandez for providing most of the code and
collaboration for the work on characterizing the crystals, Håkan T. Johansson for providing technical
support and lots of ideas for the whole thesis project (especially the new clock distribution scheme
and the compression module), Andreas Heinz for supervising, Thomas Nilsson for answering questions
on the history of the CALIFA detector and (together with Andreas) for allowing me to participate in
the Euroschool on RIBs, Björn Jonson for suggestions on the presentation, Simon Lindberg for all the
information on GIT and ROOT, and Markus Polleryd for sharing the office and for small talks;

• The research group at the Department of Physics at the Technische Universität München for providing
(and developing) the FPGA firmware for all the sections of CALIFA and for the work on the DRS4
add-on board: Max Winkel, Patrick Remmels, Phillip Klenze, Felix Stark, Roman Gernhäuser;

• Scientists of the R3B Collaboration for their work on the CALIFA detector and the resulting Technical
Design Reports.

Then a big thanks to all the friends (those from Italy, Sweden and rest of the world) and especially:

• Cristina and Murad for their support, especially in the beginning of the adventure in the Swedish land;

• Quelli del Lunedì for all the parties and the nice time we have passed together (and also for having come
to Sweden for my defence and having endured the tough Swedish food);

• Spiazzi Time for pictures, videos, big laughters and for having been patient here in Sweden during the
defence;

• Robert Klaar, David Dagson, August Ekman, Simon Ovesen and Ingrid Strandberg with their friends /
girlfriends / families for having given me the opportunity to obtain some knowledge on Sweden and
its culture.

Other thanks go to: theorists of the Subatomic Physics Group in Chalmers for having clarified that I’m not
suited for that life, Sir Daniel Gazda for the not-physics-related time we passed together and for allowing me
to live one year less than planned, all the lunches and funny stories, Prof. Andrea Candelori for his cover letter
that helped to start the Chalmers adventure, Giovanni Maestri & family (and Fiorenza and marito) for dinners
and the other enjoyable events, Beatriz Moreira and all the rest of people around the world.

For all the people who are not mentioned but would have liked to be in this part of the thesis, please fill
the dots here: ..

iii

iv

Contents

Abstract i

Acknowledgements iii

Contents v

1 Introduction 1
1.1 Physics Background . 1

1.1.1 R3B Experimental Setup 2
1.1.2 CALIFA . 3

1.1.2.1 CALIFA Structure 4
1.1.2.2 iPhos . 5
1.1.2.3 CEPA . 6

1.2 Electronics for CALIFA . 8
1.2.1 Readout System . 8

1.2.1.1 Febex . 10
1.2.2 Electronics for CEPA . 10

1.2.2.1 Switched Capacitor Array - DRS4 10
1.2.2.2 CEPA Firmware 11

I CEPA4 Characterization 13

2 Introduction 15
2.1 CEPA4 Prototype . 15
2.2 Readout Hardware . 16

2.2.1 Photomultiplier . 16
2.2.2 Digitizer . 16

2.2.2.1 CAEN Software 16
2.2.3 Additional Devices . 17

3 Signal Readout 19
3.1 Motivation . 19
3.2 Experimental Setups . 21

3.2.1 Setup for Muon Detection 21
3.2.2 Setup for γ-rays Detection 21

3.3 Data Analysis . 25

v

3.3.1 Noise study . 25
3.4 Results . 27

3.4.1 Maximum Energy Range 27
3.4.2 Resolution of γ-peaks . 31
3.4.3 PMT Saturation and Signals Distortion 34

4 Time Resolution 37
4.1 Motivation . 37
4.2 Time Resolution using Muons . 37

4.2.1 Experimental Setup . 37
4.2.2 Procedure . 39
4.2.3 Results and Comparison 40

4.2.3.1 Data Elaboration 40
4.2.3.2 Comparison . 42

4.3 Time Resolution using γ-rays . 44
4.3.1 Experimental setup and Procedure 44
4.3.2 Results . 45

4.4 Frequency and Bit Resolution Studies 46
4.4.1 Sampling Frequency Analysis 46

4.4.1.1 Data Manipulation Procedure 46
4.4.1.2 Data from the CAEN DT5751 46
4.4.1.3 Data from the CAEN DT5730 49
4.4.1.4 Results Comparison 51

4.4.2 Bit Resolution Analysis — DT5730 only 52
4.4.2.1 Data Manipulation Procedure 52
4.4.2.2 Results . 52

4.5 Time Resolution for LaCl3 Crystals 54

II Electronics and Readout 55

5 Introduction to Some Electronics Concepts 57
5.1 Digital Electronics . 57

5.1.1 Combinational Logic . 57
5.1.1.1 Karnaugh Maps 58
5.1.1.2 Multiplexer — MUX 60

5.1.2 Sequential Logic . 60
5.1.3 Finite State Machines . 60

5.2 VHDL . 61
5.3 FPGA . 62

6 DRS4 Readout 65
6.1 DRS4 Management . 65
6.2 DRS4 Problems . 65
6.3 Optimization of the DRS4 Readout Procedure 66
6.4 Internal Clock Frequency . 67
6.5 Data Sampling . 68

6.5.1 Timing . 68

vi

6.5.2 Enabling Signals . 68
6.6 Operations - Briefly . 69
6.7 Address Bits A3-A0 . 70
6.8 DRS4 FSM Implementation . 73

6.8.1 VHDL Libraries Used . 73
6.8.2 RESET . 73
6.8.3 IDLE . 74
6.8.4 FILL . 74
6.8.5 Offset Readout . 75
6.8.6 Data Readout . 77

7 CEPA Clock Distribution 83
7.1 Motivation for a New Clock Delivery Scheme 83
7.2 Phoswich Crystals Properties . 84
7.3 Analysis of the Electronics - Hardware 84

7.3.1 Febex3B - Blue Card . 84
7.3.2 SFP Module - Red Card 86
7.3.3 Crate . 86
7.3.4 DRS4 Add-on Board . 86
7.3.5 Exploder . 87
7.3.6 Cables . 87

7.3.6.1 Ribbon Cable . 87
7.3.6.2 Optical Fiber . 87

7.3.7 EXTRA Hardware: SPEC and FMC cards 87
7.4 Proposal for New Clock Delivery 88

7.4.1 Threshold, Quiet Margins and Duty Cycle 89
7.5 Proposed Electronic Implementations for the New Clock Deliv-

ery Scheme . 91
7.5.1 Present State . 92
7.5.2 Proposed Scheme . 93

8 DPTC - Difference Predicted Trace Compression 95
8.1 Motivation . 95
8.2 Common Ground . 96

8.2.1 Frequency of Symbols . 96
8.2.2 The Predictor . 96

8.3 Single Word Compression . 98
8.3.1 OddBits Compression . 98

8.3.1.1 Decoder for OddBits Compression 100
8.3.1.2 EvenBits Compression 101

8.3.2 Drawbacks . 101
8.4 ChunC - Chunk Compression . 102
8.5 DPTC - Implementation on FPGA of ChunC 104

8.5.1 Language and Libraries 104
8.5.2 DPTC Module - compression_module_chunc.vhd 105
8.5.3 Compression Package - compr_pkg.vhd 105
8.5.4 Effects of Data Valid and Reset Signals 107
8.5.5 Difference Calculator - diff_calculator.vhd 107

vii

8.5.6 Encoding - encoding.vhd 109
8.5.7 Output Creation - output_compression.vhd 111

8.5.7.1 General Introduction 111
8.5.7.2 Merging and Shifting 112
8.5.7.3 Shift Counter Update 114
8.5.7.4 Accumulation and Buffering 114
8.5.7.5 Data Valid Generation 115

8.5.8 Test Bench - tb_compr.vhd 118
8.6 Circuit Synthesis and Analysis 119

8.6.1 Tools Employed . 119
8.6.2 Synthesis . 119

8.6.2.1 Timing Analysis 120

9 Conclusion 121

Bibliography 123

viii

Chapter 1

Introduction

1.1 Physics Background

Subatomic physics has a vast range of applications: it can be used for improving
medical treatments of tumours [1], for developing new materials and, of course,
for understanding how nature at its smallest scales works. In this thesis we
focus our attention on this last argument and the fundamental aspects of the
research in this field.

Physicists can exploit several ways to study the structure of atomic nuclei
and the interactions between their constituents. A group of these methods
relies on the usage of radioactive ion beams (RIBs), which offer the possibility
to study a broader range of physics cases and isotopes. In this context, a
fundamental technique used for producing radioactive beams is the projectile
fragmentation technique [2]. The key point is that, from high-energy nuclei, we
obtain fragments, which preserve almost all the momentum of the incoming
ions. This offers a number of advantages, especially with respect to identifica-
tion and acceptance. Different types of nuclear reactions can be exploited to
investigate the radioactive nuclei [3]:

• Knockout Reactions: Examples of such reactions are (p,2p) and (p,pn),
where the first term in each reaction denotes the incoming particle, while
the second one refers to the stripped particles. Usually heavy nuclei
are accelerated against light target nuclei. The direct interaction takes
place only if the energy of the accelerated ion is such that the associated
wavelength is comparable to that of a single nucleon, which means
energies above 100 A ·MeV. These reactions are used to study single-
particle state occupation or the excited states of a remaining fragment.
Unbound nuclei can also be investigated. For the latter, it is important
to detect, other than protons and neutrons, also γ-rays originating from
the de-excitation of the fragments. If we go even further in energy (200–
2000 A ·MeV) and use a very light target, such as hydrogen, the chances
for a nucleon-nucleon interaction drops and therefore the single proton
can penetrate the larger nucleus and interact with deeply-bound nucleons.
Those reactions are called quasi-free scattering reactions and are suitable
for investigations of neutron-rich unbound nuclei.

1

• Fragmentation Reactions: here impact parameter, beam energies and
target consisting of several nucleons cause a removal of a significant
portion of the projectile heavy nucleus. Information comes therefore from
decays and de-excitation (γ-rays) of the fragments.

• Coulomb Excitation: in this case the interaction happens between the
electromagnetic field of a target and a projectile nucleus, which will then
become excited. γ-spectroscopy is used to provide (n,γ) and (p,γ) cross
sections, which are needed in astrophysics studies of processes such as
proton and neutron capture.

With the equipment currently being built by the Reactions with Relativistic
Radioactive Beams (R3B) collaboration, it will be possible to investigate all the
mentioned scenarios, providing insights on exotic clustering at the drip-line,
evolution of nuclear shells and single-particle structure far from the valley of
stability.

1.1.1 R3B Experimental Setup

The R3B collaboration is developing an experimental setup at the accelerator
facility GSI/FAIR in Darmstadt, Germany [4]. This setup will use radioactive
relativistic beams with energies up to 1 A ·GeV impinging on stable target
material. The different detectors employed will perform full kinematics mea-
surements on all reaction products, providing the information needed to study
the reactions described in the previous section.

Figure 1.1: R3B experimental setup at GSI/FAIR, Darmstadt. The incoming ion beam
impinges against a target which is surrounded by the R3B-Si-TRACKER and the CALIFA
detector. Reaction products proceeding in the most forward direction are separated by
R3B-GLAD, a superconducting magnet, and addressed towards detectors for protons,
heavy fragments and neutrons (NeuLAND). For more information, see the text. The
figure is taken from Ref. [4].

In Figure 1.1 the placement of detectors is shown. The radioactive ion

2

beam, produced in the FRagment Separator (FRS) for GSI or in the super-
FRS for FAIR, will impinge on a target placed inside the R3B-Si-Tracker. This
silicon-based detector will provide mainly information on trajectories of large-
angle scattered particles generated by the interaction of the beam with the
target. The R3B-Si-Tracker is surrounded by the CALorimeter for the In Flight
detection of γ rays and light charged pArticles (CALIFA), a barrel-shaped detector
responsible for energy measurements of γ radiation and protons arising from
reactions in the target. The shape of this detector, together with the high
segmentation, allows to deal with the Lorentz boost characterising reaction
products of the outgoing fragments. Particles which are travelling in the most
forward directions will not interact with CALIFA thanks to a hole in it and
pass through a large-acceptance superconducting magnet, GLAD, which will
separate particles according to their magnetic rigidity. Charged particles such
as protons and heavy fragments will be deflected towards specific detector
systems, while neutrons will continue to travel straight, impinging finally on
NeuLAND — a detector built for measuring these particles.

We now analyse more deeply the CALIFA detector, since it is the main
subject of the studies presented in this thesis.

1.1.2 CALIFA

CALIFA, surrounding the target, has a central role in detecting protons and
γ-rays arising from reactions in the target. The barrel shape allows CALIFA
(Figure 1.2) to cover an angular range from 7◦ to 140◦ with respect to the beam
axis. Because of the employment of relativistic beams, CALIFA will need to
be highly segmented in order to deal with particles characterised by a high
Lorentz boost and Doppler shifting of γ-rays. Around 2560 crystals will therefore
be used.

Figure 1.2: Drawing of the CALIFA detector. The barrel shape of the detector can be
noticed, with the EndCap on the front. The picture is taken from Ref. [4].

3

The high granularity will allow to use CALIFA in different ways, such as:

• A High resolution γ-ray spectrometer in a low-energy range of 0.1–2 MeV
(in the center of mass frame) for low multiplicity events. An energy
resolution ∆E/E < 6% is required to discriminate γ-ray cascades caused
by de-excitation.

• A High efficiency γ-ray calorimeter for energies up to 10 MeV (in the center
of mass frame) and high-multiplicity events. Measurements of total γ
absorption, γ sum-energy and γ multiplicity are needed.

• A Hybrid detector, which can provide information on the energy of protons
up to 700 MeV and on γ de-excitation of residual fragments.

Table 1.1 summarises the requirements for the final detection system.

Feature Constraint

Energy range for protons up to 700 MeV (in Lab system)
Proton/γ-ray separation for 1–30 MeV

Energy Resolution
γ-rays < 6% ∆E/E for 1 MeV

Stopped protons < 1% ∆E/E
√

100 MeV√
E

Punching through protons < 7% ∆E/E at 500 MeV

Table 1.1: Requirement set for the CALIFA detection system. Data taken from Ref. [4].

1.1.2.1 CALIFA Structure

CALIFA is divided into 2 main parts, named Barrel and Forward EndCap. The
Barrel will cover the angular range from 43◦ to 140◦, while the EndCap matches
the range from 7◦ to 43◦. As detailed in Figure 1.3, the EndCap is then divided
into 2 further subparts, iPhos (Intrinsic PHOSwich detector) and CEPA (Califa
Endcap Phoswich Array).

Barrel The Barrel is composed of 1952 CsI(Ti) crystals. These crystals will
be shaped in order to be able to stop protons with energies up to 320 MeV,
enabling an energy resolution of less than 2%. Regarding γ-rays, these crystals
allow for an energy resolution of 5–6% at 1 MeV.

Forward EndCap This part consists of 608 crystals. As written above, this
section is divided into iPhos and CEPA. These two subparts are characterized
by the use of 2 different crystal materials: CsI(Ti) is employed for the iPhos
part, while so-called phoswich crystals of LaBr3/LaCl3 are used for the CEPA
section.

4

Figure 1.3: Partition of CALIFA. The Barrel and iPhos parts are composed by CsI(Ti)
crystals, while for the CEPA section LaBr3/LaCl3phoswich crystals are used. iPhos and
CEPA together form the Forward EndCap part. The figure is taken from Ref. [4].

1.1.2.2 iPhos

Consisting of 512 CsI(Ti) crystals, the iPhos part covers the polar angular range
from 19◦ to 43◦. A crystal length of 22 cm permits an energy resolution of
about 7% for protons at 500 MeV (see Figure 1.4).

crystal length (mm)
0 50 100 150 200 250 300 350 400 450

en
er

gy
 re

so
lu

tio
n

(%
)

4

6

8

10

12

14

16

18

20
400 MeV

500 MeV

400 MeV

500 MeV

400 MeV

500 MeV

400 MeV

500 MeV

Figure 1.4: Proton energy resolution as a function of the crystal length in the case of
CsI(Ti) detectors. Proton energies of 400 MeV and 500 MeV are considered. The picture
is taken from Ref. [4].

The reason for the use of CsI(Ti) is that this material is characterised by two
different scintillation processes, each of them having a different decay time.
Using the Reconstructive Particle IDentification (RPID) algorithm (see Ref. [5])
it is possible to extract the amplitudes of the fast and the slow components.
From this information we can distinguish between different particles types:
Figure 1.5 shows how protons and γ-rays can be separated down to 1 MeV by
plotting the amplitudes of the slow versus the fast components.

5

Figure 1.5: Plot of amplitudes of the slow component Ns versus fast component N f .
The amplitudes were extracted using an RPID algorithm on signals from CsI(Ti) crystals
of the iPhos part. The picture is taken from Ref. [4].

1.1.2.3 CEPA

CEPA is formed of 96 crystals optically isolated from each other and organised
in 8 sectors covering the angular range 7–19◦. As depicted in Figure 1.6, each
sector is made of 12 crystals wrapped in a can of aluminium, 0.2 mm thick.
As Figure 1.6 also suggests, each crystal is a stack of two scintillator materials
optically coupled: LaBr3 on the inside (red) and LaCl3 on the outside (green).
A single photo-multiplier-tube is used for both crystals, so only one signal is
read out. This entire approach is known as phoswich. In Figure 1.7 the pulses
from the two materials are plotted together with the common read out signal.

Figure 1.6: Sector for the CEPA section. Each sector is made up of 12 phoswich crystals.
Red and green stand for LaBr3 and LaCl3 respectively [4].

The main reasons for using these materials are

• Fast decay times: LaBr3 and LaCl3 pulses have decay constants of 16 ns
and 28 ns respectively. While these small values implicate the ability for
high counting rates, the mismatch is also important because it allows to
disentangle the two contributions through the pulse shape analysis.

6

Figure 1.7: Pulses generated by phoswich crystals. The green line represents the total
pulse, which is read out by the detector. The pulse from the LaBr3 is depicted in blue,
while that from the LaCl3 is plotted in purple [6].

• Fast rising times: both crystals pulses show rising constants of 5 ns.
Together with the fast decay times, these values are necessary for having
a high counting rate.

• High time resolution: although the actual value depends on the size of
the crystal, time resolutions of a few hundreds of ps have been observed
(see Ref. [7] and chapter 4);

• High stopping power for light particles: this implies that it is possible to
stop protons at high energy inside the crystal through electromagnetic
interaction. This allows a better measurement of the particle energy in a
broader energy range.

• Good energy resolution.

There are various motives for exploiting the phowshich approach in the
detector:

• If we use CsI(Ti) for high energy protons (E > 200 MeV), we would need
longer crystals to achieve the required energy resolution (see Figure 1.4).
However longer crystals mean higher probability for protons to undergo
nuclear reactions in the detector with the production of neutral particles
(neutrons, pions), whose energy would not be completely measured,
making it impossible to measure the (total) particle energy. In the case
of phoswich crystals, exploiting the information about the energy de-
posited in the two different materials, the total energy of a particle can be
extracted without the need of stopping it in the detector. Therefore the
crystals can be shorter than those used in the iPhos branch, thanks also to
the high stopping power of the LaBr3 and the LaCl3. This approach still
ensures the required energy resolution, given also the good resolution
properties of the employed materials.

7

• Thanks to the high stopping power, half of the γ-rays at 20 MeV interact
by pair production within the first 5 cm of LaBr3. This means that most of
γ-rays will deposit all their energy in a small portion of space, therefore
avoiding further Compton scattering.

• After the extraction of the two decay components from the single read-out
signal, it is possible to measure the energy of particles and to (hopefully)
distinguish them using Pulse Shape Analysis (PSA), a similar approach to
the RPID described in Section 1.1.2.2.

This thesis work will focus on CEPA and the electronics used for sampling
and processing signals generated by phoswich crystals. Before showing the con-
tent of this work, the electronic equipment planned to exploit the characteristics
of the LaBr3/LaCl3 crystals will be analysed.

1.2 Electronics for CALIFA

1.2.1 Readout System

The current system planned for sampling, reading and storing signals from the
detector will be based on the Data AcQuisition system (DAQ) developed at
GSI, the so-called Multi-Branch System (MBS) [4]. This system however will be
replaced in the future by the NUSTAR Data AcQuisition system (NDAQ) [8],
which is currently under development and it will be the main system used in
the new FAIR facility. Figure 1.8 provides a functional description of the DAQ
system, while Figure 1.9 shows the setup that has been built at the laboratory
of the Subatomic Physics Group in Chalmers.

DAQ PC

PEXOR

TRIXOR

Crate

FEBEX

FEBEX

...

Exploder

FAB

FAB

FAB

Detector

Detector

Detector

Figure 1.8: Diagram of the Data AcQuisition system (DAQ) [4]. Signals from the
detectors arrive at the Febex Add-on Board (FAB), which provides connections, buffers
and coupling. The FAB is connected to the Febex, where signals are sampled and
processed. All the Febex cards sit in a Febex crate, thanks to which triggers and data
can be sent to the Exploder+TRIXOR and to the PEXOR cards, respectively.

First of all, signals generated by detectors reach the Febex board through
an add-on board1, which can contain just connectors or preamplifier stages
and other electronics. On the Febex, the signals are sampled and digitized by

1In Figure 1.8 it is labelled as FAB (Febex Add-on Board)

8

Figure 1.9: Setup built in the laboratory at Chalmers.

ADCs2 and then sent to an FPGA (see section 5.3 for a description), where
additional signal processing can be performed.

All Febex cards sit in a crate which provides power and a common bus
for basic communication between the cards. The crate is connected to an
Exploder module, which is responsible for the management and generation of
the trigger. Based on the configuration used, the Exploder can receive (and
send) trigger signals from (and to) the Febex cards and from (to) other systems
in the experimental setup.

A third component is the DAQ computer (or MBS computer). This diskless
computer, which needs assistance from an external computer for booting and
interfacing with external networks, contains the PEXOR and TRIXOR cards.
The former is responsible for the readout of the data from the Febex cards
via an optical cable. The TRIXOR card instead is connected to the Exploder
and receives the trigger signal. Another card called PEXARIA, which is not
included in the system at the Chalmers laboratory, manages the timestamping
of the events. Communications between all the components described relies
on a protocol called GOSIP. For more information about the devices described
above, see section 7.3.

2In this thesis, with Analog-to-Digital Converter (ADC) we mean an electronic circuit which,
according to a given sampling frequency, transforms an analog input signal into an output digital
signal. The input signal is sampled and quantized. While the sampling depends on the sampling
frequency, the quantization is related to the number of bits which characterises the ADC: the
maximum accepted input voltage range is divided into 2number of bits steps and the value of each
input sample is then rounded to the closest (upper or lower depending on the ADC design) step.

9

1.2.1.1 Febex

In Figure 1.10 we can see a picture of the Febex card. The main features of this
electronic board developed at GSI are the 2 ADCs and an FPGA. Digitization of
signals from the detectors is performed by the ADCs (AD9252), each of them
with 8 input channels, at a maximum sampling frequency of 50 MS/s3 and 14
bits of resolution. The handling of the resulting data is accomplished by the
FPGA (Lattice ECP3 150). For each section of CALIFA (Barrel, iPhos, CEPA) a
different firmware will be designed, in order to match detector requirements
and signal characteristics. More detailed information about the Febex board
can be found in section 7.3.1.

Figure 1.10: Febex3B card used in the DAQ system [4].

1.2.2 Electronics for CEPA

1.2.2.1 Switched Capacitor Array - DRS4

Since signals originating from phoswich crystals are pretty fast, a 50 MHz
sampling frequency is not sufficient in order to capture the pulse shapes. For
the CEPA part therefore a faster sampler is needed. This problem is solved by
using a Switched Capacitor Array (commercially known as DRS4 [9]) mounted
on an add-on board. In this piece of integrated electronics, an input signal is
fed into a sequence of 1024 capacitors. Along this sequence a control signal
(domino wave) enables one capacitor at a time: therefore the input signal is
fed to the only activated capacitor at a time. A simplified schematic of a single
DRS4 cell can be seen in Figure 6.1. The faster the domino wave moves along
the sequence, the higher is the sampling frequency. The DRS4 features 9 input
channels with a maximum sampling frequency of 5 GS/s. In our case the

3The sampling frequency of an electronic device is often reported as number of samples per second
S/s. It can be also found written as Sa/s. The prefixes mega M or giga G are usually used.

10

sampling frequency is set to 1 GS/s. Having 1024 cells per channel means
that around 1 µs of the detector trace can be stored in the capacitor array. The
sampled data can be read out by the FPGA at a maximum frequency of 33 MHz.
This mismatch in the frequencies, and the fact that the DRS cannot sample
while the readout is being performed, implies that a continuous processing of
the high-resolution phoswich signals is not possible.

1.2.2.2 CEPA Firmware

In Figure 1.11 the firmware for the CEPA part of the Forward EndCap is shown.
Each single crystal will be connected to both ADC1 and the DRS4. Two main
parts are easily visible:

• The Real Time Branch (purple): the signal from the detector is continuously
sampled by ADC1 (at 50 MHz) and the resulting data are used for the
trigger generation (blue) and for some basic energy computation (green);

• The Fast Sampling Branch (red): once a trigger is generated the Readout
block starts to read out the DRS4 content. After the digitization, the data
will be processed in order to extract the LaBr3 and LaCl3 components.
The results are then stored and sent to the MBS computer.

ADC 0 Readout

Integrator Slow
Shaper

Peaksensing

QPID

Gate
Generator

Trigger
Logic

EXPLODER

Memory

Channel 0:
Fast Sampling Branch

ADC 1 Channel 0:
Real Time Branch

DRS4

Fast
Shaper

Discriminator

Delay Slow
Shaper

Peaksensing

Gate
Generator

Figure 1.11: Schematic representation of the firmware for the CEPA detectors [4]. Blocks
responsible for generating the trigger are highlighted in blue, while those recording
basic data in case of dead-time are marked in green. Inputs of ADC1 and DRS4 come
from detectors. The DRS4 is controlled by an internal module, which will be described
in chapter 6. In the red-coloured block, the pulse shape analysis of the detector signals is
performed.

11

12

Part I

CEPA4 Characterization

13

14

Chapter 2

Introduction

2.1 CEPA4 Prototype

CEPA4 is a prototype, developed by Saint-Gobain, which was used by the CAL-
IFA working group to investigate the properties of the LaBr3/LaCl3 phoswich
crystals and to design the readout system [10]. The device is visible in Fig-
ure 3.4. As shown in Figure 2.1 this detector is made up of 4 phoswich-crystals
arranged in a 2× 2 configuration. Each segment is composed of a 4 cm LaBr3
crystal optically coupled to a 6 cm long LaCl3 crystal. Their front cross-section
is about 2.7 cm× 2.7 cm. A photomultiplier tube (PMT) is attached to the rear
side of the LaCl3 crystal.

LaCl3

LaCl3 LaCl3

LaCl3

LaBr3 LaBr3

LaBr3LaBr3 2.7 cm

2.7 cm

4 cm

6 cm

Figure 2.1: Schematic of the CEPA4 prototype. The four LaBr3/LaCl3-phoswich crystals
are optically isolated between each other. Photomultiplier tubes are placed on the back
of the LaCl3 crystals.

15

2.2 Readout Hardware

2.2.1 Photomultiplier

Although in Ref. [10] each crystal is described as coupled to a Hamamatsu
R5380 PMT, in the current situation the Hamamatsu R7600U-200 [11] PMT
is employed, as also required by the CALIFA Technical Design Report [4].
The Hamamatsu R5380, compared to the R7600U-200, has a 1000 times lower
gain. As explained in section 3.1, the characterisation of the CEPA4 crystals
was carried out also to test if the detection system using these new PMTs is
appropriate to satisfy the requirements set in the CALIFA TDR [4].

2.2.2 Digitizer

The electronics designed for the actual CALIFA detector is based on the com-
bination of a Febex3B board, for the signal digitization and processing, with
an add-on board featuring a DRS4 chip. The latter is a switched capacitor
array and is responsible for the fast sampling of the signal from the phoswich
detector (for more information see section 1.2.2.1). While the input voltage
scale range of 1 Vpp, and the sampling frequency of 1 GHz are due to the
DRS4 [9], the resolution of 14 bits is given by the ADC AD9252 [12] mounted
on the Febex3B.

The add-on board with the DRS4 is not available yet, therefore tests were
carried out using two CAEN digitizers and a LeCroy oscilloscope. One of the
CAEN modules is the DT5751: it features an input voltage range of 1 Vpp, a
sampling frequency of 1 GHz and a data resolution of 10 bits [13]. The second
module is a CAEN DT5730 which, compared to the DT5751, has a larger input
voltage range of 2 Vpp, a better resolution of 14 bits, but a smaller sampling
frequency of 500 MHz [14]. The LeCroy oscilloscope is a 7100A model, which
can sample an input voltage range of 5 Vrms (at 50 Ω) at a frequency up to
20 GHz with a resolution of 8 bits. Table 2.1 summarizes the information on the
three systems used in the tests, together with the Febex3B/DRS4 combination.

Input Voltage Range Sampling Frequency Resolution
(V) (GHz) (bits)

DT5751 1 1 10
DT5730 0.5 or 2 0.5 14
LeCroy 7100A 5 Vrms at 50 Ω up to 20 8
Febex3B/DRS4 1 1 14

Table 2.1: Main characteristics of the CAEN digitizers, DT5751 and DT5730, the LeCroy
7100A and the Febex3B/DRS4 system.

2.2.2.1 CAEN Software

In order to configure the two CAEN digitizers, the manufacturing company
itself provides software through which we are able to configure some of the

16

device settings, such as the acquisition mode, internal thresholds, recording
length, etc. We mainly used the so-called digiTES software, which comes
with an editable text configuration file. Another program, the DPP-PSD
control software presents, on one hand optimised routines for energy spectrum
calculation, threshold settings, etc., on the other it does not offer the same
flexibility given by digiTes. Therefore, because of its stability, it was employed
mainly for checking the correct functioning of the devices. Both applications
were used in a Linux environment.

2.2.3 Additional Devices

In the following sections, several experimental setups will be presented. Al-
though the main elements have already been described above, other electronic
devices and components have been involved:

• ORTEC CF4000: constant fraction discriminator with 4 independent
channels. This device releases a square pulse every time the input signal
amplitude exceeds a given threshold. The threshold and both the time
width and amplitude of the output signal are configurable through
screwdriver adjustments.

• ORTEC CO4020: it allows to implement logic functions with 4 inputs. 4
independent sets of input channels are available. We used this module to
distinguish the coincidence among four plastic crystals.

• DELAY: simple delay cables are used;

• SPLITTER: for splitting the signal, a cascade of resistive dividers is used.
The number of stages depends on the desired attenuation. A single
divider, as shown in Figure 2.2, is based on a star configuration where
three equal resistors are connected together through one common pole.
The remaining poles are connected to one cable each. The input signal
arrives on one cable (V0) and is then split between the other two cables
(V1 and V2). The choice of the correct value for the resistors (Z0/3 =
16.6 Ω) guarantees an input impedance Z0 of 50 Ω for each port, with an
equal splitting coefficient and impedance matching [15], introducing no
reflections together with 50 Ω cables.

17

Z0/3

+

Z0/3

+

Z0/3

+

−

−−

V0

V1V2

Z0

Z0Z0

Figure 2.2: Resistive divider: in this configuration the input signal is split equally
between the other two ports.

18

Chapter 3

Signal Readout

3.1 Motivation

The goal of the study we are going to illustrate is to check the feasibility of
the detection of both γ-rays and protons using the same electronics chain
(PMT+HV+digitizer). According to Figure 3.1 [4], crystals of the CEPA part
are expected to measure at most energy depositions, for protons, of around
200 MeV in the LaBr3 part of the phoswich and of around 280 MeV in the total
phoswich crystal LaBr3+LaCl3.

(MeV)ClEΔ+BrEΔ
0 50 100 150 200 250 300

(M
eV

)
BrE

Δ

0

50

100

150

200

250

1

10

210

Figure 3.1: Plot of the energy deposition, by simulated protons at 1000 MeV, in the
LaBr3 versus the one in the whole phoswich crystal. Notice that the maximum energy
loss in the LaBr3 is around 200 MeV, while the maximum energy deposition before
punchthrough is around 280 MeV. Only electromagnetic interactions are taken into
account. The figure is taken from Ref. [4].

Based on Table 1.1 [4], the expected γ-ray energy resolution for 1 MeV γ-rays
is smaller than 6%. In order to keep this resolution for proton energies up to

19

280 MeV we would need a dynamic range in the digitizer equal to

20 keV
280 MeV

=
1

14000
≈ 2−13.8. (3.1)

This result means that a digitizer with a resolution of at least 14 bits is required
in order to satisfy the 6% requirement on the resolution. Note that the cal-
culation does not take into account any noise, which would require a higher
number of bits.

From Table 3.1 we can see that the light yield of LaBr3 is larger than that of
LaCl3. This means that, by employing the same photomultiplier voltage, for

Material Light Yield Decay Time
(photons/keV) (ns)

LaBr3 63 16
LaCl3 49 28

Table 3.1: LaBr3 and LaCl3 light yield and decay time.

the same energy deposited in the crystals, the pulse from the LaBr3 is larger
than that from the LaCl3. Since the main problem we encountered concerns
the (large) amplitude of the output signal, our analysis focuses on the LaBr3
crystal. Because of the low energy of the particles used in the studies, we could
not investigate the punch-through in the LaBr3 and the subsequent energy
deposition in the LaCl3. This represents an important limitation to our tests.
Indeed if the total energy deposited is close to the entire phoswich punch-
through energy, the produced pulse would be larger than the largest pulse
achievable in the LaBr3 alone (see results of calculations reported in Table 3.2).

Energy Deposited Deposited LaBr3 Deposited LaCl3 # photons
(MeV) (MeV) (MeV)

200 ≈ 200 ≈ 0 ≈12.6× 106

220 ≈ 120 ≈ 100 ≈12.46× 106

270 ≈ 100 ≈ 170 ≈14.63× 106

Table 3.2: Energy deposition and photons generated for protons with 200 MeV (close to
punch through of LaBr3), 220 MeV and 270 MeV (both representing a punch through of
LaBr3 and stop in the LaCl3). The energy values have been taken from Figure 3.16 of
the TDR [4].

In the end, it will be clear that detecting γ-rays and proton using the same
electronic setup is not feasible and that a change of the photomultiplier tubes
has to be considered.

20

3.2 Experimental Setups

Two different schemes were devised to trigger on signals from the CEPA4
crystals, while using the same configuration for PMT, High Voltage (HV) and
digitizer. This approach is needed because of the nature of the two different
probes exploited in this characterisation: γ-rays (with a maximum energy of
1.3 MeV) and cosmic muons (up to a few tens of MeV).

While γ-rays are almost completely stopped in a few cm of LaBr3, muons
are able to pass through the whole crystal.Therefore, when dealing with muons,
an external trigger system was used: two plastic scintillators were placed above
and two below the crystal and a coincidence of signals from all four was used
as trigger (for more information see section 3.2.1). This was done to

• Only consider muons which crossed just one of the crystals, the LaBr3
under investigation;

• Use only muons which follow a similar path in the crystal: because
of the distance between the plastic scintillators and the small common
area covered by them, all muons responsible for the coincidence trigger
intersect the crystals with an angle close to 0◦ with respect the vertical
axis.

For γ-rays this external trigger is unnecessary (and useless as well). While
charged particles, such as muons, lose energy continuously in a medium
until they are stopped, γ-rays undergo (macroscopically) discrete interactions.
Therefore they can not trigger all the scintillators in the same event. To cope
with this behaviour, the self-triggering feature given by the digitizers was used
(see section 3.2.2 for more details).

3.2.1 Setup for Muon Detection

As previously discussed, in order to detect muons we arranged four plastic
scintillators in such a way that the part of CEPA4 under investigation was
surrounded from above and below. The layout of the setup is shown in
Figure 3.2, while a photograph of it can be seen in Figure 3.4. Muons that hit
the two upper and two lower plastic scintillators generate signals which are
first discriminated against a threshold (ORTEC CF4000) set in order to avoid
recording electronic noise. The output square pulses given by the discriminator
are sent to a module (ORTEC CO4020) that checks for coincidences among the
signals from all the plastic detectors. Once a coincidence of all four detectors
occurs, a trigger reaches the digitizer, allowing it to record the pulses caused
by the muon in the upper and lower LaBr3 crystals. The samples are then
stored as text files in the computer connected to the digitizer. Signals from
the phoswich crystals can be attenuated, before reaching the digitizer, using
resistive dividers.

3.2.2 Setup for γ-rays Detection

The setup for measuring γ-rays is based on a self-triggering approach. To
accomplish our purpose we exploited a feature common to both CAEN digitiz-

21

LaCl3 LaBr3

LaCl3 LaBr3

18 cm 12 cm
7 cm

8 cm2

2 cm

Plastic 1

Plastic 2

Plastic 3

Plastic 4

Discriminator
ORTEC CF4000

CH0 CH1 CH2 CH3
OUT0

OUT1

OUT2

OUT3

Coincidence
ORTEC CO4020

CH0

CH1

CH2

CH3

OUT

DELAY

SPLIT

PMT

PMT

CAEN
DT5751/DT5730

Computer

INPUT

USB

TRG_ IN

µ

Figure 3.2: Setup schematic used for measuring signals generated by muons. The
electronic chain treating signals generated by the fours plastic scintillators is responsible
for the trigger and is visible in the bottom-right side. Signals from the CEPA4 crystals
(left side) reach the digitizer after being delayed and split, if necessary. For more details
see text.

ers: analysing the signal we feed to them, they are able to generate a trigger
based on the amplitude of the input signal, with no need for an external
trigger. Among all the parameters the user can set in the configuration file of
the driving program (see section 2.2.2.1), the most important are the trigger
threshold (given in ADC channels), the pre-trigger value (in samples) and the
recording length (in samples).

Figure 3.3 shows in detail the electronics chain used for measuring γ-rays.
The γ-source is placed in front of the tested LaBr3 crystal and held there by
tape: we mainly used a 60Co-source. Due to the energies of the two dominating
γ-rays (1.17 and 1.33 MeV) most of the them are absorbed by the crystal right
in front of the source.

Following the schematic, when a γ-ray hits the upper crystal, the electric

22

pulse generated by the PMT first can be split, according to the chosen atten-
uation, by a cascade of resistive dividers. Then it reaches the input channel
of the digitizer. As explained above, the trigger is generated internally by the
digitizer, which then sends the sampled data to the computer, where they are
stored as text files.

LaCl3 LaBr3

LaCl3 LaBr3

2.7 cm

6 cm 4 cm

γ-source

PMT

PMT

SPLIT

CAEN
DT5751/DT5730

Computer

INPUT
(self-trigger)

USB

Figure 3.3: Setup schematic used for measuring signals generated by γ-rays. Different
from the muon setup, there is no electronic chain for the trigger generation needed.
Signals from the phoswich crystals are sent to the digitizer and internal self-triggering is
operated. For more details see text.

23

(a) Top view.

(b) Front view.

Figure 3.4: Setup for muon detection. The four black cylindrical devices are the plastic
scintillators (together with their PMTs) used for triggering. Phoswich crystals and the
attached PMTs are enclosed in the grey box in the center.

24

3.3 Data Analysis

As explained in section 3.1, in this study we want to characterise the energy
spectrum of incoming particles that can be detected with the CEPA4 and the
electronics previously described. In order to measure the energy deposited by
each particle, we have defined three different methods:

• Area1: the energy is given by the integral of the entire recorded wave;

• Max: the maximum amplitude of the wave is considered as energy
deposited;

• Area2: the energy is calculated as integral of the wave inside a fixed-size
time window centred around the peak, usually from 50 samples before
the peak to 100 samples after.

An important aspect when calculating an integral of a signal is the level of
zero amplitude, also called baseline. Because of the presence of a small bias and
noise in signals from PMTs, the value of the integral can be heavily influenced
even by small shifts, especially if the integral is carried out over a large amount
of samples. To cope with this issue, the baseline is calculated as the average of
the first 20 amplitude samples, which contain just noise. The lack of pulses in
these initial samples is ensured by the fact that the digitizer records a certain
amount of samples before the triggered signal: this interval is called pre-trigger
and its value can be set in a configuration file (see section 2.2.2.1).

All the studies performed were done using signals from the crystal labelled
as 3, in the CEPA4 prototype. This choice was made accordingly to the gain
trend while varying the voltage applied to the PMTs. In Figure 3.5 the peak
mean value of the muon energy spectrum, calculated using Area1, is plotted
versus the PMT voltage: it can be noticed that crystal 2 and 3 have a behaviour
which averages among all. From the plot, it can be notice the exponential trend
of the average pulse energy with the high voltage applied. This behaviour can
be confirmed by the exponential trend of the PMTs gain versus applied high
voltage, shown in Ref. [11].

3.3.1 Noise study

Before showing results obtained from the measurements, we try to characterise
the noise given by the detectors, PMTs and electronics in order to understand
the different contributions and the influence it can have in the final setup.

Figure 3.6 shows the mean value of the noise distribution in relation to
the high voltage (HV) applied to the PMTs. The uncertainty reported is just
the standard deviation of the noise distribution. This was done for voltages
between 450–600 V in steps of 25 V.The noise level for each wave is calculated
using the first 20 samples of the trace: since the trigger comes much later
(at least 100 ns later), the choice of this time range ensures that the signal is
flat and it does not describe detection of any particle. The noise amplitude is
therefore calculated as the difference between the minimum and the maximum
value of the 20 samples.

25

Voltage (V)
300 350 400 450 500 550

M
ea

n
(c

h)

310

410

crystal 1
crystal 2
crystal 3
crystal 4

Figure 3.5: Mean value of the muon peak calculated using Area1 versus the voltage
applied to the PMT.

Voltage (V)
440 460 480 500 520 540 560 580 600

M
ea

n
(c

h)

8

10

12

14

16

18

20

Figure 3.6: Mean value of the noise distribution versus voltage. The uncertainties are
the standard deviations of the noise distribution.

26

We studied the noise distribution in other operational conditions, such as
without high voltage applied, network or other unnecessary cables connected:
to be completely sure of not being influenced by any background radiation and
electromagnetic interference, we carried out the noise measurements in three
different locations as well. The results are shown in Table 3.3: the data tagged
as lab and office were obtained from measurements done in different locations
but in the same building, while those tagged as origo come from measurements
carried out in a different building. As can be easily noticed, numbers show the
same noise behaviour within error bars.

Voltage Input Type Location Mean Std. Dev.
(V) (LSB) (LSB)

600 detector lab 14.66 4.66
0 detector lab 14.97 4.87
0 50 Ω lab 9.23 1.83
0 50 Ω office 9.27 1.94
0 open office 9.28 1.92
0 50 Ω origo 9.14 1.84
0 open origo 9.25 1.84

Table 3.3: Mean and standard deviation of the noise distribution with and without HV.
The measurements with no voltage were done without network or other unnecessary
cables connected to the devices in three different locations.

3.4 Results

In the following sections, the detector signal is passed through several attenu-
ation stages in order to reduce its amplitude. A single stage consists of one
resistive divider (see section 2.2.3) and therefore the signal amplitude is split
in half at each stage. In the following plots the attenuation factor is reported
as number of splits: this means that a splitting number x corresponds to an
attenuation factor of 1/2x.

To fit the peaks in the γ-rays energy spectra and recover information about
mean value and variance, we used a Gaussian function, to represent the peak,
summed to a linear function, which takes the background into account.

3.4.1 Maximum Energy Range

In this section we check the maximum energy range covered by using the 2 Vpp
input available in the DT5730 for different attenuation factors. The PMT bias
voltage was set to −600 V for all the cases analysed.

Figure 3.7 shows the resulting range depending on the number of splits.
For calculating the maximum energy value we used the calibration information
obtained by using 60Co as γ-source. The energy of each pulse was initially
calculated using the three methods explained in section 3.3. However a com-
parison of the results from these three methods shows that the ranges given

27

by Max are the smallest ones: assuming a conservative approach we therefore
plotted these values in Figure 3.7.

Splitting
0 0.5 1 1.5 2 2.5 3

R
an

ge
 (

M
eV

)

10

20

30

40

50

Figure 3.7: Maximum energy range achievable in a 2 Vpp input voltage range versus
number of times the signal was split. All the measurements were carried out using a
PMT bias voltage of −600 V and a 60Co γ-source.

Muon measurements with the same HV setting but with an attenuation
factor of 8 give the following maximum energies that can be digitised:

• Area1: 72 MeV;

• Max: 50 MeV;

• Area2: 72 MeV.

These values are provided with an error smaller than 10 MeV.
In Figure 3.8 the three calibrated energy spectra for muons are plotted.

During the acquisitions we paid attention to have the peak amplitude of the
largest pulses inside the limit of the digitizer input range: in this way the range
obtained from the pulse area gives the maximum energy limit. This value
results to be 1.44 times larger than the range obtained using the amplitude
approach. Further investigations revealed that the traces from muons at higher
energies than the 20 MeV peak are distorted. Reasons for this distortion are
discussed in section 3.4.3. A comparison between Figure 3.9 and 3.10 show
the effects of this distortion on the results previously described. In Figure 3.10
there is no distortion, since the high voltage applied is quite low (−450 V),
and the relation between the integral and the maximum value of the pulse is
linear. This linearity instead is broken if the high voltage is raised to −600 V:
starting from values of Max around 900 and up, it is clear that the area of a
pulse is increasing faster than the peak value does. Therefore this results in
larger values given by the area methods than the expected ones.

28

Energy (MeV)
0 20 40 60 80 100

C
ou

nt
s

1

10

210

Energy (MeV)
0 10 20 30 40 50

C
ou

nt
s

1

10

210

Energy (MeV)
0 20 40 60 80 100

C
ou

nt
s

1

10

210

Figure 3.8: Calibrated energy spectra for muons using a PMT HV of −600 V and an
attenuation factor of 8. The three plots represent energy ranges obtained using Area1
(top), Max (middle) and Area2 (bottom).

29

Max (ADC channels)
0 2000 4000 6000 8000 10000 12000 14000

A
re

a
(a

.u
.)

0

50

100

150

200

250

300
310×

Figure 3.9: Values of the area, obtained using the Area1 method, are plotted against the
corresponding value of the pulse peak (Max). Data come from measurements using a
HV of −600 V and an attenuation factor of 8 applied to the output signal.

Max (ADC channels)
0 2000 4000 6000 8000 10000 12000 14000

A
re

a
(a

.u
.)

0

50

100

150

200

250

300
310×

Figure 3.10: Values of the area, obtained using the Area1 method, are plotted against
the corresponding value of the pulse peak (Max). Data come from measurements using
a HV of −450 V. No attenuation was applied.

30

3.4.2 Resolution of γ-peaks

In this section, first we study how the energy spectrum given by a 60Co source
changes by varying the attenuation factor: we focus on the two energy peaks
at 1.173 MeV and 1.332 MeV. After that we analyse how the energy resolution
is affected by the attenuation factor: for this case we take the γ-peaks from
60Co (at 1.173 MeV and 1.332 MeV) into account, as well as the one from 137Cs
(0.662 MeV). The HV was set to −600 V for all cases.

Plots in Figure 3.11 show how the mean values for the two γ-peaks of 60Co
change compared to the applied attenuation factor. The values are calculated
using the three methods explained in section 3.3, as specified in the figure
legends. The results are plotted as function of the number of ADC channels.
The sigma of each peak was used as the uncertainty of the corresponding mean
value.

In order to characterise the energy resolution of the CEPA4 crystals we use
data from both a 60Co and a 137Cs source: this is done to analyse a larger energy
range, thanks to the lower peak energy of γ-rays generated by the 137Cs source.
The energy resolution of the 0.662 MeV, 1.173 MeV and 1.332 MeV peaks was
calculated as R(%) = 2.35 · σ/x̄, where x̄ is the mean value and σ the standard
deviation obtained from the peak fit. The values are shown in Figure 3.12: the
resolution is more or less constant up to an attenuation factor of 2 (splitting
equal to 1), while it starts to get worse for higher values. In all cases, Area1 and
Area2 methods provide a very similar resolution, while the one calculated from
the Max method is worse: the best value is obtained using the method Area2.

31

Splitting
0 0.5 1 1.5 2 2.5 3

pe
ak

 p
os

iti
on

 (
ch

)

0

5000

10000

15000

20000

25000

30000

35000

40000

1.173 MeV mean from area1

1.173 MeV mean from max

1.173 MeV mean from area2

(a) Mean value for the 1.173 MeV peak from 60Co.

Splitting
0 0.5 1 1.5 2 2.5 3

pe
ak

 p
os

iti
on

 (
ch

)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1.332 MeV mean from area1

1.332 MeV mean from max

1.332 MeV mean from area2

(b) Mean value for the 1.332 MeV peak from 60Co.

Figure 3.11: Mean value (as peak position in ADC channels) for the two peaks from
60Co versus splitting times. The uncertainties used are the sigmas of the energy peaks.
The methods used to reconstruct the energy spectrum are indicated in the legends. The
HV applied to the PMT is −600 V.

32

Splitting
0 0.5 1 1.5 2 2.5 3

R
es

ol
ut

io
n

(%
)

2

4

6

8

10

12

14
0.662 MeV resolution from area1

0.662 MeV resolution from max

0.662MeV resolution from area2

Splitting
0 0.5 1 1.5 2 2.5 3

R
es

ol
ut

io
n(

%
)

2

3

4

5

6

7

8

9

10
1.173 MeV resolution from area1

1.173 MeV resolution from max

1.173 MeV resolution from area2

Splitting
0 0.5 1 1.5 2 2.5 3

R
es

ol
ut

io
n

(%
)

2

3

4

5

6

7

8

9

10
1.332 MeV resolution from area1

1.332 MeV resolution from max

1.332 MeV resolution from area2

Figure 3.12: Resolution versus splitting for the 0.662 MeV (top), 1.173 MeV (middle)
and 1.332 MeV (bottom) peaks. Methods used to reconstruct the energy spectrum are
specified in the legend. In all cases the HV applied to the PMT is −600 V.

33

3.4.3 PMT Saturation and Signals Distortion

From the previous sections we conclude that a HV of −600 V would be enough
to satisfy the requirements on the γ-energy resolution. However to detect
muons using this voltage, we need to apply an attenuation factor of 8, which
deteriorates the γ-energy resolution. An idea to solve this problem is to
increase the HV even further, meanwhile applying a higher attenuation factor.
Nevertheless this approach reveals to have bad side-effects on the output signal
from the PMTs.

To investigate the behaviour of the photomultiplier at higher HV values,
the muon setup was used at voltages of −700 V and −800 V. In Figure 3.13,
the left column shows the waves acquired in the LaBr3 crystal setting the HV
to −700 V (top) and −800 V (bottom). An attenuation factor of 16 was used in
both cases.

Figure 3.13: Left Column: measured waves from muons interaction in the LaBr3 using
−700 V (top) and −800 V (bottom), both with an attenuation factor of 16. Right Column:
only the coloured waves from the two respective pictures in left column are normalized
to their maximum amplitudes.

Simulations performed using ggland predict the muon peak at ≈22 MeV.
The denser blue bands in Figure 3.13, i.e. at amplitude ≈− 7000 (top plot) and
≈− 10 000 (bottom plot), correspond to the mean energy of the muons. It is
important to notice here the distortion of the signals due to the high voltage

34

level combined with the energy deposited by the muons. As expected, the
distortion takes place at lower energies in the bottom plot compared to the top
one. This is due to the larger HV applied to obtain the bottom plots. This effect
is also visible also when the pulse energy is plotted as a function of the pulse
peak: Figure 3.14a and 3.14b show that the area of distorted pulses increases
while their maximum value does not.

Max (ADC channels)
0 2000 4000 6000 8000 10000 12000 14000

A
re

a
(a

.u
.)

0

50

100

150

200

250

300
310×

(a)

Max (ADC channels)
0 2000 4000 6000 8000 10000 12000 14000

A
re

a
(a

.u
.)

0

50

100

150

200

250

300
310×

(b)

Figure 3.14: Values of the area, obtained using the Area1 method, are plotted against
the corresponding value of the pulse peak (Max). Data come from measurements using
a HV of −700 V (a) and −800 V (b). In both cases an attenuation factor of 16 is applied
to the output signal.

To be sure that the CAEN digitizer is not somehow causing the distortion,
the same type of measurements was carried out using a digital LeCroy oscillo-
scope as acquisition device, at a sampling frequency of 10 GS/s. The results
are shown in Figure 3.15: in the left column, the top plot shows the waves
acquired using a HV of −600 V and an attenuation factor of 4, while for the
bottom one we used a HV of −800 V and an attenuation factor of 16 (same as
on the bottom plot from Figure 3.13). When comparing the waves obtained for
−800 V with the ones from Figure 3.13, it is observed that they do not have the
same shape, but rather a distortion for larger amplitudes. At −600 V instead
there are very small distortions.

35

Figure 3.15: Left Column: measured waves from muons interaction in the LaBr3 usign
−600 V and an attenuation factor of 4 (top) and −800 V and an attenuation factor of 16
(bottom). Right Column: only the coloured waves from the two respective pictures in
left column are normalized to their maximum amplitudes.

36

Chapter 4

Time Resolution

4.1 Motivation

With the studies here shown we want to investigate the time resolution achiev-
able with the phoswich crystals and the electronics described in section 2.2.
Several aspects are examined and results are promising:

• Tuning the electronics properly and using fitting operations, the time
resolution of CEPA4 LaBr3 crystals reaches values of around 50 ps;

• It is possible to obtain time resolution values smaller than 100 ps with
sampling frequencies down to 250 MS/s;

• Lowering the bit resolution from 14 to 10 bits results only in a ≈ 6%
worsening of the time resolution.

We remind the reader that the electronics proposed for the CEPA part of
CALIFA [4] plans to achieve a sampling frequency of 1 GS/s and a bit resolution
of 14 bits. In this chapter however we do not discuss implications on the pulse
shape analysis if the bit resolution and the sampling frequency are reduced.

It needs also to be considered that the σt values shown in the following
sections refer to the time difference between two crystals. Therefore, to get the
resolution of the individual crystals one needs to divide those values by

√
2.

4.2 Time Resolution using Muons

To characterise the time resolution of the CEPA4 crystals, we first exploit the
muons’ capability of traversing two adjacent crystals. In this way we can
characterise the difference in the crossing time between the two crystals and
give a first taste of the timing abilities of phoswich crystals.

4.2.1 Experimental Setup

The experimental setup is similar to the one used in the previous studies for
detecting muons (see section 3.2.1). A HV of −450 V was used. However, to

37

monitor two stacked crystals at the same time, we need to feed the sampling
device simultaneously with signals from two crystals on two separate channels.

The layout of the setup is shown in Figure 4.1 and a picture of it is shown in
Figure 3.4. A muon that hits the two upper and two lower plastic scintillators
creates a trigger that allows to record the pulses generated by the same muon
in the upper and lower LaBr3 crystals. The study is carried out mainly using
the LaBr3 part of the phoswich, because its higher time resolution compared
to the LaCl3 [7], allows us to improve the readout electronics so that we can
exploit this feature.

LaCl3 LaBr3

LaCl3 LaBr3

≈18 cm ≈12 cm
≈7 cm

≈8 cm2

≈2 cm

Plastic 1

Plastic 2

Plastic 3

Plastic 4

Discriminator
ORTEC CF4000

CH0 CH1 CH2 CH3
OUT0

OUT1

OUT2

OUT3

Coincidence
ORTEC CO4020

CH0

CH1

CH2

CH3

OUT

DELAY

PMT

PMT

CAEN
DT5751/DT5730

LeCroy 7100A
Computer

IN0 IN1

USB

TRG_ IN

µ

Figure 4.1: Schematic of the setup used for measuring muons (for details see text).

38

4.2.2 Procedure

The acquired raw data are stored in text files, where amplitude and time are
sorted into arrays whose size depends on the acquisition system used. The
steps followed to get the time difference between the pulses generated by the
same muon in the upper and lower crystals are:

• Baseline: calculated using 20 samples in case of the CAEN digitizers
or 1000 samples in case of the LeCroy oscilloscope. As explained in
section 3.3, the baseline is the average of the first 20 amplitude samples.
The obtained value is then subtracted from the wave samples.

• Maximum Amplitude (MA): determined for each pulse and then used to
set a threshold, which is defined as a fraction (f) of the MA. While for the
CAEN digitizers the MA is simply the largest amplitude, for the LeCroy
oscilloscope a Gaussian fit to the top part of the wave is performed and
the maximum amplitude is taken with respect where the mean value of
the fit is. This different procedure is needed to get a more accurate value,
as the LeCroy device features a very large sampling rate with much noise.

• Time Determination: to determine the time reference of each pulse three
different approaches were used:

1. Linear Interpolation: a linear interpolation is performed between
two points of the waveform, the one just before the threshold and
the one just after the threshold;

2. Linear Fit: a linear fit is performed in the region around the thresh-
old (using three samples for the digitizers and a larger number
for the oscilloscope). The time reference is given by the fit at the
threshold.

3. Polynomial Fit: a second order polynomial fit is performed in the
region around the threshold (using three samples for the digitizers
and a larger number for the oscilloscope). The time is given by the
fit at the threshold.

• Time Difference Calculation: the difference between the time reference
of two pulses is calculated for each of the three methods mentioned in
the previous point and the data are histogrammed. Then a Gaussian fit is
performed to obtain the width, which is the sought time resolution. Only
pulses with a minimum required amplitude, which are completely inside
the dynamic range of the device, were used to calculate the resolution.

As the two CAEN modules differ in sampling frequency and bit resolution,
we started the study by using them without altering the output data. This
was done to see if (and, in case, how) the different features influence the
time resolution. We used data from the LeCroy oscilloscope as well, since its
characteristics are dissimilar from the other two.

After these initial basic investigations, we moved forward trying to sim-
ulate a broader range of sampling frequencies and bit resolutions using the
data acquired with the two CAEN modules. In section 4.4 these studies are
addressed.

39

4.2.3 Results and Comparison

In this section we present data and results obtained using the three digitization
modules described. A comparison between the final data will be carried out in
the end.

4.2.3.1 Data Elaboration

Following the procedure illustrated in the previous section, we calculate the
time difference using the three listed methods for each digitizer: an example
using data from the DT5730 is shown in Figure 4.2. This is done using fractions
f ranging from 5 to 50% of the MA of the pulse.

h
Entries 967
Mean 0.243−
Std Dev 0.266

 / ndf 2χ 75.62 / 49
Constant 6.2± 137.3
Mean 0.0035±0.2469 −
Sigma 0.0031± 0.1027

Time difference (ns)
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

C
ou

nt
s

0

20

40

60

80

100

120

140

h
Entries 967
Mean 0.243−
Std Dev 0.266

 / ndf 2χ 75.62 / 49
Constant 6.2± 137.3
Mean 0.0035±0.2469 −
Sigma 0.0031± 0.1027

h

h_fromFitToPol2
Entries 967
Mean 0.241−
Std Dev 0.2788

 / ndf 2χ 82.68 / 54
Constant 6.2± 137.3
Mean 0.0035±0.2453 −
Sigma 0.0030± 0.1018

Time difference (ns)
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

C
ou

nt
s

0

20

40

60

80

100

120

140

160
h_fromFitToPol2

Entries 967
Mean 0.241−
Std Dev 0.2788

 / ndf 2χ 82.68 / 54
Constant 6.2± 137.3
Mean 0.0035±0.2453 −
Sigma 0.0030± 0.1018

h_fromFitToPol2

h_fromFitToPol1
Entries 967
Mean 0.2381−
Std Dev 0.2779

 / ndf 2χ 86.14 / 53
Constant 5.6± 128
Mean 0.0037±0.2468 −
Sigma 0.0030± 0.1087

Time difference (ns)
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

C
ou

nt
s

0

20

40

60

80

100

120

140
h_fromFitToPol1

Entries 967
Mean 0.2381−
Std Dev 0.2779

 / ndf 2χ 86.14 / 53
Constant 5.6± 128
Mean 0.0037±0.2468 −
Sigma 0.0030± 0.1087

h_fromFitToPol1

Figure 4.2: Histograms of the time difference using data from the DT5730. Top: time
difference obtained from the linear interpolation method. Center: time difference
obtained from the second order polynomial fit. Bottom: time difference obtained when
the first order polynomial fit is used for the time calculation. All three plots used
f =50%.

40

Procedure for LeCroy 7100A Data As described in section 4.2.2, data from
the LeCroy oscilloscope need to be treated differently than those from the
CAEN modules. To show this procedure we take as example for the MA
determination an event where both the pulses are inside the dynamic range of
the oscilloscope. The waves are shown in Figure 4.3, with in the left plot the
pulse from the upper crystal and in the right plot that coming from the lower
crystal.

Time (ns)
300− 200− 100− 0 100 200 300

V
ol

ta
ge

 (
V

)

0.35−

0.3−

0.25−

0.2−

0.15−

0.1−

0.05−

0

0.05

Time (ns)
300− 200− 100− 0 100 200 300

V
ol

ta
ge

 (
V

)

0.35−

0.3−

0.25−

0.2−

0.15−

0.1−

0.05−

0

0.05

Figure 4.3: Waves acquired with the LeCroy oscilloscope for one event. Left: upper
crystal. Right: lower crystal.

After subtracting the baseline, the maximum amplitude is determined: first
the point with the maximum amplitude is found for each pulse and used to
define the range where the Gaussian fit will be performed. Figure 4.4 shows
the Gaussian fits performed in a region around the maximum amplitude point.
Once the MA is obtained, the procedure is identical to that used for the other
two digitizers.

Time (ns)
104− 102− 100− 98− 96− 94− 92− 90−

V
ol

ta
ge

 (
V

)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

Time (ns)
102− 100− 98− 96− 94− 92− 90− 88−

V
ol

ta
ge

 (
V

)

0.16

0.18

0.2

0.22

0.24

Figure 4.4: Gaussian fits performed to the waves acquired with the LeCroy oscilloscope
to determine the maximum. Left: upper crystal. Right: lower crystal.

41

4.2.3.2 Comparison

The sigma values from the time differences taken into account for a comparison
are only those obtained using the two CAEN modules. Values produced from
the LeCroy data show a much worse resolution, probably due to the lower bit
resolution: using the three methods, the values are (533± 53)ps, (242± 9)ps
and (229± 9)ps, respectively. We therefore didn’t proceed with a deeper
analysis of these last numbers.

Figure 4.5 and Tables 4.1a and 4.1b show the dependence of the σt obtained
from the Gaussian fits to the time difference plots obtained by the three
methods for the two digitizers. What can be seen is that, for low fraction
values, the best approach for both CAEN modules is to use the second order
polynomial fit. This is expected because low fraction values means trying to
fit in the curved rising part of the pulse. For medium fraction values, the
fit is performed in the linear rising part of the pulse and therefore a simple
interpolation gives almost the same result of a polynomial fit.

Fraction (%)
5 10 15 20 25 30 35 40 45 50

S
ig

m
a

(p
s)

40

60

80

100

120

140

interpolation 2 points DT5730 (500MS/s)
pol1 fit 3 bins DT5730 (500MS/s)
pol2 fit 3 bins DT5730 (500MS/s)
interpolation 2 points DT5751 (1GS/s)
pol1 fit 3 bins DT5751 (1GS/s)
pol2 fit 3 bins DT5751 (1GS/s)

Figure 4.5: Extracted σt versus the fraction used to set the threshold calculated by the
three methods. Data for both the CAEN digitizers are provided.

42

f σi σ f σs
(%) (ps) (ps) (ps)

5 115.0±4.0 — 70.9±2.0
10 88.6±3.4 — 74.7±2.3
15 81.5±2.8 — 75.1±2.6
20 80.3±2.5 — 77.5±2.4
25 81.6±2.5 — 78.3±2.3
30 77.5±2.4 89.8±3.5 80.2±2.3
35 86.8±2.7 87.1±2.8 83.7±2.7
40 86.8±2.7 91.2±2.9 87.8±3.0
45 94.1±3.0 99.1±2.0 96.5±3.0
50 102.7±3.1 108.6±3.0 101.8±3.0

(a)

f σi σ f σs
(%) (ps) (ps) (ps)

5 104.6±4.5 — 90.8±4.2
10 78.8±3.0 104.0±4.6 79.7±2.7
15 82.6±3.3 92.5±5.3 81.9±3.5
20 79.2±3.0 87.4±3.0 87.2±3.2
25 81.2±3.0 94.4±3.8 81.8±2.5
30 81.3±2.7 86.7±2.7 84.1±3.2
35 85.3±3.1 85.2±2.6 85.7±3.2
40 87.4±3.2 88.1±3.0 89.3±2.9
45 91.8±3.2 90.1±2.9 96.2±3.7
50 102.6±3.7 99.1±3.6 101.9±3.9

(b)

Table 4.1: Calculated σt from the Gaussian fits to the time difference plots obtained
from the three methods using data from (a) the CAEN DT5730 (500 MS/s) and from
(b) the CAEN DT5751 (1 GS/s). The subscripts i, f and s identify the method used
for determining the time reference of the single pulse and therefore stand for the
interpolation, fit to a first and second order polynomials, respectively.

43

4.3 Time Resolution using γ-rays

The ideal setup to measure time resolution using γ-rays would have a 22Na source
located between two crystals, which are placed at sufficient distance to each
other but symmetrically with respect to the source. This arrangement would
allow to exploit the back-to-back γ-γ coincidence. Such a setup could not be
used because the CEPA4 crystals can not be separated. Therefore other ways
of measuring the time resolution for γ-rays were investigated.

4.3.1 Experimental setup and Procedure

To calculate the time resolution using γ-rays, two different experimental setups
were developed:

• Setup A: a 60Co source is attached on the front and in the center of
crystals 3 and 4 of CEPA4. In this way the two γ-rays from the source
may hit both crystals. In this case we measure the time difference between
signals from the two LaBr3 crystals.

• Setup B: a 22Na source is positioned in between crystal 3 of CEPA4 and
a plastic scintillator. In doing so the two 511 keV γ-rays hit both detectors
in the same event.

Only the CAEN DT5751 was used for this measurement and in both the
setups only two channels were involved. Two different software triggers were
taken into account to calculate the time difference:

• AND of both channels: the digitizer records data only if two pulses, one
for each channel, are detected within a configurable time window. For
our purposes this window was set to 10 ns.

• ch0_TO_ALL: every time a pulse in channel 0 is detected, the digitizer
stores traces from both channels.

In both cases the trigger for the single pulse is self-generated by the digitizer,
according to a user-set threshold. All the configurations and the acquisitions
of data were done using the CAEN software digiTes (see section 2.2.2.1).

A number of problems were encountered with the setups and the trigger
generation. Setup B was not suitable for any trigger scheme: although we
do not have a conclusive explanation, we notice that the photopeak efficiency
for plastic scintillators is rather low [16], which cause the detector to trigger
also on spurious and background events. What we noticed was the poor time
resolution of a few nanoseconds. Using setup A together with the AND trigger,
we were not able to obtain a good energy spectrum.

Therefore the only way to measure reliable data was setup A with the
software trigger ch0_TO_ALL. The events were further filtered using the energy
requirements, for a single event, of ≈1.2 MeV in crystal 3 and ≈1.3 MeV in
crystal 4 or vice versa: these two numbers are the energies of the γ-rays from
the decay of 60Co. To obtain the time resolution we used the same procedures
as employed for muons.

44

4.3.2 Results

Table 4.2 shows the σt results when the fraction f ranges from 5-50%. The best
value was obtained using the second order polynomial fit and a fraction f of
5%. Considering results obtained with the muons interaction (Table 4.1b), it is
easy to see that the best value of time resolution with γ-rays is worse than any
result obtained with muons.

f σi σ f σs
(%) (ps) (ps) (ps)

5 193.1±4.5 237.4±6.7 189.4±4.8
10 198.2±4.9 201.8±4.7 199.4±5.0
15 209.6±5.1 208.6±5.0 205.6±4.6
20 220.3±4.9 219.4±5.0 226.8±5.4
25 230.7±5.2 227.5±4.8 239.5±5.5
30 245.2±5.4 241.8±5.2 249.1±5.4
35 258.6±5.8 258.3±5.6 257.5±5.5
40 273.4±5.8 273.4±5.7 285.2±6.0
45 293.5±6.1 286.7±6.3 292.4±6.0
50 318.3±6.8 312.7±6.5 322.1±7.0

Table 4.2: Obtained σt from the Gaussian fits to the time difference plots obtained
from the three methods using data from the CAEN DT5751 (1 GS/s). γ-rays from a
60Co source were used to generate pulses in LaBr3 crystals. The subscripts i, f and
s identify the method used for determining the time reference of the single pulse
and therefore stand for the interpolation, fit to a first and second order polynomials,
respectively.

45

4.4 Frequency and Bit Resolution Studies

In the previous sections we analysed how the time resolution is influenced by
the particles, and therefore the energy deposition, considered. The procedure,
including fits, thresholds, etc., to obtain the final data was also scrutinised.

Now we want to investigate how the sampling frequency and the bit
resolution can influence the time resolution. Although we have access to two
models of digitizers (see section 2.2.2), characterised by different features,
we want to extend the range of the studied sampling frequencies and bit
resolutions. To do so, we manipulate via software the collected data in order
to simulate different digitisation cases.

Following the studies conducted in the previous sections, we show how
the time resolution for several fractions f of the MA varies by changing the
sampling frequency and the bit resolution.

4.4.1 Sampling Frequency Analysis

Two separate analyses are conducted for the two CAEN digitisers. The pro-
cedure for obtaining various sampling frequencies is the same in both cases,
although the ranges were different. In the end a comparison between the two
sets of results will be carried out.

4.4.1.1 Data Manipulation Procedure

If we acquire traces within a time window Tw and we store a number of samples
N for each trace. The sampling frequency is fs = N/Tw: from this relation it is
possible to simulate other (lower) fs values just by skipping samples, therefore
reducing N.

Suppose now we want to delete every second sample. We can proceed
removing the 2nd, the 4th, the 6th etc. or the 1st, the 3rd, the 5th. In this work
we call this shifting in choice offset. While in this example the offset can be
set as either 0 or 1, when it comes to higher removal factors r, the offset can
take values between 0 and r− 1. Since we are always considering data from
two separate detectors, the easiest approach is to use the same offset value for
two pulses in the same event: in the results this will be labelled as same offset.
However actual pulses from different detectors are not in perfect coincidence
at the sampling stage, because of different cable lengths or particles hitting
detectors at different moments. To be able to simulate this scenario, two
random-generated offsets are applied to the removal procedure in the two
channels. Data from this approach will be labelled as different offset. In the
following sections, we show mainly data obtained using this approach.

4.4.1.2 Data from the CAEN DT5751

The DT5751 module has a sampling frequency of 1 GS/s (period of 1 ns). By
removing one out of two samples, we therefore simulate a digitizer with a
sampling frequency of 500 MS/s (2 ns), removing two out of three samples the

46

sampling interval becomes ≈333 MS/s (3 ns), etc. These studies were done for
sampling frequencies ranging from 250 MS/s to 1 GS/s.

Figure 4.6 and Table 4.3a show the σt results obtained for the time differ-
ence using data from the DT5751. Different sampling intervals selected with
different offsets between traces are used.

f (%)
5 10 15 20 25 30 35 40 45 50

 (
ps

)
σ

70

80

90

100

110

120

130

140

150

160

DT5751 (1GS/s), diff offset

sampling 1 (1ns)

sampling 2 (2ns)

sampling 3 (3ns)

sampling 4 (4ns)

Figure 4.6: Extracted σt from the Gaussian fits to the time difference plot obtained for
the DT5751 module versus fraction for different samplings, using differently random-
generated offsets for the two traces.

Table 4.3b shows data obtained with the same offset approach. A fast
comparison with data of Table 4.3a reveals the better values obtained with the
same offset mode compared to the (more realistic) different offset approach.

47

f σ1 (1 GS/s) σ2 (500 MS/s) σ3 (333 MS/s) σ4 (250 MS/s)
(%) (ps) (ps) (ps) (ps)

5 95.8±3.9 – – –
10 77.5±2.9 – – –
15 80.3±3.0 – – –
20 77.7±2.8 – – –
25 81.1±2.9 88.2±3.2 – –
30 84.6±3.0 85.1±2.9 – –
35 87.3±3.3 86.3±3.1 – –
40 91.5±3.3 91.3±3.2 104.4±3.5 137.2±4.3
45 89.9±2.8 95.9±3.4 109.6±4.1 133.5±4.3
50 103.3±3.5 103.9±3.8 123.4±4.7 148.8±5.3

(a)

f σ2 (500 MS/s) σ3 (333 MS/s) σ4 (250 MS/s)
(%) (ps) (ps) (ps)

5 – – –
10 – – –
15 – – –
20 – – –
25 80.5±2.8 – –
30 82.6±2.7 – –
35 84.0±2.8 – –
40 88.5±3.1 93.2±3.7 96.5±3.6
45 91.9±3.2 96.2±3.6 98.0±3.5
50 99.9±3.5 98.3±3.2 101.2±4.3

(b)

Table 4.3: Elaborated σt obtained from the Gaussian fits to the time difference plots
using data from the DT5751 digitizer. In (a) two random-generated offsets, one for each
channel, were used when samples were removed. In (b) instead the same offset for
both channels was used. All the data analysed have a 10 bits resolution but different
sampling frequencies, as indicated within parentheses. The subscripts 1, 2, 3 and 4
highlight this different sampling obtained via post software operations.

48

4.4.1.3 Data from the CAEN DT5730

The DT5730 has a sampling frequency of 500 MS/s (period of 2 ns). By re-
moving one sample every two we then simulate a digitizer with a sampling
frequency of 250 MS/s (4 ns), removing two every three samples the sampling
frequency turns to be ≈166 MS/s (6 ns), etc. These studies were done for
sampling frequencies ranging from 125 MS/s to 500 MS/s.

Figure 4.7 and Table 4.4 show the σt results obtained for the time difference
when the DT5730 is used at various sampling frequencies selected with a
random offset between pulses.

f (%)
5 10 15 20 25 30 35 40 45 50

 (
ps

)
σ

210

310
DT5730 (500MS/s), diff offset

sampling 1

sampling 2

sampling 3

sampling 4

Figure 4.7: Measured σt from the Gaussian fits to the time difference plot obtained for
the DT5730 versus fraction for different samplings, using differently random-generated
offsets for the two traces.

49

f σ1 (500 MS/s) σ2 (250 MS/s) σ3 (166 MS/s) σ4 (125 MS/s)
(%) (ps) (ps) (ps) (ps)

5 115.6±4.4 – – –
10 86.1±3.3 – – –
15 82.2±3.2 – – –
20 80.8±2.5 – – –
25 81.9±2.4 224.2±6.6 – –
30 79.6±2.5 180.7±4.5 – –
35 81.6±2.6 154.9±3.8 514.3±16.3 –
40 86.4±2.8 138.5±3.9 418.5±12.0 1002.0±38.6
45 93.9±3.0 140.2±4.4 371.9±10.0 943.2±36.2
50 101.2±3.1 154.1±4.5 328.6±8.1 911.3±31.8

Table 4.4: Obtained σt from the Gaussian fits to the time difference plots using data
from the DT5730 digitizer and the linear interpolation method. Two random-generated
offsets, one for each channel, were used when samples were removed. All the data
analysed have a 14 bits resolution but different sampling frequency, as indicated within
parentheses. The subscripts 1, 2, 3 and 4 want to highlight this different sampling
obtained via post software operations.

50

4.4.1.4 Results Comparison

Figure 4.8 shows the best σt values for each sampling frequency, using random
offsets. Data come from Table 4.4 for the DT5730 (blue X-es) and from Table 4.3b
for the DT5751 (red crosses): only the best values for each column (in bold) are
used in the plot. The first thing to notice is how the time resolution deteriorates
for sampling frequencies below 250 MS/s. The second characteristic, which
will be analysed more deeply in the next section, is that the data from the two
digitizers show a good agreement between each other, although two different
bit resolutions are used.

freq (MS/s)
100 200 300 400 500 600 700 800 900 1000

 (
ps

)
σ

0

100

200

300

400

500

600

700

800

900

1000

Different Offset
DT5730 (14 bits)
DT5751 (10 bits)

Figure 4.8: Measured σt from the Gaussian fits to the time difference plots obtained
for the DT5730 (blue circles) and the DT5751 (red squares) versus different sampling
frequencies using a different random offset. For each sampling frequency, among all
fractions f, we considered only the best σt value obtained for each digitizer.

51

4.4.2 Bit Resolution Analysis — DT5730 only

This study was conducted using only data from CAEN DT5730. The reason is
that this module has a bit resolution of 14 bits, while the DT5751 is limited to
10 bits.

4.4.2.1 Data Manipulation Procedure

Usually the output data from a digitizer come characterized by a fixed number
of bits. Increasing the number of bits with post-acquisition operations would
be difficult and inaccurate because it requires oversampling and has the effect
of removing noise.

Therefore we only try to reduce the bit resolution: to do so, we divide
the amplitude of each sample by 2init_b−sim_b, where init_b is the initial bit
resolution and sim_b is the resolution we want to simulate. In the particular
case of CAEN DT5730, init_b is 14 and we try to simulate data with 12, 10
and 8 bits (sim_b). No reduction in sampling frequency is carried out, so data
acquired at 500 MS/s are used.

To calculate the time reference of each pulse, the linear interpolation method
around a fraction f of MA was used.

4.4.2.2 Results

Figure 4.9 shows the resulting σt values of time differences varying the fraction
f for several bit resolutions. Numbers are reported in Table 4.5. It is easy to
note that there is almost no difference between the 14, 12 and 10 bits cases,
however lowering the resolution to 8 bits increases the σt significantly. In all
the cases, results follow the same trend.

f 14 bits 12 bits 10 bits 8 bits
(%) (ps) (ps) (ps) (ps)

5 115.6±4.4 124.0±4.8 129.2±5.8 263.3±9.2
10 86.1±3.3 88.9±3.2 90.8±2.8 157.0±5.5
15 82.2±3.2 84.9±3.0 90.0±2.8 135.0±4.4
20 80.8±2.5 83.5±2.6 86.3±2.8 122.0±3.7
25 81.9±2.4 81.5±2.4 84.4±2.6 114.6±3.8
30 79.6±2.5 82.4±2.6 85.1±2.7 118.8±3.8
35 81.5±2.6 85.3±2.3 86.8±2.6 122.7±3.7
40 86.4±2.8 88.2±2.8 90.0±2.9 120.7±3.8
45 93.9±3.0 95.5±3.2 93.0±3.1 133.9±4.2
50 101.2±3.1 102.8±3.1 105.6±3.7 139.9±4.9

Table 4.5: Obtained σtas the width of the Gaussian fits to the time difference distribu-
tions, acquired using the DT5730 digitizer. The calculations are carried out for different
bit resolutions and different fractions.

In Figure 4.10 the σt is studied as a function of the bit resolution: here,
among all the fractions f, only the best σt values are considered for each bit

52

f (%)
5 10 15 20 25 30 35 40 45 50

 (
ps

)
σ

80

100

120

140

160

180

200

220

240

260

280

14 bits

12 bits

10 bits

8 bits

Figure 4.9: Extracted σt from the Gaussian fits to the time difference plots using data
from the DT5730 versus fraction for different bit resolutions.

resolution. An exponential decrease of the σt while increasing the bit resolution
is seen. Comparing this plot with Figure 4.9, we can confirm the need to avoid
to go below 10 bits of resolution. However there is not a big improvement
between the 10 and 14 bits cases.

bits
8 9 10 11 12 13 14

 (
ps

)
σ

75

80

85

90

95

100

105

110

115

120

Figure 4.10: Extracted σt from the Gaussian fits to the time difference using data from
the DT5730 versus different bit resolutions. For each bit resolution, among all fractions
f, we considered only the best σt value obtained.

53

4.5 Time Resolution for LaCl3 Crystals

LaCl3 is known to have worse time resolution than the LaBr3 [7]. Here a
short study on the time resolution of a CEPA4 LaCl3 crystal is reported. The
study was carried out with both the DT5730 and DT5751 modules using the
approach for muons and the same procedure shown for the LaBr3 crystals (see
section 4.2.2). Table 4.6a and 4.6b summarizes the results obtained with the
DT5730 and the DT5751 respectively. A fast comparison with data in Table 4.1a
and 4.1b shows that the time resolution given by LaCl3 crystals is larger (at
least ≈50 ps) than the one offered by LaBr3 crystals.

f σi σs σ f
(%) (ps) (ps) (ps)

5 155.9±2.7 170.5±4.0 –
10 136.9±2.0 154.2±2.0 –
15 134.4±1.9 140.5±1.8 –
20 132.6±1.8 156.5±2.0 –
25 133.9±1.7 177.6±2.2 –
30 136.9±1.7 187.6±2.3 222.3±4.6
35 144.2±1.8 201.5±2.5 192.2±2.8
40 152.1±2.0 202.0±2.6 171.0±2.3
45 162.4±2.1 208.5±2.5 172.2±2.3
50 173.8±2.2 212.7±2.5 183.6±2.5

(a)

f σi σs σ f
(%) (ps) (ps) (ps)

5 195.7±3.3 209.0±4.3 —
10 155.8±2.8 161.8±3.1 195.2±3.3
15 145.9±2.7 147.2±2.7 146.6±2.7
20 141.5±2.4 144.5±2.8 135.1±2.5
25 141.8±2.6 145.8±2.9 137.1±2.7
30 144.6±2.6 147.3±2.7 135.1±2.4
35 149.5±2.7 152.8±2.9 139.2±2.5
40 156.0±2.8 158.7±3.1 145.5±2.6
45 165.2±3.0 165.2±3.0 154.9±2.7
50 170.3±2.9 193.7±4.3 179.7±3.8

(b)

Table 4.6: Measured σt obtained from the Gaussian fits to the time difference plots
obtained from the three methods using data from (a) the CAEN DT5730 (500 MS/s) and
from (b) the CAEN DT5751 (1 GS/s). Pulses were generated by CEPA4 LaCl3 crystals.
The subscripts i, s and f identify the method used for determining the time reference of
the single pulse and therefore stand for the interpolation, fit to a second and first order
polynomials, respectively.

54

Part II

Electronics and Readout

55

56

Chapter 5

Introduction to Some
Electronics Concepts

In this introductory chapter, we describe some basic concepts related to elec-
tronics, which will be helpful for understanding the following sections.

5.1 Digital Electronics

Digital electronics is the branch of electronics which deals with discrete, or
digital, signals: in most of the electronics circuits the voltage of a node is
considered as such a signal. Considering only two-valued signals1, the boolean
logic can be easily employed in order to describe them. The information that
these signals carry is referred to as having either a 1 or a 0 value (or true/false)
and it is called bit. The bit information can be also stored in some electronic
components for further elaborations.

Digital circuits and components can be divided into two main categories:
combinational and sequential logic circuits.

5.1.1 Combinational Logic

This category gathers all electronic circuits which implement boolean logic
functions, where the output values depend only on the simultaneous input
values2. Examples of simple logic gates are AND, OR, NOT, XOR and they
have the same properties as the corresponding boolean operators.

A boolean function is described using a truth table, where any combination
of input values is associated with an output value. Such functions can be

1As said, we are going to describe digital electronics as logic operation of two values. This is
still true when talking about logic operations in circuits. However, recent developments in the
memory business have led to the ability to store, inside one unique cell, a larger number of values:
this has been made possible thanks to manufacturing advancements. These multilevel signals
however cannot be employed directly as inputs in logic operations.

2This is obviously true only on paper or in simulations: in the real world the circuit between
the input and the output pins introduces some delay. Except for this delay, the output signals
depends completely on the input ones.

57

characterised by any number of inputs, as well of outputs. An example of such
a table can be found in Table 5.1.

A B F
0 0 1
0 1 1
1 0 1
1 1 0

Table 5.1: Truth table of the logic function F = A NAND B, where A and B are the
inputs, while F is the output.

All logic functions can be built using a set of basic gates, specifically NAND,
NOR3 and NOT gates [18]. There are two forms to represents logic functions:
sum-of-products and products-of-sum, where a sum is an OR/NOR operation and
a product stands for an AND/NAND. For every expression, there are many
ways to represent the same logic function. To implement efficient logic systems,
we need to simplify and minimise these expressions. One simple way of doing
this is through a Karnaugh map [18].

5.1.1.1 Karnaugh Maps

Karnaugh maps (K-maps) are useful tools for simplifying and minimising logic
functions through human inspection: for this last reason, K-maps with more
than six variables are difficult to manage, though still functioning.

To use a K-map we first need to specify the outcome of the function under
investigation for all possible input combinations. Once this is done, we start
building the map, which is a table where the inputs are split between rows and
columns. In the case of a 2-input function, one input characterises the columns,
while the other the rows. For a 3-input function, two input combinations
can be listed along the columns, while the remaining variable runs along the
rows. In a 4-input case, we can split equally the inputs along the rows and
the columns. Each outcome is then placed inside the cell corresponding to the
input combination. In the end what is obtained is a two-dimensional truth
table.

There is however an important rule to follow for building a usable map:
the input combinations need to be ordered in a Gray code fashion. The basic
characteristic is that two adjacent combinations differ only by one bit value.
In the case of two variables, the sequence is: 00, 01, 11, 10. It is important to
remember this feature, since usually we order binary numbers according to
their value, such as 00, 01, 10, 11.

Now we need to gather adjacent “1” values in the table using the smallest
possible amount of groups, or, in other words, using groups as large as possible.
However each group needs to be shaped as a line (part of a column or a row)
or a rectangle and it has to contain a number of 1s which is equal to a power

3In the manufacturing world, the usage of the negated version of AND and OR is more common
because the realisation of the first ones requires a smaller number of transistors compared to the
non-negated [17].

58

of 2 (so 1, 2, 4, 8, etc. elements). Moreover, in a K-map the cells of one edge
are adjacent to the cells of the opposite edge. It is then important to remember
that groups can overlap in order to obtain the simplest configuration, where
each group covers as much area as possible and where the number of groups
is the smallest achievable. Figure 5.1 shows a K-map with many of the possible
groups highlighted4. It is easy to understand that Figure 5.1a uses the smallest
amount of groups to gather all the 1s, while Figure 5.1b uses one group more
and smaller groups as well, giving a more inefficient result.

X0X1

X2X3

00 01 11 10

00

01

11

10

1 1

1 1

1 1 1 1

0 0

0 0 00

0 0

(a) Efficient grouping.

X0X1

X2X3

00 01 11 10

00

01

11

10

1 1

1 1

1 1 1 1

0 0

0 0 00

0 0

(b) Inefficient grouping.

Figure 5.1: Karnaugh Map for the function F = X1 · X2 + X1 · X3. Many groups of 1s
are highlighted, but not all of them need to be considered in the simplification process.
As shown in the left figure, with only two groups, made of four elements each, it is
possible to gather all the 1s. The right picture instead uses three groups and it would
bring to a more inefficient result.

We therefore take into account only Figure 5.1a. At this point, we can write
the logic expressions representing each block. The rule here is to include in the
expression only those variables which do not change value inside a block. If
their value is 0, they need to be considered as negated, otherwise they are just
taken as they are. Then those variables are multiplied (and operation) among
each other and finally all the different expressions are summed (or operation)
together.

• Square block: X1 and X2 are the two variables remaining the same and
their value is 1. So the expression for this block is X1 · X2.

• Corners block: X1 and X3 keep their value constant. However, in this
case both are 0, so they need to be negated, giving the expression X1 · X3.

Finally we just sum together the two expressions we got and the result is

F = X1 · X2 + X1 · X3

or in logic terms

F = (X1 and X2) or (notX1 and notX3) .
4Showing all the possible groups would have resulted in a quite messy picture.

59

5.1.1.2 Multiplexer — MUX

A block which will be widely used in this part of the work, is the multiplexer.
Although we could described it with its logic function, it becomes more obvious
and easier using the black-box approach. A multiplexer is a module with 2n

inputs, one output and n controlling inputs. The values of the controlling
inputs direct only one input towards the output.

5.1.2 Sequential Logic

In circuits implementing sequential logic the output values depend also on
previous input values, other than current ones. To use old values, these kind
of circuits need blocks able to store information, such as registers, flip-flops
and latches. These components store the information either using a positive
feedback, creating a bistable circuit which holds the data whilst the supply
voltage is on (static), or charging and discharging a capacitor (dynamic). In both
cases the circuit needs a gating signal, that is a signal which temporarily breaks
the positive feedback or allows to charge/discharge the capacitor. If the gating
signal is a clock signal, the circuit is called synchronous, otherwise it is called
asynchronous.

There is a lot of confusion in the literature about the classification of the
different blocks [17]. Usually a latch is referred to be level-sensitive, meaning
that its output (the stored information) follows the input value while the level
of the gating signal is high (positive latch) or low (negative latch). A flip-flop
instead is a edge-sensitive device, which means that the stored information
changes value only around the moment when the gating signal flips between
low to high (positive edge-triggered) or high to low (negative edge-triggered).
In our work, this distinction is not so important since the design of the circuit
at this level is accomplished by software.

5.1.3 Finite State Machines

To control and define the behaviour of a digital circuit that performs some
(multicycle) task, or a part of it, designers make use of so-called Finite State
Machines (FSMs). Derived from automata theory [19], an FSM is defined
through a finite set of states, the accepted inputs and possible outputs and a
set of transition and output functions. These functions describe how, given
some inputs and a present state, the machine moves to the next set of states
and which outputs are released [20]. In this work we deal with deterministic
FSMs, where transition and output functions lead to only one possible next
state and output configuration.

The implementation of FSMs in digital electronics is a good example where
combinational and sequential logic work together. Thanks to the deterministic
character, the present state of the machine needs to be remembered until the
next transition and therefore a sequential circuit is needed. On the other hand
the transition and output functions use the inputs and the stored information
for computing the next state and the output configuration: hence a combination
circuit is required.

60

FSMs are usually built following one of two models, the Mealy and the
Moore machines5. In the first approach, the output configuration depends on
the current state and current inputs. In the Moore case, the outputs depend
only on the present state of the machine. Therefore, to get the new outputs, a
Moore machine needs to “wait” until the new state is set.

Thanks to this “faster” behaviour, the Mealy machine seems to be superior
to the Moore one. However in a synchronous circuit, such as our projects, if
inputs changes inside a clock cycle, the outputs will change as well, provoking
unwanted consequences. Usually this is solved by placing registers which
record the output configuration at the beginning of every clock cycle, keeping
their value constant along the whole period.

5.2 VHDL

With the growing complexity of digital circuits, it is more and more difficult
to design circuits transistor by transistor, or even by logic blocks. To be more
efficient, engineers started using Hardware Description Languages (HDLs) to
design circuits. HDLs are used to describe the behaviour of the circuit (a
more abstract level), without going to the low level of physically placing
and routing of components. The VHSIC6 Hardware Description Language
(VHDL) is, together with Verilog, one of the most used languages in digital
design. Although it was initially developed for simulation purposes, with time
it has been equipped with characteristics useful for circuit synthesis as well.
These languages have a syntax similar to that of more ordinary programming
language, such as C. One of the fundamental differences regards instructions.
In VHDL there are indeed two types of instructions:

• Sequential instructions behave in the same way as a classic program-
ming language, since they are executed in the order they are written
(sequentially7). In VHDL these instructions can be found only inside a
structure called process and they are used to describe both combina-
tional and sequential circuits.

• Concurrent instructions describe only combinational logic and therefore
gates. They are activated every time a signal in their right part (which
represents the inputs) changes value.

Some of the most used types of signals in the VHDL language are std_logic,
std_logic_vector, signed and unsigned. The std_logic type models a one-
bit signal, so the ’0’, ’1’ and ’Z’ (high impedance, typically used to model tristate
drivers). The other three types instead are array of std_logic, whose length is
defined by the user. While the std_logic_vector type is used to model signal

5Although in computational theory there is an equivalence principle between Mealy and Moore
machines, in the hardware implementation this is not always the case, mainly because of different
latency times [21].

6Acronym that stands for Very High Speed Integrated Circuit.
7Do not confuse sequential instructions with sequential circuits! Although sequential circuits can

be described only using the process structure, sequential instructions can describe combinational
logic as well.

61

paths as wide as the length of the array, the signedand the unsignedtypes
represent integers with or without sign, respectively. For more information,
see Ref. [22].

Using HDLs, a designer avoids to spend time on gate-related details and
can concentrate more on the functions the circuit needs to deliver. All the
placements and routing of the components are taken care of by electronic
design automation (EDA) software.

Once the code describing the circuit has been written, a circuit needs to be
created. Several steps follow (simplified):

• Analysis and Simulation: the syntax is checked and a simulation can
be run. This process is based only on the code, so no delays or other
physical characteristics are taken into account. Only a verification of the
algorithm implemented can be carried out. The simulation is usually
performed including the design in a so called test bench. This is a VHDL
file which does not represent a synthesisable circuit, but it is rather a tool
for testing the designed circuit recreating different signal configurations
and scenarios. It is also possible to read data from text files and write the
output on disk.

• Synthesis: the code is translated into electronic blocks, such as registers,
gates, flip-flops, related to a specific hardware implementation. However
the level of devices specification is still pretty rough (so called register-
transfer level, RTL).

• Place and Route: a netlist including all the devices used and their routing
is produced from the RTL design. After this step, timing simulations
can be run, since the physical characteristics of the components used are
included in their description. In this last part constraints on area and
performance are taken into account.

5.3 FPGA

A Field-Programmable Gate Array is an integrated circuit which can be configured
by the user from a hardware point of view by, e.g., activating/deactivating logic
gates and interconnections, setting the clock frequency. The internal structure
of the FPGA is a repetition of a basic block which provides logic gates, clocks
routing, flip-flops and memory elements. A dense network connects all these
blocks together. Usually, as it happens for Altera and Xilinx, two FPGAs
manufacturers, these basic blocks contain memory elements, such as registers,
simple adders and logic units. The latter feature usually 4 or 6 inputs and
its internal scheme is able, using multiplexers and storing the truth table, to
reproduce boolean functions. There are then other blocks in an FPGA whose
design however is an Intellectual Property (IP) of the manufacturer. The internal
structure is usually kept secret and they need to be instantiated in the code
according to the manufacturer’s instructions. The use of this kind of blocks

62

inside a VHDL code makes the code not portable among different FPGA8. In
our work, we avoided the use of IP components.

As for general digital circuits, the design is described using HDL code, such
as VHDL or Verilog, which will be then handled by a software, called synthesizer,
producing a configuration bitstream. This stream will be loaded onto the chip,
configuring the internal blocks of the FPGA. Most of the FPGA products uses
either SRAM or FLASH memories to store this configuration in the circuit.
While in both cases the FPGA can be programmed many times, with SRAM
we need an external nonvolatile memory to hold the configuration in case of
powering off. Other types of FPGA, such as fuse, antifuse, PROM FPGAs, are
instead one-time programmable.

Intel and Altera

Due to Intel’s acquisition of Altera in 2015 [23], Altera products have been
renamed Intel: however most of the users still knows these products under the
brand Altera. Therefore in this document we use only the name Altera.

8Sometimes an IP component is available only in a given family of FPGAs: in this case the
portability is therefore difficult to achieve even for products made by the same company. Examples
of families are Spartan and Virtex by Xilinx and Arria and Stratix by Altera.

63

64

Chapter 6

DRS4 Readout

6.1 DRS4 Management

In order to manage the functioning of the DRS4, a finite state machine (FSM)
has been implemented, where for each state a configuration of signals drives the
DRS4 and the receiving part of the FPGA. The FSM is implemented as a Mealy
machine with resynchronization registers [21]: once the machine is activated by an
input or an internal signal change, the future state is computed. The present
state and the signal configuration is updated at the next clock cycle. Everything
works (or at least should work) synchronously, therefore also the input signals
(especially those generated internally by other blocks in the firmware) should
work synchronously with the FSM. This approach ensures there will be no
hazards and no spurious transitions at outputs due to transitions in the input
signals during a clock cycle. The drawbacks are the use of more registers and
the latency of (at most) 1 clock cycle in releasing the new signal configuration.
In Figure 6.4 a diagram of the FSM is shown.

6.2 DRS4 Problems

A couple of problems about the DRS4 surfaced during the design of the
procedures for its management:

• After intense scrutinising of the datasheet and an email to Stefan Ritt
(developer of DRS4), it became clear that it is not possible to read out
some of the channels while simultaneously sampling the others. As
reported by Stefan Ritt in a private communication, although on the
datasheet a procedure for reading out a single channel while sampling
in another one is described, “a bug in the silicon” prevents us from
using this approach. A careful observer could point out that, according
to Figure 6.1, in the sampling channels the input and the output are
connected while we are sampling in a given cell (WRITE and READ are
both “1” at the same time), damaging the stored value. However, in
another private communication with Stefan Ritt, it was made clear that at

65

the output of each channel there is a buffer which prevents this unwanted
behaviour.

• As can be seen in Figure 6.1, each cell contains a buffer, which is used for
sending the stored value to the output. Each buffer is characterized by
an offset, which is different from cell to cell. Therefore a correction of the
acquired data is necessary. The idea is to measure this offset for each cell
and build a table (offset table) which will be loaded into the FPGA and
used for correction during data read out. The generation of such a table
can be handled more easily by an external computer. The FPGA will be
triggered by this computer, it will readout the data from the DRS4 (see
section 6.8.5 for more information) and send them to the computer, where
an average of multiple measurements and the table building can be done.
Then the final data can be sent to the FPGA as part of the configuration
registers.

IN+

IN-

WRITE

READ

ROFS

BUF OUT
Cs

Figure 6.1: Simplified circuit of a single DRS4 cell. After enabling WRITE, the capacitor Cs
is charged storing the sampled value. Activating READ this data will be then sent through
the buffer BUF to the output. At the channel output a buffer prevents from distorting
the internal sampling due to simultaneous writing and reading. The mentioned buffer
is not shown here, neither it is mentioned in the datasheet.

6.3 Optimization of the DRS4 Readout Procedure

The DRS4 provides two different options for readout. In the Full Readout Mode
all 1024 cells are read out consecutively. Assuming a parallel readout of all
channels at a frequency of 33 MHz, this mode would require about 33 µs for
the complete data readout. This would mean a too large dead time for the
experiments we are aiming for. The second way, offered by the DRS4, is the
so-called Region Of Interest Mode (ROI): in this case a trigger signal provided
by an external circuit stops the sampling operation when needed and only the

66

portion of cells which contains the interesting data is read out (see Figure 6.2).
Assuming we want to read out 100 cells (which corresponds to a time span of
100 ns) at 33 MHz, we would need only around 4 µs. As can be seen, the dead
time introduced by this mode is a factor of 10 shorter than in the previous one.
A deeper analysis of the ROI will be discussed in section 6.8.6. What needs to
be taken into account in any of the modes is the fact that the trigger signal trg
has to be generated within 1 µs in order to avoid overwriting the portion of
data we want to read out.

ROI

t1

tW

t2

TRIGGER

DOMINO WAVE STOP

Figure 6.2: Region Of Interest (ROI) mode: tw is the time needed by the internal domino
wave to complete the whole chain (1024 ns if we are sampling at 1 GHz), t1 is the
portion of the signal we want record, which occurs before the trigger generation point,
t2 is the part covered by the signal we are interested in. For more information see
sections 6.3-6.8.6.

6.4 Internal Clock Frequency

Choosing a clock frequency can be challenging in an FPGA: having many
different clock domains can complicate the synthesis of a circuit for many
reasons. In order to choose the proper clock frequency for the FSM circuit we
need to understand what blocks the FSM is exchanging data with and what
the already implemented clock frequencies are. On the one-hand side the FSM
needs to drive the DRS4 and the ADC and receive data from them: according to
the two datasheets, the maximum usable frequencies are 33 MHz for the DRS4
and 50 MHz for the ADC. Since those two need to be synchronised, a common
clock generator would be ideal. Other already existing clocks in the FPGA
have frequencies of 50-100-200 MHz: this would mean that the easiest way is
to use a 25 MHz clock for driving DRS4. On the other hand the FSM receives
data from the trigger generation branch, which will be driven (according to
the barrel code) at 100 MHz. Since signals between the trigger branch and
the FSM need to be synchronous, this would imply a clock frequency for the
FSM of 100 MHz. Although this value complicates the calculations of limits
in the FSM internal counting procedures and state transitions, it allows the

67

FSM to be more compatible with surrounding blocks and to compute the next
state within one 100 MHz clock cycle (10 ns) instead of one 25 MHz clock cycle
(40 ns). Summarising:

• The FSM internal clock CLK will run at 100 MHz;

• The clock for the DRS4 SRCLK generated by the FSM will run at 25 MHz.

Later in this thesis, when referring to clock cycles we will write “CLK cycles” or
“SRCLK cycles”, respectively, meaning 100 MHz-clock cycles given by the CLK

signal and 25 MHz-clock cycles given by the SRCLK signal.

6.5 Data Sampling

6.5.1 Timing

The sampling of the data from the DRS4 is done using an AD9252 ADC by
Analog Devices. An important fact to remember is when the ADC can sample
the output signal from the DRS4. According to the DRS4 datasheet [9] the
optimal instant for sampling is right before the next value starts to appear at
the output pin. As shown in Figure 6.3 [9], after the address bits A3-A0 have
been set for exposing the data of a cell, there is a delay of to = 10 ns before the
output voltage starts to be affected. Then at tclk = 40 ns1 the output voltage
reaches the new value: at this point a new SRCLK pulse will shift the Read Shift
Register2, exposing the new data. However, thanks to the internal delay, the
old value will stay constant for a time to = 10 ns.

As the datasheet suggests, in order to avoid degrading the DRS4 linearity,
the sampling of the (old) data should be done right before (≈ 2 ns) the end
of the extra time to: in our implementation this corresponds to 48 ns after the
SRCLK pulse which refers to that sample or 8 ns after the next SRCLK pulse.
A block providing a controllable delay needs therefore to be implemented
in order to obtain the wanted delay between the SRCLK signal and the signal
driving the ADC sampling.

6.5.2 Enabling Signals

How do we actually start the sampling of data from the DRS4 and of the
SROUT bits sent to the FPGA? Well, if we stay inside this FSM (and we do!), it
remains a mystery. The FSM has however been made responsible for enabling
the sampling procedures:

• The procedure which controls the ADC sampling is already implemented
in the barrel firmware and it should be compatible for the readout of DRS4
data. The FSM is going to drive this procedure through the signal ADC_EN:
it rises when the present state becomes OFFREAD or READOUT, while it goes
to 0 one CLK cycle after the present state becomes FILL. While the rising
part should fit all our needs, the falling part could present some problems:

1In this case tclk is the clock period of the SRCLK, which is running at 25 MHz.
2More information about these operations will be given in section 6.8.5 and section 6.8.6.

68

R0
R1

R2
R3

1 32

Select readout channel

tO
tSAMP

tSAMP

tCLK

Figure 6.3: Sampling timing reference for DRS4 output data. Due to internal delay, data
from a cell of the DRS4 needs some time before it starts to appear at the output pin.
The ADC sampling needs therefore to be synchronised, remembering this additional
delay, as explained in the text.

indeed the output data is available one SRCLK cycle after the machine
goes to FILL, not after one CLK cycle. Extending the duration of this
signal should not be however a problem, since we just need to increase
the upper threshold for going back to FILL. Another way could be to
increase the threshold by one SRCLK cycle, while skipping the sampling
of the last data, so setting ADC_EN to zero at the same time causes the
present state to change3.

• The sampling of SROUT is managed in the same way presented above: the
signal SROUT_EN is used to enable the sampling of the SROUT pin. It rises
with the rise of RSRLOAD and it falls when the present state switches to
READOUT.

The enabling processes are not extremely reliable and fully ready to be used.
This is not due to a lack of will, but rather because the sampling procedures are
in part unknown, therefore the exact behaviour4 cannot be taken into account
in shaping the enabling processes. The time evolution of ADC_EN and SROUT_EN

are reported in the figures regarding the different signal configurations.

6.6 Operations - Briefly

This is a very brief introduction to the FSM states and transitions:
a deeper analysis is carried out in section 6.8.

3If this last idea will be implemented, ADC_EN becomes quite similar to D_V. Therefore maybe
we could decide to use directly D_V, without managing ADC_EN.

4For example: if there is an internal finite state machine which delays the effects of the enabling
signal by one clock cycle, or if everything happens in one clock cycle, etc.

69

Following the diagram depicted in Figure 6.4, after the electronics has
been turned on, a reset signal should be sent to the FSM in order to reset the
DRS4 and the FSM itself. Once the reset procedure has been completed, the
machine passes some time in FILL (see section 6.8.4) in order to obtain some
data samples in the DRS4. After that the FSM moves to IDLE (see section 6.8.3),
where it stays until it receives something, such as a trigger from the trigger
branch in the firmware or a dummy trigger from the external computer for the
generation of the offset table. One CLK cycle after it has received something,
the FSM moves to the next state carrying out the

• Offset Readout Procedure after receiving off_trg = 1: states OFFWRAP,
SHIFTREAD and OFFREAD are accessed in this order (see section 6.8.5);

• Readout Procedure after receiving trg = 1: states WRAPREAD, GETLOC and
READOUT are accessed in this order (see section 6.8.6);

• Reset Procedure after receiving rst = 1, which leads the FSM to move to
RESET (section 6.8.2);

If the machine is in one of the “busy” states (OFFWRAP, SHIFTREAD, OFFREAD,
WRAPREAD, GETLOC, READOUT) when a reset signal rst is received, the whole
procedure is completed first and then, once the FSM returned to FILL, the reset
procedure is activated (rst_flag turned to 1 when rst activated).

Behaviour of BUSY and D_V

• BUSY is set to 1 for the entire duration of FILL, OFFWRAP, SHIFTREAD,
OFFREAD, WRAPREAD, GETLOC, READOUT and RESET;

• D_V goes to 1 one CLK cycle before the start of OFFREAD and READOUT and
returns to 0 when the FSM returns to FILL: however because of the DRS4
internal delays, the last data will be ready the next SRCLK cycle.

This topic will be revisited in connection with the description of all interested
states.

Back to IDLE After the FSM is back from READOUT or OFFREAD or RESET,
there are no available data in the DRS4: the stored data refer to the old trace
recorded before starting those procedures, since in the meantime DWRITE has
been turned off. The FSM has therefore to wait for a time t1 (as described in
section 6.3 and section 6.8.6) before to accept any new trg signal. Considering
the off_trg signal instead, we need to wait for 1024 ns, in order to fill all the
cells. This waiting-for-filling has been implemented in different parts of the
FSM. The basic idea is to continue the operations done in IDLE but keeping
BUSY = 1. Check section 6.8 for more information.

6.7 Address Bits A3-A0

There are some features to remember when working with address bits A3-A0:

70

1. When a change in A3-A0 happens, the change of other signals5 needs
to be delayed for a minimum period of time, which typically is 5 ns. In
the current implementation we have introduced one CLK cycle of delay
between all signals which are affected by this. However the physical
routing inside the FPGA and outside on the board can cancel the effect
introduced by this extra CLK cycle: therefore a study on the characteristic
delay of the various tracks is needed.

2. When the FSM is in IDLE, RESET, FILL, WRAPREAD or OFFWRAPstate, no
A3-A0 configuration is explicitly specified in the datasheet. During these
periods the DRS4 is recording data (except in RESET) and therefore no out-
put needs to be connected and no internal registers need to be addressed.
Therefore two possibilities occur:

• A3-A0 = �1111�: all the outputs are disabled. However this con-
figuration is also called standby and it is used in the standby mode
explained in the datasheet, where nothing is (apparently) recorded.
This seems suspicious and an email from Stefan Ritt confirms that
many internal circuits are disabled in this mode.

• A3-A0 = �1010�: this is called transparent mode, where the input
signals are recorded and at the same time are applied to the output.
We do not need this last feature, however this configuration seems
to be the only one, which allows to sample input signals. We did
not receive get any feedback about its use by Stefan Ritt in his email.

• A3-A0 = �0000�: in this mode channel 0 is sent to MUXOUT. The
use of this mode has been suggested by Stefan Ritt in the email cited
previously: connecting a channel to MUXOUT does not seem to
alter the sampled value of the input signal, since an extra buffer6

sits between the channel output cells and MUXOUT, avoiding what
is described in section 6.2. This mode has been implemented for
IDLE, RESET, FILL, OFFWRAP and WRAPREAD states.

5Mostly SRCLK and RSRLOAD, but other signals can be affected as well: check each section and
the figures about signal configuration for more information. The DRS4 datasheet has obviously all
the information needed.

6No extra buffers are reported in Ref. [9].

71

RESETIDLE FILL

OFFWRAP

SHIFTREAD

OFFREAD

WRAPREAD

GETLOC

READOUT

rst = 0

rst = 1 & CNT_RST = 65

rst = 0 | rst_flag = 1

CNT_FILL=T1

o f f _trg = 1

rst = 0

trg = 1

CNT_OFF = TOTALWRAP

rst = 0⇒ rst_flag = 1

CNT_OFF = 1024

rst = 0⇒ rst_flag = 1

CNT_OFF = 1024

rst = 0⇒ rst_flag = 1

CNT_RD = TWR

rst = 0⇒ rst_flag = 1

CNT_RD = ENDLOC

rst = 0⇒ rst_flag = 1

CNT_RD = WND

rst = 0⇒ rst_flag = 1

IDLE
(default initialization)
D_V = 0
BUSY = 0

DWRITE = 1
A3-A0 = 0000
SRCLK = OFF
RSRLOAD = 0
SRIN = 0
ADC_EN = 0
SROUT_EN = 0
RST_DRS = 0

CNT_OFF = 0
CNT_RD = 0
CNT_FILL = 0

WRAPREAD
BUSY = 1

CNT_RD start

GETLOC
D_V = 0
BUSY = 1

DWRITE = 0
A3-A0 = 1001
SRCLK = ON (except 1st cycle)
RSRLOAD = 1 (1st half cycle)
SROUT_EN = 1

CNT_RD (re)start

READOUT
D_V = 1
BUSY = 1

DWRITE = 0
A3-A0 = 1001
SRCLK = ON
ADC_EN = 1

CNT_RD (re)start

OFFWRAP
BUSY = 1

CNT_OFF start

SHIFTREAD (1024 cycles)
BUSY = 1

DWRITE = 0
A3-A0 = 1011
SRCLK = ON (except 1st cycle)
SRIN = 1 during 1024th cycle

CNT_OFF (re)start
OFFREAD (1024 cycles)
D_V = 1
BUSY = 1

DWRITE = 0
A3-A0 = 1001
SRCLK = ON (except 1st cycle)
ADC_EN = 1

CNT_OFF = (re)start

RESET
BUSY = 1

DWRITE = 0
RST_DRS = 1

rst_flag = 0

CNT_RST start

FILL
BUSY = 1

CNT_FILL start

Figure 6.4: Finite State Machine for the management of the DRS readout. The (assumed)
initial state is RESET (in red). The two main procedures are highlighted with different
colors: the offset readout is depicted in blue, while the data readout procedure is green.
The term “cycle” refers (usually) to a SRCLK cycle. The values for transitions reported
in this picture are an approximation of the real ones: the correct values can be found
in the corresponding VHDL code. Signals reported in italics are inputs to the circuit.
The signal configuration of each state is reported in a table close to the associated node.
However, to reduce the length of the tables, only the signals with a different value with
respect to the one in the IDLE (default) configuration are reported in each table.

72

6.8 DRS4 FSM Implementation

6.8.1 VHDL Libraries Used

This is the list of libraries used in readout_fsm.vhd:

• library ieee;

• ieee.std_logic_1164.all;

• ieee.numeric_std.all;

6.8.2 RESET

In the current implementation the FSM has an active low reset, so when rst has
been turned to 0, the machine goes to state RESET and, thanks to the counter
CNT_RST, it remains there for 66 CLK cycles: this time is needed for resetting, bit
by bit, first the CONFIG register (A3-A0 = 1100) and then the WRITE SHIFT
register (A3-A0 = 1101) of the DRS4. At the same time the FSM states and
output signals are reset, avoiding the FSM to stay or end up in so-called illegal
states. Once rst has been released, after 66 CLK cycles the machine therefore
will go to FILL. At the activation of the circuit, thanks to an external signal rst
the machine will access the RESET state in order to reset the DRS4 and itself. In
Figure 6.5 a time progression of signals driving the DRS4 is shown.

Time Ref 10 ns 40 ns

RST (FPGA)

PSTATE IDLE RESET FILL

BUSY

DWRITE

A0-A3 0000 1100 1101 0000

SRCLK

SRIN Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Figure 6.5: Signal configuration for the RESET state. Signals marked in bold are those
sent to the DRS4.

In the data sheet a reset procedure is described: here a negative pulse, which
has to last at least 10 ns, is sent to the DRS4 in order to reset internal registers
and to start the domino wave. According to information recovered through
the DRS4 forum [24], this procedure should be avoided, because of possible
side-effects.

73

6.8.3 IDLE

In this state the machine is waiting for a trigger signal that initiates one of the
following:

• off_trg = 1 will start the procedure for the readout of the (assumed)
empty DRS4 for the creation or update of the offset table (go to OFFWRAP);

• trg = 1 will begin preparing for the data readout of DRS4 (go to
WRAPREAD);

• rst = 0 resetting process (go to RESET);

In an initial design of the FSM, rst_flag = 1 was checked after being back
to IDLE. In the most recent implementation instead, this check is done after
the FSM is back to FILL, since there’s no need to take samples if the next step
would be resetting the DRS4.

6.8.4 FILL

As mentioned in section 6.6 “After the FSM is back from READOUT, OFFREAD
or RESET there are no available data in the DRS4”. Therefore the DRS4 needs
some time to record new data in order to be prepared for a new readout.

In this condition of an empty buffer, the FSM could face two uncomfortable
situations: receiving a off_trg signal or a trg signal. In the first case, the
problem is handled by the OFFWRAP state (explained in section 6.8.5). When
instead a trg is issued, the DRS4 does not need to have samples in all the cells
at that moment. The minimum requirement is to have enough data to cover
the part of trace requested before the trg signal7 (check section 6.8.6 for more
information). Therefore the FSM passes a very short time in FILL and then it
will switch back to IDLE.

In case of rst = 0 while in FILL, the machine will go directly to RESET.
The resetting process can be activated also by the presence of rst_flag = 1:
this flag is set to 1 when a rst = 0 happens while the FSM is in one of the
following states: OFFWRAP, SHIFTREAD, OFFREAD, WRAPREAD, GETLOC, READOUT. If
such an event takes place while the FSM is in one of these states, the entire
current procedure is first completed and then, after the FSM goes back to FILL,
rst_flag is checked and the transition to RESET will happen.

The expression “entire current procedure” refers to the whole readout
procedure. In this implementation there are 2 readout procedures:

• Offset Readout consisting of OFFWRAP, SHIFTREAD and OFFREAD states;

• Data Readout consisting of WRAPREAD, GETLOC and READOUT states.

As an example: if trg = 0 occurs while the machine is in the WRAPREAD state,
rst_flag is immediately set to 1 and the procedure continues, first spending
the required time in WRAPREAD, then moving to GETLOC and, when that is done,
to READOUT. After the READOUT state tasks have been fulfilled, the FSM moves
to FILL: here rst_flag is checked and since it is set to 1, the machine moves
to RESET.

7This is what is called t1 in Figure 6.2 and also in section 6.8.6.

74

6.8.5 Offset Readout

The procedure for the readout of the cells offset is activated by setting off_trg

to “1” and it is carried out following the Full Readout Mode already mentioned
previously in section 6.3. In this mode it is needed to load a “1” value in the
first bit of the Read Shift Register: then this “1” is moved along the register,
revealing at the output the value stored in each cell. Before starting the readout
procedure however, we need to be sure that the capacitor arrays contain no
data.

← 1024 ns→

Time Ref 40 ns

OFF_TRG (PC)

PSTATE IDLE OFFWRAP SHIFTREAD

DWRITE

A3-A0 0000 1001

BUSY

Figure 6.6: Signal configuration for the first part of the offset readout. Signals marked
in bold are those sent to the DRS4. Following the PSTATE evolution: after receiving an
off_trg, BUSY turns 1 while DWRITE remains active in order to continue the sampling.
A3-A0 does not change value. This configuration persists for about 1024 ns: after that it
turns to SHIFTREAD. For more information see the text.

As discussed in section 6.6, after a data readout8 or a reset procedure has
been carried out, the DRS4 cells contain old samples of traces, which could
disrupt the values needed for the offset table. Therefore the DRS4 needs to
take another set of data, simply running a-sort-of IDLE state while no events
(hopefully) happen in the detector. This is obtained entering the state OFFWRAP

and remaining there until all the capacitors content has been overwritten.
The signal configuration of OFFWRAP is quite similar to the one of IDLE and
it is shown in Figure 6.6. The only difference concerns BUSY, which is set to
1 to signal the impossibility of accepting other triggers, and the activation
of CNT_OFF, which changes the FSM state to SHIFTREAD after reaching the
TOTALWRAP value. For the DRS4 readout, the FSM performs a full readout of
the capacitor arrays, as mentioned in the beginning, and therefore we have
first the SHIFTREAD state and then, after 1024 SRCLK cycles, the state named
OFFREAD.

In Figure 6.7 the signal development is shown. The transitions between the
three states are regulated according to the internal counter CNT_OFF, which is

8In this case with readout we mean both the offset and the data readout procedures.

75

0 1 2 1022 1023 1 2 1021 1022 1023

Time Ref 40 ns

PSTATE OFFWRAP SHIFTREAD OFFREAD FILL

DWRITE

A3-A0 0000 1011 1001 0000

SRCLK

SRIN

D_V

ADC_EN

CH 0 OUT 0 1 2 1021 1022 1023

CH 1 OUT 0 1 2 1021 1022 1023

CH 2 OUT 0 1 2 1021 1022 1023

CH 3 OUT 0 1 2 1021 1022 1023

Figure 6.7: Signal configuration for the offset readout. Signals marked in bold are
those sent to the DRS4. The left part of the picture depicts the SHIFTREAD state: A3-A0
changes values 1 CLK cycle before SRCLK, therefore a delay of 10 ns takes place. This is
in agreement with the requirement of at least 5 ns between these two changes.

increased by one each CLK cycle, therefore

• For the transition to SHIFTREAD, TOTALWRAP is about

1024 ns
10 ns

= 102.4 CLK cycleslong

The actual value used in the VHDL code is 103 since we want to be sure
to overwrite all the 1024 cells.

• For going to OFFREAD and for internal signal changes instead, the limits
are about 4 times the amount of SRCLK cycles needed.

One CLK cycle after the FSM enters SHIFTREAD, SRCLK is turned on. In the
last SRCLK cycle before going to OFFREAD, SRIN is brought to 1: this step sets a 1
in the first position of the Read Shift Register. After having moved to OFFREAD,
SRCLK is turned off for the first SRCLK cycle.

As already described in section 6.5.2, ADC_EN rises when the FSM goes to
OFFREAD and goes to 0 one CLK cycle after the machine is back in FILL. BUSY is
set to 1 for all the duration of the procedure, while D_V goes to 1 one CLK cycle
before the start of OFFREAD and returns to 0 when the FSM returns to IDLE.

Differently from the datasheet, an extra SRCLK pulse is missing in the end
of OFFREAD: this is due to the fact that this pulse is needed for starting another
readout from the first cell. This is not needed in our case.

If a rst signal is sent to the FSM while it is in OFFWRAP, SHIFTREAD or
OFFREAD, the rst_flag will be set to “1” and the operation will continue un-

76

changed. Once the readout is over and the FSM is back in FILL, in the following
CLK cycle it will move to the RESET state (as explained in section 6.8.4).

6.8.6 Data Readout

The readout of the data is split into three parts. The already explained Region
of Interest Mode is used. After getting a “1” in trg, the machine enters the
WRAPREAD state: here the DRS4 is left running for a time

tWR = tw − t1 − tT − tSROUT (6.1)

where (see Figure 6.2 for a representation of some of these times),

• tw is the time needed by the internal domino wave to complete the whole
chain (1024 ns if we are sampling at 1 GHz);

• t1 is the portion of signal which comes before the trigger generation point
and that we are interested to record as well;

• tT is the time needed by the trigger branch to generate the trg signal
with respect the actual time it is referring to;

• tSROUT is constant and equal to 10 ns. This extra-time is needed in order
to read out the value of the position in the capacitor array from where
we start the data readout.

The result will be set in TWR, appropriately scaled according to the internal
clock frequency of the FSM. At the moment the idea is to use constant values
for t1 and tT (set by the central system in the configuration register) or to
send them as input signals (send by the trigger logic). In the first case both of
those values need to be estimated through simulations, calculations or tests. In
the current implementation, the signals are initialised to some value just for
simulations purposes.

Right before leaving WRAPREAD the sampling in the DRS4 needs to be
stopped: this is done by setting DWRITE to 0. In Figure 6.8 the change in
the signal configuration is reported.

Using the internal counter CNT_RD, the transition to GETLOC is managed
according to the value of TWR. Following Figure 6.9, a pulse in RSRLOAD dumps
the domino wave chain into the Read Shift Register, assigning a “1” to the
register position where the sampling has been stopped. In this state no data
from the DRS4 are saved: the only purpose of GETLOC is to obtain the stop-
ping position of the domino wave in the DRS4. This reference is needed for
establishing a time reference for the data and for subtracting the correct offset
value of the sampled cells. The position value is obtained recording what the
SROUT pin of the DRS4 sends out during the first 10 SRCLK cycles: the position
value is encoded in 10 bits as a binary unsigned value. The first bit sent out is
the Most Significant Bit, followed then by the other bits, down to until the Least
Significant Bit.

Although we have already equipped our FSM with the necessary code for
managing GETLOC, here we report the three basic solutions which were taken
into consideration:

77

← tw − t1 − tT − tSROUT →

Time Ref 1 ns 10 ns

TRG

PSTATE IDLE WRAPREAD GETLOC

DOMINO POS 473 474 475 476 427 428 429 429 429

DWRITE

CH 0 CELL 473• 474• 475• 476• 427• 428• 429• 430◦ 431◦

CH 1 CELL 473• 474• 475• 476• 427• 428• 429• 430◦ 431◦

CH 2 CELL 473• 474• 475• 476• 427• 428• 429• 430◦ 431◦

CH 3 CELL 473• 474• 475• 476• 427• 428• 429• 430◦ 431◦

A3-A0 0000 1001

SROUT_EN

RSRLOAD

READ SREG - 429•

CH 0 OUT 429

CH 1 OUT 429

CH 2 OUT 429

CH 3 OUT 429

Figure 6.8: Signal configuration for the wrapping procedure. Signals marked in bold
are those sent to the DRS4. Filled dots indicate that a value has been written inside that
register or cell. Empty dots instead refers to the fact that nothing has been written. The
line named “domino position” describes the progress of the domino wave along the
capacitor chain

1. Storing the first 10 data sets and after we’ve gotten all the SROUT stream,
we can start with the computation procedures. This approach requires
some storage space on the FPGA.

2. Rejecting the first 10 data sets. This can be done because we can start
reading out the DRS4 from 10 cells before the required one: the only
needed change concerns the value of TWR, whose calculation is reported
in Equation 6.1 with tSROUT = 10 ns representing these extra 10 cells.

78

Time Ref 40 ns

PSTATE WRAPREAD GETLOC READOUT

DWRITE

SRCLK

A0-A3 0000 1001

ADC_EN

SROUT_EN

RSRLOAD

READ SREG (428) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

READ SREG (429) 0 1 0 0 0 0 0 0 0 0 0 0 0 0

READ SREG (430) 0 0 1 0 0 0 0 0 0 0 0 0 0 0

SROUT (#429) 0 1 1 0 1 0 1 1 0 1

Figure 6.9: Signal configuration for receiving the bits of the first position in the Read
Shift Register from SROUT. Signals marked in bold are those sent to the DRS4. The lines
named READ SREG (#) show how the “1” dumped by RSRLOAD is pushed forward by
SRCLK pulses. In the SROUT line instead we can see that the first output bit is the Most
Significant Bit of the stream representing the position value.

3. Inserting a new state between WRAPREAD and READOUT which is used just
for collecting SROUT. A similar calculation for TWR as in the previous point
needs to be carried out.

The current implementation is based on a combination of the last two points
listed above.

Figure 6.9 illustrates what happens during GETLOC: the bits from SROUT are
released according to the falling edges of SRCLK. In the current implementation
there is no an actual readout and storing procedure of SROUT: in the meantime a
signal called SROUT_EN is set to 1 while the readout is needed. More precisely,
following what is written in section 6.5.2, SROUT_EN rises together with RSRLOAD

one CLK cycle after the machine moves to GETLOC. Then it is 0 when the FSM
turns to READOUT.

After the initial position has been recovered the FSM is set to READOUT: the
signal configuration for this state is shown in Figure 6.10. Pulses in SRCLK shift
the “1”, initially dumped by RSRLOAD during GETLOC, through the cell range of
interest. The value of this range is stored in WND and the current idea is to set
this value in the configuration register as well as the values for t1 and tT .

ADC_EN rises when the machine is set to READOUT and is set to 0 one CLK

cycle after the FSM is back in FILL, as also described in section 6.5.2. BUSY is

79

set to 1 for all the duration of the procedure, while D_V goes to 1 one CLK cycle
before the start of READOUT and returns to 0 when the FSM returns to FILL.

TWR and WND Values of TWR and WND used by the circuit cannot be simply
set in time units, but they need to be scaled and adapted to the FSM CLK

frequency (f = 100 MHz or T = 10 ns in the current implementation):

• TWR is calculated according to Equation 6.1 and scaled by a factor 10. As
example, consider tw = 1024 ns, t1 = 40 ns, tT = 80 ns and tSROUT =
10 ns9. TWR will be calculated as

TWR = (tw − t1 − tT − tSROUT)/10− 1− 1 = 87.4 CLK cycles

where the first -1 is due to the fact that we start one CLK cycle after trg
has been raised, so 10 ns pass while trg is 1. The second -1 is due to the
fact that CNT_RD starts counting from 0. In the code the actual value used
is 87, since we want to not overwrite more cells than the necessary ones.

• WND given in ns represents the amount of cells we want to read out.
Therefore a simple conversion between the 100 MHz clock domain and
the 25 MHz one is enough to give the right limit: therefore for each cell
we need 4 CLK cycles. As example, if we want to get 200 ns of data we
need

WND = 200 · 4− 1 = 799 CLK cycles

where the -1 is due to the fact that CNT_RD starts counting from 0.

9As already explained, tSROUT is needed in order to stop the writing operations 10 cells before
the original point. This 10 ns quantity is due to the fact that the domino wave advances at a speed
of 1 cell/ns, since it is sampling at 1 GHz.

80

Time Ref 40 ns

PSTATE GETLOC READOUT FILL

SRCLK

DWRITE

A3-A0 1001 0000

SROUT_EN

ADC_EN

D_V

READ SREG (439) 1 0 0 0 0 0 0 0 0

READ SREG (440) 0 1 0 0 0 0 0 0 0

READ SREG (441) 0 0 1 0 0 0 0 0 0

READ SREG (442) 0 0 0 1 0 0 0 0 0

READ SREG (443) 0 0 0 0 1 0 0 0 0

...

READ SREG (558) 0 0 0 0 0 1 0 0 0

READ SREG (559) 0 0 0 0 0 0 1 0 0

READ SREG (560) 0 0 0 0 0 0 0 1 1

READ SREG (561) 0 0 0 0 0 0 0 0 0

CH 0 OUT 440 441 442 443 558 559 560

CH 1 OUT 440 441 442 443 558 559 560

CH 2 OUT 440 441 442 443 558 559 560

CH 3 OUT 440 441 442 443 558 559 560

Figure 6.10: Signal configuration for the readout of the data from the DRS4. Signals
marked in bold are those sent to the DRS4. The lines named READ SREG (#) show how
the “1” dumped by RSRLOAD is pushed forward by SRCLK pulses. The last four lines
instead show the position in the capacitor chain of the data sent out.

81

82

Chapter 7

CEPA Clock Distribution

7.1 Motivation for a New Clock Delivery Scheme

The request for a simple but still precise clock delivery system comes from
the need to provide a clock reference for time stamping in the CEPA part of
the CALIFA experiment. The main idea behind this proposed clock delivery
protocol deals with different aspects:

• Delivering the clock signal/reference and the labels of the fronts1 on
only one line/cable: although using electric signals is possible, an optical
connection would be the best solution. Using one line/cable would
ensure simplicity of the delivering and to avoid ambiguity, since the
labelling and the clock signal/reference are always aligned. The current
clock delivering method (provided by White Rabbit receivers) involves
two different cables, one carrying the clock signal and the other the label
information: temperature differences or errors in the cables length can
induce signals jitters and misalignment between label and clock front.

• Delivering the signal directly to the system, involving at most modules
which just route the signal: in our case this means delivering directly to
the Febex cards or to the Exploder. This will allow the system to time-
stamp events according to the reference clock and not something that
could be “contaminated” by other modules. From the signal delivered to
the FPGA we can generate the main clock used in the cards, allowing to
timestamp with respect the absolute reference of the WR system.

In the next sections we will first examine the electronic modules available
for arranging this new distribution. Then we will show how this protocol will
work and finally we will propose some ideas for implementing the delivery
scheme.

1These numerical labels are needed to identify the corresponding clock front with respect an
initial reference point. In this way we can deliver the timestamp information.

83

7.2 Phoswich Crystals Properties

Phoswich crystals for CEPA are made of two different materials optically
coupled together: 7 cm of LaBr3 and 8 cm of LaCl3. The photomultiplier
is placed at the end of the LaCl3 crystal. These materials show interesting
characteristics summarised in Table 7.1 [7]. Together with fast decay times
and large light yields, these materials have a very good time resolution: as
shown in Figure 5a on page 2 of [25], values of the coincidence resolving time
(CRT) are in the range of a few hundred ps. The actual value depends on the
dimension of the crystal involved. The experiments for measuring the CRT
involved two crystals coupled to PMTs and a 22Na source [25]. The crystal
under characterization was used as STOP signal, while signals from another
smaller LaBr3 crystal were used as START. The CRT is related to the time
resolution according to the following

δ2
CRT = δ2

start + δ2
stop .

Material Light Yield Decay Time CRT
(photons/keV) (ns) (ps)

LaBr3 63 16 ≈100–300
LaCl3 49 28 ≈200–500

Table 7.1: Main characteristics of LaBr3 and LaCl3 materials. CRT refers to Coincidence
Resolving Time and the range reported here is more detailed in Figure 5a on page 2
of [25].

Because of these time resolution characteristics, the distribution of a precise
clock reference is needed.

7.3 Analysis of the Electronics - Hardware

7.3.1 Febex3B - Blue Card

The Febex3B board is equipped with [26]2:

• FPGA: Lattice ECP3-150. In Table 7.2 we have reported some properties
of this FPGA [27]. What needs to be highlighted is the requirement for
the duty cycle of the PLL input clock signal: with any clock frequency,
the minimum requirement is 0.5 ns in either high and low level. The
FPGA is responsible for the data processing and for driving the DRS4
chip.

• 8 Low noise amplifiers ADA4932-2 whose inputs are connected to the
front-end connector where an add-on board with mechanical connectors

2The referenced data sheet is not the one describing the Febex3B board, but rather the Febex3A
board: the only difference noticed concerns the ADC used. Documentation about the Febex3B is
not available.

84

(e.g. lemo connectors) can be attached. These amplifiers have two
differential input-output channels each [28].

• 2 ADCs: Analog Devices AD9252. With 8 channels each, they feature
50 MHz sampling frequency, 14 bit resolution and 2 Vpp as input voltage
range [12]. The inputs are all routed from the low noise amplifiers. The
outputs are connected to FPGA input pins.

• 3 oscillators Si531 family by Silabs [29]. Two of them are characterised
by a frequency of 100 MHz with a supply voltage of 3.3 V, while one
has a frequency of 125 MHz and a supply voltage of 2.5 V. All three are
connected to some FPGA inputs.

• Front-End connector featuring:

– 16 differential analog inputs;

– 16 differential LVDS I/Os;

– 4 code inputs.

• PCIe slot featuring:

– Four serial multi-gigabit connections;

– 8 fold trigger bus inputs/outputs (differential MLVDS);

– Power supply.

FEATURE VALUE

Logic Units ≈149× 103

Multipliers (18× 18) 320

Memory
Embedded Memory 6850 kbit

Distributed RAM 303 kbit

SERDES
Amount 4

Channel Frequency 150 Mbps to 3.2 Gbps

PLL
Amount 10

Input Clock high min. 0.5 ns
Input Clock low min. 0.5 ns

Input Frequency range 2–500 MHz
Output Frequency range 4–500 MHz

Table 7.2: Main characteristics of the FPGA Lattice ECP3-150 [27].

85

7.3.2 SFP Module - Red Card

The SFP module provides connections between the external world and the
back-plane of the Febex crate. While it is connected to the crate through a PCIe
connector (see section 7.3.3), on the front it features:

• 2 Optical connectors, one of which is needed for sending data to the MBS
pc (PEXOR card);

• 1 ribbon cable connector with 26 lines which is used for connecting the
SFP module to the EXPLODER.

7.3.3 Crate

The crate is responsible for providing power and a simple connection between
cards, especially between the Febex cards and the SFP module (for trigger
and data delivery). The cards are allocated in PCIe slots, although no PCIe
protocols or communications are involved. It features:

• A daisy chain between all the Febex cards using a bi-directional 1.6 Gbps
connection for readout and control via the GOSIP protocol [4];

• 8 MLVDS lines on the back for trigger signal exchange: however further
information about how the connections are arranged is not available.

7.3.4 DRS4 Add-on Board

This add-on board is designed for the CEPA part of the CALIFA detector. It is
needed in order to provide a higher sampling frequency for the fast signals
coming from phoswich crystals. It features:

• 8 front-end LEMO connectors and connection to a Febex board through
the Febex front-end connector;

• DRS4 chip: it is a switched capacitor array circuit with 8 channels, each
of them having an array of 1024 capacitors [9]. It allows to sample 8
channels up to 5 GHz (for CEPA 1 GHz has been chosen) and its input
voltage range is 1 Vpp. It is driven by the FPGA sitting on the Febex
board, receiving start, stop and configuration signals. However the most
important of these signals for our analysis is the clock responsible for the
generation of the internal sampling wave.

• Signal splitting:

– From main input the signal is split in order to send one signal to the
DRS4 chip and another to an ADC on the Febex board for triggering
purposes. The latter is fed into an integrator before being sent to the
Febex card (already implemented).

– The signal to the DRS4 will then be split another time but in different
weights into a gamma and a proton branch (not implemented yet).

86

7.3.5 Exploder

The Exploder is central in managing trigger signals. It communicates with the
Febex crate through a ribbon cable connection to the SFP module. It is also
connected to the TRIXOR card in the MBS pc: this board manages the triggers
sent by the Exploder. It features [30]:

• FPGA Xilinx Spartan 6 (XC6SLX150T-3CSG484): 150k Logic Blocks and
4.824 Mbit Block RAM;

• Four optical fiber transceivers (2 Gbps SFP);

• Daughter Board (this is not the White Rabbit extension board) [30]:

– 8 LVDS inputs, 8 LVDS outputs, 8 ECL outputs, 8 TTL and NIM
inputs, 8 TTL or NIM outputs;

– 2 MLVDS connectors with 8 differential I/O pairs, LCDisplay.

7.3.6 Cables

7.3.6.1 Ribbon Cable

It has been noticed that transmission on ribbon cables is highly affected by the
material which surrounds the cable, especially if no shielding is provided. If
the material changes (for example moving an object closer to the cable), the
signal is shifted in time, even shifts in the ns range are possible. Therefore
employing this type of cable should be avoided if we want to reach a sub-ns
precision for our clock signal, without excessive calibration work.

7.3.6.2 Optical Fiber

As also suggested in the Nustar DAQ TDR [8], signals outside modules/systems
should be optical. This is due to the fact that they are not affected by electro-
magnetic interference, have no problems with impedance mismatch, and avoid
to influence on the grounding of separate systems. Employing an optical cable
therefore would be the best choice in order to achieve sub-ns precision.

7.3.7 EXTRA Hardware: SPEC and FMC cards

The combination of a SPEC card and a FMC card by Seven Solutions is what
in the WR terminology is called a node. This system is able to

• Interface with a WR switch through an optical connection (SPEC card);

• Keep itself synchronised with the WR clock [31];

• Deliver a clock signal (FMC card) which is synchronised with the WR
clock [32].

87

The SPEC card can interface itself with another card through a PCIe con-
nector, from which it receives also its power. Among all the components, this
card features a Xilinx Spartan 6 (XC6SLX-45T/100T) FPGA and a SFP cage (the
transceiver is not provided) in which the WR signal is delivered. It is able to
achieve sub-ns time accuracy. The FCM card instead sits directly on the SPEC
card and provides components in order to interface with other modules. All
the signal processing is done in the FPGA on the SPEC card.

7.4 Proposal for New Clock Delivery

In order to deliver on one line both the label information and a signal, which
can serve as clock reference, we need to send two kinds of information at the
same time. Talking about the signal responsible for generating the clock, we
take a look at how FPGAs generate a clock signal starting from a given input
clock. Although it is not an absolute rule, producers such as Altera, Xilinx and
Lattice claim that the internal PLLs generate the output clock by locking on the
rising edges of the input clock signal. However usually manufacturers then
impose some restrictions on the allowed duty cycle3 of the input clock4, with
Altera being the most restrictive (range 40–60%) while Lattice just requires the
presence of a falling edge. Xilinx is seen to be in the middle, with an allowed
duty cycle range of 25–75%.

The label information instead is a 64 bit word and it can be sent as 1 bit/cycle.
Considering the previous discussion of the duty cycle, the “1” or “0” informa-
tion of the single bit sent per cycle can be encoded with a different duty cycle
of the input signal. The generation of this kind of signal can be easily done
inside an FPGA using a counter and a clock with a higher frequency than the
target signal. In Figure 7.1 this new concept is shown: the idea is to feed the
FPGA with the “INPUT CLK”, which then is split and sent to a

• PLL: this component can generate a clock signal which drives the FPGA
logic based on an input clock. Moreover the PLL guarantees that the
output signal is phase locked with respect to the input: this means that
there is a fixed relation (constant offset) between the input and output
phases, not that the phase is equal to 0.

• Sampling branch: the input signal is sampled using a clock gated latch
scheme, where the clock is derived (or even the same) from the PLL
output. Since each single bit of a 64 bit word is encoded in one separate
input clock cycle, the clock for sampling needs to have a higher frequency
than the input one. In this way for each input clock cycle, and therefore
each bit, we will obtain a bunch of samples, some equal to “0” and others
equal to “1”. All the sampled values inside one input clock cycle are
then summed together. The result is then compared with a threshold

3The duty cycle of a periodic digital signal is intended here as the ratio between the time the
signal is high (“1”) and the total period time.

4For Altera the performances of the Max 10 family are reported, which are the same of the
Arria II FPGA contained in the VETAR2 module, while for Xilinx we checked the Virtex 4 family.
In the case of Lattice instead, the data about the ECP3 family are shown.

88

which will determine if in that clock cycle a “1” or a “0” bit has been
transmitted. The threshold value needs to be chosen according to the two
values of the duty cycle of INPUT CLK and to the frequency at which
INPUT CLK is sampled. In Figure 7.2 a sequence of signals involved in
the single bit recovery is shown.

LATCH

PLL OUTPUT CLK

INPUT
CLK

FPGA

REF

SUM &
COMPARE

nth BIT
LABEL

Figure 7.1: The signal from a WR node (or any other module) is injected into the FPGA,
where it is addressed (i) to a PLL, which will be responsible for generating a clock
signal for the FPGA logic, and (ii) to a logic circuit responsible for “sampling” the input
signal INPUT CLK and therefore recover the sent bit of the label. The sampling is done
using a clock gated latch. The samples are then collected and summed in order to
determine the value of the encoded bit. The clock used can come directly from the PLL
OUTPUT CLK or it can be derived from that one. The OUTPUT CLK is also used by
the PLL as a reference clock during its internal elaborations.

In the above explanation the labels sent to the FPGA are described as
64 bit words: in the real implementation this will be probably changed in
longer words in order to include error correction capabilities and DC-balance
characteristics.

7.4.1 Threshold, Quiet Margins and Duty Cycle

The capability of the sampling branch to determine which value has been sent
depends on the

• Number of samples available, which is proportional to the ratio between
the OUTPUT CLK frequency and the INPUT CLK frequency;

• Duty cycle values for the “1” and the “0” clock cycle of the INPUT CLK.

89

◦1 ◦1 ◦1 ◦1 ◦1 ◦1 ◦1

◦0 ◦0 ◦0

◦1 ◦1 ◦1 ◦1

◦0 ◦0 ◦0 ◦0 ◦0 ◦0

SUM = 7

SUM = 4

50% DUTY CYCLE

INPUT CLK

OUTPUT CLK

INPUT CLK �1�

SAMPLED �1�

INPUT CLK �0�

SAMPLED �0�

Figure 7.2: Examples of signals involved in the proposed clock delivery scheme. The
input signal (INPUT CLK) to the PLL is a signal with a fixed frequency when considering
the rising edges, while the falling edges are shifted according to the need of transmitting
a “1” or a “0”. In this case the PLL OUTPUT CLK has a frequency 10 times higher than
the input signal. OUTPUT CLK and INPUT CLK are phase locked thanks to the PLL,
which means that the shift in time is kept constant. The existence of this shift is due to
the internal signal path of the PLL and reaching the clock input of the latch, compared
to the INPUT CLK reaching the signal input of the latch. The two SUM terms are sums
of the sampled values of the INPUT CLK in the two different signal shapes.

Knowing these two parameters we can decide on the value for the threshold
that is needed for determining which value has been sent. The two duty
cycles correspond to two different sums of the samples: the threshold can
be therefore easily computed as the average point between the two obtained
values. Now comes the challenging part: the two sums (or duty cycles) have
some margins (which we call quiet margins) between them and the calculated
threshold. Having wide margins is a requirement in order to recognise the two
encoded values more easily. To achieve this property, a high difference between
the two duty cycles, together with a high sampling frequency, is needed.

Although the calculation of the threshold can be “hard-coded” as circuit
constant parameter, a dynamic determination at runtime can be implemented: a
min-of-max and max-of-min filter respectively for the long and short pulses can
be used to adapt the threshold to the circuit performances.

Edges Jittering Concerning the correct recognition of the encoded value, we
cannot avoid to face the possible problem due to the jittering of the INPUT
CLK edges with respect the sampling clock generated from the OUTPUT CLK.
What can happen in the case of jittering edges (especially considering the
falling edge that encode the label bit) is that the sum of the samples in one
input clock cycle results to be different than the designed value. This problem
can be mitigated (if not altogether avoided) by ensuring to have sufficiently
large quiet margins: these margins need to be adapted to the time width of the
jitter and therefore to the amount of involved samples. Although a study of
the jitter in the FPGA, which will be employed, is necessary. We could guess
that a jitter larger than 1 sample is difficult to experience. In this situation a

90

difference of at least 3 between the short-pulse SUM and the long-pulse SUM
will ensure to calculate the right transmitted bit.

7.5 Proposed Electronic Implementations for the New
Clock Delivery Scheme

The content of this section is based heavily on emails that the Chalmers group
exchanged with the Munich group. The ideas were elaborated mostly by the
Munich group with some exceptions (such as the gray rabbit picture). The
images here reported (which were drawn mostly by colleagues in Munich)
have not been changed with respect those attached to the emails.

After presenting the current state of clock delivery in section 7.5.1, a design
for future implementation of a clock delivery system is explained.

91

7.5.1 Present State

The configuration described here is currently used for the barrel part of CALIFA
and has been developed by the research group at the Technische Universität
München (TUM) in Munich, Germany. A 20 MHz clock for timestamping is
generated inside the EXPLODER and then delivered to all the FEBEX cards
through the ribbon cable connector of the SFP card - Red Card: each Febex then
derives its own timestamp from this clock (see Figure 7.3) by counting from
a global reset. The clock from a WR switch is received by the PEXARIA card.
This card then talks with the Exploder (which send triggers). These triggers
are then used for synchronising the local timestamps with the WR timestamp
in an event builder. Synchronisation of several Exploder modules has been
developed.

From the 20 MHz clock received by the Febex, a≈500 kHz clock is generated
for the DRS4 chip. The PLL in the DRS4 chip helps in reducing problems
with possible clock jitter. Attention needs to be paid to checking if the signal
received by the DRS4 is well delivered through connectors and metal traces.

Using this scheme a problem of counting mismatches can arise if the FPGA
in a Febex misses, for one cycle, the 20 MHz reference clock, leading the local
timestamps to differ from each other.

Barrel

Trixor

Exploder

FEBEX

optional sync
(work in progress)readout

trigger

MBS PC

WR Switch Pexaria

Exploder

20MHz Gen

readout
request

ucesb eventbuilder:
estimates WRTS from
20Mhz based counter

sync event=readout trigger

FEBEX

TS counter
event TS
(on readout Trig.)

20MHz

WRTS

Present state (since 438b)

PLL

MLVDS

Channel TS

60MHz

opt. fibre

deadtime

readout
trigger

Figure 7.3: In the current configuration used for the barrel, the signal from a WR switch
is received by the PEXARIA card in the MBS PC. The Exploder communicates with
the Febex cards, receiving and elaborating trigger signals, and with the PEXARIA card,
transmitting trigger events. The Exploder generates a 20 MHz clock signal which is
delivered to all the Febex cards: this signal is then used in an internal timestamp counter
to assign an initial timestamp reference. The official timestamp will be computed by
software in the event builder. For CEPA this clock delivery scheme needs to take care
of the DRS4 add-on board: in this case a ≈500 kHz clock will be generated inside the
Febex FPGA from the original 20 MHz clock from the Exploder. [Information from
private communication]

92

7.5.2 Proposed Scheme

An electronic implementation which exploits the new clock delivery scheme is
shown in Figure 7.45. A WR receiver such as PEXARIA card, VETAR module
or Exploder (together with its WR add-on board), can be used for generating
the 25 MHz6 clock with the encoded label in it. This signal is then delivered
on one cable to the Exploder, used in the experimental setup and from there to
the Febex cards, always on one cable. The Exploder uses this signal for time
referencing the triggers. Meanwhile the Lattice FPGA on each Febex board
decodes the label and generates the internal clock as described in section 7.4.
Also the clock for the DRS4 is generated from the same input clock.

WR Switch

Exploder

FEBEX

TS register
event
TS

25 MHz
+TS
(1-wire)

Concept A, option 1b

PLL

MLVDS

LEMO

VETAR

or

DRS4

PLL

data

0.5MHz
reference CLK

Switched
capacitor
array

0n
1

WR

EXPLODERWR

PEXARIAWR

or

TS register

PLL

25 MHz
+TS
(1-wire)

CLK has modulated duty-
cycle to encode TS

Figure 7.4: This electronic implementation exploits the proposed clock delivery scheme
which use just one cable to deliver both clock and label information. The signal from
a WR switch is first received and elaborated from a WR receiver such as a PEXARIA
card or a VETAR module or an Exploder (together with its WR add-on board). This
receiver generates the clock signal with the encoded label and sends it to the Exploder
used in the experimental setup. From here the signal will be sent to the Febex cards,
where the Lattice FPGA will generate their internal clock and the clock for the DRS,
while recovering the label. Inside the Exploder instead the clock will be used for time
referencing the triggers. [Based on private communications]

5The figure has been obtained by modifying a schematic drawn by colleagues in Munich.
625 MHz is a convenient ratio of both 125 MHz and 50/100/200 MHz.

93

94

Chapter 8

DPTC - Difference Predicted
Trace Compression

Conventions — Most/Least Significant Bits

• If not explicitly stated otherwise, in this chapter the Most Significant
Bit (MSB) is always on the left side of a string, picture etc. The Least
Significant Bit (LSB) is always on the right side.

• std_logic_vector, signed and unsigned (see section 5.2) are built with
descending array range (example: 15 downto 0). Therefore the MSB is the
bit with the highest range value, while the LSB is the one with the lowest
range value.

8.1 Motivation

A particle detector does not only require good timing and/or energy resolution,
excellent readout electronics and superb clock distribution. As crucial is
the transfer and the storage of the large amount of data generated by the
digitization and processing of the signals. On the one-hand side, increasing
the transfer rate usually requires investments in purchasing systems capable to
deliver faster data transmissions. Considering the needed storage, buying or
accessing larger servers might solve the problem.

However there is a cheaper solution which can ease the pressure: data
compression. If implemented as software running on a PC, it would compress
data, which have already been sent from the signal processing unit, therefore
there would not be less demand on the transfer rate. To be effective on both
sides, an implementation on the FPGA, where usually the signal processing
takes place, is needed.

In this chapter we will first show some ideas for compressing data. Then
the implementation on the FPGA of this approach, which exhibits the best
compression, will be carried out using VHDL code.

95

8.2 Common Ground

First of all, knowing the carefulness with which data is usually collected in
physics, the compression schemes we are going to present are all lossless,
meaning that they allow a full recovery of the original data information.

Well-known compression algorithms such as the Huffman encoding algorithm
base their operations on symbol occurrence frequency [33]. The encoded
information is recovered from data that are already all available before the start
of the compression.

In our case we require instead the compression to work online, using data
released directly by modules responsible of the digitization of detector signals.
This implies that we do not have full knowledge of the occurrence frequency
of symbols.

Our compression schemes are going to work with data from traces and this
fact has two consequences: the frequency of symbols is biased and we can predict
data trends, especially along a pulse rising and falling parts.

It is important to understand that the two compression algorithms, ex-
plained in the following sections, do not work on data coming directly from
the digitization device, for example an ADC. To be able to compress data effec-
tively, the input data values of these algorithms are exploiting the following
two basic characteristics of the signals.

8.2.1 Frequency of Symbols

The first thing to notice is that in a trace each value is usually not very distant
from the surrounding ones: therefore encoding the difference between one
sample and the previous one strongly skews the spectrum of values to encode.
This characteristic is particularly visible in each single trace, where the values
are found lying along the so-called baseline value and also, to a lesser degree,
in slow pulses. Thus, developing compression schemes which encode smaller
values with fewer (Huffman coding style) bits should reduce a lot the occupation
due to flat traces significantly.

8.2.2 The Predictor

Another characteristic that can be exploited is the trend of the samples. This
approach could be seen as a sort of prediction algorithm, another set of methods
used in data compression [33].

Assume Considering a pulse, we get a first set of data where the differences
between one data and the previous one are all positive (rising part), and a
second part where instead all the differences are negative (falling part). These
trends can be used for storing the difference of two consecutive differences: in this
way we are going to store smaller values than otherwise. We call predictor the
part of circuit or code which implements this calculation.

The predictor needs to be activated once a rising or a falling sequence has
been detected. This is done by monitoring the last n differences of each value:
when all these are positive or all negative, the predictor is activated. Once a

96

trend is interrupted, the procedure goes back to the usual one, namely the
calculation of the difference between one sample and the previous one. The
choice of the value of n needs to be not too large, otherwise we fail to take
advantage of the beginning of rising or falling parts, nor too small, otherwise
the predictor is activated also during flat noisy periods, which actually will
inflate the values to be stored.

Our implementation Our suggestion, based on empiric studies, is to activate
the predictor after 3 differences have shown the same sign.

97

8.3 Single Word Compression

In this approach to compression, a single data value at a time is encoded and
the resulting output data is organized as follows1:

01234

Value Length RP (8.1)

where

• RP stands for Recognition Pattern (2 bits): it signals the beginning of a new
encoded word. As shown in Table 8.1 it can take four possible values,
three of them (00, 01 and 11) are directly linked to a value (0, +1 and
-1 respectively), while the fourth (10) represents the beginning of a new
sequence which encodes a larger value.

• Length represents the number of bits which are used to encode the input
data in Value. The value stored in Length however is not necessarily the
unsigned version of the real length. Together with the length information,
the sign information of the encoded data is stored as well in this part.
The width of Length varies and depends on the number of bits needed
to encode the value, which will be processed.

• Value contains the encoded value of the data. The resulting bits value
depends on the particular algorithm applied.

Value Meaning

00 Encoding 0 value
01 Encoding +1 value
11 Encoding -1 value
10 Encoding larger values

Table 8.1: Values of the Recognition Pattern RP. They signal the beginning of a new
encoded word.

It needs to be pointed out that the representation of the output data dis-
played in 8.1, although it fully follows what was stated in the beginning of
the chapter, it will be always turned around in the following sections. This
choice allows the reader to follow more easily those picture, because of the
more common left-to-right way of reading text.

In the following sections encoding algorithms, which follow the Single Word
Compression guidelines, and possible improvements will be presented.

8.3.1 OddBits Compression

What is missing in the previous section is a procedure that, starting from an
input data, writes the Length and Value parts of the block shown in 8.1. This

1We suppose that the reading proceeds right-to-left: this is not uncommon when dealing with
CPU and other type of digital electronics. Therefore the beginning of the data is localized on the
right side of the block and vice versa for the end.

98

is accomplished by an encoding algorithm. The encoding approach shown in
this section has the peculiarity to output data symbols with an odd width.

Given a data value input characterised by a width of n bits (n-1 downto 0)

1. If input is positive (or negative), start looking for the first occurrence of
1 (or 0) from the MSB;

2. Once it has been found at position k, the Length part is filled with k 0s
(or 1s, in case input is negative), while Value takes the part of input
between the first occurrence of 1 (or 0). Visually the output word has the
following structure

10 k 0s input(k downto 0) (8.2)

if input is positive, or

10 k 1s input(k downto 0) (8.3)

if input is negative.

From the procedure described above, it follows that the minimum width of
the encoded words is 5 (k=1)2. Considering only encoded words m-bits long,
with m = 2 + 2k + 1 (according to 8.2 and 8.3), the amount of encoded patterns
available is:

2
m−1

2 , m ∈ {5, 7, 9, 11, . . . } (8.4)

Considering now a maximum output width of l bits, the total number of
encodable words is

3 +
l

∑
m=5

2
m−1

2 , m ∈ {5, 7, 9, 11, . . . } (8.5)

where the 3 comes from the values encoded using the Recognition Pattern (see
Table 8.1). Considering the summation term, we can substitute m = 2 + 2k + 1.
Setting kMAX = l−3

2 , we can solve the equation

l−3
2

∑
k=1

2
2+2k+1−1

2 =
kMAX

∑
k=1

21+k =
kMAX+1

∑
k=2

2k =

(
kMAX+1

∑
k=0

2k

)
− 20 − 21 =

=
1− 2kMAX+1+1

1− 2
− 3 = 2kMAX+2 − 1− 3 = 2

l+1
2 − 4 .

Adding the 3 of Equation 8.5 we finally obtain

2
l+1

2 − 1 , l ∈ {5, 7, 9, 11, . . . } (8.6)

which gives the number of encoded words using at most l bits as output width.

2Someone could protest and say “Why don’t you consider the case k=0?”. Well, if k=0 we can
not have any information about the length of the value part, therefore no data can be stored in this
way. In the following paragraphs this problem will appear again.

99

Known Problems A problem surfaces when using the algorithm as explained
above together with the other encoded values described in Table 8.1. When we
try to apply the algorithm above to −2 = 0b1...10 we obtain:

10 k=0 1s input(k=0 downto 0)

10 - 0

However this conversion of −2 cannot be used since the decoder does not read
information from the Length part, therefore it does not obtain any information
about the length of the Value part.

A solution to this problem involves a change of the 2-bit encoding table
(Table 8.1). Expressing −2 using 3 bits without using 10 as recognition pattern
for it, we’ll obtain a new set of encoding values shown in Table 8.2. This
approach has the inconvenience of increasing the number of bits needed for
encoding −1 by one.

Value Meaning

00 Encoding 0 value
01 Encoding +1 value
111 Encoding −1 value
110 Encoding −2 value
10 Encoding larger values

Table 8.2: Values of the Recognition Pattern RP with a fix for the −2 value.

Advantages The main advantage of this algorithm is its simplicity in comput-
ing the encoded word: once the first 0 [1] has been discovered, we just need to
dump the rest of the data bits. No mapping or other operations are required.

8.3.1.1 Decoder for OddBits Compression

In order to encode data with all the features described above, the decoder
needs to

1. Read the recognition pattern: if it already represents a value, then the job
is done. In case instead RP = 10, then the encoder continues to read.

2. Read the following bits until there is a change from 0 to 1 or vice versa.
This is the Length part described in section 8.3. If this part starts with
a 0, it means that a positive value has been encoded. On the contrary a
1 would denote a negative value. This feature is however not exploited
explicitly by the decoder, as it will become clear in the next step. The
number of bits before the change tells the decoder the length of the Value

part.

3. Take all the bits starting right after the recognition pattern until the end
point set using the information found in the Length part. The decoder
then just needs to interpret these bits as a signed binary value.

100

8.3.1.2 EvenBits Compression

A compression where all words have an even length has been taken into
account. However the only way we found to built such a compression required
the use of a map in order to encode easily the input value. The fundamental
approach is the same as the one explained in section 8.3.

8.3.2 Drawbacks

While developing the Single Word Compression approach, a number of weak-
nesses surfaced.

First, every time one more bit is needed for encoding the input data, the
resulting sequence grows by 2 bits. This is due to the fact that both the Length

and the Value patterns need to be increased by one bit each: the first one is
needed for signalling that we have one more bit, the second one is the value
bit itself. The encoded sequence width therefore increases always in steps of 2,
no matter which encoding scheme is used. This leads to an important inflation
in the encoded words width when large numbers need to be compressed.
Considering the procedure shown in section 8.3.1, the maximum value of k
which allows us to reduce the number of bits is

2 + k + k + 1 ≤ n⇒ k ≤ n− 3
2

.

Another problem concerns the number of values which are encoded with
symbols whose bit width is larger than that of the input data. To show this
problem we use an example: consider a 14 bits signed input data. In order
to keep the output width shorter than the input, we can use a maximum of k
equals to 5. This indeed implies a maximum length of 13 bits for the encoded
words and a coverage of an input values range of [−64,+63], for a total of 128
values. While the total amount of input data is 2n−1 = 8192, the total number
of encodable words, having a shorter width than the input, is 127 (according to
Equation 8.6). Therefore a large amount of input data words would be encoded
with a larger number of bits compared to the input bit width. However, since
we are interested in compressing traces data using differences, we do not
expect to have large variation between two consecutive samples. Therefore
smaller values are more probable than larger ones and a reduction in data
occupation should still be visible.

Lastly, from simulations where we could tune the amount of noise in the
data, it appeared clear that the compression ability drops if the noise raises.

Mainly for this last reason, the compression described in section 8.3 and 8.3.1
is not implemented in any VHDL code. The only compression scheme which
is considered for implementation purposes is presented in section 8.4.

101

8.4 ChunC - Chunk Compression

The Chunk Compression (ChunC) scheme is a completely different approach
with respect the Single Word Compression. In this case the compression involves
a group of r data values3 (chunk) at a time, where r is always the same. The
procedure is quite simple: considering all the data in a chunk, first we look
for the highest number of bits needed for encoding (as signed binary number)
each data value in that chunk. The encoded data are arranged as follow:

1. First x bits are used to mark the width4 of each encoded data value;

2. Then the encoded versions of the input values are stacked together one
after the other.

The final package of bits will appear to be as follow5

r-th data ... 2nd data 1st data Length
(8.7)

while representing the occupation of each part

m bits ... m bits m bits x bits (8.8)

Values range of x The value of x is determined in order to accommodate the
width the largest input data, since this is the worst-case scenario. An observation
is needed: given x, we can cover an unsigned value range starting from 0 up
to 2x − 1. However in the case x encodes a 0 value, this would mean that
no other bits are going to follow. Although this can be a good approach for
encoding really efficiently r consecutive 0s, another way of interpreting the 0
value has been implemented6. Having to deal with ADCs, which feature 8 or
16 bit resolution, we can exploit the 0 value to shift the values range between 1
and 2x: in this way an 8 bits width can be encoded using 3 bits, rather than 4,
and a 16 bits width uses only 4 bits instead of 5. Therefore the encoder and
the decoder just need to know that the encoded Length is equal to the actual
length minus 1.

Advantages The ChunC method solves (almost) the problem about the width
inflation of encoded words, which affects the Single Word Compression (see
section 8.3.2). The worst case scenario for the CHUNC approach indeed
happens when we need to deal with the entire input data, so that the length of
each data remains the same. The resulting encoded word will have an increase
in occupation with respect the initial one of just x bits: this quantity is however
shared among the r data values which make up the chunk. As an example, if
r = 8, x = 4 and the input width is 14 bits, the worst case encoded word will

3It is important to remember that this compression scheme handles the differences between
two adjacent samples or the difference of two differences, as explained in section 8.2.

4The x-bits content is given as unsigned binary number.
5Read the block from right to left.
6A long sequence of 0s is however not very common, as it implies that the recorded noise is

much smaller than 1 bit.

102

have 4 + 8× 14 = 116 bits, compared to 112 bits of uncompressed data. The 4
bits more correspond to an average of 4/8 = 0.5 bit per input data addition in
the worst case.

Compression Factor Simulations on data from traces have shown compres-
sion factors up to 4: this means that for a 16-bits long sample, the average
compressed value occupies 4 bits. The compression rate depends heavily on the
type of traces involved. The flatter the trace is, the higher the factor becomes,
because it implicates that all the differences values are close to 0.

Another factor that influences the compression rate is the level of noise in
the signal. With a high noise level, the differences are not close to 0, requiring
the compressor to use a larger amount of bits to encode. Figure 8.1 shows how
the number of bits needed for each sample increases, following the logarithm
of the noise level. In the simulation, the sampled signal was pure noise. In
order to keep the compression factor high, the suggestion is to delete the part
of the sample which is accounting just for the noise.

Figure 8.1: Dependence of the number of bits required for compressing a sample on the
noise level. The noise is reported as standard deviation of the noise distribution.

This compression scheme has shown good properties in dealing with noisy data, and
therefore we have created a VHDL implementation of it to be used (mainly) in FPGA
projects. Difference Predicted Trace Compression or DPTC is the name given to
this implementation of ChunC.

103

8.5 DPTC - Implementation on FPGA of ChunC

Implementing the ChunC compression on FPGA we tried to keep the circuit as
configurable as possible. Therefore a package file (compr_pkg.vhd) containing
constants is provided: the circuit characteristics which can be configured are
the width of the input and the output words and the length of the chunk.

The design is made up of 3 modules:

1. Difference Calculation: the input and output data are transmitted seri-
ally and the module calculates the differences between two consecutive
inputs, and applies the predictor;

2. Encoding: in this module the differences are encoded, while an output
signal marks the beginning of a new chunk. The number used for each
data is released by this module as well.

3. Output Compression: this module packs the output data from the encod-
ing module in order to provide an output with a fixed length. A data
valid signal tells when a new output is ready.

All these modules are bound together in a top level design, which therefore
represents the interface to outside world. This splitting has been carried out in
order to give the possibility to remove a single module or to easily replace it
with another one implementing a different algorithm.

In the following sections, the design of DPTC using VHDL code is described.
Although some circuit parameters can be changed by the user in order to fit
his/her requirements, the present documentation will use the particular values
chosen as default ones: they can be found in Table 8.3. In section 8.5.3 all
configurable parameters are described in detail.

8.5.1 Language and Libraries

The circuit has been developed using VHDL code and we have tried to create a
code compatible with both the VHDL-1993 and the VHDL-2008 version of the
standard. Moreover we did not employ any Intellectual Property (IP) component
from any EDA or FPGA vendors. All this means that our source code should
be compatible with most software on the market, and that it can be employed
for a long time (hopefully)7.

Libraries used are all recognized as official standards:

• library ieee;

• ieee.std_logic_1164.all;

• ieee.numeric_std.all;

• std.textio.all;

• ieee.math_real.all.
7However FPGA vendors and EDA software companies (still) provide products which are not

implementing completely all the new features introduced in VHDL-2008: an example is given by
the reducing boolean operators which are not implemented in Altera Quartus Prime 16.1 [34].

104

In this way the code provided should be read without any problem by all the
synthesis programs available on the market.

8.5.2 DPTC Module - compression_module_chunc.vhd

This is the top level design where the three computational modules are bound
together. Figure 8.2 illustrates how these three sub-modules are connected to
each other. The top layer works more as an interface to allow an easier usage
of the compression circuit in another design.

The circuit has no central unit (usually implemented as a finite state machine)
for controlling the computational behaviour, such as reset, data valid generation
and initialisation of a new chunk. This is not needed as the states are very
simple. Each module is fed with the input reset and clock signals, while the
generation of a data valid signal at the output is managed with a pipeline
which carries the input data valid in parallel to the input data. The output
data is a fixed 32 bits std_logic_vector and the availability of a valid output
data word is generated by an and operation between the data valid signal and
a signal that tracks the filling of the output buffer.

For the management of the beginning of a new chunk, an internal counter,
enabled by the presence of a positive data valid value at the right stage, keeps
track of how many input values have been received.

8.5.3 Compression Package - compr_pkg.vhd

In this package a number of constants and functions used in various parts of
the circuit are defined. Constants are used mostly for describing the width
of data words and the pipeline depth. A description of each constant can be
found in Table 8.3, together with default values used in this documentation
and in our implementation. Two constants are marked with a † symbol: these

Constant Name Meaning Default Value

input_width Length of input data 14
output_width Length of output data 32
ppl_depth Number of data in a chunk 4
bits_width† Width for encoding the Length part 4
accbits_width† Width of counter for the accumulation 5

Table 8.3: Description of the constants defined in compr_pkg.vhd and used for configur-
ing the whole circuit. Constants marked with † are defined through a mathematical
operation carried out automatically using previous constants. In the left column, default
values, used as well in the implementation here presented, are reported. See text for
more information.

are constants whose values are based on other previously defined ones.

• bits_width is defined as the least integer able to hold the value of the

105

D_V

PPL

D_V

PPL

D_V

PPL

compression_module_chunc.vhd

output_compression.vhd

encoding.vhd

diff_calculator.vhd

data_ind_v clkreset

data_outdv_out

(14 bits)

diff_out

(14 bits)

encoded_out

(14 bits)

bits_out

(4 bits)
new_cnk

(32 bits)

Figure 8.2: Internal structure of the compression module. This partition is not done just
for documentation purposes — it exists in the VHDL code. For more details see the
text.

number of bits in input_width

bits_width = dlog2(input_width)e
= natural(ceil(log2(real(input_width))))

∣∣
VHDL

It describes the number of bits used for encoding the Length information
at the beginning of a new chunk (see section 8.5.6).

• accbits_width is the least integer able to represent the number of bits
in output_width

accbits_width = dlog2(output_width)e
= natural(ceil(log2(real(output_width))))

∣∣
VHDL

This value is used for defining the width of signals used in the accumula-
tion process in the output module (see section 8.5.7).

106

While the pipeline depth can be set by the user to any preferred value, the
input_width and the output_width need to be carefully coordinated with the
length of an internal buffer, which will be deeply described in section 8.5.7, in
order to avoid to overfill the output buffer. The worst-case scenario appears
when the output buffer is missing one bit for enabling the output reading and
the new coming data, which accidentally needs to be described in its full width,
corresponds to the beginning of a new chunk: in this case the data comes
along with the bits used to identify the length of each chunk data. Therefore
the width of the internal buffer needs to be equal to the sum of input_width,
bits_width and output_width-1.

8.5.4 Effects of Data Valid and Reset Signals

The circuit behaviour can be controlled using the data valid dv_in and the reset
reset (as shown in Figure 8.2). Those affect the way the circuit functions in
different ways:

• reset is an active low synchronous hard reset. This means that every time
its value is brought to 0 (low active), at the next rising edge of the clock
(synchronous), all (hard) the circuit content is deleted and internal modules
(such as counters and registers) are reset to some default values.

• dv_in is useful for telling the circuit when incoming data is available. Its
value needs to be set to 1 at the same rising clock edge when the first data
is presented to the input. Once there are no more data to feed, dv_in has
to be set to 0, in order to avoid encoding useless and unwanted patterns.
Once dv_in becomes 0, the whole compression module will be gradually
emptied from data in the pipeline, so that no information gets lost. At
the output stage, a dv_out signal notifies when output data are available
to be read. This signal works in a same fashion as dv_in: it rises at the
beginning of the clock cycle when data is provided, whereas it remains
low during periods while no data is ready.

8.5.5 Difference Calculator - diff_calculator.vhd

This module is responsible for calculating the difference between two consec-
utive input values and it applies the predictor as explained in section 8.2.2.
The predictor is activated after 3 differences show the same sign. The first
implementation of this module does not rely on any pipelining of its internal
processes, therefore when an input is provided at the beginning of a clock
cycle, its related output will be ready at the end of the same clock cycle.

As shown in Figure 8.3, once a new value appears at the data_in input,
a subtraction between it and the previous value is performed. Based on the
current content of the two shift registers, the output data will be either the
just-obtained difference, or the result of a subsequent difference between the
initial difference and the one calculated in the previous clock cycle. As already
explained in section 8.2.2, the decision is based on the sign of the previous three
(initial) differences. If they are all positive or all negative, one of the two shift
registers contains a ’1’ value in all its positions. Doing an and operation among

107

MUX

data_out

(14 bits)

0 1

+

data_in

(14 bits)

prevdatain
-

> 0

< 0

[0] [1] [2]

[0] [1] [2]

AND

AND

OR

prevdiff

+ -

clk

Where not
otherwise stated:

PREDICTOR

POSITIVE REGISTER

NEGATIVE REGISTER

Figure 8.3: Internal structure of the difference calculator. The part of the circuit
implementing the predicting feature is highlighted in grey. As can be noticed, there are
no registers on the path between data_in and data_out: this means that the output is
calculated within the same clock cycle as data_in is provided. For more details see the
text.

their respective content thus reveals if one register satisfies the condition. The
or gate activates the predictor (through the multiplexer).

The data valid signal sent to the module just passes throughout it without
being sampled in any register.

108

8.5.6 Encoding - encoding.vhd

In this part of the circuit, the data released by the diff_calculator is analysed
in order to extract information about the largest number of bits needed to
express the carried value. A mask is produced from each data and an or of all
the masks obtained in a chunk gives the pattern used for both extracting the
number of needed bits and for masking the data which will be stored.

The circuit is shown in Figure 8.4. The value data_in is first scanned
beginning from the MSB down to the LSB in what is called the MASK GENERATOR:
the purpose is to obtain a pattern, which has a ’1’ bit in all the positions starting
from the highest bit with a value different from the MSB (sign). In all the
higher positions there is a ’0’ bit value. This operation can limit the maximum
circuit frequency when the input data has a large length. In order to deal
with input data, which have all the bits with the same value (when data_in

encodes a 0 or −1), the final mask active_mask discards its own MSB and a
’1’ is added after its LSB. This way allows also to keep track of the sign in the
encoded data: without this additional bit, the “1s” pattern in the mask would
cover only the part of data which comes after the change of bit value.

Now assume we are dealing with consecutive data inside the same chunk.
At every clock cycle new data comes in and a new mask is generated. The
old mask therefore needs to be stored: in order to avoid to store 4 different
masks and then do an or among all in order to find the one with more “1s”, at
every clock cycle we store the OR between the new mask and the result of the
previous or, which is kept in mask. In this way we just need one register for
the mask and one (wide) or gate.

The beginning of a new chunk is tracked using a counter (CNT_CNK): every
time the counter reaches 0 the signal new_cnk is set to ’1’ for one clock cycle.
This signal is both sent to the output module and used internally. Its rising is
exploited for two purposes:

1. Once a new chunk starts, the accumulated value contained in mask must
not be used for generating the next pattern. Therefore a multiplexer, fed
with new_cnk as selector, is used for storing either the or result (new_cnk
= 0) or a newly generated mask (new_cnk = 1).

2. Once a chunk ends, the content of the mask register needs to be copied in
another register (active_mask), which will retain this value for the next
4 clock cycles.

The content of active_mask is used in two ways:

1. It is sent to another module which performs a summation of set bits8. The
obtained information is encoded in a std_logic_vector signal which
is bits_width bits long (4 bits in our implementation): other than for
tracking the shift needed in preparing the output buffer (section 8.5.7.3), it
is used in the Length part at the beginning of the chunk (section 8.5.7.2).

2. It is used to mask, through an and operation, the useless part of all the
data being part of the same chunk. In this way, the data that arrive to

8A set bit is a bit which is set to ’1’.

109

AND

PPL [1]

PPL [2]

PPL [3]

PPL [4]

PPL [0]

data_out

(14 bits)

data_in

(14 bits)

MASK GENERATOR

mask

MUX

0 1

OR

EN
A

BLE

active_mask

CNT_CNK
RESET

AND

dv_in dv_out

= 0

new_cnk

SUM SET BITS

bits_out

(4 bits)

clk

Where not
otherwise stated:

Figure 8.4: Structure of the module responsible for encoding the difference. Most of
the computational part is concentrated in the central part, while on the left the data
pipeline is visible. The part of circuit on the right keeps track of the start and end of
each chunk. For more details see the text.

the output module are already prepared to be shifted and stored, while
potential overlapping of the unused part among consecutive data will
not affect the final result.

From the information reported in the above it is easy to see that we need to
pipeline the input data in order to get the length information of all the data
of a chunk. Indeed, while a data is scanned, the previous ones belonging to
the same chunk need to be kept in the correct order before being released after
having experienced 5 clock cycles inside the pipeline.

Parallel to this pipeline, the data valid signal follows a similar path in order
to maintain the same delay of the input data throughout the circuit.

110

8.5.7 Output Creation - output_compression.vhd

Because of its complexity, in this documentation the module and the explana-
tion of how it operates are divided into four parts (sections 8.5.7.2 to 8.5.7.5):
this separation is not however visible in the code, since all the segments are
merged in one architecture.

8.5.7.1 General Introduction

From the encoding block, the output module receives an encoded value ev-
ery clock cycle (data_in), while the new_cnk signal and the number of bits
(bits_in) needed for representing the data changes every 4 clock cycles. The
data valid signal is sent by the previous module as well, while the reset is
directly connected to the main reset input.

The whole module is responsible for preparing an output with a fixed
width and its internal structure is shown if Figure 8.5. In our case the output
provided is a 32 bits std_logic_vector. Two different ways of preparing the
output vector have been implemented.

• Right Alignment (recommended): the data are accumulated starting
from the LSB (“right” side) of the output buffer. No particular treatment
is needed before the shifting part. This is the version which is used by
the current code. It allows to work better and faster in the decoding part,
since it requires shorter shifts in the internal registers of the CPU.

• Left Alignment: here the storing starts from the MSB of the output
buffer (“left” side). First the bits order of each data is reversed using
the reverse_vector function. In case we are managing the first data
of a chunk, both the incoming data and the Length word are reversed
individually. This processing allows to easily place the data in the correct
position before being shifted. This type of alignment is not recommended:
it was made available because it was the first implementation for aligning
data, but it is not compatible with the provided software decoder.

Both the alignments have in common the way in which the data are accumu-
lated and how the availability of an output is signalled. They indeed rely on
an internal buffer which has a larger length than the output word. The idea is
that, after each clock cycle, we keep (accumulate) only those bits which are not
released as output.

Before explaining the operations carried out by the circuit, we need to
illustrate the composition of bits_used. This is an unsigned with a length of
accbits_width+ 1 bits (6 bits in our implementation), therefore describing
values up to twice the length of output data. The information contained in this
register is used for two different purposes:

1. bits_used(4 downto 0): this value is used for shifting the incoming
data to the right position. By not including the MSB of bits_used, the
value represents the output width, and is thus suitable for shifting.

2. bits_used(5): the MSB is used for checking the availability of a new
complete output data word.

111

output_extended

(49 bits)

OR

shifted_word
(49 bits)

sll
WORD TO BE SHIFTED SH

IFT
bits_used(4 downto 0)

temp_word

MUX

1 0

data_in

(14 bits)

merging

(18 bits)

bits_in

(4 bits)

+

bits_used
(6 bits)

MUX

1

0 �0�

�4�

new_cnk

output_data

(32 bits)

MUX

1

0

accumul_word
(49 bits)

OR

dv_out

AND

old_flg

XOR

out_flg

AND

up_bit

AND

old_dv

dv_in

NOT

bits_used(5)

clk

Where not
otherwise stated:

DATA VALID
GENERATION

ACCUMULATION
AND BUFFERING

MERGING AND
SHIFTING

SHIFT COUNTER
UPDATER

Figure 8.5: Internal structure of the module responsible for creating the output pattern.
This module has been divided in sub-modules for documentation purposes. For more
details see the text.

8.5.7.2 Merging and Shifting

The inputs to this module are the encoded data (data_in), the bits occupation
information (bits_in) and the new_cnk signal, all from the encoding module
(see section 8.5.6); the 5 bits of bits_used instead come from the sub-module
responsible for updating the amount of accumulated bits (see section 8.5.7.3).
The output is stored in the shifted_word register and then used in the sub-
module where the accumulation process happens (see section 8.5.7.4).

112

shifted_word
(49 bits)

sll
WORD TO BE SHIFTED SH

IFT

bits_used(4 downto 0)

temp_word

MUX

1 0

data_in

(14 bits)

merging

(18 bits)

bits_in

(4 bits) new_cnk

clk

Where not
otherwise stated:

Figure 8.6: Part of the output module responsible for composing the to-be-stored data
(merging or only data_in) and for the following shift (sll) of the resulting word in
order to not overlap with buffered data. For more details see the text.

The explanation follows from Figure 8.6:

1. The data (data_in), together with the bits length information (bits_in),
is made available at a given clock cycle. According to the new_cnk value
we can have two different situations:

• new_cnk = '1': this case notifies the beginning of a new chunk of
data. Therefore both the two input vectors need to be stored: in
order to achieve this, they are paired together in the right order (see
merging).

• new_cnk = '0': here only data_in will be considered for being
stored;

2. The selected data (temp_word9) is shifted according to the value contained
in bits_used (without its MSB), in order to not overlap data already
stored in the accumulation buffer. The resulting word is stored in a
register (shifted_word) at the next clock rising edge.

9This block is used just to give a name to the signal after the multiplexer.

113

8.5.7.3 Shift Counter Update

In this module the inputs bits_in and new_cnk come directly from the encod-
ing block, as in the previous sub-module. The content of bits_used keeps
track of the occupation of the output buffer, which has several uses.

bits_in

(4 bits)

+

bits_used
(6 bits)

bits_used(4 downto 0)

bits_used(5)

MUX

1

0 �0�

�4�

new_cnk

clk

Where not
otherwise stated:

Figure 8.7: Part of the output module responsible for keeping track of the occupation of
the output buffer. The content of bits_used is used both for shifting the data in the
right position and in the generation of the signal notifying the availability of an output
data. For more details see the text.

Figure 8.7 shows how bits_used is updated every clock cycle, depending
on the value of new_cnk (therefore the presence of a multiplexer):

• new_cnk = '1': in this case the circuit deals with the beginning of a new
chunk of data. Since both the data and the bits_in vector are stored, the
new value of bits_used will be given by the sum of its current value, the
length of the input data (contained in bits_in) and the 4 bits needed for
allocating the vector bits_in.

• new_cnk = '0': here instead only data_in is involved in the storing
process. Therefore to the new value we need to add just the content of
bits_in.

8.5.7.4 Accumulation and Buffering

The shifted_word register is set according to the operations described in
section 8.5.7.2. The information dv_out comes instead from the sub-module,
which computes the data valid signal (see section 8.5.7.5).

Following Figure 8.8, the procedure for the case of an incoming data at
the beginning of a new chunk is here described: At the beginning of a given
clock cycle shifted_word and the accumulated information (accumul_word)
are merged together through a bitwise or operation and a temporary vector

114

output_extended

(49 bits)

OR

shifted_word
(49 bits)

output_data

(32 bits)

MUX

1

0

dv_out

accumul_word
(49 bits)

clk

Where not
otherwise stated:

Figure 8.8: This sub-module updates the output buffer, merging the accumulated data
(accumul_word) with the new shifted one (shifted_word). For more details see the text.

is formed (output_extended). Using the dv_out signal produced by the data
valid computation block (see section 8.5.7.5), we can face two different scenarios:

• dv_out = '0': this means that no output data is made available and
therefore the useful part of output_extended fits inside output_width-2

downto 0 (the first 31 bits in our implementation). Therefore only this
part of output_extended is stored in the accumulation buffer accumul_word
at the next rising clock;

• dv_out = '1': here the resulting useful word equals or exceeds the
output_width range, therefore the first 32 bits are released as output in
the current clock cycle. dv_out is used to tell the external world about the
availability of a valid output. At the next clock rising edge, only the small
remaining part of output_extended is stored inside the accumulation
buffer, while the part which was sent to the output is lost.

8.5.7.5 Data Valid Generation

In Figure 8.9 the part of the circuit responsible for generating the data valid
signal is shown. In order to extend the following analysis (and the circuit itself)
easily to any configuration of the whole compression circuit, we assume that
the user of this circuit wants to use an output data width equal to a power of
2. In this way, we do not need to reset bits_used once we fill the output data
width, since the natural overflow automatically resets its value.

115

OR

dv_out

AND

old_flg

XOR

out_flg

AND

up_bit

bits_used(5)

AND

old_dv

dv_in

NOT

LOGIC FROM
KARNAUGH MAP

clk

Where not
otherwise stated:

Figure 8.9: Circuit for generating the output data valid signal. The result is based on
the data valid signal travelling along the whole compression module (dv_in), a signal
tracking the filling of the output buffer (out_flg) and another signal, which helps
notifying the end of input data (old_dv). The logic generated from the analysis done
with the Karnaugh Map is highlighted. For more details see the text.

As already pointed out, the MSB of bits_used is not needed for filling the
output buffer. However every time it changes value, it signals that the part of
bits_used responsible for the shifting has just overflowed, meaning that

• the next shift will move the incoming data inside the first 32 bits range of
output_extended;

• the first 32 bits of output_extended are full of useful data that need to
be read out.

These are the reasons we monitor the change of the MSB value through a
comparison (xor) between its current and previous values. The resulting value
is labelled here as out_flg for shorter referencing.

To easily understand how the dv_out is generated, we show the procedure

116

used to built the circuit, rather than analysing it. We first need to realise when
dv_out has to be set to ’1’ and when to ’0’:

1. If dv_in = ’1’ and old_dv = ’0’, it means that the data valid signal (dv_in)
just arrived to the output stage, after the whole circuit has been activated.
Therefore dv_out has to be ’0’.

2. When dv_in = ’1’ and old_dv = ’1’, the data have already begun to
accumulate in the output buffer. Therefore dv_out depends only on the
value of out_flg, which signals the availability of a legitimate output
data.

3. If dv_in = ’0’ and old_dv = ’1’, it indicates that the last set of data has
reached the end of the circuit. Consequently the output data need to be
readout anyway, even if the buffer is not full (meaning out_flg is not
’1’). So dv_out has to be ’1’.

4. A clock cycle after the scenario presented in the previous point, i.e.
dv_in = ’0’ and old_dv = ’0’, there could be still some data left in the
buffer. This happens when the last set of data arriving fills the buffer
above its capacity. Therefore only the part sent to the output would be
readout (see previous step), while the remaining bits are being accumu-
lated. This implies that in the next clock cycle they need to be readout:
this scenario is notified by the old_flg being raised to ’1’.

These different situations are summarised in a truth table shown in Table 8.4.

dv_in old_dv out_flg old_flg dv_out CASE
1 0 1 0 0 1
1 0 1 1 0 1
1 0 0 0 0 1
1 0 0 1 0 1

1 1 1 0 1 2
1 1 1 1 1 2
1 1 0 0 0 2
1 1 0 1 0 2

0 1 1 0 1 3
0 1 1 1 1 3
0 1 0 0 1 3
0 1 0 1 1 3

0 0 1 0 0 4
0 0 1 1 1 4
0 0 0 0 0 4
0 0 0 1 1 4

Table 8.4: Truth table for generating the dv_out signal. The CASE number refers to the
previous list describing the different scenarios.

From the truth table we can derive the wanted logic function using the
Karnaugh Map procedure explained in section 5.1.1.1. In Figure 8.10 the K-

117

map is reported with the groups already highlighted. Using the rules shown
previously, it is possible to see that the searched logic function is dv_out =
old_dv · out_flg+ dv_in · old_dv+ dv_in · old_flg, where the first term is
given by the squared group on the bottom, the second term by the vertical rect-
angular group and the last one by the squared group on the left. Representing
multiplications as and and additions as or, the function becomes dv_out =
(old_dv and out_flg) or (not dv_in and old_dv) or (not dv_in and old_flg)
and the resulting circuit is the one shown in Figure 8.9.

dv_in/old_dv

out_flg/old_flg

00 01 11 10

00

01

11

10

1

1 1

1 1 1

1 1

0 00

00

0 0

0

Figure 8.10: Karnaugh Map for the logic function used for generating the
output data valid signal. The resulting function is dv_out = old_dv ·
out_flg + dv_in · old_dv + dv_in · old_flg or, with logic operators, dv_out =
(old_dv and out_flg) or (notdv_in and old_dv) or (notdv_in and old_flg).

8.5.8 Test Bench - tb_compr.vhd

The provided test bench (see section 5.2) contains an instance of the the
compression_module_chunc entity, which is fed with a clock, a reset and a
data valid signal. The input data values are read from a text file. The output
is consumed every time the output data valid signal goes to 1 and it is then
written into another text file. The resulting output values are then compared
with data (so called golden model) generated by a C program designed for
testing the correct behaviour of the circuit.

118

8.6 Circuit Synthesis and Analysis

8.6.1 Tools Employed

FPGA Device The target device for testing the design is an Altera MAX10
10M50DAF484C7G and its features are summarised in Table 8.5. The rea-
son why we use this kind of FPGA is because we own a Terasic DE10-Lite
board [35].

In the MAX 10 FPGA family, the logic elements (LEs) have, among other
blocks, a 4-input lookup table (LUT) [36]. Compared to a Spartan 7 FPGA by
Xilinx, which is equipped with 6-input LUTs [37], this means that the number
of used LEs will probably be larger than in the Spartan case. The reason for this
is that more complex logic functions can be implemented in a single 6-input
LUT than in a 4-input one.

FEATURE VALUE

Logic Elements ≈50× 103

Multipliers (18× 18) 144

Memory
Registers ≈50× 103

M9K Memory 1638 kbit
User Flash Memory 5888 kbit

Table 8.5: Main characteristics of the FPGA Altera MAX10-10M50DAF484C7G [38].

Synthesis, Place and Route Software To prepare and test the designed code
for the target device, we used Altera Quartus Lite Edition 16.1, the free version
of the Altera program, dedicated to VHDL synthesis and analysis for FPGAs.
This basic version inevitably does not support the high-end devices and it is
not equipped with enhanced features for synthesis and routing [39]. Although
what we have designed is not a complex circuit, the user who work with better
tools should keep this fact in mind.

8.6.2 Synthesis

The synthesis and place and route of the circuit have been executed fixing a
constraint of 200 MHz on the clock frequency, in order to see what was the
highest usable value. The results are summarised in Table 8.6.

FEATURE Synthesis Place & Route

Logic Elements 526 512 (1% of total)
Registers 243 243 (< 1% of total)

Max Clock Frequency — 147.3 MHz

Table 8.6: Main characteristics of the synthesised and the placed and routed circuit.

119

As can be seen, the occupation of logic elements and flip-flops is quite small
compared to the resources of this FPGA. However we have to remind the fact
that only the circuit we designed was taken into consideration. This circuit
indeed will never be used alone, but rather as the last stage of a (probably
much more) complex circuit. Therefore in the resulting routed circuit, the
compressor could be characterised by a larger occupation than what stated in
this document. Note that the compressor uses, relatively, more logic elements
than registers. This is due to the main component, the large shifter, at the end
of the output stage.

8.6.2.1 Timing Analysis

The timing analysis, performed by the TimeQuest software included in Altera
Quartus, can be run different scenarios, where the working temperature has a
major influence. The model we employ, uses an FPGA temperature of 85 ◦C.
The results are therefore worse than in the case of the model using 0 ◦C as
temperature. However this gives us a taste of the worst-case scenario.

An important concept usually used when analysing the circuit timing
characteristics is the slack. When dealing with circuits which are a mix of com-
binational and (synchronous) sequential logic, the designer has to remember
that data are stored in registers at the limits of each clock cycle. This means
that the combinational logic chain between two consecutive stages of registers
must not introduce a delay bigger than a single clock period. In case this
requirement is not met, signals flowing in the combinational logic will not
reach the next register in time to be stored and the output data will not be
the expected. The time difference between the clock period and the delay
introduced by the combinational logic between two consecutive register stages
is called slack. The slack is calculated for each path and it takes a positive value
when the path delay is smaller than the clock period, or a negative value when
the delay exceeds the clock period.

As stated in Table 8.6, the maximum clock frequency at which the circuit
can operate is ≈147 MHz. In Table 8.7, circuit paths which are limiting the
clock frequency below the target of 200 MHz are shown: the related slack
values are reported as well.

START POINT END POINT WORST SLACK (ns)

active_mask? bits_used‡ −1.789
active_mask? shifted_word‡ −1.704
data_out? shifted_word‡ −0.769
bits_used‡ shifted_word‡ −0.745
prevdatain† positive register[0]† −0.307
new_cnk? shifted_word‡ −0.032
data_in? mask? −0.020

Table 8.7: Paths which do not allow to reach an operating frequency of 200 MHz. To
identify in which module each point is located, a symbol was used: † refers to the
DIFF_CALCULATOR, ? to the ENCODING, while ‡ to the OUTPUT_COMPRESSION.

120

Chapter 9

Conclusion

In this thesis work, many aspects of the CALIFA ENDCAP have been analysed,
while other ideas and designs have been developed. The studies presented
carry several consequences.

Good Performances of CEPA4 Crystals Analyses conducted on the CEPA4
crystals and described in chapter 3 and 4 demonstrate good energy and time
resolution. The characterisation confirms what previous studies, most of them
used to write the CALIFA ENDCAP TDR [4], reported.

Limitations and Opportunities in the Readout Electronics Investigations
into the electronics planned in Ref. [4] have been carried out as well. Chapter 3
illustrates problems in reading out signals from the CEPA4 crystals: pulses
from γ-ray and muon interactions can not be recorded properly at the same
time using the same electronic settings. The main consequence is the limited
dynamic range which can be inspected using the designed electronic chain. To
solve this issue, our proposal is to change photomultiplier tubes in order to
use two signals, one from the two last dynode stages, and one from the anode.

On the other hand, in chapter 4 we notice that some requirements of the
proposed readout system, such as bit resolution and sampling frequency, can
be relaxed without degrading its good time resolution capabilities too much.
Solutions with these characteristics can be cheaper or can help to remove the
dead-time problem that we have in the current setup. We have however to
remind the reader that we have not taken possible effects of these ideas on
performances of the pulse shape analysis into consideration.

Readout Procedures for the DRS4 To exploit the great characteristics of the
phoswich crystals, a fast sampling frequency is needed and in the current
readout system this task is left to the DRS4 chip. The design of procedures for
reading out samples taken by this chip is described in chapter 6. Although the
final result is a big block of VHDL code, which will be part of a more complex
firmware developed at the Department of Physics of the Technische Universität
München, the work done revealed issues and peculiarities of the DRS4, which
have to be evaluated properly when dealing with this piece of electronics.

121

New Clock Delivery Scheme Experiments such as the R3B setup present a
scenario where many detectors are working together. Although good crystals
and great electronics can deliver good time resolution, the acquired data
are useless if they are not adequately time-correlated with those from other
detectors or just with those from other crystals in the same detector. The
currently designed system for delivering the time reference to the detectors
and to each unit in a single detector is not able to deliver a clock signal
with a sufficiently high time resolution. In chapter 7 we therefore describe a
new scheme, which should ensure a clock signal with higher time resolution.
It would help to exploit the high time resolution provided by LaBr3/LaCl3
phoswich crystals.

Reduce the Data Occupation Chapter 8 shows the design of a module for
compression of data from pulse traces. Written in VHDL, it is suitable for
digital circuits on FPGA. Compression of data inside an FPGA can reduce the
amount of data transferred to the central unit as well as simply reduce disk
usage. While building this block, we aimed at keeping the circuit occupation
low and at having the highest working frequency achievable. In both cases
the final goal is to deliver a module which is as flexible as possible. Future
development aims to increase the compression ratio and to allow even more
flexibility in managing input data.

Although all the work described in this report regards just small parts of the
entire CALIFA, it easily conveys the complexity of building a particle detector.
Engineers and physicists in research facilities around the world cope every
day with challenges ranging from detection materials to signal processing and
data analysis. The developments in these areas are not always an end unto
themselves, but they can also improve the life of humanity.

122

Bibliography

[1] Gerhard Kraft. History of the Heavy Ion Therapy at GSI. GSI Helmholtzzen-
trum für Schwerionenforschung GmbH. url: https://three.jsc.nasa.
gov/articles/Krafts_GSI.pdf (visited on 07/08/2017).

[2] D. J. Morrissey and B. M. Sherrill. ‘In-Flight Separation of Projectile
Fragments’. In: 1st 651 (2004), pp. 113–135.

[3] M. A. Ronja Thies. ‘Bits and Pieces for the Nuclear Puzzle. Exploring
light exotic nuclei with radioactive ion beams’. PhD thesis. Chalmers
University of Technology, 2016. isbn: 978-91-7597-426-2.

[4] Technical Report for the Design, Construction and Commissioning of The
CALIFA Endcap. R3B Collaboration. 3rd Aug. 2015. url: http://www.
fair-center.eu/fileadmin/fair/experiments/NUSTAR/Pdf/TDRs/

TDR_R3B_CALIFA_ENDCAP_public.pdf.

[5] M. Bendel et al. ‘RPID - A new digital particle identification algorithm
for CsI(Tl) scintillators’. In: The European Physical Journal A 49 (6 2013),
pp. 1–7.

[6] Olof Tengblad et al. ‘LaBr3(Ce):LaCl3(Ce) Phoswich with pulse shape
analysis for high energy gamma-ray and proton identification’. In: Nuclear
Instruments and Methods in Physics Research Section A 704 (2013), pp. 19–26.

[7] BrilLanCe Scintillators - Performance Summary. Saint-Gobain. 2009. url:
http://www.crystals.saint- gobain.com/sites/imdf.crystals.

com/files/documents/brillance_scintillators_performance_summary_

69795.pdf.

[8] Technical Report for the Design of the NUSTAR Data AcQuisition System.
Nustar DAQ Working Group. 8th Mar. 2016.

[9] DRS4 Data Sheet. Version REV. 0.9. PSI - Paul Scherrer Institut. 2009. url:
https://www.psi.ch/drs/DocumentationEN/DRS4_rev09.pdf.

[10] E. Nácher et al. ‘Proton response of CEPA4: A novel LaBr3(Ce)-LaCl3(Ce)
phoswich array for high-energy gamma and proton spectroscopy’. In:
Nuclear Instruments and Methods in Physics Research Section A 709 (2015),
pp. 105–111. doi: 10.1016/j.nima.2014.09.067.

[11] Photomultiplier Tubes - R7600U Series. Hamamatsu Photonics. 2016. url:
https://www.hamamatsu.com/resources/pdf/etd/R7600U_TPMH1317E.

pdf.

123

https://three.jsc.nasa.gov/articles/Krafts_GSI.pdf
https://three.jsc.nasa.gov/articles/Krafts_GSI.pdf
http://www.fair-center.eu/fileadmin/fair/experiments/NUSTAR/Pdf/TDRs/TDR_R3B_CALIFA_ENDCAP_public.pdf
http://www.fair-center.eu/fileadmin/fair/experiments/NUSTAR/Pdf/TDRs/TDR_R3B_CALIFA_ENDCAP_public.pdf
http://www.fair-center.eu/fileadmin/fair/experiments/NUSTAR/Pdf/TDRs/TDR_R3B_CALIFA_ENDCAP_public.pdf
http://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/brillance_scintillators_performance_summary_69795.pdf
http://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/brillance_scintillators_performance_summary_69795.pdf
http://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/brillance_scintillators_performance_summary_69795.pdf
https://www.psi.ch/drs/DocumentationEN/DRS4_rev09.pdf
https://doi.org/10.1016/j.nima.2014.09.067
https://www.hamamatsu.com/resources/pdf/etd/R7600U_TPMH1317E.pdf
https://www.hamamatsu.com/resources/pdf/etd/R7600U_TPMH1317E.pdf

[12] AD9252 Data Sheet. Version REV. E. Analog Devices, Inc. 2017. url:
http://www.analog.com/media/en/technical-documentation/data-

sheets/AD9252.pdf.

[13] Technical Information Manual - Mod. DT5751. Version REV. 11. CAEN S.p.A.
2015. url: http://www.caen.it/servlet/checkCaenManualFile?Id=
11299.

[14] User Manual UM3148 - Mod. DT5730/DT5725. Version REV. 2. CAEN
S.p.A. 2016. url: http://www.caen.it/servlet/checkCaenManualFile?
Id=12049.

[15] David M. Pozar. Microwave Engineering. John Wiley & Sons, Inc., 2012.

[16] Efficiency Calculations for Selected Scintillators. Saint-Gobain. 2016. url:
http://www.crystals.saint- gobain.com/sites/imdf.crystals.

com/files/documents/efficiency_calculations_brochure_69670.

pdf.

[17] Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic. Digital
Integrated Circuits. A Design Perspective. Pearson Education, Inc., 2003.

[18] Randy H. Katz and Gaetano Borriello. Contemporary Logic Design. Pearson
Education, Inc., 2005.

[19] John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Pearson Education, Inc.,
2007.

[20] Tiziano Villa et al. Synthesis of Finite State Machines: Logic Optimization.
Springer-Science+Business Media, LLC, 1997.

[21] Hubert Kaeslin. Digital Integrated Circuit Design. Cambridge University
Press, 2008.

[22] Andrew Rushton. VHDL for Logic Synthesis. John Wiley and Sons Ltd.,
2011.

[23] Intel to buy Altera for $16.7 billion in its biggest deal ever. Reuters. 1st June
2015. url: http://www.reuters.com/article/us-altera-m-a-intel-
idUSKBN0OH2E020150601 (visited on 23/05/2017).

[24] DRS4 Discussion Forum. Paul Scherrer Institute PSI. url: https://midas.
psi.ch/elogs/DRS4+Forum/ (visited on 21/06/2017).

[25] BrilLanCe 380 Scintillation Material. Saint-Gobain. 2016. url: http://
www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/

documents/brillance380-material-data-sheet_69765.pdf.

[26] Febex3/16, preliminary specification. Version Preliminary. GSI/FAIR. 2011.
url: https://www.gsi.de/fileadmin/EE/Module/FEBEX/febex3.pdf.

[27] LatticeECP3 Family Data Sheet. Version 02.8EA. Lattice Semiconductor
Corp. 2012. url: http://www.latticesemi.com/~/media/LatticeSemi/
Documents/DataSheets/Lattice/LatticeECP3EAFamilyDataSheet.pdf.

[28] ADA4932-1/ADA4932-2 Data Sheet. Version REV. E. Analog Devices,
Inc. 2016. url: http : / / www . analog . com / media / en / technical -

documentation/data-sheets/ADA4932-1_4932-2.pdf.

124

http://www.analog.com/media/en/technical-documentation/data-sheets/AD9252.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/AD9252.pdf
http://www.caen.it/servlet/checkCaenManualFile?Id=11299
http://www.caen.it/servlet/checkCaenManualFile?Id=11299
http://www.caen.it/servlet/checkCaenManualFile?Id=12049
http://www.caen.it/servlet/checkCaenManualFile?Id=12049
http://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/efficiency_calculations_brochure_69670.pdf
http://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/efficiency_calculations_brochure_69670.pdf
http://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/efficiency_calculations_brochure_69670.pdf
http://www.reuters.com/article/us-altera-m-a-intel-idUSKBN0OH2E020150601
http://www.reuters.com/article/us-altera-m-a-intel-idUSKBN0OH2E020150601
https://midas.psi.ch/elogs/DRS4+Forum/
https://midas.psi.ch/elogs/DRS4+Forum/
http://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/brillance380-material-data-sheet_69765.pdf
http://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/brillance380-material-data-sheet_69765.pdf
http://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/brillance380-material-data-sheet_69765.pdf
https://www.gsi.de/fileadmin/EE/Module/FEBEX/febex3.pdf
http://www.latticesemi.com/~/media/LatticeSemi/Documents/DataSheets/Lattice/LatticeECP3EAFamilyDataSheet.pdf
http://www.latticesemi.com/~/media/LatticeSemi/Documents/DataSheets/Lattice/LatticeECP3EAFamilyDataSheet.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADA4932-1_4932-2.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADA4932-1_4932-2.pdf

[29] Si530/531 data sheet. Version D. Silicon Labs. 2013. url: https://www.
silabs.com/documents/public/data-sheets/si530.pdf.

[30] EXPLODER3, preliminary specification. Version Preliminary. GSI/FAIR.
2012. url: https://www.gsi.de/fileadmin/EE/Module/EXPLODER/
exploder3_v4.pdf.

[31] WHITE RABBIT Simple FMC PCIe Carrier v4 SPEC. Seven Solutions.
url: http://sevensols.com/index.php/download/brochure-spec/
?wpdmdl=989.

[32] FMC Digital I/O - 5 channels TTLA - FMC DIO 5CH. Seven Solutions.
url: http://sevensols.com/index.php/download/brochure-fmc-
dio/?wpdmdl=975.

[33] Khalid Sayood. Introduction to Data Compression. Elsevier, Inc., 2012.

[34] Quartus R© Prime Support for VHDL 2008. Altera Intel. 2016. url: http:
//quartushelp.altera.com/16.1/#hdl/vhdl/vhdl_list_2008_vhdl_

support.htm (visited on 23/05/2017).

[35] DE10-Lite Board - Overview. Terasic, Inc. url: http://www.terasic.com.
tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=234&

No=1021&PartNo=1 (visited on 21/08/2017).

[36] MAX 10 FPGA Device Architecture. Version 2016.08.11. Intel Corp. 2016.
url: https://www.altera.com/content/dam/altera-www/global/
en_US/pdfs/literature/hb/max-10/m10_handbook.pdf (visited on
03/08/2017).

[37] 7 Series FPGAs Data Sheet: Overview. Version 2.5. Xilinx Inc. 2017. url:
https://www.xilinx.com/support/documentation/data_sheets/

ds180_7Series_Overview.pdf (visited on 03/08/2017).

[38] MAX 10 FPGA Device Overview. Version 2017.02.21. Intel Corp. 2017.
url: https://www.altera.com/en_US/pdfs/literature/hb/max-
10/m10_overview.pdf (visited on 02/06/2017).

[39] Intel Quartus Prime Design Software - Compare Lite, Standard, and Pro
Editions. Intel Corp. 2017. url: https://www.altera.com/content/
dam/altera-www/global/en_US/pdfs/literature/po/ss-quartus-

comparison.pdf (visited on 02/06/2017).

125

https://www.silabs.com/documents/public/data-sheets/si530.pdf
https://www.silabs.com/documents/public/data-sheets/si530.pdf
https://www.gsi.de/fileadmin/EE/Module/EXPLODER/exploder3_v4.pdf
https://www.gsi.de/fileadmin/EE/Module/EXPLODER/exploder3_v4.pdf
http://sevensols.com/index.php/download/brochure-spec/?wpdmdl=989
http://sevensols.com/index.php/download/brochure-spec/?wpdmdl=989
http://sevensols.com/index.php/download/brochure-fmc-dio/?wpdmdl=975
http://sevensols.com/index.php/download/brochure-fmc-dio/?wpdmdl=975
http://quartushelp.altera.com/16.1/#hdl/vhdl/vhdl_list_2008_vhdl_support.htm
http://quartushelp.altera.com/16.1/#hdl/vhdl/vhdl_list_2008_vhdl_support.htm
http://quartushelp.altera.com/16.1/#hdl/vhdl/vhdl_list_2008_vhdl_support.htm
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=234&No=1021&PartNo=1
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=234&No=1021&PartNo=1
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=234&No=1021&PartNo=1
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/max-10/m10_handbook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/max-10/m10_handbook.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.altera.com/en_US/pdfs/literature/hb/max-10/m10_overview.pdf
https://www.altera.com/en_US/pdfs/literature/hb/max-10/m10_overview.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/po/ss-quartus-comparison.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/po/ss-quartus-comparison.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/po/ss-quartus-comparison.pdf

	Abstract
	Acknowledgements
	Contents
	Introduction
	Physics Background
	R3B Experimental Setup
	CALIFA
	CALIFA Structure
	iPhos
	CEPA

	Electronics for CALIFA
	Readout System
	Febex

	Electronics for CEPA
	Switched Capacitor Array - DRS4
	CEPA Firmware

	I CEPA4 Characterization
	Introduction
	CEPA4 Prototype
	Readout Hardware
	Photomultiplier
	Digitizer
	CAEN Software

	Additional Devices

	Signal Readout
	Motivation
	Experimental Setups
	Setup for Muon Detection
	Setup for γ-rays Detection

	Data Analysis
	Noise study

	Results
	Maximum Energy Range
	Resolution of γ-peaks
	PMT Saturation and Signals Distortion

	Time Resolution
	Motivation
	Time Resolution using Muons
	Experimental Setup
	Procedure
	Results and Comparison
	Data Elaboration
	Comparison

	Time Resolution using γ-rays
	Experimental setup and Procedure
	Results

	Frequency and Bit Resolution Studies
	Sampling Frequency Analysis
	Data Manipulation Procedure
	Data from the CAEN DT5751
	Data from the CAEN DT5730
	Results Comparison

	Bit Resolution Analysis — DT5730 only
	Data Manipulation Procedure
	Results

	Time Resolution for LaCl3 Crystals

	II Electronics and Readout
	Introduction to Some Electronics Concepts
	Digital Electronics
	Combinational Logic
	Karnaugh Maps
	Multiplexer — MUX

	Sequential Logic
	Finite State Machines

	VHDL
	FPGA

	DRS4 Readout
	DRS4 Management
	DRS4 Problems
	Optimization of the DRS4 Readout Procedure
	Internal Clock Frequency
	Data Sampling
	Timing
	Enabling Signals

	Operations - Briefly
	Address Bits A3-A0
	DRS4 FSM Implementation
	VHDL Libraries Used
	RESET
	IDLE
	FILL
	Offset Readout
	Data Readout

	CEPA Clock Distribution
	Motivation for a New Clock Delivery Scheme
	Phoswich Crystals Properties
	Analysis of the Electronics - Hardware
	Febex3B - Blue Card
	SFP Module - Red Card
	Crate
	DRS4 Add-on Board
	Exploder
	Cables
	Ribbon Cable
	Optical Fiber

	EXTRA Hardware: SPEC and FMC cards

	Proposal for New Clock Delivery
	Threshold, Quiet Margins and Duty Cycle

	Proposed Electronic Implementations for the New Clock Delivery Scheme
	Present State
	Proposed Scheme

	DPTC - Difference Predicted Trace Compression
	Motivation
	Common Ground
	Frequency of Symbols
	The Predictor

	Single Word Compression
	OddBits Compression
	Decoder for OddBits Compression
	EvenBits Compression

	Drawbacks

	ChunC - Chunk Compression
	DPTC - Implementation on FPGA of ChunC
	Language and Libraries
	DPTC Module - compression_module_chunc.vhd
	Compression Package - compr_pkg.vhd
	Effects of Data Valid and Reset Signals
	Difference Calculator - diff_calculator.vhd
	Encoding - encoding.vhd
	Output Creation - output_compression.vhd
	General Introduction
	Merging and Shifting
	Shift Counter Update
	Accumulation and Buffering
	Data Valid Generation

	Test Bench - tb_compr.vhd

	Circuit Synthesis and Analysis
	Tools Employed
	Synthesis
	Timing Analysis

	Conclusion
	Bibliography

