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Wind-Induced Acceleration in High-Rise Buildings 

An investigation on the dynamic effects due to a deep foundation  
Master’s thesis in the Master’s Programme Structural Engineering and Building 
Technology 
 
ALEXANDER NYBERG & GUSTAV SÖDERLUND 
Department of Civil and Environmental Engineering 
Division of Structural Engineering 
Chalmers University of Technology 
 

ABSTRACT 
As Gothenburg expands, several new high-rise buildings are being planned in the area. 
Ideally, tall buildings are constructed on a foundation close to the bedrock, but for the 
city of Gothenburg, where the ground conditions commonly consist of clay, a deep pile 
foundation is often necessary. When designing tall buildings, it is important to consider 
the wind-induced horizontal acceleration in serviceability limit state. The available 
design codes such as, Eurocode 1 Part 1-4 and Swedish national annex EKS 10, are 
based on an idealization of a cantilever beam with fixed support. However, this 
assumption is reasonable when the foundation lies directly on bedrock, but becomes 
more questionable when a deep pile foundation is used.  
 
The aim of this Thesis was to investigate how wind-induced horizontal acceleration in 
the along-wind direction was affected when the rotational stiffness of the support 
decreases. An objective was also to study the validity of current design norms for 
decreasing rotational stiffness of the support.  
 
To be able to determine a representable mode shape and fundamental frequency for a 
structure with changeable support conditions, an analytical model was developed where 
the foundation was idealized as a rotational spring and the core as a cantilever beam.  
 
To study the effect of support conditions on the horizontal acceleration and the validity 
of current design norms, two theoretical approaches with response spectrum analysis 
were studied, and all four approaches were evaluated in a parameter study. The 
analytical model was implemented in a MATLAB-program with the possibility to 
change rotational stiffness of the support, and the effects on mode shape, fundamental 
frequency and horizontal acceleration were studied. 
 
The study showed that horizontal acceleration increases for decreasing rotational 
stiffness of the support. Further, the results proved that the Swedish national annex, 
EKS 10, was conservative for all studied cases and that the estimated wind-induced 
acceleration can be reduced by up to 33 % by using the approach suggested in Eurocode 
1 Part 1-4 Annex B.  
 
Key words: High-rise buildings, tall buildings, deep foundation, pile foundation, wind-

induced acceleration, response spectrum analysis, dynamics of structures, 
Eurocode 1 Part 1-4, EKS 10, Einar Strømmen, Kamal Handa 
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Notations 
 
Roman upper case letters 
𝐴  Area, Constant 
𝐵  Constant 
𝐵#  Factor for background response 
𝐶  Constant 
𝐶%&'  Aerodynamic damping derivative 
𝐶(, 𝐶), 𝐶*  Force coefficient for along-wind, crosswind and torsional component 

respectively  
𝐶+  Generalized damping 
𝐶,-  Decay coefficient for turbulence component 𝑚 in direction 𝑛 
𝐶𝑜,-  Co-spectrum for 𝑚 turbulence component and 𝑛-direction 
𝐷  Constant 
𝐸𝐼  Flexural rigidity 
𝐻  Height of structure 
𝐻5  Correlation factor in horizontal direction 
𝐻&67  Part of the structure exposed to flow 
𝐻8&9  Reference height 
𝐻+,	𝐻6  Frequency response function for direction 𝑖 and 𝑥 respectively 
𝐹  Inertia force 
𝐼>  Turbulence intensity for turbulence component 𝑢 
𝐽6  Joint acceptance function 
𝐾%&'  Aerodynamic stiffness derivative 
𝐾+, 𝐾6  Generalized stiffness for direction 𝑖 and 𝑥 respectively 
𝐾6  Dimensionless coefficient 
𝐾BC  Line support stiffness in 𝑧-direction 
𝐿F  Width of building, perpendicular to wind flow 
𝐿#  Depth of building, parallel to wind flow 
𝐿>6   Integral length scale for turbulent component in wind direction 
𝑀  Bending moment 
𝑀%&'  Aerodynamic mass derivative 
𝑀+, 𝑀6  Generalized mass for direction 𝑖 and 𝑥 respectively 
𝑁  Number of degrees of freedom 
𝑃  External force 
𝑄%&'  Generalized motion-induced loading for direction 𝑖 
𝑄+, 𝑄6  Generalized flow-induced loading for direction 𝑖 and 𝑥 respectively 
𝑄6,LML  Total generalized loading for direction 𝑥 
𝑅OPQ# , 𝑅OR#   Resonance response coefficient according to EKS 10 and EN 1991-1-4 
𝑅S, 𝑅T  Correlation factors in horizontal and vertical direction respectively 
𝑅U  Wind-spectral density  
𝑆𝑡  Strouhal number 
𝑆--  Cross spectral density for component 𝑛, 𝑛 
𝑆>>  Cross spectral density for component 𝑢, 𝑢 
𝑆X',	𝑆XY  Spectral density of loading 
𝑆8'  Spectral density of displacement for direction 𝑖 
𝑆>+  Spectral density of acceleration for direction 𝑖 
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𝑇  Time of re-occurance for reference wind velocity  
𝑇-  Natural period of vibration   
𝑉  Mean wind velocity 
𝑉5  Correlation factor in vertical direction 
𝑉58+L  Critical wind velocity 
𝑉T,\  Reference wind velocity with T years of re-occurrence 
𝑉8&]  Wind velocity in flow direction  
𝑊  Generlised wind load 
  
Roman lower case letters 
𝑎>+  Fourier amplitude for acceleration 
𝑎`'  Fourier amplitude for generalized displacements 
𝑎X',	𝑎XY  Fourier amplitude for flow-induced loading for direction 𝑖  and 𝑥 

respectively 
𝑎Xab'   Fourier amplitude for motion-induced loading 
𝑎8'  Fourier amplitude for structural displacement 
𝑎>  Fourier amplitude for turbulent component 𝑢 
𝑐  Viscous damping coefficient 
𝒄  Damping matrix 
𝑐%&  Aerodynamic cross-sectional damping property 
𝑐9  Force coefficient  
𝑓6  Fundamental frequency 
𝑓)  Non-dimensional frequency  
𝑓-  Eigenfrequency 
𝑓f  Frequency of vortex shedding 
𝑖  Arbitrary direction 
𝑘  Elastic spring stiffness 
𝒌  Stiffness matrix 
𝑘  Generalised stiffness 
𝑘%&  Aerodynamic cross-sectional stiffness property  
𝑘7  Peak coefficient   
𝑘8  Terrain factor 
𝑚  Mass, Number of horizontal degrees of freedom 
𝒎  Mass matrix 
𝑚  Generalised mass 
𝑚%&  Aerodynamic cross-sectional mass property   
𝑚&  Equivalent mass per meter 
𝑚+, 𝑚6  Mass per meter for direction 𝑖 and 𝑥 respectively 
𝑛  Number of storeys 
𝑝  External force  
𝑝  Generalised force 
𝑝k  Amplitude of force 
𝑞-  Modal coordinates   
𝑞(, 𝑞), 𝑞*  Velocity pressure for along-wind, crosswind and torsional direction 

respectively 
𝑞+, 𝑞6, 𝑞m, 𝑞n Velocity pressure for direction 𝑖, 𝑥, 𝑦 and 𝜃 respectively 
𝑞,  Mean velocity pressure 
𝑞LML  Total velocity pressure 
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𝑟+  Structural displacement in direction 𝑖 
𝑟6  Structural velocity in 𝑥-direction   
𝑡  Time  
𝑢  Displacement, fluctuating component in along-wind 
𝑢k  Amplitude of displacement 
𝑢5  Complementary solution 
𝑢,%6  Maximum displacement 
𝑢,+-  Minimum displacement 
𝑢7  Particular solution 
𝑢  Velocity 
𝑢  Acceleration 
𝑢,%6  Peak acceleration 
𝑣  Mean value of upcrossing frequency, fluctuating component in 

crosswind direction 
𝑤  Fluctuating component in vertical direction 
𝑥  Coordinate of wind direction 
𝑦  Coordinate perpendicular to wind direction 
𝑦F, 𝑦#  Integration variables 
𝑧  Axial coordinate of the structure  
𝑧,+-  Terrain parameter 
𝑧8&9  Reference height 
𝑧f  Reference height used in design codes  
𝑧LM7  Coordinate in top of the building  
𝑧k  Rawness length 
𝑧F, 𝑧#  Integration variables 
      
Greek upper case letters 
𝚽  Matrix containing mode shapes 
 
Greek lower case letters 
𝛼  Power law exponent 
𝛽  Angle for flow inclination 
𝛿  Damping given as logarithmic decrement 
𝛿%  Aerodynamical damping given as logarithmic decrement  
𝛿f  Mechanical damping given as logarithmic decrement  
𝜁,	𝜁+  Damping ratio 
𝜁%&'  Aerodynamic damping ratio 
𝜂  Generalized coordinates 
𝜂+  Generalized velocity 
𝜂+  Generalized acceleration 
𝜃F, 𝜃#  Integration variables 
𝜃8ML  Rotational displacement 
𝜇  Rotational spring stiffness 
𝜉  Exponent for mode shape 
𝜌  Density of air 
𝜎8', 𝜎8Y  Standard deviation of displacement for direction 𝑖 and 𝑥 respectively 
𝜎~#  Background response 
𝜎�#  Resonance response 
𝜎>  Standard deviation of the turbulent component 
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𝜎>', 𝜎>Y Standard deviation of acceleration for direction 𝑖 and 𝑥 respectively 
𝜏F, 𝜏#  Integration variables 
𝜔  Excitation frequency 
𝝎  Vector containing eigenfrequencies 
𝜔-  Natural circular frequency 
𝜔(  Damped natural circular frequency 
𝜙  Phase angle 
𝜙-  Mode shape 
𝜙+, 𝜙6  Mode shape direction	𝑖 and along-wind direction respectively 
𝜙T  Size coefficient, based on width of the structure 
𝜙S  Size coefficient, based on height of the structure 
𝜓  Shape function 
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1 Introduction 
1.1 Background 
The region of Gothenburg is growing and the population is expected to increase with 20 % up 
to 1 200 000 inhabitants over the next 15 years (Västra Götalandsregionen, 2016). Densification 
of cities combined with the ambition to keep green areas and develop sustainable, put great 
demands on city planning and area efficiency. As a result of this development, buildings are 
getting taller and several new buildings in the range of 100-240 meters are being planned in the 
region.  
  
Tall buildings increase the urban density, which comes with several sustainable advantages that 
can reduce the total carbon footprint of the building. Compact cities promote the possibility to 
take advantage of shared energy systems and simplify the use of sustainable transportations, 
e.g. walking, cycling and public transportation.  
 
The carbon emissions associated with the construction of a building is typically in the range of 
10-30 % compared to the operational carbon emissions (Skidmore, Owings & Merrill, LLP, 
2013). When constructing high-rise buildings, construction emissions is generally higher per 
square meter, than for normal height buildings. This is mainly due to an additional need for 
structural material to sustain stiffness and strength when constructing high-rise buildings. 
However, tall buildings have the ability to be more energy efficient since the amount of weather 
exposed surfaces compared to building volume is less for a given base area, and through the 
use of central services. In this way, operational carbon emissions can be reduced per square 
meter.  
 
When designing tall buildings, the dynamic effects from wind loads will cause horizontal 
oscillation and acceleration of greater significance than for normal height buildings. These 
oscillations may cause discomfort, e.g. motion sickness, for people visiting the building (Kwok, 
Burton, & Abdelrazaq, 2015). Design with regard to acceleration is done for the serviceability 
limit state, SLS, and is usually determined either for peak value or a standard deviation, root-
mean-square, value. Recommendations for acceptable values are given in ISO 10137 (SIS, 
2008) and ISO 6897 (International Organisation for Standardization, 1984). However, 
estimating the acceleration of large structures is complex and the structure is often idealized as 
a cantilever.  
 
Ideally, high-rises are constructed on a foundation close to the bedrock. However, for the city 
of Gothenburg, the ground conditions commonly consist of clay and the bedrock lies at a depth 
of up to 100 m (Geological Survey of Sweden, 2017). With such conditions, deep foundation 
on piles is often necessary to carry the loads of the building and associated actions. 
 

1.2 Problem description 
The methods presented in EKS 10 (Boverket, 2015) and Eurocode 1 Part 1-4 (CEN, 2005), 
when designing a tall building with regard to acceleration in SLS, are based on a building 
constructed on rigid foundation. The governing assumption is an idealization and proposed 
mode shape corresponding to a cantilever beam with fixed support. However, this idealization 
is reasonable when the foundation lies directly on bedrock, but becomes more questionable 
when a pile foundation is used. 
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When constructing on deep layers of clay, a pile foundation will contribute differently to the 
restraint conditions and rigidity of the building, therefore questioning the legitimacy of the 
model based on a fixed support.  
 

1.3 Aim and objectives 
The overall aim of this project was to investigate how wind-induced horizontal acceleration, in 
along-wind direction, is affected when rotational stiffness of the support decreases. To reach 
this principle aim, one objective was to set up an analytical model by idealizing both the 
foundation and the lateral bearing system of a high-rise building. Another objective was to 
investigate if current design norms are valid for decreasing rotational stiffness of the support. 
 

1.4 Methodology 
Literature studies were performed to increase the understanding within the field of wind-
induced motions, wind turbulence and dynamics of structures. Further, it was necessary to study 
todays workflow and theoretical methods regarding wind-induced accelerations to understand 
the origin of the expressions stated in EKS 10 and Eurocode 1 Part 1-4. Supplementary 
specialization was gained through consultation with engineers from Integra Engineering AB 
and experts within the field of wind-induced acceleration. 
 
The ground conditions were idealized, and an analytical model was created for a general case. 
The analytical model was developed to be able to determine a representable mode shape and 
fundamental frequency for a structure with changeable support condition. To validate the 
analytical model, fundamental frequencies from the analytical model were compared with 
results from a commercial finite element software, FEM-design 16 (StruSoft, 2016), for various 
support conditions. 
 
To study the effect of support conditions on horizontal acceleration, and the validity of current 
design norms, four different expressions for determining the acceleration were evaluated in a 
parameter study. Two of the approaches are based on design codes, EKS 10 (Boverket, 2015) 
and Eurocode 1 Part 1-4 Annex B (CEN, 2005), and two theoretical approaches based on 
response spectrum analysis developed by (Strømmen, 2010) and (Handa, 1982).   
 

1.5 Limitations 
To focus this Master’s Thesis with regard to horizontal acceleration, several factors have been 
disregarded. No regard to shear or axial deformation, or the effect axial force may have on the 
stiffness of columns have been taken. Further, the problem has been regarded as linear elastic 
with the assumption of uncracked concrete cross sections, which is reasonable to assume when 
designing in SLS. 
 
To further simplify calculations, the lateral bearing system of the building has been regarded as 
a cantilever, and a homogeneous core was used in the parameter study. 
 
The true deformations and bearing capacity of piles in clay have not been investigated. When 
idealizing the sub-structure, an expected behaviour of a pile foundation was assumed and 
simplified as a line support with linear elastic stiffness in vertical direction. Any horizontal 
movements in the foundation are disregarded.   
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1.6 Outline of the report 
Initially, in Chapter 2, the basic theory within the field of dynamics of structures are presented. 
The governing differential equation and methods to find the solution are presented both for 
single- and for multi degree of freedom systems. 
 
In Chapter 3, the theory of wind, wind turbulence and basic statistical expressions to describe 
wind loads are explained. Finally, it is described how humans perceive motion and how this is 
considered in design.  
 
Chapter 4, gives an explanation of the basic concepts of response spectrum analysis for wind-
induced acceleration on structures. The Chapter also presents two expressions for determining 
the standard deviation of acceleration according to the theoretical approach. 
 
Two approaches to determine standard deviation of acceleration according to design norms, 
EKS 10 and Eurocode 1 Part 1-4 Annex B, is presented in Chapter 5. Further, a method to 
estimate peak acceleration is presented followed by comfort recommendations according to 
ISO-standards.  
 
Chapter 6, describes the development and verification of the analytical model and how the mode 
shape and fundamental frequency is estimated in the model.   
 
Chapter 7, contains the parameter study, where the effect of support conditions on important 
parameters is investigated.  
 
A final discussion of the results and important choices regarding input in the methods and 
analytical model, is handled in Chapter 8. 
 
Finally, in Chapter 9 conclusions of the Thesis are presented, followed by proposed aspects for 
further investigation. 
 
 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis BOMX02-17-32 4 

2 Dynamics of Structures 
This chapter aims to increase the basic knowledge in dynamics of structures and to understand 
the connection between dynamic properties, loading and acceleration for structures. Initially, 
basic concepts are introduced for a single degree of freedom, SDOF. This is done for three 
general cases: single degree of freedom, generalized single degree of freedom and multi degree 
of freedom. 
 

2.1 Equation of motion 
Dynamic response, or structural motion, is characterized by its time-dependence, and is thus 
more complex than static response. To derive expressions for structural motion, it is convenient 
to start by observing a rigid body with mass, 𝑚, on roller support, attached to an elastic spring 
with stiffness, 𝑘, and a viscous damper with viscous damping coefficient, 𝑐, as shown in Figure 
2-1 (a).  
 

 
Figure 2-1 (a) Mass on roller support. (b) Free-body diagram. 
 
As Newton states in his second law: a mass that is exposed to forces will result in an 
acceleration, 𝑢(𝑡) . The product of mass and acceleration is called inertia force, 𝐹 , and 
Newton’s second law of motion states:  
 

 𝐹 = 𝑚𝑢(𝑡) (2-1) 
 
The free-body diagram of the system in Figure 2-1 (a) is shown in Figure 2-1 (b). The 
displacement, 𝑢(𝑡), and velocity, 𝑢(𝑡), caused by the time dependent force 𝑝(𝑡), are resisted 
by internal, elastic and damping, forces caused by the elastic spring and the viscous damper 
respectively. From the free-body diagram, Newton’s second law of motion gives:  
 
 𝑝(𝑡) − 𝑐𝑢(𝑡) − 𝑘𝑢(𝑡) = 𝑚𝑢(𝑡) (2-2) 

 
Equation (2-2) is the governing differential equation describing the response of the system, also 
known as equation of motion. The equation of motion is fundamental in dynamics of structures 
and will from here on be referred to as EoM. It is usually re-written to the form: 
 

 𝑚𝑢(𝑡) + 𝑐𝑢(𝑡) + 𝑘𝑢(𝑡) = 𝑝(𝑡) (2-3) 

 

(a) (b) 

𝑐 

𝑘 

𝑢(𝑡) 

𝑝(𝑡) 𝑚 𝑚 
𝑐
𝑑𝑢(𝑡)
𝑑𝑡  

𝑘𝑢(𝑡) 

𝑢(𝑡) 

𝑝(𝑡) 
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2.2 Single degree of freedom 
The system in Figure 2-1, is prevented from torsion and vertical displacement and the response 
of the system is determined by a single independent coordinate. The system is referred to as a 
Single degree of freedom, SDOF, system. To find a solution, 𝑢(𝑡), to the EoM for a SDOF 
system, it is convenient to start by examine the system in free vibration. 
 

2.2.1 Free vibration 
2.2.1.1 Undamped systems in free vibration 
If a system without damping or dynamic excitation, is disturbed from its statically equilibrium 
position, it is said to be in free vibration, i.e. the motion is infinite. If a system vibrates freely, 
the solution to the EoM is characterized by the frequency of the vibrations.  
 
The solution may be derived by introducing a cantilever, without damping and external forces, 
with a lumped mass in the top according to Figure 2-2. 
 

 
Figure 2-2 Cantilever with a lumped mass. 

 
With the same way of reasoning as in Section 2.1, the EoM for the cantilever is expressed as: 
 

 𝑚𝑢(𝑡) + 𝑘𝑢(𝑡) = 0 (2-4) 
 
The expression may be rewritten by dividing by mass:  
 

 𝑢(𝑡) + 𝜔-#𝑢(𝑡) = 0 (2-5) 
 
Where 𝜔- is the undamped natural circular frequency, expressed as cycles per radians:  
 

 𝜔- =
𝑘
𝑚 (2-6) 

 
The circular frequency can be expressed as cycles per seconds or (𝐻𝑧) by: 
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 𝑓- =
𝜔-
2𝜋 (2-7) 

 
It may be shown that the solution to the linear homogenous second order differential equation 
(2-5) with constant coefficient, is: 
 

 𝑢 𝑡 = 𝐴 cos𝜔- 𝑡 + 𝐵 sin𝜔- 𝑡 (2-8) 
 
Since there are no external forces acting on the system, it is necessary for the free vibrating 
system to have initial conditions that does not correspond with the statically equilibrium, 
otherwise there would be no motion. If these initial conditions are expressed as 𝑢 0  and 𝑢 0 , 
the constants A and B in equation (2-8) can be determined. The final solution for a system in 
free vibration, may then be written as: 

 

 𝑢 𝑡 = 𝑢 0 cos𝜔- 𝑡 +
𝑢 0
𝜔-

sin𝜔- 𝑡 (2-9) 

 
2.2.1.2 Damped systems in free vibration 

By introducing linear viscous damping to the system in Figure 2-2, the EoM is written as: 
 
 𝑚𝑢(𝑡) + 𝑐𝑢(𝑡) + 𝑘𝑢(𝑡) = 0 (2-10) 

 
By defining the damping ratio,	𝜁, and dividing by the mass, the EoM can be rewritten.  
 
 𝜁 =

𝑐
2𝑚𝜔-

 (2-11) 

 𝑢(𝑡) + 2𝜁𝜔-𝑢(𝑡) + 𝜔-#𝑢(𝑡) = 0 (2-12) 
 
By using initial conditions, 𝑢 0  and 𝑢 0 , in expression (2-12), the exact solution to the EoM 
for a damped system is expressed as:  
 

 𝑢 𝑡 = 𝑒����L 𝑢 0 cos𝜔( 𝑡 +
𝑢 0 + 𝜁𝜔-𝑢 0

𝜔(
sin𝜔( 𝑡  (2-13) 

 
Where the damped natural circular frequency, 𝜔(, is defined as: 
 

 𝜔( = 𝜔- 1 − 𝜁# (2-14) 
 
By observing expression (2-14), it can be noticed that damping decreases the natural frequency 
of the system. For linear viscous damping, systems can be classified as: underdamped for 𝜁 <
1 , critically damped for 𝜁 = 1  and overdamped for 𝜁 > 1 . However, structures in civil 
engineering are most often underdamped, and the effect on natural frequency is negligible for 
damping ratios less than 20 %, a range that includes most structures (Chopra, 2012). 
 
To examine the damping ratios further, it is useful to rewrite Equation (2-13). This is done by 
the use of trigonometric identities, and the result is as follows: 
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 𝑢 𝑡 = 𝑒����L𝑢,%6 cos(𝜔( 𝑡 − 𝜃) (2-15) 

 
Where:  
 

 𝑢,%6 = 𝑢 0 # +
𝑢 0 + 𝜁𝜔-𝑢 0

𝜔(

#

 (2-16) 

 
 

 𝜃 = tan�F
𝑢 0 + 𝜁𝜔-𝑢(0)

𝜔(𝑢(0)
 (2-17) 

 
Investigating Equation (2-15) and (2-16) further, it is clear that neither, cos(𝜔(𝑡 − 𝜃), or 𝑢,%6, 
will decay with time, 𝑡 . However, 𝑒���L , do decay with time when 𝜁 > 0  and the total 
behaviour is schematically shown for 0 < 𝜁 < 1 in Figure 2-3. 
 

 
Figure 2-3 Peak values decreases due to damping. 

 
The difference between two amplitudes, 𝑢+ and 𝑢+�F, separated by period 𝑇(, will depend on 
𝑒���L. The ratio between the two amplitudes can be written as: 
 

 𝑢+
𝑢+�F

=
𝑒����L

𝑒����(L�\�) = 𝑒���\� = 𝑒���
#�
�� = 𝑒

#��
F��� (2-18) 

 
This means that the damping ratio can be determined from two peak displacement values and 
be determined by: 
 

 𝛿 = ln
𝑢+
𝑢+�F

=
2𝜋𝜁
1 − 𝜁#

 (2-19) 

 

!

"(!)
"%

"%&'

()
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Where 𝛿 is called the logarithmic decrement. According to (Chopra, 2012), for small damping 
ratios, 𝜁 < 0.2, which includes most structures, the equation can be simplified to: 
 

 𝛿 ≈ 2𝜋𝜁 (2-20) 
 

2.2.2 Response to excitation 
So far only systems in free vibration have been examined. In this Section, the behaviour of a 
simple cantilever with a lumped mass that is influenced by an arbitrary external force 𝑝 𝑡  will 
be examined, see Figure 2-4.  
 

 
Figure 2-4 Cantilever with a lumped mass, exposed to an external force.  

 
For a system exposed to an external load, the complete solution, 𝑢(𝑡) , consists of a 
complementary solution, 𝑢5(𝑡), and a particular solution, 𝑢7(𝑡). 
 

 𝑢 𝑡 = 𝑢5(𝑡) + 𝑢7(𝑡) (2-21) 
 

2.2.2.1 Undamped systems with excitation 

If the force 𝑝 𝑡  is a harmonic excitation where 𝑝 𝑡 = 𝑝k sin𝜔𝑡, where 𝑝k is the amplitude of 
the force and 𝜔 is the excitation frequency, the EoM is expressed as: 
 

 𝑚𝑢(𝑡) + 𝑘𝑢(𝑡) = 𝑝k sin𝜔𝑡 (2-22) 
 
The complementary solution to this differential equation, when disregarding damping, will be 
the same as the solution for a system in free vibration according to Equation (2-5): 
 
 𝑢5 𝑡 = 𝐴 cos𝜔- 𝑡 + 𝐵 sin𝜔- 𝑡 (2-23) 

 
This will always be the complementary solution for a single degree of freedom system without 
damping. However, the particular solution depends on the nature of the force. In the case of a 
harmonic excitation 𝑝 𝑡 = 𝑝k sin𝜔𝑡, the particular solution is:  
 

 
 

 
 𝑢(𝑡) 

𝑝(𝑡) 𝑚 

𝑘 
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 𝑢7 𝑡 =
𝑝k
𝑘

1

1 − 𝜔 𝜔-
# (2-24) 

 
The complete solution is obtained by combining the complementary solution and particular 
solution, according to Equation (2-21), such as: 
 

 𝑢 𝑡 = 𝐴 cos𝜔- 𝑡 + 𝐵 sin𝜔- 𝑡 +
𝑝k
𝑘

1

1 − 𝜔 𝜔-
# (2-25) 

 
Where the constants A and B is determined by the initial condition of the system.  
 
Regard the same system as in Figure 2-4, but with 𝑝 𝑡 = 𝑝k. The complementary solution 
would be the same, but the particular solution, which is related to the force, different.  
 
 𝑢 𝑡 = 𝐴 cos𝜔- 𝑡 + 𝐵 sin𝜔- 𝑡 +

𝑝k
𝑘  (2-26) 

 
With 𝑢 0 = 𝑢 0 = 0 as initial condition the constant A and B can be determined and the 
response becomes: 
 

 𝑢 𝑡 =
𝑝M
𝑘 1 − cos𝜔-𝑡  (2-27) 

  
What can be noticed from equation above is that undamped SDOF system exposed to step force, 
will oscillate between 𝑢,+- = 0 and 𝑢,%6 = 2 7£

¤
, reaching a maximum displacement twice 

that of the static displacement.  
 
2.2.2.2 Damped systems with excitation 

Taking damping into consideration complicates the solution somewhat. If the external force is 
expressed as 𝑝 𝑡 = 𝑝k sin𝜔𝑡, the EoM can be expressed as:  
 
 𝑚𝑢(𝑡) + 𝑐𝑢(𝑡) + 𝑘𝑢(𝑡) = 𝑝k sin𝜔𝑡 (2-28) 

 
The complementary solution for a damped system looks as follows, and note the resemblance 
for the solution for equation (2-12): 
 

 𝑢5 𝑡 = 𝑒����L 𝐴 cos𝜔( 𝑡 + 𝐵 sin𝜔( 𝑡  (2-29) 
 
While the particular solution takes the form of: 
 

 𝑢7 𝑡 = 𝐶 sin𝜔𝑡 + 𝐷	 cos𝜔𝑡 (2-30) 
 
Where C and D is defined as: 
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 𝐶 =
𝑝k
𝑘

1 − 𝜔
𝜔-

#

	 1 − 𝜔
𝜔-

# #
+ 2𝜁 𝜔

𝜔-
#
 (2-31) 

 
 

 𝐷 =
𝑝k
𝑘

−2𝜁𝜔𝜔-

	 1 − 𝜔
𝜔-

# #
+ 2𝜁 𝜔

𝜔-
#
 (2-32) 

 
According to (Chopra, 2012) the complementary solution, 𝑢5(𝑡), can be seen as transient and 
that after a certain time regarded as negligible. That means that the response only depends on 
the particular solution, 𝑢7(𝑡), which Chopra refers to as steady-state response. It should 
however be noticed that the peak deformation can occur before the system reaches a steady 
state. The behaviour is shown in Figure 2-5, where the total response approaches the steady-
state solution. 
 

 
Figure 2-5 Illustration of total response and steady state response. 

 

2.2.3 Deformation response function  
A convenient method to determine the maximum response for a system subjected to harmonic 
excitation, is to use a response spectrum for the structure. It will be shown that the response of 
the structure will depend on the excitation frequency, natural frequency, and damping of the 
system.  
 
Equation (2-30) can together with equations (2-31) and (2-32), with the help of trigonometric 
rules, be written as: 
 

 𝑢 𝑡 = 𝑢k sin 𝜔𝑡 − 𝜙  (2-33) 

Steady	state

Total	response

!

"(!)
"%(!)

"&(!)
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Where:  
 

 𝜙 = tan�F
−𝐷
𝐶 = tan�F

2𝜁 𝜔
𝜔-

1 − 𝜔
𝜔-

# (2-34) 

 
𝑢k =

𝑝k
𝑘

1

1 − 𝜔
𝜔-

# #
+ 2𝜁 𝜔

𝜔-
#

	 
(2-35) 

 
By examine Equation (2-33) when investigating the maximum response, it is clear that 
sin 𝜔𝑡 − 𝜙  will reach a maximum value equal to 1. Therefore, the maximum response is 
determined from the amplitude 𝑢k, which consist of the static displacement due to the amplitude 
of the excitation multiplied with a term referred to as the deformation response factor, 𝑅¥,  in 
(Chopra, 2012).  
 

 
 

𝑅¥ =
1

1 − 𝜔
𝜔-

# #
+ 2𝜁 𝜔

𝜔-
#

 
(2-36) 

 
This means that the maximum displacement is found by:  
 
 
 𝑢,%6 =

𝑝k
𝑘 𝑅¥ (2-37) 

 
What can be noticed is that, if the system is in resonance with the excitation frequency, i.e. 𝜔 =
𝜔-, the maximum response is obtained and the deformation response factor becomes: 
 
 
 𝑅¥ =

1
2𝜁 (2-38) 

 
Figure 2-6 illustrates how the deformation response factor, 𝑅¥, varies with excitation frequency 
and different damping ratios.  
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Figure 2-6 Four different deformation response functions with corresponding damping 

ratio. 

 

2.2.4 Systems with distributed mass and stiffness 
So far only systems that have a point mass and constant stiffness have been regarded.   
However, it is not uncommon for structures in civil engineering that mass and stiffness vary 
along the coordinate, 𝑧. An illustration is shown in Figure 2-7. 
 

 
Figure 2-7 Cantilever with varying mass and stiffness. 
 

 
 

𝐸𝐼(𝑧) 
𝑚(𝑧) 

𝑧 
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To solve the EoM for such a case, it is convenient to introduce a generalized coordinate, 𝜂(𝑡), 
and describe the motion of the system through a chosen shape function, 𝜓(𝑧), as: 
  

 𝑢 𝑧, 𝑡 = 𝜓 𝑧 𝜂(𝑡) (2-39) 
 
The shape function is chosen with regard to boundary condition and the behaviour of the beam. 
This implies that every position of the beam is constrained to move according to the shape 
function, 𝜓(𝑧), and by doing this an infinite DOF system can be regarded as an SDOF system, 
with 𝜂(𝑡) as only unknown. 
 
By regarding the system in Figure 2-7 and assuming no damping, the inertia force, 𝐹, acting on 
a small section, 𝑑𝑧, of the cantilever can be expressed using generalized coordinates, as: 
 
 𝐹 = 𝑚(𝑧)	𝑑𝑧	𝑢 𝑧, 𝑡 = 𝑚(𝑧)	𝑑𝑧	𝜂(𝑡)𝜓	(𝑧) (2-40) 

 
By using principle of virtual work, it can be proven that the EoM can be written as: 
 

 
𝜂 𝑡 𝑚 𝑧 𝜓(𝑧)#𝑑𝑧

§

k
+ 𝜂 𝑡 𝐸𝐼(𝑧) 	𝜓CC(𝑧) #𝑑𝑧

§

k

= 𝑃(𝑧, 𝑡)𝜓(𝑧)𝑑𝑧
§

k
 

(2-41) 

 
Where the generalized mass, stiffness and force are introduced as: 
 

 𝑚 = 𝑚 𝑧 𝜓(𝑧)#𝑑𝑧
§

k
 (2-42) 

 

 𝑘 = 𝐸𝐼(𝑧) 	𝜓CC(𝑧) #𝑑𝑧
§

k
 (2-43) 

   

 𝑝 = 𝑃(𝑧, 𝑡)𝜓(𝑧)𝑑𝑧
§

k
 (2-44) 

 
If Equations (2-42), (2-43) and (2-44) are substituted into Equation (2-41), an expression can 
be formulated, that is similar to the EoM for a system with lumped mass and constant stiffness: 
 
 𝜂 𝑡 𝑚 + 𝜂 𝑡 𝑘 = 𝑝 (2-45) 

 
Where the generalized coordinate 𝜂 𝑡  is determined by solving differential Equation (2-45), 
and then the behaviour of the beam can be determined by equation (2-39).  
 
The natural frequency of the system can be determined according to: 
 

 𝜔- =
𝑘
𝑚 (2-46) 
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2.3 Multi degree of freedom 
2.3.1 Equation of motion for multi degree of freedom systems 
There are several methods to determine the response of a multi degree of freedom, MDOF, 
system, but this Thesis focuses on modal analysis which is described in this Section.  
 
An example of a MDOF system is a cantilever with two lumped masses, as shown in Figure 
2-8.  Lumping the mass means that the elements between the nodes are massless and replaced 
by equivalent masses in the nodes. This is an alternative approach to the method with 
generalized coordinates, described in Section 2.2.4, and is convenient when formulating the 
mass matrix.  
 

 
Figure 2-8 Cantilever with two degrees of freedom. 
 
The main difference compared to a SDOF system, is that the EoM is formulated on matrix form, 
as: 
 

 

𝑚F 0
0 𝑚#

𝑢F(𝑡)
𝑢#(𝑡)

+
𝑐F + 𝑐# −𝑐#
−𝑐# 𝑐#

𝑢F(𝑡)
𝑢#(𝑡)

+ 𝑘F + 𝑘# −𝑘#
−𝑘# 𝑘#

𝑢F(𝑡)
𝑢#(𝑡)

= 𝑝F(𝑡)
𝑝#(𝑡)

 
(2-47) 

 
Which is equivalent of writing it on the form of: 
 
 𝒎𝒖+ 𝒄𝒖 + 𝒌𝒖 = 𝒑 (2-48) 

 
If both the acceleration and velocity would be zero, the expression will turn to a static problem, 
𝒌𝒖 = 𝒑, which is familiar from structural mechanics. 
 

 
 

 
 

𝑢2(𝑡) 𝑝2(𝑡) 
𝑚2 

𝑘1 

𝑝1(𝑡) 𝑢1(𝑡) 
𝑚1 

𝑘2 
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2.3.2 Free vibration & eigenvalue statement 
The expression of free vibration for a MDOF system can be seen below: 
 

 𝒎𝒖+ 𝒌𝒖 = 𝟎 (2-49) 
 
A SDOF system moves with a single harmonic motion with the same natural frequency 
regardless of the initial condition. This is something that cannot be said about a MDOF system. 
It is however, possible to choose initial conditions, 𝒖 = 𝒖(0) and 𝒖 = 𝒖(0), such that the 
system vibrate with a constant natural frequency and maintains its deflected shape through one 
cycle. Which means that both DOFs reaches its maximum deflection at the same time and pass 
through equilibrium simultaneously. The system is said to move in a simple harmonic motion 
and it is then possible to determine the natural frequencies. Let’s regard the cantilever in Figure 
2-8, its simple harmonic motion can be seen in Figure 2-9. The deflected shape is referred to as 
the natural mode of vibration for a MDOF system.  
 
 

 
Figure 2-9 Free vibration of two degree of freedom system according to (a) First mode (b) 

Second mode. Figure inspired by (Chopra, 2012). 
 
The two vibration modes in Figure 2-9, will have two different eigenfrequencies, the smaller 
of the two eigenfrequencies is expressed as 𝜔F, also known as the fundamental frequency, and 
the larger 𝜔#. Where the natural period of vibration for one of the mode is: 
  

 𝑇- =
2𝜋
	𝜔-

 (2-50) 
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The free vibration of an undamped system in one of its natural modes can mathematically be 
described as: 
 

 𝒖 𝑡 = 𝑞-(𝑡)𝜙- (2-51) 
 
Where the deflected shape 𝜙-  is constant over time. The time dependent part,	𝑞- 𝑡 , of the 
displacement can be described by a simple harmonic function: 
 

 𝑞- 𝑡 = 𝐴- cos𝜔-𝑡 + 𝐵- sin𝜔-𝑡 (2-52) 
 
Where 𝐴-  and 𝐵-  can be determined by initial conditions. Substituting Equation (2-52) in 
Equation (2-51) yields: 
 

 𝒖 𝑡 = 𝜙-(𝐴- cos𝜔-𝑡 + 𝐵- sin𝜔-𝑡) (2-53) 
 
Combining equations (2-49) and (2-53), where 𝜙- and 𝜔- are unknown, yields:  
 

 −𝜔-#𝒎𝜙- + 𝒌𝜙- 𝑞-(𝑡) = 𝟎 (2-54) 
   

This equation can satisfy its condition in two ways, either 𝑞- 𝑡 =0 which implies no motion of 
the system and the system is said to have a trivial solution. Else the natural mode and the 
eigenfrequencies must satisfy following equation: 
 

 𝒌 − 𝜔-#𝒎 𝜙- = 𝟎 (2-55) 
 
This equation is referred to as matrix eigenvalue problem, with a set of 𝑁  homogenous 
equation, where 𝜙«-(𝑗 = 1, 2, . . . , 𝑁). This set of equation always has the trivial solution 𝜙- =
𝟎, but that also implies no motion to the system. For the system to have a non-trivial solution it 
must satisfy this equation: 
 

 𝑑𝑒𝑡 𝒌 − 𝜔-#𝒎 = 0 (2-56) 
 
When the determinant is expanded, it yields a polynomial of order 𝑁, where the unknown 
variable is 𝜔-#. This polynomial has 𝑁 real and positive roots for 𝜔-#, due to the fact that 𝒎 and 
𝒌 (mass and stiffness matrix) are symmetric and positive definite. This means that it is possible 
to obtain the eigenfrequencies of the system by solving this polynomial. When the 
eigenfrequencies for the system is solved, then the mode shapes 𝜙-  for respectively 
eigenfrequency 𝜔- can be solved using equation (2-55).  
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3  Wind Load 
Wind is omnipresent in our environment and inevitable an important element to consider when 
designing buildings in general, but high-rise buildings in particular. When designing for wind-
induced motion, the structure is generally assumed to have a linear elastic behaviour and that 
any non-linear effects may be disregarded (Strømmen, 2010).  
 
The theory of wind fields, stochastic processes and its role in civil engineering, will be handled 
in this Chapter.  
 

3.1 High-rise buildings 
If a structure is exposed to an airflow, the interaction between the flow and the body will result 
in forces acting on the body, i.e. the kinetic energy from the airflow is converted to potential 
energy in the structure. Unless the structure is very streamlined and the velocity of the flow is 
low, these forces will fluctuate (Strømmen, 2010). Fluctuation of forces are caused by three 
main mechanisms: Buffeting, wind induced motion and vortex shedding. 
 

3.1.1 Buffeting response and wind induced motion 
Firstly, the wind itself contains turbulence, i.e. it fluctuates in time and space. This phenomenon 
is known as Buffeting (Strømmen, 2010). Secondly, the body might start to oscillate itself, and 
when it interacts with the fluctuating forces, additional forces may be created. This is known as 
Motion induced forces.  
 
Both of these mechanisms will contribute to along-wind vibrations. 
 

3.1.2 Vortex shedding 
Finally, if a body is placed in a steady flow, forces may fluctuate due to friction between air 
and the surfaces which causes vortices. These vortices alternate on each side of the cross-section 
which result in fluctuating load perpendicular to the flow direction, causing vibrations in cross-
wind direction, see Figure 3-1. This phenomenon is referred to as Vortex shedding and could 
results in great structural response if the frequency of vortex shedding, 𝑓f , equals the 
eigenfrequency, 𝑓-, corresponding to a mode perpendicular to the flow direction. 
 

 
Figure 3-1 Illustration of vortex shedding. 
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The critical wind velocity can be determined by Eurocode 1 Part 1-4 (CEN, 2005) to: 
 

 𝑉58+L =
1
𝑆𝑡 𝐿F𝑓- (3-1) 

 
Where the Strouhal number, 𝑆𝑡, is defined by the dimensions of the cross-section according to 
Figure 3-2. For a rectangular cross-section, 𝑆𝑡 varies between 0,05-0,15 dependent on the ratio, 
𝐿#/𝐿F.  
 

 
Figure 3-2 Strouhal number for a rectangular cross-section, reproduced from Figure E.1 in 

Eurocode 1 Part 1-4. 

 
This means that vortex shedding may be governing for very slender structures, where the 
fundamental frequency is low and ratio 𝐿#/𝐿F is great.  
 
Further, the risk of vortex shedding increases if several slender structures are placed in line with 
distance less than approximately 10-15 times the width of the structures (Dyrbye & Hansen, 
1997). 
 
Vortex shedding results in cross-wind vibrations, which is beyond the scope of this Thesis, and 
is therefore not further treated. 
  

3.2 Wind field 
The wind field can be divided into three orthogonal fluctuating components, in along-wind, 
crosswind and vertical direction.  
 
In the along-wind direction 𝑉(𝑧) + 𝑢(𝑥, 𝑦, 𝑧, 𝑡)   (3-2) 
In the crosswind direction 𝑣(𝑥, 𝑦, 𝑧, 𝑡)   (3-3) 
In the vertical direction 𝑤(𝑥, 𝑦, 𝑧, 𝑡)   (3-4) 
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Where 𝑉  is in the mean velocity varying with height above ground and 𝑢 , 𝑣  and 𝑤  are 
fluctuating part of the wind field. (Strømmen, 2010). These three fluctuating components can 
be treated mathematically as stationary, stochastic processes with zero mean value (Dyrbye & 
Hansen, 1997). The wind field at a given time, 𝑡, can be described by applying a Cartesian 
coordinate system, where 𝑥 is in the direction of mean velocity, 𝑦 in lateral horizontal direction 
and 𝑧 in vertical direction with positive value upwards. 
 
The wind flow acting on the building will cause motions composed by three vibrational 
components, along-wind, crosswind and torsional vibrations (Kwok, Burton, & Abdelrazaq, 
2015). However, this Thesis focuses on the along-wind response caused by buffeting and 
motion induced forces and thus only on the components 𝑉(𝑧) and 𝑢(𝑥, 𝑦, 𝑧, 𝑡) as shown in 
Figure 3-3. 
 

 
Figure 3-3 Wind field in along-wind direction. 
 

3.3 Statistical parameters 
A turbulent wind flow is complex and varies in both time and space in a random way. It is rather 
difficult to determine its exact value and it is therefore necessary to describe it by statistical 
terms (Dyrbye & Hansen, 1997). Since wind is omnipresent in our environment, it is important 
to distinguish between short and long term conditions. Short term events represent a time 
domain for conditions during a certain weather situation, while long term conditions represent 
a large set of short term events. 
 
When designing structures, it is required that the time window for the short-term events are 
sufficiently stationary with zero mean value, to result in homogeneous statistical properties. 
Thus, it is a general assumption to set a period of 𝑇 = 10	minutes (Strømmen, 2010).  
  

 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) 
Turbulence component 
 

𝑉(𝑧) +  𝑢(𝑥, 𝑦, 𝑧, 𝑡) 
 

𝑉(𝑧) 
Turbulence component 
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Figure 3-4 (a) illustrates a variation of along-wind velocity, 𝑉LML. As can be seen in the figure, 
the magnitude consists of a constant mean value, 𝑉, and a fluctuating time-dependent part, 
𝑢(𝑡).  
 

 𝑉LML = 𝑉 + 𝑢(𝑡) (3-5) 
 

 
Figure 3-4 Short-term variations, and Gaussian distribution. Figure inspired by (Strømmen, 

2010). 
 
The mean value, 𝑉, is a typical stochastic variable for which, long-term statistics are used, while 
statistics in the short-term time window is more interesting for the fluctuating component,	𝑢(𝑡). 
The stochastic process will generate a Gaussian distribution, as illustrated in Figure 3-4 (b). 
 

3.4 Structural response related to wind 
Likewise, the acceleration and structural displacement may be regarded as stochastic processes 
as well. The mean component is time invariant (static) and are typically based on predetermined 
values taken from design standards (Strømmen, 2010). These characteristic values have been 
established to represent short-term weather conditions for a specific purpose and location. Thus, 
only the fluctuating (dynamic) part requires treatment as stochastic processes according to 
(Strømmen, 2010). It may be shown that, if a stochastic process with zero mean value is 
stationary and Gaussian distributed, its extreme values is proportional to its standard deviation. 
As an example, the horizontal peak acceleration, 𝑢,%6, is proportional to the standard deviation 
of acceleration, 𝜎>, according to: 
  
 𝑢,%6 = 𝑘7𝜎> (3-6) 

 
where 𝑘7 is the time invariant peak factor. This means that the focus, when designing for wind 
load and acceleration, is mainly on the standard deviation, 𝜎>, of the fluctuating part. 
 

 
                                    (a)                                              (b) 
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The standard deviation of acceleration can be obtained in two ways. Either by a Time History 
Analysis of the dynamic load effect, which is computationally demanding (Strømmen, 2010). 
The other alternative, called Response Spectrum Analysis, is to use modal approach in the 
frequency domain.  It essentially involves conversion from a power spectrum, representing the 
loading, to the sought response spectrum (Strømmen, 2010).  
 
This Thesis covers four approaches with response spectrum analysis for estimating the standard 
deviation of acceleration. These are further investigated and explained in Chapter 4 and 5. 
 

3.5   Mean wind velocity  
As described in Section 3.2, the along-wind velocity is described by a mean value, 𝑉(𝑧), and a 
turbulent component, 𝑢(𝑥, 𝑦, 𝑧, 𝑡). The mean wind velocity is not only dependent on weather 
conditions, but also on the terrain, since the friction between air flow and the roughness of 
terrain cause turbulence, which reduces the mean velocity (Dyrbye & Hansen, 1997). The mean 
velocity, 𝑉(𝑧), can therefore be described by a reference wind velocity based on location and 
long term weather statistics, and by roughness parameters based on the surroundings of the 
building.  
 

3.5.1 Reference wind velocity 
As described in Section 3.3, wind events can be seen as statistical parameters. When designing 
structures for wind loads, these statistical processes are based on a reference wind velocity. 
 
Reference wind velocity, 𝑉T, is defined in national annex EKS 10 (Boverket, 2015) for various 
locations in Sweden. It represents a characteristic mean value of wind velocity during 10 
minutes at a height of 10 meters in terrain category II, see Table 3-1, and 50 years of re-
occurrence. The interval of re-occurrence represents the probability of exceeding this wind 
velocity during one year, e.g. 2 % for 50 years of re-occurrence. Magnitudes of reference wind 
velocity can be found in Figure 3-5 and value for Gothenburg is, 𝑉T,®k = 25	𝑚/𝑠.  
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Figure 3-5 Reference wind velocity for different locations in Sweden, from Figure C-4 in 

EKS 10 (Boverket, 2015).  
 
The reference wind velocity, 𝑉T,\ at 𝑇 years of re-occurrence, is then determined according to 
EKS 10 (Boverket, 2015) as: 
 

 𝑉T,\ = 0,75𝑉T,®k 1 − 0,2 ln − ln 1 −
1
𝑇  (3-7) 

 
When designing for SLS, the acceleration can be determined either as a peak value or standard 
deviation value. Recommended thresholds for the standard deviation value, stated in ISO 6897 
(International Organisation for Standardization, 1984), are based on reference wind velocity 
with 5-year of re-occurrence, while the limits for peak acceleration are regulated for a 1-year 
return interval according to ISO 10137 (SIS, 2008). 
 

3.5.2 Terrain categories 
In Eurocode 1 Part 1-4 (CEN, 2005), five different terrain categories dependent on location, are 
introduced. These categories and corresponding characteristics are presented in Table 3-1. 
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Table 3-1 Terrain categories and terrain parameters, from Table 4.1 in Eurocode 1 Part 
1-4 (CEN, 2005) and Table 3.2 in (Dyrbye & Hansen, 1997). 

Terrain category 𝒛𝒐[m] 𝒛𝒎𝒊𝒏[m] 𝒌𝒓 [-] 𝜶 
0 Sea or coastal area exposed to the open sea 0.003 1 0.16 - 
I Lakes or flat and horizontal area with negligible 

vegetation and without obstacles 
0.01 1 0.17 0.12 

II Area with low vegetation such as grass and 
isolated obstacles (trees, buildings) with 
separations of at least 20 obstacle heights 

0.05 2 0.19 0.16 

III Area with regular cover of vegetation or buildings 
or with isolated obstacles with separations of 
maximum 20 obstacle heights (such as villages, 
suburban terrain, permanent forest) 

0.3 5 0.22 0.22 

IV Area in which at least 15 % of the surface is 
covered with buildings and their average height 
exceeds 15 m 

1.0 10 0.24 0.3 

 
The roughness length, 𝑧k, can be explained as the size of a characteristic vortex which may be 
created by friction between air flow and inhomogeneous terrain (Dyrbye & Hansen, 1997). The 
parameter 𝑘8  is a terrain factor proportional to the friction velocity. 𝑧,+- is a height, below 
which the velocity is assumed constant (Dyrbye & Hansen, 1997) and 𝛼 is the power law 
exponent used for power law profile in Section 3.5.3.2. 
 

3.5.3 Wind velocity profile 
The mean wind velocity, 𝑉(𝑧), will decrease with decreasing height since turbulence is caused 
by roughness of the terrain. The influence of surface roughness decreases with increasing height 
and the wind velocity is assumed constant at heights around 300-1000m (Handa, 1982). It is 
called Geostrophic wind. It is therefore convenient to describe the mean velocity between the 
surface and the geostrophic wind by a wind velocity profile.  
 
There are different ways to describe the velocity profile, but a logarithmic profile is used in 
Eurocode 1 Part 1-4, which is presented in Section 3.5.3.1.  However, Kamal Handa (Handa, 
1982) uses the power law profile in his method presented in Section 4.2.2.2, and therefore this 
profile is described in Section 3.5.3.2. 
 

3.5.3.1 Logarithmic profile 

The variation of wind velocity along the height, 𝑉(𝑧), according to logarithmic velocity profile 
is determined, in Eurocode 1 Part 1-4 (CEN, 2005), as: 
 

 𝑉 𝑧 = 𝑉T,\ 𝐶&67(𝑧) (3-8) 

 𝐶&67 𝑧 = 𝑘8 ln
𝑧
𝑧k

#
	𝑓𝑜𝑟	𝑧 ≥ 𝑧,+- 

𝐶&67 𝑧 = 𝐶&67(𝑧,+-)			𝑓𝑜𝑟	𝑧 < 𝑧,+-	 
(3-9) 
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With terrain properties, 𝑘8 , 𝑧k  and 𝑧,+- , in Table 3-1 and 𝑉T,\  determined according to 
Equation (3-7).   
 
For each terrain category, the wind velocity can be plotted along the axial coordinate, 𝑧, which 
gives the logarithmic velocity profile, shown in Figure 3-6.   
 

 
Figure 3-6 Logarithmic velocity profile for different terrain categories as defined in Table 

3-1 for Gothenburg climate. 

  
3.5.3.2 Power law profile 

The wind profile can also be described by an empirical power law profile (Dyrbye & Hansen, 
1997) as: 
 

 𝑉 𝑧 = 𝑉 𝑧8&9
𝑧
𝑧8&9

¹

 (3-10) 

 
where 𝛼 is the power law exponent in Table 3-1, and 𝑧8&9 is a reference height which is chosen 
dependent on the purpose. 
 
As a comparison, the logarithmic profile and power law profile are plotted for terrain category 
II in Figure 3-7. As shown in the figure, the difference between the two profiles is rather small. 
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Figure 3-7 Comparison between logarithmic and power law profile for terrain category II, 

with reference height 𝑧8&9 = 100𝑚. 

  

3.5.4 Wind velocity pressure 
Mean velocity pressure, 𝑞,(𝑧), can generally be determined as the dynamic pressure as: 
 

 𝑞, 𝑧 =
𝜌𝑉(𝑧)#

2  (3-11) 

 
where 𝜌 = 1.25	𝑘𝑔/𝑚» is the density of air. 
 

3.6 Wind turbulence  
As previously mentioned in Section 3.2, the along-wind field also consist of a turbulence 
component, 𝑢(𝑥, 𝑦, 𝑧, 𝑡) , which is more complex than the mean wind velocity, 𝑉(𝑧) . The 
turbulence fluctuates in time and space and is therefore described by a stationary stochastic 
process with a Gaussian distribution, as described in Section 3.3. 
 

3.6.1 Wind-spectral density 
Structural response from the turbulence component can be determined with response spectrum 
analysis, by a power spectrum defined by the wind. This power spectrum is referred to as Wind-
spectral density and there are several proposed wind-spectral densities based on experiments 
(Handa, 1982). The wind-spectral density is a probabilistic measure that describes how 
common turbulence fluctuations are at a given frequency. Figure 3-8 shows an example of Von 
Kármán’s wind-spectral density.  
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Figure 3-8 Von Kármán’s wind-spectral density. 

 
Response spectrum analysis with wind-spectral density is derived and further explained in 
Chapter 4.  
 

3.6.2 Turbulence intensity 
The turbulence is also described by a turbulence intensity, which is defined as the ratio between 
standard deviation of the turbulence component, 𝜎>(𝑧), and the mean wind velocity, 𝑉(𝑧). For 
flat terrain, and by using logarithmic velocity profile, this can be simplified to: 
 

 𝐼> 𝑧 =
𝜎>(𝑧)
𝑉(𝑧) =

1
ln	(𝑧/𝑧k)

 (3-12) 

 
As previously mentioned, influence of turbulence decrease with the height. The intensity of 
turbulence for terrain category II is shown in Figure 3-9. 
 

 
Figure 3-9 Turbulence intensity, 𝐼>(𝑧), for terrain category II. 
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3.7 Wind tunnel test 
An alternative approach to estimate the wind load on structures is to perform a wind tunnel test. 
The objective of wind tunnel analysis is to fully replicate the real physics of wind loading and 
the surroundings at model scale, including along-wind, cross-wind and torsional wind loading 
(Irwin, Denoon, & Scott, 2013). Further, the tests aim to include load combinations, building 
motion, topography and terrain effects. Wind tunnel tests are however relatively costly.  
 
According to the report by Irwin, Denoon and Scott, a wind tunnel test may be advisable if 
either: height of the building exceeds 120 m, height of the building is greater than four times 
its average width, or if the lowest eigenfrequency is less than 0.25 Hz.  
 
The advantages with wind tunnel test compared to a code based approach is that the 
surroundings and interaction between adjacent buildings can be accounted for, as well as unique 
design of the building. Further, as described in Chapter 3, only response in along-wind direction 
can be handled with the approach described in EKS 10 (Boverket, 2015), while other wind 
phenomena such as cross-wind response can be taken into account with wind tunnel analysis 
(Irwin, Denoon, & Scott, 2013). Measurements that have been made on finished buildings 
indicate that wind tunnel predictions of motion correlate fairly well (Kwok, Burton, & 
Abdelrazaq, 2015). 
 
Even if wind tunnel test has clear advantages, it comes with some uncertainties, such as the 
validity of wind climate and the assumed structural properties of the building model (Irwin, 
Denoon, & Scott, 2013).  
 

3.8 Human perception of motion 
Human body consists of several subsystems, which are all connected and controlled by our 
brain. One of these systems that are relevant for perceiving motion is the vestibular system, 
which control our balance and are located in our inner ear.  
 
Humans ability of localizing in space and controlling its limbs in relation to movement, comes 
from the receptors that are inside the muscles and tendons (Kwok, Burton, & Abdelrazaq, 
2015). These sensors are integrated with the vestibular system, and gives humans the ability to 
detect acceleration, and distinguish between actively and passive generated head movements 
(The University of Texas, 2017). 
 
When buildings are exposed to wind, lateral forces will cause certain vibrations in the structure. 
Human perception of this wind-induced motion is individual and very subjective (Kwok, 
Burton, & Abdelrazaq, 2015). Some occupants sense this motion and may experience 
symptoms as nausea, headache and dizziness, while others may be oblivious to the motion. The 
situation reminds a bit about sickness at sea.  
 
To ensure a good living environment and well-being for visitors in the building, horizontal 
acceleration is determined for SLS and regulated by comfort requirements based on occupants’ 
tolerance thresholds.  
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3.9 Regulation and norms 
Design for building motion due to wind loads is often governed by tolerance limits for human 
perception rather than for ultimate structural capacity (Kwok, Burton, & Abdelrazaq, 2015). 
Norms for estimating wind effects on buildings in the along-wind direction are stated in 
Eurocode 1 Part 1-4 (CEN, 2005) and Swedish national annex EKS 10 (Boverket, 2015), and 
these approaches are further explained in Chapter 5. 
 
Also, two alternative approaches, based on theoretical derivations presented by (Strømmen, 
2010) and (Handa, 1982), are investigated and explained in Chapter 4. 
 
Recommended limits for horizontal acceleration in SLS are based on occupants’ tolerance 
thresholds. There are separate limits, dependent on the purpose of the building. A typical office 
building is mainly occupied for eight hours a day, and in case of extreme weather events, people 
will generally seek refuge in their residence. To ensure that people seeking refuge to their 
homes, do not fear for their safety nor are discomforted by the vibrations, the requirements are 
more stringent for residential buildings.  
 
Recommendations on threshold values that are based on standard deviation of acceleration are 
stated in ISO 6897 (International Organisation for Standardization, 1984) and for the peak 
acceleration in ISO 10137 (SIS, 2008). These are further described in Section 5.3. 
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4 Theoretical Approaches to Estimate Wind-Induced 
Acceleration 

Standard deviation and peak value for acceleration for the buffeting response, can be 
determined on the basis of theoretical derivations for response spectrum analysis. This chapter 
will derive the expressions for accelerations based on the theory proposed by Einar Strømmen 
in (Strømmen, 2010) and Kamal Handa in (Handa, 1982).  
 
Strømmen formulates the equations for horizontal, line-like, bridges, which differs from tall 
buildings in the sense that the height above ground for a bridge is constants, and therefore the 
wind velocity is constant. However, for a tall building, the wind profile varies with the height 
above ground, as described in Section 3.5.3. To make the theory applicable for vertical 
structures, variations in wind velocity along the main coordinate are included.   
 
Determination of structural response for vertical structures with response spectrum analysis 
have been presented by Kamal Handa (Handa, 1982). The fundamental concepts and 
derivations are similar with Strømmen’s and therefore are the concepts only presented on the 
basis of (Strømmen, 2010). However, the final expression for standard deviation of acceleration 
differ between the two approaches and both will be handled in Section 4.2.2. 
 

4.1 Displacement response 
The variance of the displacement, 𝜎8'

#, is defined as the integral of the spectral density of 
displacement, 𝑆8' , over the entire frequency domain. Hence, the standard deviation of 
displacement, 𝜎8' 𝑧 , can be obtained from: 
 

 𝜎8' 𝑧 = 𝑆8'(𝑧, 𝜔)𝑑𝜔
¼

k
 (4-1) 

 
The spectral density of displacement, 𝑆8'(𝜔), describes the response spectrum for the structure, 
and it is obtained by using a load spectrum described by spectral density of loading, 𝑆X' 𝜔 , 
and the frequency response function, 𝐻+ 𝜔 , describing the the deformation response of the 
structure. A schematic illustration of the relationship between loading and structural response 
is shown in Figure 4-1.  
 

 
Figure 4-1 Connection between loading and structural response. Figure inspired by 

(Handa, 1982).   
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The expression for spectral density of displacement, 𝑆8'(𝜔), also contain generalized stiffness,  
𝐾+, and mode shape,	𝜙+(𝑧), and will be derived in Section 4.1.1. 
 

4.1.1 Spectral density of displacement 
The spectral density of displacement, 𝑆8, describes how the modal displacement is distributed 
over the frequency domain. 
 
It is convenient to start by examine the equation of motion on generalized form.  
 
 𝑀+𝜂+ 𝑡 + 𝐶+𝜂+ 𝑡 + 𝐾+𝜂 𝑡 = 𝑄+ 𝑡 + 𝑄%&'(𝑡, 𝜂, 𝜂, 𝜂) (4-2) 

   
 

𝑀+

𝐶+
𝐾+

=
𝜙+#(𝑧)𝑚+(𝑧)𝑑𝑧

§

k

2𝑀+𝜔-𝜁+
𝜔-#𝑀+

𝑄+ 𝑡
𝑄%&'(𝑡, 𝜂, 𝜂, 𝜂)

= 𝜙+(𝑧)
𝑞
𝑞%& 𝑑𝑧

§bY½�

§bY½¾

												  

 

 
 
 

(4-3) 

where 𝑀+  is the generalized modal mass, 𝐶+  is the generalized modal damping and 𝐾+  is the 
generalized modal stiffness for mode 𝑖. The generalized coordinates and its derivatives are 
denoted as 𝜂, 𝜂, 𝜂 . The flow-induced loading on the building is denoted as 𝑄+ 𝑡  and 
𝑄%&'(𝑡, 𝜂, 𝜂, 𝜂) is the loading caused by interaction between wind flow and structural motion 
and 𝐻&67 is the part of the structure exposed to flow. In the following, it is assumed that the 
total height of the building is exposed to flow and thus 𝐻¿ÀÁ¾	 = 0 and 𝐻&67� = 𝐻. 
 
By using Fourier Transform and going from time domain to frequency domain, equation (4-2) 
can be written as: 
 

 (−𝑀+𝜔# + 𝐶+𝑖𝜔 + 𝐾+)𝑎`' = 𝑎X' 𝜔 + 𝑎Xab'(𝜔, 𝜂, 𝜂, 𝜂) (4-4) 
  
The 𝑎 -factors are the Fourier amplitudes of the generalized displacements and loadings. 
According to (Strømmen, 2010) it is assumed that the Fourier amplitude of motion-induced part 
of the motion induced part, 𝑎Xab'  contains the three known cross-sectional properties, 𝑘%&, 𝑐%&, 
𝑚%& and it is further assumed that: 
 

 𝑎Xab' = (−𝑀%&'𝜔
# + 𝐶%&'𝑖𝜔 + 𝐾%&')𝑎`' (4-5) 

 
Where: 
 

 
𝑀%&'

𝐶%&'
𝐾%&'

= 𝜙+#(𝑧)
𝑚%&	
𝑐%&
𝑘%&

𝑑𝑧
§

k
 (4-6) 

 
By combining expressions (4-3), (4-4) and (4-5), it is obtained that:  
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 1 −
𝐾%&'
𝜔-#𝑀+

− 1 −
𝑀%&'
𝑀+

𝜔
𝜔-

#
+ 2𝑖 𝜁+ −

𝐶%&'
2𝜔-𝑀+

𝜔
𝜔-
	 𝑎`' 𝜔 =

𝑎X' 𝜔
𝐾+

 (4-7) 

 
In wind engineering the aerodynamic derivative, 𝑀%&' , is most often negligible (Strømmen, 
2010). Further, Strømmen states that 𝐾%&', will generally only have a significant impact on total 
stiffness in the velocity region at instability limits. This is not the case for characteristic mean 
wind velocity and thus 𝐶%&' is the only aerodynamic derivative of interest.   
 
Equation (4-5) can be formulated with the non-dimensional modal frequency response function, 
𝐻+(𝜔) and by introducing 𝜁%&' = 𝐶%&'/2𝜔-𝑀+ the following expressions holds: 
 

 𝑎`' 𝜔 =
𝐻+(𝜔)	
𝐾+

𝑎X' 𝜔  (4-8) 

  𝐻+ 𝜔 = 1 −
𝜔
𝜔-

#
+ 2𝑖 𝜁+ − 𝜁%&'

𝜔
𝜔-

�F

 (4-9) 

 
Where the frequency response function, 𝐻+ 𝜔 , describes the structural response to various 
frequencies. An illustration of the frequency response function is shown in Figure 4-1.   
 
The spectral density of the generalized coordinates, 𝑆`' 𝜔 , are found by using Equation (4-
10). The index * represents complex conjugate.  
 

 𝑆`' 𝜔 = lim
\→¼

1
𝜋𝑇 𝑎∗`'𝑎`' =

𝐻+(𝜔)
#

𝐾+
# lim

\→¼

1
𝜋𝑇 𝑎∗X'𝑎X'  (4-10) 

 	⇒ 𝑆`' 𝜔 =
𝐻+(𝜔)

#

𝐾+
# 𝑆X' 𝜔  (4-11) 

 
𝑆X'(𝜔) in Equation (4-11) represents the spectral density of loading which is derived in Section 
4.1.3. The definition of generalized coordinates 𝑟+ 𝑧, 𝑡 = 𝜙+ 𝑧 𝜂+(𝑡) implies that: 
  

 𝑎8'(𝜔) = 𝜙+(𝑧)𝑎`'(𝜔) (4-12) 
 
By combining equation (4-8) and (4-10), the spectral density of displacement 𝑆8'(𝑧, 𝜔) can be 
expressed as: 
  

 𝑆8' 𝑧, 𝜔 =
𝜙+#(𝑧)

𝐾+
# 𝐻+(𝜔)

#𝑆X' 𝜔 	 (4-13) 

 
Equation (4-13) describes the connection between structural response and loading, which was 
illustrated in Figure 4-1. To calculate the spectral density of displacement,	𝑆8' 𝑧, 𝜔 , and thus 
the standard deviation of displacement,	𝜎8' 𝑧 , the spectral density of loading, 𝑆X' 𝜔 , has to 
be determined. This is explained in Section 4.1.3. 
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4.1.2 Damping 
The term (𝜁+ − 𝜁%&')  in Equation (4-9) contains the structural damping ratio 𝜁+  and the 
aerodynamic damping ratio 𝜁%&'. The aerodynamical damping is defined positive in the opposite 
direction of the mechanical damping ratio, and the total damping ratio is therefore the sum of 
these two. These ratios can be measured by wind tunnel tests or calculated, but since the 
objective is to compare this method with the ones proposed in Eurocode 1 Part 1-4 (CEN, 2005), 
logarithmic decrement, 𝛿, are determined according to standards and recalculated to damping 
ratios using Equation (2-20). 
 

4.1.3 Spectral density of loading  
To derive an expression for the spectral density of displacement, the load itself has to be 
formulated. As explained in Section 3.2, the wind velocity is divided into a time invariant mean 
value and a fluctuating part with configuration: 𝑉 𝑧 + 𝑢(𝑧, 𝑡) in the along-wind direction and 
𝑣(𝑧, 𝑡) in the direction perpendicular to the flow and 𝑤(𝑧, 𝑡) in the vertical direction.  
 
By examine an illustration of a general case, in Figure 4-2 , the wind field can be expressed in 
terms of geometries and displacements. Displacement quantities 𝑟+ and velocity pressure 𝑞+ for 
direction 𝑖 are dependent on flow inclination. 
 

 
Figure 4-2 Velocity pressure and displacement quantities. Figure inspired by (Strømmen, 

2010). 

 
 
 
 
 

 

𝛽 

𝑉𝑟𝑒𝑙 
𝑣 − 𝑟̇𝑦  

𝑉 + 𝑢 − 𝑟̇𝑦 

𝑦 

𝑥 

𝐿2 

𝐿1 

𝑟̅𝑦 + 𝑟𝑦 

𝑟̅𝑥 + 𝑟𝑥 

𝛽 

𝑟̅𝜃 + 𝑟𝜃 
𝛼 

𝑞𝐿 

𝑞𝑀 𝑞𝐷 

𝑞𝑦 

𝑞𝑥 
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The corresponding wind load can be expressed as: 
 

 𝑞LML 𝑧, 𝑡 =
𝑞6
𝑞m
𝑞n LML

=
cos 𝛽 − sin 𝛽 0
sin 𝛽 cos 𝛽 0
0 0 1

𝑞(
𝑞)
𝑞*

 (4-14) 

 
𝑞((𝑧, 𝑡)
𝑞)(𝑧, 𝑡)
𝑞* 𝑧, 𝑡

=
1
2𝜌𝑉8&]

#
𝐿F𝐶(
𝐿#𝐶)
𝐿##𝐶*

 (4-15) 

 
Since this Thesis only focuses on the along-wind response with wind flow perpendicular to side 
𝐿F, angle 𝛽 = 0 and 𝑞) = 𝑞* = 0. Thus, the velocity pressure can be expressed: 
 

 𝑞LML	 𝑧, 𝑡 = 𝑞6,LML =
𝜌𝑉8&]# 𝐿F𝐶(

2 	 (4-16) 

 
where 𝐶( is the force coefficient in along-wind direction. It is introduced in Section 3.5.4 as 𝑐9, 
and this notation is therefore used from here on too.   
 
By assuming that the fluctuating component, 𝑢(𝑧, 𝑡), is small compared to mean value, 𝑉(𝑧), 
and that the cross-sectional displacement 𝑟6  is small, the following linearization could be 
proven: 
 

 𝑉8&]# = 𝑉 + 𝑢 − 𝑟6 # ≈ 𝑉# + 2𝑉𝑢 − 2𝑉𝑟6 (4-17) 
 
By combining equation (4-16) and (4-17), the following expression is obtained: 
 

 𝑞6,LML 𝑧, 𝑡 = ÆÇ B �)¾5È
#

+ 𝜌𝑉 𝑧 𝐿F𝑐9𝑢 𝑧, 𝑡 − 𝜌𝑉 𝑧 𝐿F𝑐9𝑟6   (4-18) 

 
The total load 𝑞6,LML(𝑧, 𝑡) could be separated into a flow induced part and an aerodynamic part, 
in the same way as shown in Equation (4-2). The latter term in Equation (4-18) is an 
aerodynamic property related to damping and for a general case, this should be moved to the 
left-hand side and included in the frequency response function. However, in this Thesis the 
damping ratio is estimated from Eurocode 1 Part 1-4 (CEN, 2005) and consequently this term 
is not further used. Thus, the load term is obtained: 
 

 𝑞6,LML 𝑧, 𝑡 =
𝜌𝑉 𝑧 #𝐿F𝑐9

2 + 𝜌𝑉 𝑧 𝐿F𝑐9𝑢 𝑧, 𝑡  (4-19) 

  
With the definition in Equation (4-3), the modal load is expressed as: 
 

 𝑄6,LML 𝑡 = 𝜙6 𝑧 𝑞6,LML(𝑧, 𝑡)
§

k
𝑑𝑧 (4-20) 

 
The first term in Equation (4-19) represents the static loading, 𝑞6, and the second term is the 
flow-induced dynamic part. In the following, only the dynamic part will be considered. 
Combining Equation (4-19) and (4-20), modal loading induced by the fluctuating part of the 
wind is obtained as: 
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 𝑄6 𝑡 = 𝜌𝐿F𝑐9 𝜙6 𝑧 𝑉 𝑧 𝑢 𝑧, 𝑡 𝑑𝑧
§

k
 (4-21) 

 
With corresponding Fourier transform: 
 

 𝑎XY 𝜔 = 𝜌𝐿F𝑐9 𝜙6 𝑧 𝑉 𝑧 𝑎> 𝑧, 𝜔 𝑑𝑧
§

k
 (4-22) 

 
The spectral density of loading is given by: 
 

 
𝑆XY 𝜔 = 𝜌𝐿F𝑐9

# lim
\→¼

1
𝜋𝑇 𝜙6 𝑧 𝑉 𝑧 𝑎∗> 𝑧, 𝜔 𝑑𝑧

§

k
∙ 

∙ 𝜙6 𝑧 𝑉 𝑧 𝑎> 𝑧, 𝜔 𝑑𝑧
§

k
 

(4-23) 

 
Rewriting Equation (4-23) and introducing integration variables 𝑧F  and 𝑧#  to transform the 
product into a double integral, gives: 
 

 
𝑆XY 𝜔 = 𝜌𝐿F𝑐9

# 𝜙6 𝑧F 𝜙6 𝑧# 𝑉 𝑧F 𝑉 𝑧# ∙
§

k
 

∙ lim
\→¼

1
𝜋𝑇 𝑎

∗
> 𝑧, 𝜔 𝑎> 𝑧, 𝜔 𝑑𝑧F𝑑𝑧# 

(4-24) 

 
4.1.3.1 Joint acceptance function 

By recognizing the definition of cross spectral density, 𝑆-- Δ𝑧, 𝜔  and turbulence intensity,	𝐼>: 
 

 𝑆-- Δ𝑧, 𝜔 = lim
\→¼

1
𝜋𝑇 𝑎

∗
- 𝑧F, 𝜔 𝑎- 𝑧#, 𝜔  (4-25) 

 𝐼> 𝑧 =
𝜎>(𝑧)
𝑉(𝑧)  (4-26) 

 
By using Equations (4-25) and (4-26) and multiplying Equation (4-24) by Ç B �

Ç B �, following 
expression is obtained: 
 

 𝑆XY 𝜔 = 𝜌𝐿F𝑐9𝐽6 𝜔
#
 (4-27) 

 
Where the joint acceptance function 𝐽6(𝜔) is given by: 
 

 
𝐽6# 𝜔 = 𝜙6 𝑧F 𝜙6 𝑧# 𝑉 𝑧F #𝑉 𝑧# # ∙

§

k
 

∙ 𝐼> 𝑧F 𝐼>(𝑧#)
𝑆>> Δ𝑧, 𝜔

𝜎>#
	𝑑𝑧F𝑑𝑧# 

(4-28) 

 
The joint acceptance function describes the interaction between the mode shape of the structure 
and the fluctuating wind load. It should be mentioned that the joint acceptance function in 
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Equation (4-28) is not equal to the one presented by Strømmen. The differences are that 
Strømmen does not include mean velocity, 𝑉, but does include properties, 𝐿F, 𝐿# and 𝑐9 in the 
joint acceptance function. However, this is not an issue since the joint acceptance function itself 
is not of interest, and the differences will not affect the standard deviation of displacement nor 
the standard deviation of acceleration.   
 
4.1.3.2 Wind-spectral density and Co-spectrums 

The cross spectral density, 𝑆--, describes the statistical correlation of fluctuations, at a given 
frequency, in 𝑛-direction between two arbitrary points, (𝑦F, 𝑧F) and (𝑦#, 𝑧#). For a horizontal 
line-like structure such as a bridge, when the width perpendicular to wind flow is very small 
compared to its length, only the coherence along the main axis is of interest. This is why the 
theory described in (Strømmen, 2010), only accounts for coherence along the main axis.  
 
However, in the case of a tall building, when the width perpendicular to the flow is significant, 
also coherence in 𝑦-direction may be interesting. This is why, the cross spectral density, in this 
Thesis, includes both directions, 𝑆--(Δ𝑦, Δ𝑧, 𝜔), between two arbitrary points according to 
Figure 4-3.  
 

 
Figure 4-3 Coherence between two arbitrary points. 
 
By using Co-spectrums,	𝐶𝑜,-(Δ𝑖, 𝜔), the cross spectral density can be written in terms of 
spectral density of a given turbulence component, as: 
 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis BOMX02-17-32 36 

 
𝑆-- Δ𝑦, Δ𝑧, 𝜔

𝜎-#
=
𝑆- 𝜔
𝜎-#

𝐶𝑜,-(Δ𝑦, 𝜔)𝐶𝑜,-(Δ𝑧, 𝜔) (4-29) 

 
The spectral density, Q� �

Ë��
, describes the amount of wind turbulence over the frequency domain. 

It is a probabilistic measure that describes how common turbulence fluctuations are at a given 
frequency.  
 
To find expressions for the spectral density of turbulence, the non-dimensional wind-spectral 
density, 𝑅U(𝑧, 𝑓), is introduced. Several empirical wind-spectral densities have been proposed, 
but the method presented in national annex, EKS 10 (Boverket, 2015), uses the expression 
presented by (von Kármán, 1948).  
 

 
𝑅U 𝑧, 𝑓 =

𝑓𝑆>(𝑓)
𝜎>#(𝑧)

=
2𝜋𝑓𝑆>(𝜔)
𝜎>#(𝑧)

=
𝜔𝑆>(𝜔)
𝜎>#(𝑧)

=
4𝑓)

1 + 70,8𝑓)# ®/Î 

⇒	
𝑆> 𝜔
𝜎>#(𝑧)

=
4𝑓)

𝜔 1 + 70,8𝑓)# ®/Î 
(4-30) 

 
Where the non-dimensional frequency, 𝑓), is determined according to (Strømmen, 2010): 
 

 𝑓) =
𝑓𝐿>6 (𝑧)
𝑉(𝑧) =

𝜔𝐿>6 (𝑧)
2𝜋𝑉(𝑧) (4-31) 

 
The integral length scale, 𝐿>6 , represents the average size of vortices in the wind direction 
(Dyrbye & Hansen, 1997) and may be expressed as a function of the height, 𝑧. However, 
according to K. Handa (Personal communication, April 26, 2017) it is unnecessary to include 
height-dependence for the integral length scale, and a reasonable assumption is 𝐿>6 = 150	𝑚. 
 
The two last terms of Equation (4-29), 𝐶𝑜,-(Δ𝑦, 𝜔) and 𝐶𝑜,-(Δ𝑧, 𝜔), are the normalized Co-
spectrum, which represents the coherence of spatial properties of the wind turbulence between 
two points, see Figure 4-3. According to Strømmen, there are several expressions for 𝐶𝑜,- but 
for homogeneous conditions, it is suitable to use the one developed by (Davenport, 1962):  
 

 𝐶𝑜>+ Δ𝑖, 𝜔 = 𝑒�RÏ'
Ð+�

#�Ç(B) (4-32) 

 
𝐶>+ is the decay coefficient, and according to K. Handa (Personal communication, April 26, 
2017) this can be chosen as 𝐶>B = 𝐶>m = 8. 
 
As can be seen from the expression, the normalized Co-spectrum depends on the distance 
between two points, ∆𝑖 in 𝑖-direction. If the points are located far from each other, the wind 
field at these locations could not be assumed equal, and thus the cross spectral density is reduced 
by 𝐶𝑜>+.  
 
By combining expressions (4-29), (4-30), (4-31) and (4-32), the following is obtained: 
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𝑆>> Δ𝑦, Δ𝑧, 𝜔

𝜎>#
=

4 𝜔𝐿>6
𝑉(𝑧)

𝜔 1 + 70,8 𝜔𝐿>6
𝑉(𝑧)

# ®/Î 𝑒
�RÏÒ

m¾Óm� �
#�Ç(B) 𝑒�RÏÔ

B¾ÓB� �
#�Ç(B)  (4-33) 

 
Note that expression (4-33) depends on the mean wind velocity 𝑉(𝑧) and since it is not squared, 
it is not possible to include both 𝑧F and 𝑧# in 𝑉(𝑧) in the double integral in Equation (4-28). 
However, since the main interest is to determine the acceleration in the top of the building, it is 
assumed that 𝑉 𝑧  is constant for 𝑧 = 𝑧LM7 in Equation (4-33).  
 
Note also that the normalized Co-spectrum in 𝑦- direction requires its own double integral over 
the width, 𝐿F, which are multiplied with the joint acceptance function, 𝐽6# 𝜔 , stated in Equation 
(4-28). This gives the joint acceptance function as: 
 

 

𝐽6# 𝜔 = 𝜙6 𝑧F 𝜙6 𝑧# 𝑉 𝑧F #𝑉 𝑧# # ∙
§

k
 

∙ 𝐼> 𝑧F 𝐼> 𝑧#
𝑆> 𝜔
𝜎>#

𝐶𝑜>B(Δ𝑧, 𝜔) 	𝑑𝑧F𝑑𝑧# ∙

∙ 𝐶𝑜>m Δ𝑦, 𝜔
)¾
#

�)¾#

𝑑𝑦F𝑑𝑦# 

(4-34) 

 

4.1.4 Standard deviation of displacement 
By recognizing that 𝐾6 = 𝜔-#𝑀6  from (4-3) and using expressions (4-13) and (4-27) into 
Equation (4-1), the standard deviation of displacement for along-wind response can be 
expressed as: 
 

 𝜎8Y 𝑧 = 𝜙6 𝑧
𝜌𝐿F𝑐9
𝜔-#𝑀6

𝐻6(𝜔)
#¼

k
𝐽6# 𝜔 𝑑𝜔

F/#

 (4-35) 

  

4.1.5 Resonance and background response 
It is in structural engineering convenient to separate the deformation response into a 
background, 𝜎~#, and resonance response, 𝜎�#, see Figure 4-4.  
 

 𝜎8Y 𝑧 = 𝜎~#(𝑧) + 𝜎�#(𝑧) (4-36) 
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Figure 4-4 Illustration of background and resonant part of total response. Figure inspired 

by (Handa, 1982). 

 
The background part corresponds to lower frequencies and can be seen as quasi-static and its 
contribution to inertia forces may be disregarded (Strømmen, 2010). Therefore, the acceleration 
should be determined by the fluctuating, resonant, part of the response,	𝜎�#. This is illustrated 
in Figure 4-5.  
 

 
Figure 4-5 Background and resonant part in time domain.  

 

4.2 Acceleration 
By definition, the variance of acceleration, 𝜎>'

# , is determined by integrating the spectral density 
of acceleration, 𝑆>+, over the frequency domain.  

4.2.1 Spectral density of acceleration 
By assuming that the structure oscillates like a cosine function, the following can be obtained: 
 

 
𝑢+ 𝑡 = 𝐴𝑐𝑜𝑠(𝜔𝑡) 
𝑢+ 𝑡 = −𝜔𝐴𝑠𝑖𝑛(𝜔𝑡) 
𝑢+ 𝑡 = −𝜔#𝐴𝑐𝑜𝑠(𝜔𝑡) 

(4-37) 

 
From the expression, it can be seen that the acceleration is given as: 
 

 𝑢+ 𝑡 = −𝜔#𝑢+(𝑡) (4-38) 
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With the Fourier transform, it is obtained that: 
 

 𝑎>+ 𝜔 = −𝜔Õ𝑎8+(𝜔) (4-39) 
 
With the same way of reasoning as in Section 4.1.1, the spectral density of acceleration can be 
determined as: 
 

 
𝑆>+ 𝜔 = lim

\→¼

1
𝜋𝑇 𝑎∗>'𝑎>' = 𝜔Õ lim

\→¼

1
𝜋𝑇 𝑎∗8'𝑎8'  

 
⇒ 𝑆>+ 𝜔 = 𝜔Õ𝑆8+(𝜔)	 

(4-40) 

 
The spectral density of acceleration, 𝑆>+ 𝜔 , can be expressed as a function of the displacement 
response. Since it is multiplied with 𝜔Õ , the acceleration response tends to zero for lower 
frequencies. The behaviour is illustrated in Figure 4-6.  
 

 
Figure 4-6 Illustration of variation of spectral density of acceleration.  
 
As can be seen, the acceleration response is mainly occurring at frequencies in the region of 
resonance. This supports the reasoning in Section 4.1.5, that the acceleration can be determined 
for the resonant part of the response, 𝜎�#. 
 

4.2.2   Standard deviation of acceleration 
Using the same way of reasoning as for the standard deviation of displacement in Equation (4-
1), the standard deviation of acceleration can be determined as the square root of the integral of 
spectral density of acceleration over the frequency domain, and expressed as: 
 

 𝜎>' 𝑧 = 𝑆>'(𝑧, 𝜔)𝑑𝜔
¼

k
 (4-41) 

 
Using Equations (4-13), (4-27) and (4-40), and substituting 𝐾6 = 𝜔-#𝑀6 , in (4-41), the 
standard deviation of acceleration in the along-wind direction can be determined as:  
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 𝜎>Y 𝑧 = 𝜙6 𝑧
𝜌𝐿F𝑐9
𝜔-#𝑀6

𝜔Õ 𝐻6(𝜔)
#¼

k
𝐽6# 𝜔 𝑑𝜔

F/#

 (4-42)	

 
As described in Section 4.1.5, the acceleration is determined from the resonant part of the 
response. This could be found by integrating the spectral density of acceleration solely over the 
resonant part. But for systems with low damping, the width (frequency domain) of the resonant 
part is quite narrow and thus it could be approximately determined for the fundamental 
frequency 𝜔 = 𝜔- (Handa, 1982). 
 
4.2.2.1 According to Strømmen 

On the basis of the reasoning in Section 4.1.5 and final expression (4-42), (Strømmen, 2010) 
suggests that the resonance part can be approximately determined as: 
 

 𝜎>Y 𝑧 = 𝜔-Õ𝜎�Y
# 𝑧 = 𝜔-Õ

𝜙6 𝑧
𝜔-#𝑀6

# 𝜋𝜔-𝑆XY 𝜔-
4(𝜁+ − 𝜁%&+)

 (4-43) 

 
4.2.2.2 According to Handa 

An alternative way of determining the acceleration from the response spectrum is given in 
(Handa, 1982). Handa’s final expression for standard deviation of acceleration is: 
 

 

𝜎>Y 𝑧 = 𝜔-Õ𝜎�Y
# 𝑧

= 𝜔-Õ4 𝑊
𝜙6 𝑧
𝜔-#𝑀6

#

𝐼>#(𝑧LM7	)
𝐻5𝑉5

(𝜁+ − 𝜁%&+)
𝜔-𝑆>(𝜔-)
𝜎>#(𝑧)

 
(4-44) 

 
By examining expression (4-44), one can notice some similarities with the expression according 
to Strømmen in Equation (4-43). However, the main difference between the two approaches is 
that the loading in Equation (4-44) is partly expressed by the generalized wind load, 𝑊, as: 
  

 𝑊 = 𝐻𝐿F
1
2𝜌𝑐9𝑉 𝑧LM7

# 𝜙6 𝜏 𝜏 #¹𝑑𝜏
F

k
 (4-45) 

 
where the integrated variables that Strømmen used, 𝑧F, 𝑧#, 𝑦F and 𝑦#, are substituted to: 𝜏+ =

B'
§

 
and 𝜃+ =

m'
)¾

. 
 
Equation (4-45) can be explained by observing the expression for generalized force in Equation 
(2-44): 
 

 𝑝 = 𝑊 = 𝑃 𝑧, 𝑡 𝜙6(𝑧)𝑑𝑧
§

k
 (4-46) 

 
With the expression for the wind load, 𝑃, velocity pressure, 𝑞,, and mean wind velocity, 𝑉(𝑧), 
according to power law profile, all described in Section 3.5. 
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 𝑃 𝑧, 𝑡 = 𝑐9𝑞, 𝑧 𝐴 (4-47) 
 

𝑞, 𝑧 =
𝜌 𝑉(𝑧) #

2  
(4-48) 

 𝑉 𝑧 = 𝑉(𝑧LM7)
𝑧
𝐻

¹
 (4-49) 

 𝐴 = 𝐻𝐿F (4-50) 
 
𝐻5  and 𝑉5 , are correlation factors in horizontal and vertical direction respectively. They are 
similar to what Strømmen introduced as Co-spectrum in Section 4.1.3.2, but in (Handa, 1982) 
expressed as: 
 

 𝐻5 = 𝑒
� n¾�n�

RÏÒ)¾��
#�Ç(BÖ×½)

F

k
𝑑𝜃F𝑑𝜃# (4-51) 

   
 

𝑉5 =
𝜙6 𝜏F 𝜙6 𝜏# 𝜏F𝜏# ¹𝑒

� Ø¾�Ø�
RÏÔ§��
#�Ç BÖ×½F

k 𝑑𝜏F𝑑𝜏#

𝜙6 𝜏 𝜏 #¹𝑑𝜏F
k

#  

(4-52) 

 
The last term in Equation (4-44), ��QÏ(��)

ËÏ�(B)
, is the non-dimensional wind-spectral density 

explained in Section 4.1.3.2 and can be determined from Equation (4-30).  
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5 Approach Suggested in Design Codes 
In this chapter follows an explanation in how to design buildings for acceleration in 
serviceability limit state according to methods presented in two common codes used in the 
industry. Acceleration according to methods proposed in the Swedish national annex EKS 10 
(Boverket, 2015) and Eurocode 1 Part 1-4 Annex B (CEN, 2005) will be explained.  
 
The methods consider response in the first mode, for turbulence in along-wind direction, 𝑥, 
when the wind load are in resonance with the structure (CEN, 2005).  
 

5.1 Idealization 
According to the design approach described in Eurocode 1 Part 1-4 (CEN, 2005), structures 
exposed to lateral forces, such as wind loads, can be idealized as a cantilever with fixed support. 
For this idealization, Eurocode 1 Part 1-4 suggests that the acceleration should be determined 
for the first mode in the wind direction, where the mode shape 𝜙6(𝑧) , along the axial 
coordinate, 𝑧, is described as: 
 

 𝜙6 𝑧 =
𝑧
𝐻

Ù
 (5-1) 

 
where 𝜉 = 1.5 is the recommended value for tall buildings according to Eurocode 1 Part 1-4 
(CEN, 2005). The resulting mode shape are shown in Figure 5-1. 
  

 
Figure 5-1 Suggested mode shape for tall buildings according to Eurocode 1 Part 1-4 (CEN, 

2005). 
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5.2 Acceleration 
As described previously, acceleration is regulated by comfort requirements in serviceability 
limit state. These recommended values are given both for the peak value of acceleration, 𝑢,%6, 
and its standard deviation,	𝜎>Y.   
 

5.2.1 Standard deviation of acceleration according to EKS 10 
The method presented in Swedish national annex EKS 10 (Boverket, 2015), is based on the old 
design code for snow- and wind loads on structures (Boverket, 1997). The wind-induced 
acceleration part in the codes, is written by Kamal Handa, and is a simplified version to the 
method he developed in (Handa, 1982), described in Section 4.2.2.2. 
 
EKS 10 suggests that the standard deviation of acceleration,	𝜎>Y(𝑧), should be determined by: 
 

 𝜎>Y(𝑧) =
3𝐼> 𝑧LM7 𝑅OPQ𝑞, 𝑧LM7 𝐿F𝑐9𝜙6(𝑧)

𝑚&
 (5-2) 

 
where: 
 

 𝑅OPQ =
2𝜋𝑅U 𝑓6 𝜙T𝜙S

𝛿f + 𝛿%
 (5-3) 

 𝑅U 𝑓6 =
𝑓6𝑆>(𝑓6)
𝜎>#

=
4𝑓)(𝑓6)

1 + 70,8𝑓)(𝑓6)#
®
Î
 (5-4) 

 𝑓)(𝑓6) =
150𝑓6
𝑉(𝑧LM7)

 (5-5) 

 𝜙S =
1

1 + 2𝑓6𝐻
𝑉(𝑧LM7)

 (5-6) 

 𝜙T =
1

1 + 3,2𝑓6𝐿F
𝑉(𝑧LM7)

 (5-7) 

 𝛿% =
𝑐9𝜌𝐿F𝑉(𝑧f)
2𝑓6𝑚&

 (5-8) 

 
𝑚& =

𝑀6

𝜙6#(𝑧)𝑑𝑧
§
k

 
(5-9) 

 𝑧f = 0,6𝐻 (5-10) 
 
Where 𝑉(𝑧LM7)  are determined according logarithmic velocity profile in Equation (3-8) in 
Section 3.5.3 and 𝑞, 𝑧LM7  according to Equation (3-11) in Section 3.5.4. 
 
As can be observed from Equation (4-5), the integral length scale introduced in Section 4.1.3.2, 
is chosen to be 𝐿>6 = 150	𝑚. This is a reasonable assumption according to K. Handa (Personal 
communication, April 26, 2017).  
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Handa explained that these expressions are simplified from the equations presented in (Handa, 
1982), described in Section 4.2.2.2. The mode shape, 𝜙6, was assumed according to Equation 
(5-1), when simplifying expressions containing integrals over the mode shape. He explained 
that 𝜙S and 𝜙T are simplified expressions representing, what was introduced in Section 4.2.2.2 
as, 𝐻5  and 𝑉5 , respectively. These factors accounts for coherence in vertical and horizontal 
direction and are simplified with the assumption of 𝛼 = 0,21 and with decay constants 𝐶>B =
𝐶>m = 8. 
 

5.2.2 Standard deviation of acceleration according to EN 1991-1-4 
Eurocode 1 Part 1-4 Annex B (CEN, 2005) proposes following method for estimating the 
standard deviation of acceleration in SLS.  
 
 

 𝜎>Y(𝑧) =
𝑐9𝜌𝐿F𝐼> 𝑧f 𝑉# 𝑧f

𝑚&
𝑅OR𝐾6𝜙6(𝑧) (5-11) 

 
Where:  
 

 𝑅OR =
𝜋#

2 𝛿f + 𝛿%
𝑅U 𝑧f, 𝑓6 𝑅S 𝜂S 𝑅T(𝜂T) (5-12) 

 
𝑅U 𝑧f, 𝑓6 =

𝑓6𝑆>(𝑧f, 𝑓6)
𝜎>#

=
6.8𝑓)(𝑧f, 𝑓6)

1 + 10.2𝑓) 𝑧f, 𝑓6
®/» 

(5-13) 

 
𝑓) 𝑧f, 𝑓6 =

𝑓6𝐿>6 (𝑧f)
𝑉(𝑧f)

 
(5-14) 

 𝐿>6 𝑧f = 300 BÜ
#kk

k.ÎÝ�k.k® Þß B×
          for 𝑧 ≥ 𝑧,+- 

𝐿>6 𝑧f = 𝐿>6 (𝑧,+-)                                 for 𝑧 < 𝑧,+- 

 
(5-15) 

 𝑅S =
1
𝜂S
−

1
2𝜂S#

1 − 𝑒�#`à  
(5-16) 

 𝑅T =
1
𝜂T
−

1
2𝜂T#

1 − 𝑒�#`á  
(5-17) 

 𝜂S =
4.6𝐻

𝐿>6 𝑧LM7
𝑓)(𝑧f, 𝑓6) 

(5-18) 

 𝜂T =
4.6𝐿F

𝐿>6 𝑧LM7
𝑓)(𝑧f, 𝑓6) 

(5-19) 

 
𝐾6 =

𝑉# 𝑧 𝜙6 𝑧 𝑑𝑧
§
k

𝑉#(𝑧f) 𝜙6# 𝑧 𝑑𝑧
§
k

 
(5-20) 

 
According to (Dyrbye & Hansen, 1997), the expressions related to wind turbulence in Eurocode 
1 Part 1-4 are simplified from theoretical derivations. Dyrbye and Hansen states that the 
normalized Co-spectrums, 𝐶𝑜>+ , described in Section 4.1.3.2, are simplified with decay 
constants, 𝐶>B = 𝐶>m = 11.5. 
 
By observing Equation (5-13), it can be noticed that the wind-spectral density, 𝑅U, is not the 
same as introduced in previous methods. This expression is referred to as Kaimal’s wind-
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spectral density and is an empirical expression describing the same phenomenon as von 
Kármán’s expression, in Section 4.1.3.2.  
 
Further, it can be noticed that the integral length scale, 𝐿>6 , not only affects the wind-spectral 
density, 𝑅U, but also other variables, and is defined as a function of height instead of Handa’s 
approximation of 𝐿>6 = 150	𝑚.  
 

5.2.3 Peak acceleration 
As described in Section 3.4, the peak acceleration,	𝑢,%6 𝑧  is calculated according to Equation 
(3-6) as a function of standard deviation of acceleration, 𝜎>Y(𝑧): 
 

 𝑢,%6 𝑧 = 𝑘7𝜎>Y(𝑧) (5-21) 

  𝑘7 = 2 ln 𝑣𝑇 +
0,6

2 ln 𝑣𝑇
 (5-22) 

 𝑣 = 𝑓6
𝑅

𝐵# + 𝑅#
 (5-23) 

 𝐵# = exp −0,05
𝐻
𝐻8&9

+ 1 −
𝐿F
𝐻 0,04 + 0,01

𝐻
𝐻8&9

 (5-24) 

 
Where 𝑅 = 𝑅OPQ  or 𝑅 = 𝑅OR  dependent on approach and 𝐻8&9 = 10	𝑚  and 𝑇 = 600	𝑠  (10 
min) as described in Section 3.5.1 and stated in EKS 10 (Boverket, 2015).  
 

5.3 Comfort recommendations 
As described in Section 3.9, recommended limits for wind-induced motion are based on 
tolerance thresholds for acceleration in serviceability limit state. These are stated in ISO 6897 
(International Organisation for Standardization, 1984) and ISO 10137 (SIS, 2008). The 
tolerance limits are different dependent on the purpose of the building and depends on what 
frequency the acceleration occurs at. 
 
5.3.1.1 Peak acceleration 

The peak acceleration should be evaluated in relation to corresponding fundamental frequency, 
𝑓6, according to ISO 10137 (SIS, 2008). The recommended values are shown in Figure 5-2. 
Important to note is that the evaluation curves shown in the figure is related to a reference wind 
velocity for one-year return period, which has to be taken into consideration when defining the 
reference wind velocity according to (3-7) in Section 3.5.1. 
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Figure 5-2 Evaluation curves for peak acceleration with one-year return interval in relation 

to corresponding eigenfrequency, from Figure D.1 in ISO 10137 (SIS, 2008). 

 
5.3.1.2 Standard deviation 

Recommended values for standard deviation of acceleration,	𝜎>Y(𝑧), are stated in ISO 6897 
(International Organisation for Standardization, 1984). The evaluations curves are shown in 
Figure 5-3 and are based on five-year return interval which has to be taken into account when 
defining the wind velocity in Section 3.5.1. 
 

 
Figure 5-3 Threshold for standards deviation of acceleration, from Figure 1 and Figure 2 

in IS0 6897 (International Organisation for Standardization, 1984). 
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6 Development of Analytical Model with Varying Support 
Stiffness 

The main objective of this Thesis is to investigate how the acceleration in a building is affected 
by support conditions. An analytical model is therefore developed as a tool to calculate the 
fundamental frequency and corresponding mode shape, for adjustable stiffness of the 
foundation. This is done by modal analysis according to the theory presented in Chapter 2, and 
calculations are performed by MATLAB-program in Appendix C.  
 
This chapter aims to describe a proposed idealization of a tall building with deep foundation, 
how the model for modal analysis and corresponding MATLAB-program is being built and a 
verification of the analytical model.    
 

6.1 Idealization 
For office buildings, where regularly an open working environment is desirable, loads are 
commonly carried by a rigid core to the foundation. The structural stiffness of the building is 
therefore highly dependent on the stiffness of the core, and particularly the bending stiffness 
for horizontal actions on the building.  
 

6.1.1 Foundation 
Buildings founded close to the bedrock have good ability to anchor the reaction forces in solid 
rock, and for such a situation, it is reasonable to idealize it as a fixed support. However, with 
foundation on piles, horizontal loads will result in a moment around the centroid axis in the 
base of the building. This moment can be expected to be carried by the piles in the foundation. 
If loads are of such magnitude that the piles deform axially with ±Δ𝐿, the building will be 
exposed to a certain rotation, 𝜃8ML, around the gravity centre in the base. The principle is shown 
in Figure 6-1 (a). 
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Figure 6-1 Example on behaviour of tall building subjected to horizontal loading.  
 
With this expected behaviour, the foundation can be seen as rather flexible and the idealization 
of a fixed support does not hold. Since the resulting moment may cause a rotation of the building 
support, the idealization of the support needs to be partially fixed. The piles will counteract the 
rotation and thus result in a rotational stiffness, 𝜇. An idealization corresponding to the situation 
is shown in Figure 6-1 (b). 
 
Where the resulting moment and the corresponding rotation are related according to:  
 

 𝑀 = 𝜇𝜃8ML (6-1) 
 
How the rotational stiffness may be estimated, are further discussed in Section 6.4.2.  
 

6.1.2 Building 
As mentioned in Section 6.1, the bending stiffness of the core is important when designing for 
horizontal loads since the main purpose of the core is to transfer loads to the foundation.  
 
Shear deformations are neglected according to Euler-Bernoulli beam theory and the structural 
system can therefore be idealized as a cantilever beam with sectional properties, 𝐸𝐼, 𝐴 and 𝐿 
representing the core of the building. This is reasonable since the height of the core is large 
compared to its depth. The idealization is shown in Figure 6-2, divided into an arbitrary number 
of elements, 𝑛 with 3(𝑛 + 1) degrees of freedom, preferably one element per storey.  

 
 
 
 
 

𝜇 
Δ𝐿 Δ𝐿 

  (a)   (b) 
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Figure 6-2 Idealization as beam elements. 
 
Axial deformations of the core are here neglected and thus, the vertical degrees of freedom, will 
be disregarded from the analysis.  
 

6.2 Modal analysis 
6.2.1 Mass and stiffness matrix 
The core is divided into an arbitrary number of elements, 𝑛, with 𝑛 + 1 nodes and 2 𝑛 + 1  
degrees of freedom. For simplicity, the modal analysis is based on lumped mass method, which 
means that the mass along each element is replaced by point masses at its two adjacent nodes. 
Since the building contains significant amount of mass which is not included in the core (floors, 
walls, installations), also these masses are estimated and lumped to the corresponding node.  
 
According to (Chopra, 2012), it is reasonable to neglect the rotational inertia forces and thus 
set 𝑚«« = 0 for all cells that corresponds to rotational degrees of freedom, 𝑗, in the mass-matrix. 
An example of discretization is shown in Figure 6-3.  
 
With the idealization of a cantilever, divided into beam elements, a stiffness matrix can be 
formulated. The replacement of a rotational spring instead of fixed support will only affect the 
rotational DOF in the bottom of the cantilever, as illustrated by the example in Figure 6-3. 
 
 

 

𝑄 𝐸𝐼, 𝐴, 𝐿 

𝐸𝐼4, 𝐴4, 𝐿4 

𝐸𝐼3, 𝐴3, 𝐿3 
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Figure 6-3 Example of discretization of a beam element. 
 

6.2.2 Fundamental frequency and mode shape 
As mentioned in Section 2.2.1.2, the effect of damping on the fundamental frequency can be 
neglected for structure in civil engineering. The fundamental frequencies and corresponding 
mode shapes is determined by solving the eigenvalue problem stated by Equation (2-55) in 
Section 2.3.2. A building with 𝑛 storeys, and 𝑁 = 2 𝑛 + 1  degrees of freedom, will generate 
matrices with the size of 𝑁	×	𝑁, which induces that the matrices will be large for a tall building. 
Solution methods are iterative in nature, since it is equivalent of finding roots to a 𝑁-degree 
polynomial. Since there are no explicit formulas for finding polynomial degree larger than 4, 
the eigenvalue problem has to be solved numerically. In this Thesis, it is done by the MATLAB-
code, see Appendix C.  
 
The solution to the eigenvalue problem will result in a matrix, 𝚽, with columns describing each 
mode and a vector, 𝝎, with eigenfrequencies corresponding to 𝑁 numbers of modes describing 
the dynamic response of the structure with rotational and horizontal degrees of freedom, as 
visualized in Figure 6-4 (b).  
 
However, when calculating the acceleration for the first mode, only the horizontal translation 
is of interest and thus the mode shape is reduced to include only horizontal degrees of freedom, 
which then are numbered (1, 2, … ,𝑚), where 𝑚 = 𝑛 + 1. The eigenfrequency corresponding 

 

𝑎1 
𝑎2 

𝑎3 
𝑎4 

𝜇 

𝒌 = [

𝑘11 𝑘12
𝑘21 𝑘22 + 𝜇
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𝑘23 𝑘24

𝑘31 𝑘32
𝑘41 𝑘42

𝑘33 𝑘34
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] 
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𝑚1 0
0 0

0 0
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0 0
0 0

𝑚2 0
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] 
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to the first mode is reffered to as the fundamental frequency, 𝜔-. The resulting mode vector 
and frequency is shown in Figure 6-4 (c).  
 
It is further, convenient to normalize the mode shapes such that the maximum value is equal to 
1. Figure 6-4 (a) shows an example of a normalized first mode with respect to horizontal 
displacements.  
 
 

 
Figure 6-4 Mode shape corresponding to the first mode. 

 

6.3 Determination of acceleration 
With fundamental frequency and mode shape, the acceleration can be determined. The 
MATLAB-program is designed to run all four approaches described in Chapter 4 and 5 in vector 
form. The mode shape corresponding to the first mode is extracted from the first column of 
matrix, 𝝓, in Figure 6-4 (c) to a vector.  
 
The calculations of acceleration contain several integrals, both with respect to geometry and 
frequency domain. To perform these integrals numerically by MATLAB, rectangular rule is 
used as integration method.   
 
To increase accuracy of the integration, each storey in the model is divided into 20 integration 
points, which results in a mode shape vector of length (20𝑛 + 1). The vector representing the 
frequency domain will be set to the same length.   
 

6.4 Verification of analytical model 
To verify that the analytical model is well developed, a homogeneous core of a tall building is 
modelled in FEM-Design 16 (StruSoft, 2016) and compared to the analytical model in 
MATLAB of a cantilever with the same sectional properties. The chosen core is 40 storeys, 
with total height, 𝐻 = 152	𝑚, width, 𝐿F = 18	𝑚, and depth, 𝐿# = 15	𝑚.  
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To verify that the idealization of a rotational spring is equivalent of a flexible foundation and 
that the stiffness matrix is correctly assembled, different support conditions are tested in both 
models and corresponding fundamental frequencies are compared.  
 

6.4.1 FEM Design model 
The core walls are modelled with 2D shell elements and the slabs as 2D plate elements. Shell 
elements are connected to each other with rigid connection, and the connection between shell 
element and plate elements are modelled as pinned supports without moment transmission.  
  
The bottom of the core is modelled with fixed supports in 𝑥- and 𝑦-direction and the flexible 
foundation is represented as a line support with changeable stiffness, 𝐾BC, in 𝑧-direction.  
 
Since the analytical model is based on masses lumped to the nodes, the core walls in FEM-
Design is modelled without density. Instead, the corresponding weight (from core walls and 
storeys) are represented by an increased density of slabs located in each storey level in the core, 
resulting in the same distribution of masses as for the analytical model. Mass calculations and 
estimation of equivalent densities are presented in Appendix A. 
 
An analysis for calculations of eigenfrequencies, considers masses in 𝑥- and 𝑦-direction. Mesh 
size is chosen as 0,95 m.  
 

6.4.2 MATLAB model 
6.4.2.1 Estimation of equivalent spring stiffness 

As mentioned in Section 6.2.1 are the support conditions taken into account by changed 
stiffness in the rotational degree of freedom in the bottom of the cantilever. The line supports 
are therefore represented by equivalent springs which are re-calculated to a rotational stiffness 
by moment equilibrium. Figure 6-5 (a) illustrates how the line supports are idealized as springs, 
and the corresponding rotational spring with displacement is shown in Figure 6-5 (b).  
 

 
Figure 6-5 Idealization of line support stiffness. 

 
Since the vibrations according to the first mode is of interest, rotational stiffness around 𝑦-axis 
is sought. The width, 𝐿F, will contribute with stiffness from line supports acting along the sides, 
represented by springs with stiffness, 𝑘F and 𝑘Õ, determined as: 
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 𝑘F = 𝑘Õ = 𝐾BC𝐿F (6-2) 
 
The depth, 𝐿#, is divided by a symmetry line and represented by two springs with stiffness, 𝑘# 
and 𝑘», which are determined as: 
 

 𝑘# = 𝑘» = 𝐾BC
𝐿#
2  (6-3) 

 
An illustration of a core with the line support stiffness idealized as equivalent springs, is shown 
in Figure 6-6.  

 
Figure 6-6 Illustration of core with line support stiffness idealized as equivalent springs.   
 
By using constitutive relations for springs, and moment equilibrium around the symmetry line, 
the following can be obtained: 
 

 𝑀 = 𝜇𝜃8ML = 𝑘Õ𝑢Õ
𝐿#
2 + 2𝑘»𝑢»

𝐿#
4 − 2𝑘#𝑢#

𝐿#
4 − 𝑘F𝑢F

𝐿#
2  (6-4) 

 
Note that also the opposite side with width, 𝐿# , will contribute with the same amount of 
stiffness, and thus are these spring forces multiplied with 2 in expression (6-4).  
 
By assuming small angles, the compatibility conditions can be written as: 
 

 𝑢F = −𝜃8ML
𝐿#
2  (6-5) 

 𝑢# = −𝜃8ML
𝐿#
4  (6-6) 

 𝑢» = 𝜃8ML
𝐿#
4  (6-7) 

 𝑢Õ = 𝜃8ML
𝐿#
2  (6-8) 

 
With these, expression (6-4) can be simplified to: 
 

 𝜇 = 𝑘Õ
𝐿##

4 + 2𝑘»
𝐿##

16 + 2𝑘#
𝐿##

16 + 𝑘F
𝐿##

4  (6-9) 
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And by using (6-2) and (6-3), the rotational stiffness is finally expressed as: 
 

 
𝜇 = 𝐾BC𝐿F

𝐿##

4 + 2𝐾BC
𝐿#
2
𝐿##

16 + 2𝐾BC
𝐿#
2
𝐿##

16 + 𝐾BC𝐿F
𝐿##

4  

⇒ 𝜇 =
𝐾Bé𝐿##

4 2𝐿F +
𝐿#
2 	 

(6-10) 

 
The rotational stiffness determined by the line supports are then used in the stiffness matrix as 
described in Section 6.2.1. The lumped masses will result in a mass matrix as described in 
Section 6.2.1.  
 
With mass matrix and stiffness matrix, the fundamental frequency is solved from the eigenvalue 
problem.  
 

6.4.3 Results of verification 
The two models are compared for four different support conditions, and the results are presented 
in Table 6-1. 
 
Table 6-1 Comparison of fundamental frequencies for different line support stiffness. 

Fundamental	frequency	[Hz]	
𝑲𝒛C	

[MN/m/m]	
FEM	DESIGN	
	

MATLAB	
	

Difference	
	

Fixed	 0.33	 0.347	 5%	
3000	 0.311	 0.317	 2%	
500	 0.229	 0.229	 0%	
100	 0.128	 	0.126	 -2%	

 
As can be seen in the table, the analytical model seems to be representable for a homogenous 
core. However, one must be aware of that 2D elements in FEM-Design take account for both 
bending and shear deformations, while the analytical model only represents bending 
deformations. As mentioned in Section 6.1.2, shear deformations are neglectable, but will 
however induce some difference between the two models. 
 
Since the main purpose of the analytical model is to develop a tool for calculating a more 
representable mode shape for a case of flexible foundation, the results are sufficient.  
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7 Parameter Study 
To investigate what effect the support conditions has on the horizontal acceleration, the four 
methods described in Chapter 4 and 5 are considered in a parameter study. This is done by using 
MATLAB-program in Appendix C for the analytical model described in Chapter 6.  
 
The relationship between horizontal acceleration and support conditions is complex, and 
various parameters affects the acceleration both positively and negatively in a non-linear way. 
To increase the knowledge of how the horizontal acceleration is affected by the support 
conditions, important parameters for of all four methods are studied. Further, the accelerations 
for all methods are plotted and compared. 
 
Finally, influence of important parameters are changed to investigate their potential effects on 
the results.  
 

7.1 Input parameters 
7.1.1 Studied building 
A tall building with reasonable dimensions have been chosen to generate input for the 
MATLAB-program. The building is forty storeys tall with core, columns and slabs in concrete. 
It is assumed that the core is the only member that is load bearing for horizontal actions, and 
thus is the flexural rigidity, 𝐸𝐼, is determined by the dimensions of the core. Dimensions of the 
chosen plan are shown in Figure 7-1 and other relevant input parameters are presented in 
Table 7-1.  
 

 
Figure 7-1 Illustrations of the studied building. 
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Table 7-1 Relevant input parameters for studied building 

Category	 Value	 Unit	
Storeys	 40	 		
Storey	height	 3,8	 m	
Total	height	 152	 m	
Thickness	of	slab	 0.25	 m	
Modulus	of	elasticity,	𝐸5,	 34	 GPa	
Mass	per	storey	0-39	 					1	052	000					kg	
Mass	for	top	slab	 								818	700					kg	
Total	mass	of	building	 42	910	000	 kg	
Re-occurrence	interval	for	wind	 5	 years	
Terrain	category	 III	 		
Structural	damping,	𝛿f	 0.1	 		
Force	coefficient,	𝑐9	 1.55	 		
Power	law	exponent,	𝛼	 0.21	 	

 
Masses are lumped to corresponding node, and the mass matrix is constructed as described in 
Section 6.2.1. Mass per storey for level 0-39 and for the top slab, are calculated in Appendix B. 
The top node will attract less mass than the other nodes, since it attracts only half the mass from 
the core and columns than other nodes. 
 
The equivalent rotational spring stiffness, 𝜇 , used in the stiffness matrix is determined 
according to the method described in Section 6.4.2. In this parameter study, the stiffness of the 
line support will be varying linearly with 30 different values between 100 MN/m/m to 3 000 
MN/m/m.  
 
For the analyses, the analytical mode shape determined from the eigenvalue problem is used. 
The analytical mode shape is based on the actual support conditions, and will vary when 
stiffness of the support, 𝐾BC, changes. The process for determining the analytical mode shape is 
described in Section 6.2.2.  
 

7.1.2 Comment on results of parameter study 
Note that the results from the parameter study is highly dependent on the dimensions and input 
parameters chosen in the parameter study. Estimated acceleration corresponding to a certain 
line support stiffness can not be seen as a representable value for a general case. The actual 
stiffness of the support is relative and dependent on several parameters, e.g. geometry and the 
relationship between the stiffness of the structure and the stiffness of the foundation.   
 

7.1.3 Choices regarding wind turbulence  
To increase comparability for the results between the four methods, consistent choices and 
modifications regarding wind turbulence have been made.  
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7.1.3.1 Wind-spectral density 

As described in Section 4.1.3.2, there are several empirical expressions for wind-spectral 
densities. In this report two of them have been mentioned, von Kármán’s and Kaimal’s. Both 
of them describe the same phenomenon, and the choice is up to the designer of the code. To be 
able to compare the results of this parameter study, von Kármán’s expressions is adapted for all 
four methods, since this is the one used in Swedish norms EKS 10.  
 
Von Kármán’s wind-spectral density is defined as: 
 

 𝑅U 𝜔, 𝑧 =
𝜔𝑆>(𝜔)
𝜎>#(𝑧)

=
4𝑓)

1 + 70,8𝑓)# ®/Î (7-1) 

7.1.3.2 Integral length scale 
In line with the recommendation in Section 4.1.3.2, the integral length scale is assumed to 
be,	𝐿>6 = 150	m, for all four methods in the parameter study when determining the wind-
spectral density. This is a good approximation according to K. Handa (Personal communication, 
April 26, 2017). 
 

7.1.3.3 Decay constant  

When determining the normalized Co-spectrums,	𝐶𝑜>+, one has to assume decay constants, 𝐶>B 
and 𝐶>m, as input. K. Handa (Personal communication, April 26, 2017), suggests that 𝐶>B =
𝐶>m = 8 is a representable assumption, and this is also what EKS 10 is based on. Since the 
choice of decay constants is already done when developing the method in Eurocode 1 Part 1-4 
and EKS 10, it is not possible to change this input for these methods. The decay constants are 
therefore assumed to be in accordance with Handa’s recommendation and the influence of 
chosen decay constants is studied in Section 7.9.4.  
  

7.2 Effects on mode shape 
As mentioned in Section 6.1.1, a pile foundation has been idealized as a hinged support with a 
rotational spring. As can be seen from Equation (6-1), the lower the rotational stiffness, the less 
moment can be restrained by the foundation. In other words, the rotational stiffness of the 
structure decreases and the less it resembles a foxed joint.  
 
The mode shape, 𝜙(𝑧) describes how the building translates in the corresponding mode, and 
thus highly dependent on horizontal stiffness. Figure 7-2 shows how the analytical mode shape, 
𝜙6(𝑧), determined from the eigenvalue problem as described in Section 6.2.2, is affected by 
three different rotational stiffness of the support. As a comparison, also the simplified mode 
shape according to Equation (5-1) proposed in Eurocode 1 Part 1-4 is plotted.   
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Figure 7-2 Variation of mode shape,	𝜙6(𝑧), due to change in support conditions, compared 

to the one proposed in EN 1991-1-4 (CEN, 2005). 
 
As can be seen from the figure, the simplified mode shape stated in Eurocode 1 Part 1-4 is a 
good representation for a stiff foundation. Further, it can be observed that the analytical mode 
shape, 𝜙À(𝑧), deviates further from the simplified mode shape, as the stiffness of the support 
decreases.  
 

7.3 Effects fundamental frequency 
The fundamental frequency is highly dependent on stiffness of the structure and thus also on 
the support conditions. The relationship can be noticed by examining the following expressions 
from Section 2.2.4: 
 

 𝑀 = 𝑚 𝑧 𝜙(𝑧)#𝑑𝑧
§

k
 (7-2) 

 𝐾 = 𝐸𝐼(𝑧) 	𝜙CC(𝑧) #𝑑𝑧
§

k
 (7-3) 

 𝜔- = 2𝜋𝑓- =
𝐾
𝑀

 (7-4) 
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As can be observed in Figure 7-2, the integral of the mode shape, 	𝜙À(𝑧) , increases with 
decreasing stiffness of the support. A consequence, the generalized mass,	𝑀 in Equation (6-2), 
increases which will lower the fundamental frequency.  
 
The opposite can be said about the generalized stiffness, 𝐾, that the integral of the curvature, 
𝜙6CC(𝑧) decreases with decreasing stiffness of the support. Decreasing generalized stiffness of 
the structure lead to lower fundamental frequency. 
 
With previous conclusions and by observing Equation (6-4), it is clear that the fundamental 
frequency will decrease with decreasing stiffness of the support. The fundamental frequency is 
plotted for various line support stiffness, 𝐾BC and the behaviour can be seen in Figure 7-3. For 
convenience, fundamental frequency is presented as, 𝑓-, measured in [Hz] instead of circular 
frequency, 𝜔-. 
 

 
Figure 7-3 Relationship between fundamental frequency, 𝑓-, and stiffness of the support. 
 
To put the stiffness of the support into relation with a fixed support, the fundamental frequencies 
are compared in Table 7.2. 
 
Table 7.2 Comparison between fundamental frequency for fixed support and maximum 

studied support stiffness.  

𝑲𝒛é 	
[MN/m/m]	

Frequency	
[Hz]	

Difference	
[%]	

∞	 0.333	 90%	
3000	 0.301	
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7.4 Strømmen 
The standard deviation of acceleration, 𝜎>Y, according to the theory based on (Strømmen, 2010) 
is derived in Chapter 4, and a final expression for the resonant part is stated in Section 4.2.2.1, 
as: 
 

 𝜎>Y 𝑧 = 𝜔-Õ𝜎�6# 𝑧 = 𝜔-Õ
𝜙6 𝑧
𝜔-#𝑀6

# 𝜋𝜔-𝑆XY 𝜔-
4(𝜁+ − 𝜁%&+)

 (7-5) 

 
The horizontal acceleration in the top of the building, where 𝜙6 𝑧LM7 = 1, is of interest, and 
thus can the expression in this parameter study be simplified to: 
 

 𝜎>Y 𝑧 =
1
𝑀6

𝜋𝜔-𝑆XY 𝜔-
4(𝜁+ − 𝜁%&+)

 (7-6) 

 
As can be observed in the expression, the acceleration is dependent on the generalised mass, 
𝑀6, fundamental frequency, 𝜔-, spectral density of loading, 𝑆XY 𝜔- ,  and total damping ratio, 
𝜁LML.  These parameters will be studied separately. 
 

7.4.1 Generalised mass 
Generalised mass for first mode in along-wind direction is defined in Section 4.1.1, as: 
 

 𝑀6 = 𝜙6(𝑧)#𝑚6(𝑧)𝑑𝑧
§

k
 (7-7) 

 
As concluded in Section 7.3 and from Figure 7-2, the integral of the mode shape, 𝜙À(𝑧), and 
consequently the generalised mass,	𝑀6, will increase with decreasing stiffness of the support. 
The relationship between generalised mass and support condition is shown in Figure 7-4. The 
generalised mass can be compared with the total mass of the building that is 42 910 000 kg, see 
Table 7-1. 
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Figure 7-4 Relationship between generalised mass and stiffness of the support. 

 
As can be observed in Equation (7-6), an increased generalised mass, 𝑀6, will decrease the 
horizontal acceleration. The effect of a flexible support on the mass, will results in lower 
horizontal acceleration.  
  

7.4.2 Spectral density of loading 
The spectral density of loading,	𝑆XY, is dependent on several parameters which are affected by 
the support condition in a non-linear way. The spectral density of loading is defined according 
to Equation (4-27) as: 
 

 𝑆XY 𝜔- = (𝜌𝐿F𝑐9)𝐽6 𝜔-
#
 (7-8) 

 
The width of the building perpendicular to wind flow, 𝐿F, drag coefficient, 𝑐9, and density of 
air, 𝜌 , are constant parameters independent of stiffness of foundation. However, the joint 
acceptance function, 𝐽6 𝜔- , defined in Equation (4-34) is highly dependent on stiffness of the 
support and is defined as:  
 

 

𝐽6# 𝜔- = 𝜙6 𝑧F 𝜙6 𝑧# 𝑉 𝑧F #𝑉 𝑧# # ∙
§

k
 

∙ 𝐼> 𝑧F 𝐼> 𝑧#
𝑆> 𝜔-
𝜎>#

𝑒
� B¾�B�

RÏÔ��
#�Ç(BÖ×½) 	𝑑𝑧F𝑑𝑧# ∙ 

∙ 𝑒
� m¾�m�

RÏÒ��
#�Ç(BÖ×½)

)¾
#

�)¾#

𝑑𝑦F𝑑𝑦# 

(7-9) 

 
In the joint acceptance function, several terms are dependent on either fundamental frequency, 
𝜔- , or the mode shape, 𝜙6 𝑧+ . Wind velocity, 𝑉(𝑧+), and turbulence intensity, 𝐼>(𝑧+), are 
however not dependent on these, and thus neither the support conditions.  
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As concluded in Section 7.3, the integral of the mode shape, 𝜙6 𝑧+ , will increase with 
decreasing stiffness of the support, and thus increase the joint acceptance function.  
 
As can be seen in Equation (7-9), both integrals over respectively Co-spectrum, are dependent 
to the fundamental frequency, 𝜔- , and the terms will increase for decreasing fundamental 
frequency of the building. Consequently, these terms will have a positive contribution to the 
joint acceptance function for decreasing stiffness of the support.  
 
The wind-spectral density, QÏ ��

ËÏ�
, is also dependent on the fundamental frequency and 

consequently indirectly on the support conditions. As described in Section 0, von Kármán’s 
wind-spectral density is used for all four methods, and its frequency-dependence is presented 
in Figure 7-5.  
 

 
Figure 7-5 von Kármán’s wind-spectral density for frequencies in the range of tall buildings.  
  
What can be observed in Figure 7-5, is that wind load fluctuates more frequently at lower 
frequencies. This means that, structures with low fundamental frequency is more likely to reach 
resonance with the fluctuating wind, which will thus result in greater response. 
 
As concluded in Section 7.3, the fundamental frequency will decrease for decreasing stiffness 
of the support. Consequently, the wind-spectral density will have increase the joint acceptance 
function, 𝐽6 𝜔- ,  for decreasing stiffness of the support. The relationship of wind-spectral 
density for various stiffness of the support, is plotted in Figure 7-6. 
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Figure 7-6 Graph of how wind spectral density changes with the line support stiffness. 

 
With the conclusions made above, it is clear that the joint acceptance function, 𝐽6(𝜔-) , 
increases with decreasing stiffness of the support. As can be seen in Equation (7-7), the spectral 
density of loading, 𝑆XY, is directly proportional to 𝐽6#(𝜔-). By observing Equation (7-6), it can 
be noted that its impact on the horizontal acceleration is in square root. For convenience, it is 
plotted in this form, and the behaviour can be seen in Figure 7-7.  
 

 
Figure 7-7 Shows the square root of spectral density, 𝑆𝑄𝑥 𝜔𝑛 , versus stiffness of line 

support.  
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As can be observed in Equation (7-6), will an increasing spectral density of loading, 𝑆XY, will 
increase the horizontal acceleration. The effect of a flexible support on the spectral density of 
loading, will results in larger horizontal acceleration.  
 

7.4.3 Damping ratio 
The last term to investigate in Equation (7-6), is the total damping ratio, (𝜁+ − 𝜁%&+). The 
mechanical damping 𝜁+  is the same throughout this thesis, while the aerodynamic changes 
according to EKS 10 (Boverket, 2015) for all four methods as: 
 

 𝜁%&+ =
𝑐9𝜌𝐿F𝑉(𝑧f)
4𝜋𝑓-𝑚&

 (7-10) 

 
The numerator contains constants independent on the stiffness of the support, but the 
denominator will be dependent on the support conditions. The fundamental frequency, 𝑓- , 
measured in [Hz] is handled in Section 7.3, and decreases with decreasing stiffness of the 
support as can be seen in Figure 7-3. This relationship results in a positive effect on the 
aerodynamic damping ratio for decreasing stiffness of the support.  
 
The denominator also contains 𝑚&, which is the equivalent mass per meter with regard to the 
mode shape and is defined as: 
 

 𝑚& =
𝑀6

𝜙6#(𝑧)𝑑𝑧
§
k

 (7-11) 

 
As concluded in Section 7.4.1, the generalised mass is dependent on the support conditions and 
will increase with decreasing stiffness of the support according to Figure 7-4. However, the 
equivalent mass will get a negative impact from the increasing denominator, when the stiffness 
of the support decreases. The behaviour of the equivalent mass for the studied building are 
shown in Figure 7-8.  
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Figure 7-8 Equivalent mass for the specified house for different values of line support 

stiffness. 
As can be observed in the figure, for this reference building when the mass is nearly evenly 
distributed, the equivalent mass can almost be regarded as independent on the stiffness of line 
support. 
 
The effects described above, will result in an increased aerodynamic damping ratio, 𝜁%&+, which 
contribute to an increased total damping ratio, for decreasing stiffness of the support. The 
square root of total damping ratio is plotted for various stiffness of the support in Figure 7-9 
below. 
 

 
Figure 7-9 Relationship between square root of total damping ratio and stiffness of the 

support. 
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As can be observed in Equation (7-6), increased total damping ratio, will decrease the horizontal 
acceleration. The effect of a weak support on the total damping ratio, will results in lower 
horizontal acceleration.  
 

7.4.4 Final acceleration according to Strømmen 
Each parameter affecting the final horizontal acceleration in Equation (7-6), have been 
investigated with respect to decreased stiffness of the support. The effects this has on 
generalised mass, total damping ratio and fundamental frequency decreases the acceleration, 
while effects on spectral density of loading increases the acceleration. The behaviour of 
standard deviation of acceleration, 𝜎>Y, with respect to stiffness of the support are shown in 
Figure 7-9.   
 
 

 
Figure 7-10 Relationship between standard deviation of acceleration, 	𝜎>Y , according to 

Strømmen and stiffness of the support.  

 
What can be observed in Figure 7-10, is that horizontal acceleration in the top of the building 
increases when the stiffness of the support decreases.  
  

7.5 Handa 
Standard deviation of acceleration, 𝜎>Y , according to the theory based on (Handa, 1982) is 
derived in Chapter 4, and final expression for the resonant part is stated in Section 4.2.2.2, as: 
 

 𝜎>Y 𝑧 = 𝜔-Õ4 𝑊
𝜙6 𝑧
𝜔-#𝑀6

#

𝐼>#(𝑧)
𝐻5𝑉5

(𝜁+ − 𝜁%&+)
𝜔-𝑆>(𝜔-)

𝜎>#
 (7-12) 

 
In this parameter study, the horizontal acceleration in the top of the building, 𝑧 = 𝑧LM7, is of 
interest, and thus can the expression be simplified to: 
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 𝜎>Y 𝑧 = 2
𝑊
𝑀6

𝐼>(𝑧LM7)
𝐻5𝑉5

(𝜁+ − 𝜁%&+)
𝜔-𝑆>(𝜔-)

𝜎>#
 

 

(7-13) 

 
Some of the terms in Equation (7-13) have already been investigated with respect to support 
conditions already. The effect on fundamental frequency, 𝜔- , is studied in Section 7.3, 
generalised mass,	𝑀6, in Section 7.4.1, wind-spectral density, QÏ(��)

ËÏ�
, in Section 7.4.2 and  total 

damping ratio, (𝜁+ − 𝜁%&+), in Section 7.4.3.    
 
The effect of support conditions on generalised wind load, 𝑊, correlation factors, 𝐻5 and 𝑉5, 
are investigated in Section 7.5.2. Finally, the effects on standard deviation of acceleration is 
studied.  
 

7.5.1 Generalised wind load 
The generalised wind load is defined in Section 4.2.2.2 as: 
 

 𝑊 = 𝐻𝐿F
1
2𝜌𝑐9𝑉 𝑧LM7

# 𝜙6 𝜏 𝜏 #¹𝑑𝜏
F

k
 (7-14) 

 
From Equation (7-14), it can be observed that only the mode shape, 𝜙6 , is affected by the 
support conditions and, as stated in Section 7.2, the integral of the mode shape will increase 
with decreasing stiffness of the support.   
 
The relationship between stiffness of the support and generalised wind load is shown in Figure 
7-11.  
 

 
Figure 7-11 Relationship between generalised wind load, 𝑊, and stiffness of the support. 
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As can be observed in Equation (7-13), an increased generalised wind load, 𝑊, will increase 
the horizontal acceleration. The effect of a weak support on the generalized wind load, will 
result in larger horizontal acceleration.  
 

7.5.2 Correlation factors 
The correlation factors, 𝑉5  and 𝐻5 , defined in Section 4.2.2.2, are dependent on the support 
conditions and the effect will be studied below. The vertical correlation factor, 𝑉5, is expressed 
as: 
 

 𝑉5 =
𝜙6 𝜏F 𝜙6 𝜏# 𝜏F𝜏# ¹𝑒

� Ø¾�Ø�
RÏÔ§��
#�Ç BÖ×½F

k 𝑑𝜏F𝑑𝜏#

𝜙6 𝜏 𝜏 #¹𝑑𝜏F
k

#  (7-15) 

 
From Equation (7-15), it can be observed that the vertical correlation factor is affected by the 
support condition, both by the effect on mode shape, 𝜙6, and the fundamental frequency, 𝜔-. 
As described in Section 7.2 the integral of the mode shape is increased with decreasing stiffness 
of the support. It is mentioned in Section 7.3 that fundamental frequency decreases for 
decreasing stiffness of the support. 
 
The vertical correlation factor, 𝑉5, affects the standard deviation of acceleration in Equation (7-
13) with its square root ( 𝑉5), and for convenience it is plotted in this form in Figure 7-12. 
 

 
Figure 7-12 Relationship between vertical correlation factor and stiffness of the support. 
 
The horizontal correlation factor, 𝐻5, is defined by: 
 

 𝐻5 = 𝑒
� n¾�n�

RÏÒ)¾��
#�Ç(BÖ×½)

F

k
𝑑𝜃F𝑑𝜃# (7-16) 

 
From Equation (7-16), it can be observed that the horizontal correlation factor is dependent on 
the fundamental frequency which decreases for decreasing stiffness of the support. The 
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behaviour of horizontal correlation factor, with respect to stiffness of the support, is shown in 
Figure 7-13. With the same way of reasoning as for the vertical correlation factor, it is presented 
as 𝐻5. 
 
 

 
Figure 7-13 The figure shows the relationship between the square root of horizontal 

correlation factor and stiffness of the support. 

 
As can be seen in Figure 7-12 and Figure 7-13, both the vertical and horizontal correlation 
factor increases for decreasing stiffness of the support. From Equation (7-13), it is clear that the 
correlation factors will increase the horizontal acceleration. Consequently, the effect of a weak 
support on the correlation factors, 𝑉5 and 𝐻5, will result in larger horizontal acceleration. 
 

7.5.3 Final acceleration according to Handa 
Each parameter affecting the final horizontal acceleration in Equation (7-13), have been 
investigated with respect to decreased stiffness of the support. The effects on generalised mass, 
total damping ratio and fundamental frequency results in negative impact on the acceleration, 
while effects on generalised wind load, wind-spectral density and correlation factors contribute 
to increased acceleration. The behaviour of standard deviation of acceleration, 𝜎>Y, with respect 
to stiffness of the support are shown in Figure 7-14. 
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Figure 7-14 Relationship between standard deviation of acceleration, 	𝜎>Y , according to 

Handa and stiffness of the support. 

 

7.6 EKS 10 
EKS 10 have a simplified expression to determine the acceleration for a building due to 
fluctuating wind load and it takes the form of: 
 

 𝜎>Y(𝑧) =
3𝐼> 𝑧LM7 𝑅OPQ𝑞, 𝑧LM7 𝐿F𝑐9𝜙6(𝑧)

𝑚&
 (7-17) 

 
Most of the terms in Equation (7-17) is either constants or independent of changing stiffness of 
line support. For estimation of acceleration at top of the building is 𝜙6 𝑧LM7 = 1, which means 
that the only terms that will change with the stiffness of foundation is 𝑅OPQ and 𝑚&.  
 
The equivalent mass, 𝑚& , have been treated in Section 7.4.3, where the behaviour of the 
equivalent mass can be observed in Figure 7-8. It can be concluded that the equivalent mass 
can be treated as a constant for the reference building in the parameter study. Therefore, the 
only parameter that will change with line support stiffness is the resonance response coefficient, 
𝑅OPQ. 
 
This means that the acceleration according to EKS 10 in this parameter study, is only dependent 
on the support conditions through changes in 𝑅OPQ. 
 

7.6.1 Resonance response coefficient 
The resonance response coefficient contains many variables. 
 

 𝑅OPQ =
2𝜋 𝑓6𝑆>(𝑓6)𝜎>#

𝜙T𝜙S
𝛿f + 𝛿%

 (7-18) 
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It is the same wind-spectral density, which behaviour can be observed in Figure 7-7. The figure 
shows that for less line support stiffness, the wind-spectral density increases, therefore 
increasing	𝑅OPQ.  Total damping of the building, is treated in Figure 7-9. There it was clear that 
the damping increases when stiffness of lines support decreases, which in turn decreases 𝑅OPQ. 
Left to investigate is the influence of size coefficient, 𝜙T and 𝜙S, which are related to the width 
and height of the structure respectively. 
 
The size coefficient is simplified expression of the correlation factor presented in Section 
4.2.2.2. It is therefore expected that 𝜙T and 𝜙S have similar values as 𝐻5 and 𝑉5. 
 
The vertical size coefficient is defined as 
 

 𝜙S =
1

1 + 2𝑓6𝐻
𝑉(𝑧LM7)

 (7-19) 

 
In Figure 7-15, the square root of the vertical size coefficient, 𝜙S, have been plotted, to easier 
see what effect it will have on 𝑅OPQ. For less line support stiffness, the vertical size coefficient 
increases, therefore have a positive effect on 𝑅OPQ.  
 

 
Figure 7-15 Square root of vertical size coefficient according to EKS 10. 

 
The horizontal size coefficient is very similar to the vertical size coefficient, but is dependent 
on the width of the building instead. 
 

 
 

𝜙T = 	
1

1 + 3,2𝑓6𝐿F
𝑉(𝑧LM7)

 (7-20) 

 
In Figure 7-16 the square root of the horizontal coefficient is plotted. This one is also increasing 
with decreasing line support stiffness, but not in the same magnitude as the vertical size 
coefficient.   
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Figure 7-16 Horizontal size coefficient according to EKS 10. 
 
All the terms in the resonant response coefficient, except the damping, increases the resonant 
response coefficient, 𝑅OPQ, when the line support decreases. In Figure 7-17 the results have 
been plotted. It is clear that when the line support decreases the resonant response coefficient 
increases. For a weak foundation, the resonant response coefficient will increase the horizontal 
acceleration.  
 

 
Figure 7-17 Resonant response coefficient.  

 

7.6.2 Final acceleration according to EKS 10 
Since the equivalent mass is independent on stiffness of support, it is safe to say that the 
acceleration is only dependent on the resonance response coefficient, 𝑅OPQ . Since 𝑅OPQ 
increased for smaller values of line support stiffness, the behaviour of the acceleration should 
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be the same. Comparing Figure 7-17 and Figure 7-18 it is clear that’s the case, the form is 
almost identical.  
 

 
Figure 7-18 Relationship between standard deviation of acceleration,	𝜎>Y, according to EKS 

10 and stiffness of the support. 
 

7.7 Eurocode 1 Part 1-4 Annex B 
Standard deviation of acceleration, 𝜎>Y , according to Eurocode 1 Part 1-4 (CEN, 2005) is 
explained in Section 5.2.2 , and the final expression for the resonant part is: 
 

 𝜎>Y(𝑧) =
𝑐9𝜌𝐿F𝐼> 𝑧f 𝑉# 𝑧f

𝑚&
𝑅OR𝐾6𝜙6(𝑧) (7-21) 

 
Firstly, it can be concluded that 𝜙6 𝑧LM7 = 1. From Equation (7-21), it can further be observed 
that the standard deviation of acceleration is dependent on the support condition through the 
equivalent mass, 𝑚&, resonant coefficient, 𝑅OR  and dimensionless coefficient, 𝐾6. However, as 
described in Section 7.4.3, the equivalent mass, 𝑚&, will decrease marginally with decreasing 
stiffness of the support and can be considered as independent on support conditions in this 
parameter study.  
 

7.7.1 Resonant coefficient  
The resonant coefficient is in Eurocode 1 Part 1-4 is defined in Section 5.2.2, as 
 

 𝑅OR =
𝜋#

2 𝛿f + 𝛿%
𝑓6𝑆>(𝑧f, 𝑓6)

𝜎>#
𝑅S 𝜂S 𝑅T(𝜂T) (7-22) 

 
Where the influence of support conditions on wind-spectral density,	𝑆>(𝑧f, 𝑓6) 𝜎>#, and total 
damping, (𝛿f + 𝛿%), have been studied previously in Section 7.4.2 and 7.4.3, respectively.  
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𝑅S 𝜂S  and 𝑅T(𝜂T) is referred to as the aerodynamic admittance functions, and those functions 
are dependent on the geometry and the fundamental frequency.  
 
The aerodynamic admittance functions are complicated, and are affected by the decrement of 
fundamental frequency when stiffness of the support decreases. The vertical admittance 
function, 𝑅S, is defined as:  
 

 𝑅S =
1
𝜂S
−

1
2𝜂S#

1 − 𝑒�#`à  (7-23) 

 
Where, 𝜂S, is dependent on the fundamental frequency and defined as:  
 

 𝜂S =
4.6𝐻

𝐿>B 𝑧LM7
𝑓)(𝑧f, 𝑓6) (7-24) 

 
The behaviour of vertical aerodynamic admittance function for various stiffness of the support 
is plotted in Figure 7-19. For convenience, it is plotted in the form, 𝑅S , since it affects the 
standard deviation of acceleration in Equation (7-21) in this form.  
 

 
Figure 7-19 Relationship between square root of vertical aerodynamic admittance function 

and stiffness of the support. 

 
The horizontal aerodynamic admittance function, 𝑅T, is nearly identical to the vertical, except 
it is dependent on the width of the building instead of the height.  
 

 𝑅T =
1
𝜂T
−

1
2𝜂T#

1 − 𝑒�#`á  (7-25) 

Where, 𝜂T, is dependent on the fundamental frequency and defined as:  

 𝜂T =
4.6𝐿F

𝐿>B 𝑧LM7
𝑓)(𝑧f, 𝑓6) (7-26) 
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The behaviour of horizontal aerodynamic admittance function for various stiffness of the 
support is plotted in Figure 7-20 below. It is plotted in the form, 𝑅T, for the same reason as 
described previously for 𝑅S. 
 

 
Figure 7-20 Relationship between horizontal aerodynamic admittance function and stiffness 

of the support. 

 
As shown in Figure 7-19 and Figure 7-20, the aerodynamic admittance function, 𝑅S and 𝑅T, 
increases for decreasing stiffness of the support. From Equation (7-22), it can be seen that this 
results in an increased resonant coefficient, 𝑅OR . The total behaviour on resonant coefficient, 
including effects on wind-spectral density and damping are plotted in Figure 7-17.   
 

 
Figure 7-21 Relationship between resonant coefficient and stiffness of the support. 
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From Equation (7-21), it can be observed that an increased resonant coefficient, 𝑅OR , will 
increase horizontal acceleration. Therefore, the acceleration will increase due to 𝑅OR  when the 
stiffness of support is reduced. 
 

7.7.2 Dimensionless coefficient  
The dimensionless coefficient, 𝐾6, is dependent on the mode shape, 𝜙6 𝑧  and the wind profile.  
 

 𝐾6 =
𝑉# 𝑧 𝜙6 𝑧 𝑑𝑧

§
k

𝑉#(𝑧f) 𝜙6# 𝑧 𝑑𝑧
§
k

 (7-27) 

 
As concluded in Section 7.2, the integral of mode shape increases when stiffness of the support 
decreases, i.e. both numerator and denominator of Equation (7-27) increases for decreasing 
stiffness. The denominator will however increase faster, and the behaviour for various support 
conditions is presented in Figure 7-22. 
 

 
Figure 7-22 Relationship between dimensionless coefficient and stiffness of the support. 
 
From Equation (7-21), it can be observed that if the dimensionless coefficient, 𝐾6, decreases, 
the horizontal acceleration will also decrease. A weak support will reduce 𝐾6 and thus result in 
lower horizontal acceleration.  
 

7.7.3 Final acceleration according to EN 1991-1-4 
Each parameter effecting the final horizontal acceleration in Equation (7-21) have been 
investigated with respect to decreased stiffness of the support. The resonant coefficient, 𝑅OR , 
increases the acceleration, while the dimensionless coefficient, 𝐾6 , will increase the 
acceleration when the stiffness of support is reduced. The behaviour of standard deviation of 
acceleration, 𝜎>Y, with respect to stiffness of the support are shown in Figure 7-23. 
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Figure 7-23 Relationship between standard deviation of acceleration,	𝜎>Y, according to EN 

1991-1-4 and stiffness of the support. 

 

7.8 Compared acceleration between the methods 
In Section 7.4 - 7.7 the different methods are investigated separately with respect to change of 
support conditions. In this Section the four methods are compared with each other. The resulting 
standard deviation of acceleration,	σóô, for all four methods are presented in Figure 7-24, for 
varying stiffness of the support. The corresponding fundamental frequency of the building is 
plotted as a function of support stiffness in the figure to study the correlation between 
fundamental frequency and standard deviation of acceleration.   
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Figure 7-24 Relationship between standard deviation of acceleration for all four method and 

fundamental frequency versus stiffness of the support. 
 
What can be observed, is that all four methods show the same kind of behaviour. Acceleration 
increases exponentially, for decreasing stiffness of the support. It is also clear that the EKS 10 
is conservative for all support conditions, and that EN 1991-1-4 yields the lowest values of 
acceleration.  
 
Since EKS 10 is based on the theory presented in Handa’s method, these two are compared in 
Table 7-3 to investigate the difference between them for different support conditions.  
 

Table 7-3 Comparison between EKS 10 and Handa's approach for various support 
conditions. 

𝑲𝒛é 	
[MN/m/m]	

EKS	10	
[m/s#]	

Handa	
[m/s#]	

Difference	
[%]	

3000 0.0328	 0.0305	 -7.0%	

500 0.0437	 0.0393	 -10.1%	

100 0.0677	 0.0602	 -11.1%	
 
The results are more similar for rigid support conditions, and this implies that EKS 10 is a 
simplified version of Handa’s method and is applicable for rigid supports. However, the results 
diverge for decreasing stiffness of the support and this indicates that EKS 10 is less 
representable for flexible support conditions.  
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The standard deviation of acceleration for all four methods can be related to the recommended 
limits presented in Section 5.3.1.2. This is illustrated in Figure 7-25, where the acceleration is 
plotted together with recommended limits according to ISO 6897. 
 
 

 
Figure 7-25 Standard deviation of acceleration plotted in ISO 6897 graph. 

 
Something that is clearly visible in Figure 7-25 is that the acceleration according to EN 1991-
1-4 is much less that the other methods, especially EKS 10. In Table 7-4, the acceleration 
between the two design norms EKS 10 and EN 1991-1-4 is compared.  
 
Table 7-4 Comparison between EKS 10 and EN 1991-1-4 approach for various support 

conditions. 

𝑲𝒛é 	
[MN/m/m]	

EKS	10	
[m/s#]	

EN	1991-1-4	
[m/s#]	

Difference	
[%]	

3000 0.0328	 0.0220	 -32.9%	

500 0.0437	 0.0294	 -32.7%	

100 0.0677	 0.0473	 -30.1%	
 

7.9 Influence of important parameters 
From the parameter study, it can be concluded that mode shape and fundamental frequency will 
be affected by the stiffness of the support, and that a flexible foundation will result in increased 
horizontal acceleration.  
 
What also has been concluded in this study, is that the acceleration is affected by the mode 
shape, 𝜙6(𝑧), flexural rigidity, 𝐸𝐼(𝑧) and mass, 𝑚+(𝑧). Thus, the influence of these will be 
studied separately. As mentioned in Section 7.1.3.3, the assumed decay constants vary between 
EKS 10 and Eurocode 1 Part 1-4 Annex B. Therefore, the influence of chosen decay constant 
is also studied.  
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7.9.1 Influence of mode shape 
In previous analyses the analytical mode shape, determined from the eigenvalue problem, was 
used. As concluded in Section 7.2, the analytical mode shape deviate increasingly from the 
simplified mode shape proposed in Eurocode 1 Part 1-4 when stiffness of the support decreases.  
 
To investigate what effects the mode shape has on the acceleration, the mode shape is chosen 
as the one proposed in the norms, see Section 5.1, i.e. a mode shape that is independent on 
variations of support conditions. The accelerations calculated for the simplified mode shape are 
compared to the results from the analytical mode shape. The mode shape according to Eurocode 
1 Part 1-4, is based on the idealization of a fixed support and is expressed as: 
 

 𝜙6 𝑧 =
𝑧
𝐻

F,®
 (7-28) 

 
The results for the simplified mode shape are plotted in Figure 7-26.  

 
Figure 7-26 Relationship between standard deviation of acceleration for all four methods 

with simplified mode shape and fundamental frequency versus stiffness of the 
support. 

 
A noticeable difference between Figure 7-24 and Figure 7-26, is that the acceleration according 
to the theoretical approach by Handa, tends to the be more similar to the simplified approaches 
from EKS 10. 
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Table 7-5 Comparison between EKS 10 and Handa's approach for various support 
conditions for simplified mode shape. 

𝑲𝒛é 	
[MN/m/m]	

EKS	10	
[m/s#]	

Handa	
[m/s#]	

Difference	
[%]	

3000 0.0328	 0.0311	 -5.01%	

500 0.0435	 0.0421	 -3.37%	

100 0.0674	 0.0665	 -1.27%	
 
How each method is affected by the mode shape, is shown in Figure 7-27, where the 
acceleration is plotted when both the analytical mode shape and the simplified mode shape, 
according to Equation (7-28), have been used for determining the acceleration. 
 

 
Figure 7-27 Comparison of difference in acceleration when different mode shape is used in 

calculations. 

 
The results from Figure 7-27, together with the corresponding difference between analytical 
mode shape and mode shape from norms, are presented in Table 7-6 and Table 7-7. 
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Table 7-6 Comparison of standard deviation of acceleration for EKS 10 and Handa for 
different mode shape and stiffness of support.  

𝑲𝒛C	 EKS	10	 Handa	
[MN/m/m]		 Analytical	 Norm	 Diff.	 Analytical	 Norm	 Diff.	

∞	 0.0299	 0.0299	 0.0%	 0.0282	 0.0282	 0.0%	
3000	 0.0328	 0.0328	 -0.1%	 0.0305	 0.0311	 2.0%	
500	 0.0437	 0.0435	 -0.4%	 0.0393	 0.0421	 7.1%	
100	 0.0677	 0.0674	 -0.5%	 0.0602	 0.0665	 10.5%	

 

Table 7-7 Comparison of standard deviation of acceleration for EN 1991-1-4 and 
Strømmen for different mode shape and stiffness of support.  

𝑲𝒛C	 EN	1991-1-4	 Strømmen	
[MN/m/m]		 Analytical	 Norm	 Diff.	 Analytical	 Norm	 Diff.	

∞	 0.0200	 0.0202	 1.0%	 0.0253	 0.0252	 -0.4%	
3000	 0.0220	 0.0224	 2.1%	 0.0273	 0.0279	 2.0%	
500	 0.0294	 0.0309	 4.9%	 0.0352	 0.0377	 7.0%	
100	 0.0473	 0.0510	 7.9%	 0.0539	 0.0595	 10.3%	

 
In Section 7.6, it was concluded that the acceleration according to EKS 10 could neglect any 
change of mode shape when determining the acceleration in the top of the building. This 
conclusion is confirmed by the behaviour shown in Figure 7-27 (a) and Table 7-6, where the 
difference in accleration between the two mode shapes is very small for EKS 10. It should be 
noted, though, that this is only applicable for the case of evenly distributed mass, and that the 
small difference in acceleration is due to the fact that the mass of the top slab is somewhat 
smaller than the rest of the slabs. The effect of varying mass distribution is studied further in 
Section 7.9.3.2. 
 
By observing Figure 7-27 (b), (c) and (d), it can be seen that Handa, Strømmen and EN 1991-
1-4 are affected by the choice of mode shape. Further, the results are conservative for all three 
cases when using the simplified mode shape instead of the analytical mode shape. For flexible 
condition, the difference in acceleration for the two theoretical approaches, Handa and 
Strømmen, is approximately 10 %.  
 
General for all four approaches is that the acceleration converges to the same result when the 
stiffness of the support increases. This supports the reasoning that the methods in the norms, 
when using simplified mode shape, are applicable for foundations close to the bedrock where 
support conditions are rather stiff.  
 

7.9.2  Influence when changing the flexural rigidity of the core 
Since the mode shape and fundamental frequency are determined from the eigenvalue problem, 
they are both dependent on the stiffness of the structure, i.e. flexural rigidity, 𝐸𝐼 , and the 
stiffness of the ground. The effect of changing the relationship between 𝐸𝐼 and stiffness of the 
ground is studied by scaling up and down the flexural rigidity of the core by a factor of 4. In 
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these studies, the analytical mode shape is used, to fully account for changes in the support 
conditions.  
 

7.9.2.1 Increased stiffness 

To simulate increased flexural rigidity of the core, the modulus of elasticity, 𝐸5, , for the 
concrete is increased by a factor of 4. Figure 7-28 shows the resulting acceleration and 
corresponding fundamental frequency.  
 

 
Figure 7-28 Acceleration and fundamental frequency when flexural rigidity is increased by a 

factor of 4. 

 
What can be noticed from Figure 7-28 , is that maximum acceleration does not differ that much 
from the result for normal stiffness presented in Figure 7-24, but the difference in minimum 
acceleration is larger. The slopes of the curves are steeper for the case of increased stiffness 
compared to normal stiffness in Figure 7-24. This indicates that the effect of support conditions 
is more significant for structures with large flexural rigidity in relation to stiffness of the 
foundation, and that it is more difficult to achieve fixed support conditions. 
 
It can also be observed that the difference between EKS 10 and Handa is larger than for normal 
stiffness, and this is because the analytical mode shape deviate more from the one assumed in 
the norms. The analytical mode shape tends to the form of a straight line because the 
relationship between structural stiffness and line support stiffness have increased.  
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Table 7-8 Comparison between EKS 10 and Handa's approach for various support 
conditions when stiffness of building is increased. 

𝑲𝒛é 	
[MN/m/m]	

EKS	10	
[m/s#]	

Handa	
[m/s#]	

Difference	
[%]	

3000 0.0208	 0.0180	 -13.5%	

500 0.0373	 0.0318	 -14.7%	

100 0.0657	 0.0575	 -12.5%	
 
Table 7-8 shows that the difference in acceleration between the theoretical approach by Handa 
and EKS 10 is large for all measured support stiffness’s, 𝐾BC. This suggests that the analytical 
mode shape and the simplified mode shape differ for all measured line support stiffness in the 
parameter study when the flexural rigidity is increased. 
 
7.9.2.2 Reduced stiffness 

To simulate reduced flexural rigidity, the modulus of elasticity, 𝐸5,, for the concrete is divided 
by a factor of 4. Figure 7-29 shows the resulting acceleration and corresponding fundamental 
frequency. 
 

 
Figure 7-29 Acceleration and fundamental frequency when flexural rigidity is reduced by a 

factor of 4. 
 
As can be seen in Figure 7-29, the behaviour of fundamental frequency and acceleration is the 
opposite from what was observed in Figure 7-28. The difference between maximum and 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fu
nd

am
ne
ta
l	f
re
qu

en
cy
	[H

z]

Line	support	!"ʹ [MN/m/m]

EKS	10

Handa

EN	1991-1-4 
Strømmen

Fundamental	frequency

Ac
ce
le
ra
tio

n,
	# $̈

&
[m

/s
2
]



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis BOMX02-17-32 85 

minimum acceleration is small compared to the results for increased stiffness. Further, it can 
be noticed that the slopes of the curves are less steep for decreased stiffness, i.e. the effect of 
support conditions is smaller for structures with less flexural rigidity in relation to stiffness of 
support.  
 

Table 7-9 Comparison between EKS 10 and Handa's approach for various support 
conditions when stiffness of building is reduced. 

𝑲𝒛é 	
[MN/m/m]	

EKS	10	
[m/s#]	

Handa	
[m/s#]	

Difference	
[%]	

3000 0.0547	 0.0531	 -2.8%	

500 0.0595	 0.0568	 -4.5%	

100 0.0755	 0.0687	 -7.7%	
 
Table 7-9 shows that the difference in acceleration between EKS 10 and Handa is rather small, 
this indicates that the analytical mode shape is more similar to the mode shape stated in the 
norms (i.e. close to that obtained for a fixed support) when the flexural rigidity is decreased.  
 
7.9.2.3 Conclusion on influence of stiffness 

From studies in Section 7.9.2.1 and 7.9.2.2, it is clear that the relation between flexural rigidity, 
𝐸𝐼, and stiffness of the support, influences what effect support conditions has on the horizontal 
acceleration. The differences in acceleration and fundamental frequency according to Handa 
for the two cases, are presented in Table 7-10. 
 
Table 7-10 Comparison of acceleration and fundamental frequency between the base case 

and the reduced as well as the increased stiffness for Handa’s method. 

Handa	
𝑲𝒛é 	

[MN/m/m]	
EI	

[m/s#]	
4	EI	

[m/s#]	
Difference	

[%]	
EI	
[Hz]	

4	EI	
[Hz]	

Difference	
[%]	

3000	 0.0305	 0.0180	 -41%	 0.3007	 0.4826	 60%	

500	 0.0393	 0.0318	 -19%	 0.2168	 0.2618	 21%	

100	 0.0602	 0.0575	 -4%	 0.1189	 0.1249	 5%	
𝑲𝒛é 	

[MN/m/m]	
EI	

[m/s#]	
0.25	EI	
[m/s#]	

Difference	
[%]	

EI	
[Hz]	

0.25	EI	
[Hz]	

Difference	
[%]	

3000	 0.0305	 0.0531	 74%	 0.3007	 0.1618	 -44%	

500	 0.0393	 0.0568	 45%	 0.2168	 0.1439	 -34%	

100	 0.0602	 0.0687	 14%	 0.1189	 0.1013	 -15%	
 
In Table 7-10 it can be seen that the acceleration is highly affected by the flexural rigidity of 
the core. Increasing the flexural rigidity by a factor of 4, decreases the acceleration with 41 % 
for 𝐾BC = 3000	MN/m/m  and divding the flexural rigidty by factor of 4 increases the 
acceleration with 74 % for 𝐾BC = 3000	MN/m/m. Another relationship that can be observed 
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in Table 7-10 is that the difference in acceleration is almost in the same magnitude as the 
difference in fundamental frequency.  
 
The behaviour of the acceleration for different 𝐸𝐼 can be explained by examining the 
variation of the mode shape. In Figure 7-30 the analytical mode shape is plotted for the two 
cases of flexural rigidity, when the foundation is regarded as stiff (𝐾BC = 3000	MN/m/m). 
For comparison, the simplified mode shape according to Eurocode 1 Part 1-4 is shown in 
Figure 7-30.   
 

 
Figure 7-30 Variation of mode shape due to change in flexural rigidity, in case of 𝐾BC =

3000	𝑀𝑁/𝑚/𝑚, compared to simplified mode shape according to Eurocode 1 
Part 1-4. 

 
With increasing flexural rigidity in relation to the stiffness of the support, deformations will 
start to occur in the foundation, i.e. the rotational DOF in the bottom of the cantilever. The 
mode shape, 𝜙ÕOõ,  will consequently tend to illustrate a structure with a less fixed support, as 
can be seen in Figure 7-30. With deformations occurring in the foundation instead of in the 
structure itself, the change of stiffness in the support affects the acceleration more than for a 
building with normal stiffness. This is an explanation to why the curves are steeper in Figure 
7-28.  
 
Consequently, the opposite behaviour is shown for the case of low flexural rigidity in relation 
to stiffness of the support. For this scenario, displacements occur in the structure and the change 
of stiffness in the support has less effect on the acceleration. 
 
Additionally, what can be concluded from Figure 7-28, Figure 7-29 and Figure 7-30 is that EKS 
10 does not take this effect into account, due to the fact that it is independent of mode shape for 
cases with evenly distributed mass. This means that EKS 10 is a better representation for 
structures with less the flexural rigidity of the core in relation to support stiffness, and not that 
representable for the opposite case.   
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An observation that can be made when looking at Figure 7-24, Figure 7-28 and Figure 7-29, is 
that the slope for the acceleration and the fundamental frequency is very similar but with 
opposite signs. This indicates that the acceleration is highly dependent on the fundamental 
frequency. 
 
The effect of change in support conditions on fundamental frequency for the cases with 
different flexural rigidity is shown in Figure 7-31.  
 

 
Figure 7-31 Influence of flexural rigidity on the relationship between fundamental frequency 

and stiffness of the support. 
From this it can be seen that the magnitude of the fundamental frequency is very different when 
stiffness of line support is large, while the results converge for weak conditions. This indicates 
that the fundamental frequency is more influenced of the flexural rigidity of the building when 
support conditions are more rigid, and nearly independent of the structural stiffness for very 
flexible supports.  
  
 
Table 7-11 compares the fundamental frequency when using the maximum line support 
stiffness used in this parameter study to a fully fixed foundation. It is clear that when decreasing 
the stiffness of the core by a factor of four, it can be regarded as fully fixed when using 𝐾Bé =
3000	MN/m/m, something that cannot be said when the stiffness of the core is increased by a 
factor of four.  
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Table 7-11 Comparison of fundamental frequency between a fully fixed support and 
maximum studied stiffness for difference stiffness 

𝑲𝒛é 	
[MN/m/m]	

Frequency	
[Hz]	

Difference	
[%]	

Normal	stiffness	
∞	 0.333	 90	%	

3000	 0.301	
Increased	stiffness	

∞	 0.665	 73	%	
3000	 0.483	

Decreased	stiffness	
∞	 0.166	 97	%	

3000	 0.162	
 

7.9.3 Influence of mass 
Horizontal acceleration is highly correlated to the mass, both by fundamental frequency and 
mode shape. It is therefore investigated what effect the change of mass and mass distribution 
has on the acceleration for various support conditions.  
 
7.9.3.1 Scaling mass 

An increase in mass reduces the fundamental frequency, which increases the acceleration. 
However, an increase in mass also increases the inertia of the building, which reduces the 
acceleration. To see what effect the mass has on the acceleration, a mass scaling factor is 
introduced, which is multiplied with the density of the concrete for the studied building 
described in Section 7.1.1. Masses are calculated and presented in Appendix B. 
 
Standard deviation of acceleration is calculated for the case of flexible support conditions, 
𝐾BC = 500	𝑀𝑁/𝑚/𝑚, and presented in Figure 7-32.    
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Figure 7-32 Relationship between standard deviation of acceleration for all four methods, 

and amount of mass, when 𝐾BC = 500	𝑀𝑁/𝑚/𝑚.  
 
As can be seen in Figure 7-32, an increase of mass reduces the horizontal acceleration in the 
top of the building. The behaviour is shown for 𝐾BC = 500	MN/m/m, but the conclusion holds 
for all support conditions.   
 

7.9.3.2  Varying distribution 

As shown in Section 7.4.3, the effect support condition on the equivalent mass, 𝑚& , is 
neglectable for the studied example. Further, it is shown that when calculating standard 
deviation of acceleration in the top of the building, EKS 10 only accounts for change of mode 
shape through the estimation of equivalent mass. This lead to the conclusion that EKS 10 is 
independent of changes on the mode shape. The reasoning is however, only valid if the mass is 
evenly distributed over the height. This can be seen by examining expression (7-11) for 
equivalent mass, combined with the expression for generalized mass in Equation (7-7): 
 

 𝑚& =
𝑀

𝜙+#(𝑧)𝑑𝑧
§
k

=
𝜙+#(𝑧)𝑚+(𝑧)𝑑𝑧

§
k

𝜙+#(𝑧)𝑑𝑧
§
k

 (7-29) 

 
For the case of evenly distributed mass, i.e. when mass per meter, 𝑚+ 𝑧 , is constant over the 
height, it can be placed outside the integral, enabling the following simplification: 
 

 𝑚& = 𝑚+ (7-30) 
 
For these situations, the equivalent mass is completely independent of the mode shape, and thus 
on the support conditions. However, this is not always the case for typical structures in civil 
engineering. Hence a structure with the same total mass as for the base case described in Section 
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7.1.1 but with varying mass distribution along the height is studied, to see what impact support 
conditions has on the acceleration according to EKS 10. The studied structure with mass 
distribution is shown in Figure 7-33. 
 

 
Figure 7-33 Illustration of mass distribution for studied building.  

 
The behaviour of equivalent mass, 𝑚&, for varying stiffness of the support is shown in Figure 
7-34. 
 

 
Figure 7-34 Relationship between equivalent mass for a structure with varying mass 

distribution, and stiffness of the support.  
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As expected, the equivalent mass per meter is now dependent on the support conditions. Unlike 
the case of evenly distributed mass, there should now be a difference between EKS 10 when 
comparing the analytical mode shape to the mode shape from norms.  
 
To study the effect, the results for EKS 10 are plotted with analytical mode shape, taking 
support conditions into account, and the simplified mode shape which is independent on support 
conditions. The results are shown in Figure 7-35. 
 

 
Figure 7-35 Comparison between the analytical mode shape and mode shape from norms for 

EKS 10 with varying mass distribution. 
 
The two curves in Figure 7-35 are not equal, which means the choice of mode shape when 
determining acceleration according to EKS 10 is affected when the mass is varying over the 
height of the building. The acceleration is presented for three support conditions in Table 7-12. 
 

Table 7-12 Comparison of standard deviation of acceleration for EKS 10 for different mode 
shape and stiffness of support in case of varying mass.  

𝑲𝒛C	 EKS	10	
[MN/m/m]	 Analytical	 Norm	 Diff.	

3000	 0,0393	 0,0395	 0,5%	
500	 0,0522	 0,0544	 4,2%	
100	 0,0819	 0,0875	 6,8%	

 
For rigid supports (𝐾BC = 3000MN/m/m), the results are very similar. However, the results 
diverge for decreasing stiffness of the support and even if EKS 10 with simplified mode shape, 
is conservative, it cannot be seen as a correct representation for the situation when the mass is 
varying.   
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Obviously, EKS 10 with analytical mode shape accounts for the support conditions to some 
extent. Figure 7-36 shows a comparison between the theoretical approach according to Handa 
and EKS 10 with analytical mode shape when the mass is varying. 
 

 
Figure 7-36 Comparison between results from EKS 10 and Handa with analytical mode shape 

with varying mass.  

 
What can be noticed in the figure is that EKS 10 still is conservative for all support conditions. 
As mentioned in Section 5.2.1, EKS 10 is derived from Handa’s equations with some 
assumptions. One of these assumptions is that the mode shape stated in Eurocode 1 Part 1-4, is 
used when simplifying expressions that contains integrals of the mode shape. These 
assumptions affect the generalised load, 𝑊, and correlation factor, 𝑉5, which means that EKS 
10 does not consider how these parameters is influenced by the change of mode shape, and this 
induces some differences.  
 
Further, what can be observed by comparing Figure 7-36 and Figure 7-24, is that the horizontal 
acceleration increases for the case with varying mass distribution even though the total mass of 
the structure is the same for both cases. This is because the generalised mass,	𝑀6, is defined as 
the integral of the product between mass per meter and mode shape in square, see Section 7.4.1. 
Consequently, an increased mass per meter, 𝑚+(𝑧), has largest effect on generalized mass in 
the top of the building, where the mode shape is large, and small effect in the bottom of the 
structure. For the chosen mass distribution in Figure 7-33, where the mass per meter is less in 
the top of the building compared to the base case, the generalised mass is consequently less. As 
concluded in Section 7.4.1, a decreased generalised mass increases the horizontal acceleration.  
 

7.9.4  Influence of decay constants 
As mentioned in Section 5.2.1 and 5.2.2 the expressions in the norms are based on different 
assumptions. One of these assumptions is that the normalized Co-spectrums are simplified on 
the basis of a certain decay constant. 
 
Normalized Co-spectrums are explained in Section 4.1.3.2 and are defined as:  
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 𝐶𝑜>+ Δ𝑖, 𝜔 = 𝑒�RÏ'
Ð+�

#�Ç(B) (7-31) 

 
According to K. Handa (Personal communication, April 26, 2017), EKS 10 is based on 𝐶>B =
𝐶>m = 8 while (Dyrbye & Hansen, 1997) states that the expressions in Eurocode 1 Part 1-4 are 
based on 𝐶>B = 𝐶>m = 11,5. The normalized Co-spectrums in both directions, 𝑧 and 𝑦, are 
plotted for these two assumed decay constants in Figure 7-37 and Figure 7-38. 
 

 
Figure 7-37 Relationship between integral over Co-spectrum in y-direction and frequency, 

for two choices of decay constants. 
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Figure 7-38 Relationship between integral over Co-spectrum in z-direction and frequency, 

for two choices of decay constants. 

 
What can be noticed from the figures above is that the integrals over the Co-spectrums are 
larger when assuming decay constants 𝐶>B = 𝐶>m = 8, which is the case for EKS 10, and less 
when assuming 𝐶>B = 𝐶>m = 11.5, which is the case for Eurocode 1 Part 1-4 Annex B.  
 
As concluded, for Strømmen and Handa, in Section 7.4.2 and 7.5.2, an increase in Co-spectrums 
will result in greater acceleration. It is therefore studied how the accelerations according to 
these theoretical approaches are affected when choosing decay constants, 𝐶>B = 𝐶>m = 11.5 
instead of 𝐶>B = 𝐶>m = 8, as input. The results are plotted in Figure 7-39. 
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Figure 7-39 Relationship between standard deviation of acceleration, with decays constants 

𝐶>B = 𝐶>m = 11.5  as input for Strømmen and Handa, and stiffness of the 
support. 

 
As expected, the acceleration is decreased for Strømmen and Handa and by comparing Figure 
7-39 with previous results in Figure 7-26, it can be observed that acceleration deterimined by 
Strømmen and Handa now tend to be more similar to that of Eurocode 1 Part 1-4 instead of 
EKS 10.  
 
It can then be concluded that the choice of decay constants is crucial for the magnitude of 
acceleration.  
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8 Discussion 
8.1 Analytical model 
In this Thesis, an analytical model has been developed, see Chapter 6, in order to determine a 
representable mode shape and fundamental frequency for the structure and current support 
condition, i.e. a structure with changeable stiffness of the support. With the analytical model, it 
is then possible to implement the analytical mode shape in the four expressions for horizontal 
acceleration. However, one should be aware that some assumptions made to create the 
analytical model could result in deviation from an actual acceleration of a structure exposed to 
wind.  
 
In this Thesis, the deep foundation was idealised as flexible line support at the base of the core. 
This assumption results in some characteristic of the foundation that might not fully correspond 
to the reality of a deep foundation. One consequence is that the structure will rotate around the 
centre line of the core, which could be questionable. Also, there is no damping included from 
the foundation, something that should be expected. 
 
The core in the analytical model was modelled with beam elements, with constant flexural 
rigidity between the floors, i.e. a homogenous core. A core in a real structure usually has 
openings, since it is often utilized as staircase and for elevator shaft, which require doors. These 
imperfections could induce shear deformation that beam elements cannot take into 
consideration, so the mode shape of a real structures could deviate somewhat from the mode 
shape obtained from the analytical model.  
 
The potential deviation from a real structure mentioned above, could affect the mode shape and 
fundamental frequency of the building. However, the fundamental behaviour, i.e. that decreased 
rigidity in the foundation reduces the fundamental frequency and changes the mode shape, 
would still apply. However, one should be aware that the magnitude of these parameters could 
be affected. 
 
As described in Section 6.3, the rectangular rule is used for numerical integrations in the 
MATLAB-program developed. The rectangular rule is a rather simple method and should 
induce some error compared to the true integral. However, this error is expected to be rather 
small and since the main purpose of the Thesis was to investigate the relationship between 
horizontal acceleration and rotational stiffness of the support, the rectangular rule is assumed 
to be a good simplification. A more advanced integration method could be used for more exact 
results.   
 

8.2 Results from parameter study 
8.2.1 Mode shape 
From Section 7.2, it is clear that the mode shape is affected by change of support conditions. It 
is also shown in Section 7.9.1, that acceleration according to the theoretical approaches 
decreases when using the analytical mode shape compared to the simplified mode shape stated 
in the norms. This proves that the horizontal acceleration is affected by changes of mode shape. 
However, as concluded in Section 7.9.1, EKS 10 is independent of the mode shape unless the 
mass distribution varies along the height. And even for such a case, there are simplifications 
made in the development of EKS 10, causing errors in the acceleration for decreasing stiffness 
of the support. This means that, by using EKS 10 it is not possible to fully account for 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis BOMX02-17-32 97 

decreasing stiffness of the support, since the change of mode shape is not completely accounted 
for.  
 
However, the effect of mode shape seems to be fully taken into account for the theoretical 
approaches according to Strømmen and Handa. The results from Section 7.9.1 indicates that 
also the method presented in Eurocode 1 Part 1-4 Annex B, accounts for change in mode shape. 
It is however, uncertain if some of the terms in the method are based on simplifications 
including an assumed mode shape. In Section 7.9.4, when changing decay constant for 
Strømmen and Handa to what was assumed in Eurocode 1 Part 1-4 Annex B, the results 
correlates well between the methods for all support conditions. This should indicate that 
Eurocode 1 Part 1-4 Annex B accounts for change of mode shape due to varying support 
conditions. 
 

8.2.2 Fundamental frequency 
The fundamental frequency decreases with decreasing stiffness of the support, as shown in 
Section 7.3. Throughout the parameter study, it was proven that the fundamental frequency has 
a significant impact on the horizontal acceleration. An observation that can be made when 
looking at a figure that compared the acceleration between the four methods together with the 
fundamental frequency, for example Figure 7-24, is that the slope of the acceleration and 
fundamental frequency is similar but with opposite signs. 
 
The reason why the fundamental frequency is an important parameter is mainly due to the fact 
that the resonant part of the structure moves to lower frequencies, which is the region where 
the wind turbulence is larger, see von Kármán’s wind-spectral density in Figure 7-5. This results 
in greater response, and thus greater acceleration of the loaded structure.  
 
Further, it was concluded in the parameter study that the effect support condition has on the 
fundamental frequency is accounted for in all four approaches. 
 

8.2.3 Potential differences between Strømmen and Handa 
From the parameter study, it is clear that estimated acceleration according to the theoretical 
approaches, Strømmen and Handa, differs for all cases. One would expect that the therotical 
approaches would yield identical acceleration, but some differences have been noticed in the 
two methods. As stated in Section 4.2.2.2, one obvious difference in the derivations is that 
Handa expresses the mean wind velocity, 𝑉(𝑧), and turbulence intensity, 𝐼>(𝑧), by the power 
law profile, while Strømmen uses the logarithmic profile. As shown in Figure 3-7, Section 
3.5.3.2, there are some differences between the power law profile and logarithmic profile, 
which should induce differences between the final acceleration for the two approaches.  
 
The transition from the expressions for standard deviation of acceleration for the entire 
frequency domain, to the final expressions for the resonant part, are not completely clear in the 
literature. This makes is difficult to completely compare the final expressions. There is, 
however, no reason to question the validity of the final expressions according to neither 
Strømmen, nor Handa.  
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8.2.4 Potential differences between EKS 10 and Eurocode 1 Part 1-4  
What was surprising from the parameter study was the large difference in acceleration between 
the design norms, EKS 10 and Eurocode 1 Part 1-4 Annex B. A possible explanation may be 
found in the assumptions made when developing the norms.  
 
As can be observed in Section 7.9.1, the acceleration according to Handa and EKS 10 is very 
similar when input parameters, such as mode shape and decay constants, are the same. This 
should indicate that EKS 10 is based on Handa’s expression when simplified mode shape and 
decay constants, 𝐶>B = 𝐶>m = 8 are assumed. 
  
In Section 7.9.4, when the decay constants are set to 𝐶>B = 𝐶>m = 11.5 , the theoretical 
methods, Strømmen and Handa, yields acceleration that is close to the acceleration obtained 
from EN 1991-1-4. This should indicate that EN 1991-1-4 is based on a similar theoretical 
approach as that of Strømmen and Handa, but with decay constants set to 11.5. 
 
These two conclusions are in accordance to what was stated in Section 5.2.1 and 5.2.2, that the 
explanation to the large difference in acceleration between the two norms, is that different input 
parameters were used when developing the expressions, and especially that two different decay 
constants were implemented. 
 

8.3 Wind-spectral density 
Initially in the parameter study, the expressions for calculating horizontal acceleration were 
modified to increase comparability of the results. One of these modifications was to consistently 
use von Kármán’s wind spectral density for all four methods, as this is the choice in EKS 10. 
For the approach proposed in (Strømmen, 2010), several wind-spectral densities are mentioned 
but no one is explicitly chosen. Thus, the modification mainly affects the approach stated in 
Eurocode 1 Part 1-4, since the wind-spectral density chosen there is according to Kaimal’s 
expression, see Section 5.2.2.  
 
As mentioned in Section 7.1.3.1, the various wind-spectral density are empirical expressions 
describing the same phenomenon. Further, there is no indication that the choice of wind-spectral 
density is connected with other simplifications of the approach in Eurocode 1 Part 1-4. Thus, 
using von Kármán’s wind spectral density in Eurocode 1 Part 1-4 should not affect the validity 
of the method. 
 
One must however be aware of that, by changing the wind-spectral density, the magnitude of 
horizontal acceleration will be influenced. The choice of wind-spectral density is therefore an 
important parameter to consider when designing for acceleration.   
 

8.4 Integral length scale 
For the parameter study when determining the wind-spectral density, the integral length scale, 
𝐿>6 = 150	𝑚 , was chosen in accordance with recommendations from K. Handa (Personal 
communication, April 26, 2017). The modification was made to increase comparability for the 
results, and was not expected to affect other terms in the expressions.  
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However, it may be shown that the magnitude of integral length scale has a significant impact 
on the horizontal acceleration. The choice of integral length scale is therefore an important 
parameter to consider, when designing for acceleration.    
 

8.5 Decay constant 
It was shown in the parameter study that the choice of decay constants, 𝐶>B and 𝐶>m, for the 
normalized Co-spectrums are crucial for the magnitude of the horizontal acceleration, see 
Section 7.9.4. Initially in the parameter study, the decay constants were chosen in accordance 
with recommendations from K. Handa (Personal communication, April 26, 2017), which 
resulted in good correspondence between the theoretical approaches and EKS 10.  
 
However, when changing the decay constants in accordance to what was assumed when 
developing the expressions in Eurocode 1 Part 1-4 Annex B, the estimates from the theoretical 
approaches tended towards the results from Eurocode instead of EKS 10. This indicates that 
the magnitude of acceleration is highly dependent on the choice of decay constant, and that one 
of the main differences between the method in EKS 10 and in Eurocode 1 Part 1-4 Annex B are 
the originally chosen decay constants.  
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9 Final Remarks 
9.1 Conclusions 
The aim of this Thesis was to investigate what influence a deep foundation has on the horizontal 
acceleration in high-rise buildings. From the parameter study, it was clear that both the 
fundamental frequency and mode shape of the loaded structure will be affected by decreasing 
the rotational stiffness of the support, and that the horizontal acceleration will be affected due 
to those changes. 
 
The parameter study concluded that the horizontal acceleration, for all four methods, increased 
when the rotational stiffness of the support decreases. It was also shown that the horizontal 
acceleration is mainly affected by the change of fundamental frequency.  
 
EKS 10 was conservative for all performed studies in the parameter study, this should increase 
the confidence in using this method regardless of boundary conditions. Since the mode shape 
is rather demanding to estimate analytically and due to the fact that EKS 10 is nearly 
independent on the mode shape, it is recommended to use the simplified mode shape proposed 
in the norms. However, it is necessary to use the correct fundamental frequency that 
corresponds to the actual support of the building, since the fundamental frequency have large 
impact on the resulting acceleration. 
 
However, the estimated acceleration could be reduced significantly by using the approach in 
Eurocode 1 Part 1-4. For the chosen building in the parameter study, acceleration could be 
reduced up to 33 % compared to EKS 10.  
 
The parameter study showed that it is possible for the designer to decrease the magnitude of 
horizontal acceleration by making some adjustments of the system. An increase in total mass 
will result in increasing inertia, which will reduce the horizontal acceleration. It is also 
beneficial for the horizontal acceleration to increase mass per meter in the top of the structure. 
Further, the parameter study showed that horizontal acceleration is highly dependent on the 
rotational stiffness of the entire structure. One method for decreasing the acceleration is 
therefore to increase the stiffness of the structure. If the flexural rigidity of the core is large 
compared to the stiffness of the support, the horizontal acceleration is most efficiently reduced 
by increasing rotational stiffness of the support. If the flexural rigidity of the core is low in 
relation to the foundation, it is more efficient to focus on increasing the structural stiffness of 
the structure to reduce horizontal acceleration.  
 

9.2 Further studies 
The choice of decay constant turned out to be crucial for the magnitude of horizontal 
acceleration. Since there are several recommended values in the literature, but no homogeneous 
opinion about which to assume, the decay constants is a parameter that needs further 
investigation. 
 
In the study, only the fundamental mode of the structure was investigated. To obtain a more 
correct acceleration, more modes should be considered in the analysis. Especially if the location 
of the core is not symmetrical within the building, since that might cause torsion of the building, 
resulting in excitation in both the horizontal mode and in torsional mode simultaneously.  
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Vibrations due to vortex shedding may be governing for slender structures, such as high-rise 
buildings. The behaviour of fundamental frequency and mode shape for decreasing rotational 
stiffness of the support, as concluded in this Thesis, will be applicable also for this phenomenon. 
However, the horizontal accelerations due to vortex shedding may have a different relationship 
with decreasing rotational stiffness of the support, and this needs further investigation. 
 
If even taller buildings are to be constructed in the future, resulting in more vibrations, it could 
be of interest to install a damper of some sort in the building. The mechanical damping ratio is 
a tabulated value in the norms, which may not completely reflect the correct situation.   
Therefore, it would be interesting to investigate the damping further, and add such a possibility 
in the calculations.  
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 Appendix A Mass calculations for verifications 
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Appendix B Mass calculations for parameter study 
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Appendix C MATLAB code 
C.1 Main code 

 
----------------Master thesis------------------ 
  %Wind-Induced Acceleartion in High-Rise Buildings 

 

clc ; close all; clear all 

PART 1 - Input and structural properties 
Input 
Input; %Calls for the matlab file with all the input 

Determine the coordinates of the cantilever 
%--------------------------------------------------------------- 

[Coord]=coordinates(n_storeys,height_n,add_1); %Function that calls 

% for the coordinates of the cantilever, where each coordinate 

%represent a floor level 

 

Ey=Coord(:,2);  %Coordinates of in y Dofi 

Ex=Coord(:,1);  %Coordinates of in x Dofi 

 

Eyp=[Ey(1:n_storeys) Ey(2:n_storeys+1)]; 

%Creates y-coordinates for an element 

Exp=[Ex(1:n_storeys) Ex(2:n_storeys+1)]; 

%Creates x-coordinates for an element 

 

%--------------------------------------------------------------- 

Determine the stiffness matrix and mass matrix 
%---------------------------------------------------------------------- 

[K,Edof,M,C] = stiffnesmatrix(Eyp,Exp,ep1,ep2,ep3,n_storeys,krs,khs,n1,n2); 

%Provides the global stiffness matrix,mass matrix, damping matrix 

% and the topologi matrix of each element in core 

 

%--------------------------------------------------------------------- 

[M] = massmatrix(m1,m2,m3,n1,n2,K,M,mtop); % Function file that adds the 

%lumped mass from each floor 

Calculates the natural frequencies and mode shapes 
%----------------------------------- 

b=2:3:size(K,1);        %Degrees of freedom that are  zero 

 

[La,Modeshapes]=eigen(K,M,b'); %Calculates the eigenvalue problem 

 

Freq=sqrt(La)/(2*pi);  %Determines the frequencies of the building 

 

%Extraxts the horzontal values of the modeshape vector 
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Modeshapef=Modeshapes(:,1);Modeshapef=Modeshapef(1:3:end); 

 

Modeshapef=abs(Modeshapef/norm(Modeshapef,inf)); 

%Extracts the horizontal dofs and then normalizes the vector with a value 

%equal to 1 in the top of the vector 

 

fundamental_frequency=Freq(1); %Extracts the fundamental frequency in HZ 

w_fundamental=Freq(1)*2*pi; %Circualar natural frequenzy 

 

%------------------------------------ 

Plot the result of mode shape 1 and 2 
%Following is just plotfunctions in CALFEM, when plotting the first 

% two mode shape of the core 

 

figure(1),clf 

eldraw2(Exp,Eyp,[2 3 0]); 

Edb=extract(Edof,Modeshapes(:,1)); 

FreqText=num2str(Freq(1)); 

title('First two modeshapes'); 

eldisp2(Exp,Eyp,Edb,[1 2 0],100000); 

 

Edb2=extract(Edof,Modeshapes(:,2)); 

eldisp2(Exp,Eyp,Edb2,[1 4 0],10000); 

Determines generalized mass and equivalent mass 
[Mg,me,Mode_square] = Generel_Equiv_mass(m1,m2,m3,n1,n2,... 

    Modeshapef,height_n,mtop); 

PART 2 - Acceleration according to EKS 10 
[Accel_EKS,max_acc,betaair,xf_L_u] = EKS_acc(width,Ey,ksi,vb,c0,... 

   fundamental_frequency,cf,me,beta,kl,Ter,rho,href,p1_x); 

PART 3 - Acceleration according to Strømmen 
Lx=linspace(0,Ey(1),N_int); %Height vector, to be used when integrating 

%over the height of the bulding 

 
Expansion of mode shape 
[MS_int] = Modeshape_expansion(Ey,Modeshapef,n_int_per_storey,Lx); 

Wind Behaviour, such as mean wind velocity vs height and mean turbulence 
[Iu,v_mean,vtop,v_mean_zs,Iu_zs] = Wind_Behaviour(Lx,Ter,vb5); 
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Spectral Density 
[Kaimal,Karman] = WindSpectralDensity(Ey,N_int,vtop,... 

                                      w,xf_L_u,v_mean_zs,Ter); 

Frequency Response Function 
zetaair=betaair/(2*pi); %Determine the aerodynamic damping 

[Hhat_N,Hhat] = FrequencyResponseFunction(zeta,w,w_fundamental,zetaair); 

Coherence width and height 
[Co_b,Co_h] = Coh_b(width,N_int,w,vtop,Cuu,Ey); 

Joint Acceptance function 
[J_sqr,J_sqr_NORM]=JointAF(Iu,Lx,Cuu,MS_int,v_mean,vtop,w,Mode_square,... 

                       Kaimal,Karman,w_fundamental,v_mean_zs,rho,width,cf); 

Response Spectrums 
[Response_spectra_Acc,Response_spectra] = reponsespectrums(w,rho,... 

Hhat_N,J_sqr_NORM,width,w_fundamental,me,depth,Kaimal,v_mean,inc,cf,Co_b); 

Acceleration for the resonance response 
[Accel_Strommen] = resonance(Mg,w_fundamental,J_sqr,rho,width,cf,Hhat_N,... 

                   w,zeta,zetaair,Co_b) 

 
 
PART 4 - Acceleration according to Eurocode Appendix B 
[Accel_EC] = EC(cf,rho,Iu_zs,me,width,zeta,zetaair,Ey,... 

             fundamental_frequency,Ter,v_mean_zs,v_mean,MS_int,Iu) 

PART 5 - Acceleration according to Kamal Handa theoretical method 
 
Mean deflection 
[y_m] = y_m1(cf,rho,width,vtop,MS_int,powerlaw,w_fundamental,Mg,Ey); 

HC-reduction factor for width 
[H_C] = H_C1(width,fundamental_frequency,vtop,N_int,Cuu); 

VC-reduction factor 
[V_C] = V_C1(powerlaw,Ey,MS_int,vtop,Cuu,fundamental_frequency); 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis BOMX02-17-32 109 

Wind Spectral density 
[F] = Wind_Spec(vtop,fundamental_frequency,xf_L_u); 

Acceleration according to Handa 
[Dev_dis,Accel_Handa] = Handa(Iu,y_m,F,V_C,H_C,zetaair,zeta,w_fundamental); 

 
 

C.2 Input file 
 
Input file for all calculation 
 
Input to determine the behavior of the core 
%------------------INPUT--------------------- 

n_storeys=40;     %Number of storeys 

height_n=3.8;     %Typical storey height 

add_1=0;          %Extra height of first floor 

A=0;              %Needed for input, but not relevant for modeshapes 

%--------------------------------------------- 

n1=75;            %Number of  from the top including n1 (roof = 1) 

                  %with a specific E1,I1,m1 

 

E1=34e9;          %E-modulus for lateral bearing system for n1 

I1=1578.4;        %Moment of inertia for core for n1 

mtop=818700;      %Weight of roof 

m1=1052400;       %Weight of each floor in levels n1 

ep1=[E1 A I1 0]; 

 

%--------------------------------------------- 

n2=80;            %Number st  from from n1-n2 with a specific 

                  %with a specific E2,I2,m2 

 

E2=34e9;          %E-modulus for lateral bearing system 

I2=1578.4;        %Moment of inertia for core 

m2=750000;        %Weight of each floor 

ep2=[E2 A I2 0]; 

%--------------------------------------------- 

%If n2<n_storeys, then the rest of the core is assumed to have the 

%following properties 

 

E3=34e9;          %E-modulus for lateral bearing system 

I3=580;           %Moment of inertia for core 

m3=750000;        %Weight of each floor 

ep3=[E3 A I3 0]; 

%--------------------------------------------- 

 

khs=1e16;           %Stiffness for horizontal spring 

a=15;               %width of core, short side (central line) 

b=15;               %Width of core, long side  (central line) 

kl=500e6;           %Stiffness line support along core 

 



CHALMERS, Civil and Environmental Engineering, Master’s Thesis BOMX02-17-32 110 

[krs] = rotaionalstiffness(kl,a,b); %Function file that determines 

%rotational stiffness of foundation with regard to geomertry 

%and flexibility of a line support 

 

%krs=10e15;         %Use this as input if fixed support 

 
 
Input for determine the acceleration in Part 4 according to EC 
ksi=0.855 ;     %Omräkningsfaktor for 5 years 

vb=25;          %Reference wind velocit 

vb5=ksi*vb;     %Reference wind velocity return period 5 years 

rho=1.25;       %Densisty of air 

 

width=30;       %Widht of the building 

depth=30;       %Depth of building 

 

 

cf=1.55;        %Formfactor 

c0=1;           %Topoligy factor 

href=10;        %According to BSV 97 

p1_x=1;         %Fundamental mode in wind direction 

beta=0.1;       %Mechanical logarthimic damping of the structure 

kl=1;           %Turbolense factor 

 

TerrainCat=3;   %Choose terrain cattegory 

 

if TerrainCat==1 

    Ter=[0.00 1 0.16]; 

elseif TerrainCat==2 

             Ter=[0.05 2 0.19]; 

elseif TerrainCat==3 

                 Ter=[0.3 5 0.22]; 

elseif TerrainCat==4 

                     Ter=[1 10 0.24]; 

end 

Input for full dynamic analysis 
zeta=beta/(2*pi);       %Damping 

Cuu=8;                  %Decay constant 

n_int_per_storey=20;    %Number of intergration per floor 

 

 

N_int=n_storeys*n_int_per_storey+1; 

% Number of integration points, 20 per floor + top 

 

w=linspace(0.001,4*pi,N_int); %Which frequency we will look at, can 

% increase/decrease what frequency domain we will include, now times 4 pi 

 

inc=20;         %How many points to increse integration over resonance part 

                %in acceleration response spectra 

 

powerlaw=0.21;  %Power exponant to express wind and turbulance 
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C.3 Function file rotational stiffness 

 
function [krs] = rotaionalstiffness(kls,a,b) 

%Determines the rotaional stiffness of the core due to flexibel line 

%support in vertical diraction in form of a rotational spring 

krs=(kls*a^2/4)*(2*b+a/2); 

end 

 
C.4 Function file coordinates 

 
function [Coord]=coordinates(n_storeys,height_n,add_1) 

%Function that determines the coordinates of the cantilever 

 

h_storey=n_storeys*height_n+add_1; 

Ey=zeros(n_storeys+1,1); 

Ex=zeros(n_storeys+1,1); 

 

%Adds the height coordinates in vector form 

for i=1:n_storeys; 

    h=h_storey-(i-1)*height_n; 

    Ey(i) = h; 

end; 

Coord=[Ex Ey]; 

 
C.5 Function file stiffness matrix 

 
function [K,Edof,M,C] = stiffnesmatrix(Eyp,Exp,ep1,ep2,ep3,n_storeys,... 

                                        krs,khs,n1,n2) 

%Stiffnesmatrix determines the total stiffness of the cantilever 

 

Edof=zeros(n_storeys,7);    %Topology for all Dofs 

 

K=zeros((n_storeys+1)*3); 

M=zeros((n_storeys+1)*3); 

C=zeros((n_storeys+1)*3); 

 

for i=1:n_storeys 

   if i <= n1       %Creates K matriced for the top floors 

[k,m,c]=beam2d(Exp(i,:),Eyp(i,:),ep1); 

edof=... 

[i i+(i-1)*2 i+1+(i-1)*2 i+2+(i-1)*2 i+3+(i-1)*2 i+4+(i-1)*2 i+5+(i-1)*2]; 

Edof(i,:)=edof; 

 

   elseif i <= n2   %Creates K matrice for the middle floors 

[k,m,c]=beam2d(Exp(i,:),Eyp(i,:),ep2); 

edof=... 

[i i+(i-1)*2 i+1+(i-1)*2 i+2+(i-1)*2 i+3+(i-1)*2 i+4+(i-1)*2 i+5+(i-1)*2]; 

Edof(i,:)=edof; 
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   else             %Creates K matriced for the bottom floors 

[k,m,c]=beam2d(Exp(i,:),Eyp(i,:),ep3); 

 

edof=... 

[i i+(i-1)*2 i+1+(i-1)*2 i+2+(i-1)*2 i+3+(i-1)*2 i+4+(i-1)*2 i+5+(i-1)*2]; 

Edof(i,:)=edof; 

   end 

K=assem(edof,K,k);  %Assembles in global stiffnessm matrix 

M=assem(edof,M,m); 

C=assem(edof,C,c); 

end 

 

%Adds stiffness of rotational spring 

K(size(K,1),size(K,1))=K(size(K,1),size(K,1))+krs; 

 

%Adds stiffness of horizontal spring 

K(size(K,1)-2,size(K,1)-2)=K((size(K,1)-2),(size(K,1)-2))+khs; 

 
C.6 Function file mass matrix 

 
function [M] = massmatrix(m1,m2,m3,n1,n2,K,M,mtop) 

%Determines the lumped mass matrix for the total building 

 

for j=1:3:size(K,1) 

    %Adds the weight of top floors 

    if j <= n1*3 

    M(j,j)=M(j,j)+m1; 

 

    %Adds the weight of middel floors 

    elseif j<=n2*3 

    M(j,j)=M(j,j)+m2; 

 

    %Adds the weight of bottom floors 

    else 

     M(j,j)=M(j,j)+m3; 

    end 

 

    %Define the weight of the roof 

    M(1,1)=mtop; 

end 

 
C.7 Function file generalised and equivalent mass 

 
function [Mg,me,Mode_square] = Generel_Equiv_mass(m1,m2,m3,n1,n2,... 

                                Modeshapef,height_n,mtop) 

 

%Determines the general and equivalent mass for acceleration calculations 

%according to design codes and theorertical methods 

 

Mg=0;            %Creates starting values of variables 
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me=0; 

Mode_square=0; 

 

for i=1:length(Modeshapef) 

 

if i==1 

    M1=mtop*Modeshapef(i)^2; %Creates generalized mass for roof 

 

elseif i<=n1  %If different mass per floor 

    M1=m1*Modeshapef(i)^2; %Creates generelized mass per node 

 

elseif i<=n2 %If different mass per floor 

     M1=m2*Modeshapef(i)^2; %Creates generelized mass per node 

 

else 

     M1=m3*Modeshapef(i)^2; %Creates generelized mass per node 

end 

 

  Mg=M1+Mg; %Sums generlized mass per node 

end 

 

for i=1:(length(Modeshapef)-1) %This loop determines area of the 

% fundamental modeshape in square 

Mode_square1=((Modeshapef(i+1)^2 ... 

    +(1/2)*(Modeshapef(i)^2-Modeshapef(i+1)^2))*height_n); 

 

Mode_square=Mode_square1+Mode_square; %Sums this area up 

end 

me=Mg/Mode_square; %Determines the equivalent mass by dividing 

%genrelised mass by the fundamental modeshape in square 

 

end 

 
C.8 Function file acceleration EKS 10 

 
function [Accel_EKS,max_acc,betaair,xf_L_u] = EKS_acc(width,Ey,... 

    ksi,vb,c0,fundamental_frequency,cf,me,beta,kl,Ter,rho,href,p1_x) 

 

kr=0.22;                    %Terrainfactor 

cr=kr*log(Ey(1)/Ter(1));    %Rawness factor 

vb5=ksi*vb;                 %Reference wind velocity return period 5 years 

vmh=cr*c0*vb5;              %Mean wind velocity at higth h 

 

pb=1/(1+((3.2*fundamental_frequency*width)/vmh)); 

%Size factor with regard to the width of the building 

ph=1/(1+((2*fundamental_frequency*Ey(1))/vmh)); 

%Size factor with regard to the height of the building 

 

%Length of intergration, according to Handas recommendations 

xf_L_u=150; 

 

yc=xf_L_u*fundamental_frequency/vmh; 

 

F=4*yc/((1+70.8*yc^2)^(5/6)); %Karmans wind energy spectrum 
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zs=0.6*Ey(1);                 %Standard height 

cr1=Ter(3)*log(zs/Ter(1));    %Rawness factor at height zs 

vmzs=cr1*c0*vb5  ;            %Mean wind wind velocity at height zs 

 

betaair=(cf*rho*width*vmzs)/(2*fundamental_frequency*me); 

%Aerodynamic damping expressed as logharitmic decrement 

 

R=sqrt((2*pi*F*pb*ph/(beta+betaair))); 

%factor for resonance response 

 

Bsquare=exp(-0.05*(Ey(1)/href)+(1-(width/Ey(1)))*(0.04+0.01*(Ey(1)/href))); 

%Factor for background response 

v=fundamental_frequency*(R/(sqrt(Bsquare+R^2))); 

%Mean value for cross frequency 

 

kp=sqrt(2*log(v*600))+0.6/sqrt(2*log(v*600));  %Peak factor 

Iv=kl/(c0*log(Ey(1)/Ter(1)));       %Turbulence factor at height Ey(x) 

qmh=(rho*vmh^2)/2;                  %Velocity pressure at heihgt Ey(x) 

 

Accel_EKS=(3*Iv*R*qmh*width*cf*p1_x)/me; 

%Calculates the standard deviation acceleration according to EC 

max_acc=kp*Accel_EKS; 

%Max acceleration according to EC 

end 

 
C.9 Function file expansion of mode shape 

 
function [MS_int] = Modeshape_expansion(Ey,Modeshapef,n_int_per_storey,Lx) 

 

%Expands mode shape for better precision in integration 

 

MS_int1=[1]; 

 

%Linearly expresses  the mode shape between the horizontal dofs 

for i=1:length(Ey)-1; 

diff=(Modeshapef(i)-Modeshapef(i+1))/(n_int_per_storey+1); 

Modeshapef_expanded=... 

    linspace(Modeshapef(i)-diff,Modeshapef(i+1),n_int_per_storey); 

MS_int1=[MS_int1 Modeshapef_expanded]; 

end 

 

MS_int=fliplr(MS_int1); 

end 

 
C.10 Function file wind properties 

 
function [Iu,v_mean,vtop,v_mean_zs,Iu_zs] = Wind_Behaviour(Lx,Ter,vb5) 

 

 

%Follwing equation comes from eurocode 

for i = 1:length(Lx); 
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    if Lx(i) <= Ter(2) 

       v_mean(i)=Ter(3)*vb5*log(Ter(2)/Ter(1)); 

    else 

       v_mean(i)=Ter(3)*vb5*log(Lx(i)/Ter(1)); 

    end 

end 

 

%Wind velocity at reference height 

v_mean_zs=Ter(3)*vb5*log((max(Lx)*0.6)/Ter(1)); 

 

%Wind velocity at top of building 

vtop=max(v_mean); 

 

 

%Plots the mean wind velocity 

figure(3) 

hold on 

plot(v_mean,Lx), axis([0 vtop*1.3 0 max(Lx)]), grid 

hold off 

 

 

%Turbular intensity, According to Eq 3.14 in Strömmen 

sigma_u=vb5*Ter(3); 

for i = 1:length(Lx); 

    Iu(i)=sigma_u/v_mean(i); 

end 

 

%Turbulance at reference height 

Iu_zs=sigma_u/v_mean_zs; 

 

 

%Plots the turbulance 

figure(4) 

plot(Iu,Lx),grid 

 

end 

 
 

C.11 Function file wind spectral density 
 
function [Kaimal,Karman] = WindSpectralDensity(Ey,N_int,vtop,... 

                            w,xf_L_u,v_mean_zs,Ter) 

 

%Function file that determines the wind spectral density for 

%Karman and Kaimal 

 

 

 

%For EuroCode Appendix B 

alpha=0.67+0.05*log(Ter(1)); 

Lzs=300*((0.6*Ey(1))/200)^alpha; 

 

 

%--------Kaimal----------- 
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%Determine the autospectral density for frequencies within the vector w 

 

Kaimal=zeros(1,length(w)); 

for j = 1:length(w) 

fL=(w(j)/(2*pi))*xf_L_u/vtop; 

Kaimal(j)=(fL/(1+10.2*fL)^(5/3)); 

end 

 

%-------KARMAN------ 

%Determine the autospectral density for frequencies within the vector w 

 

Karman=zeros(1,length(w)); 

for i =1:length(w) 

fL=(w(i)/(2*pi))*xf_L_u/vtop; 

    Karman(i)=(4*fL/(w(i)))/(1+70.8*fL^2)^(5/6); 

end 

Karman=Karman'; 

 

 

%Plots Kaimal 

figure(5) 

loglog(w,Kaimal),grid, title('Kaimals Spectral Density') 

xlabel('\omega') 

 

 

%Plots Karman 

figure(6) 

loglog(w,Karman),grid, title('Karmans Spectral Density') 

xlabel('\omega') 

 
 

C.12 Function file frequency response function 
 
function [Hhat_N,Hhat] = FrequencyResponseFunction(zeta,w,... 

    w_fundamental,zetaair); 

 

%Function file that determines the frequency response function 

 

zetatot=zeta+zetaair; %Damping values according to eks 10 

 

%Creates the frequency response function 

Hhat=zeros(1,length(w)); 

for j=1:length(w) 

    Hhat(j)=(1-(w(j)/w_fundamental)^2+(2*1i*zetatot)*... 

        ((w(j)/w_fundamental)))^-1; 

end 

Hhat_N=abs(Hhat); 

 

%Plots the frequency response function 

figure(7) 

hold on 

plot(w,Hhat_N),title('Frequency Response Function'),grid 

xlabel('\omega') 
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ylabel('Hhat') 

hold off 

 
 

C.13 Function file coherence 
 
function [Co_b,Co_h] = Coh_b(width,N_int,w,vtop,Cuu,Ey); 

 

%Creates the horizontal coherence for the witdh of the building and 

%the vertical coeherence for the heihgt of building 

 

b_x=linspace(0.001,width,N_int); 

N=length(w); 

Co_b=zeros(1,N)'; 

 

%Loop that reates the horizontal coeherence 

for k=1:N 

    Co_b_step=0; 

    for i=1:N 

        for j=1:N 

            diff_b=abs(b_x(i)-b_x(j)); 

            co_b=exp((-diff_b*Cuu*w(k))/(2*pi*vtop)); 

     Co_b_step=Co_b_step+co_b; 

 

        end 

    end 

 Co_b(k)=Co_b_step*(1/N)^2; 

end 

 

 

%Loop creats vertical coherence (used only for plot) 

L_x=linspace(0.001,Ey(1),N_int); 

Co_h=zeros(1,N)'; 

for k=1:N 

    Co_l_step=0; 

    for i=1:N 

        for j=1:N 

            diff_l=abs(L_x(i)-L_x(j)); 

            co_l=exp((-diff_l*Cuu*w(k))/(2*pi*vtop)); 

     Co_l_step=Co_l_step+co_l; 

 

        end 

    end 

 Co_h(k)=Co_l_step*(1/N)^2; 

end 

 

%Plots horizontal coherence 

figure(12) 

semilogx(width*(w/(2*pi))/vtop,Co_b),grid 

 

%Plots vertical coherence 

figure(13) 

semilogx(Ey(1)*(w/(2*pi))/vtop,Co_h),grid 

end 
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C.14 Function file joint acceptance function 
 

function [J_sqr,J_sqr_NORM] = JointAF (Iu,Lx,Cuu,MS_int,v_mean,vtop,w,... 

           Mode_square,Kaimal,Karman,w_fundamental,v_mean_zs,rho,width,cf) 

 

%Function file that determines the joint accaptence function for the 

%the building according to prof Strömmen methods 

 

 

Jd=zeros(1,length(Lx)); 

 

%Numerical integration over two variables using the Rectangular Rule 

for k = 1:length(w) 

    Jstep = 0; 

    for i = 1:length(Lx) 

        for j = 1:length(Lx) 

            dx = abs(Lx(i)-Lx(j)); 

            Co_hat = exp((-Cuu*dx*w(k))/(2*pi*vtop)); 

            Jstep = Jstep + ... 

((v_mean(i)^2)*(v_mean(j)^2)*MS_int(i)*MS_int(j)*... 

((Iu(i)*Iu(j)*Co_hat)*Karman(k))); 

        end 

    end 

    Jd(k) = Jstep; 

end 

J_sqr = Jd*((max(Lx)/(length(Lx)))^2); 

%Multiplying by step size 

 

%Nomralising the joint acceptance function 

J_sqr_NORM=J_sqr/Mode_square^2; 

 

 

%Plots the joint accaptence function 

figure(8) 

loglog(w,J_sqr),grid,title('Joint acpetence function in square') 

xlabel('\omega') 

ylabel('J^{2}') 

 

%Creates the load spectrum of the wind 

Sq=zeros(1,length(w)); 

for i=1:length(w) 

Sq(i)=(rho*width*cf)^2*J_sqr(i); 

end 

 

%Plots the load spectrum of the wind 

figure(9) 

loglog(w,Sq),grid,title('Load Spectrum') 

xlabel('\omega') 

ylabel('f*Sq') 

end 
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C.15 Function file response spectrums 
 
function [Response_spectra_Acc,Response_spectra] = reponsespectrums(w,... 

    rho,Hhat_N,J_sqr_NORM,width,w_fundamental,me,depth,Kaimal,... 

    v_mean,inc,cf,Co_b); 

 

 

%Creates Response spectra and acceleration spectra over frequency domain 

for j = 1:length(w) 

   Response_spectra(j)=((rho*cf*width/(w_fundamental^2*me)... 

       *Hhat_N(j))^2*J_sqr_NORM(j)*Co_b(j)); 

   Response_spectra_Acc(j)=Response_spectra(j)*(w(j)^4); 

end 

 

N=length(w); %Number of intergration points 

 

 

%Plots responce spectra of acceleration in log scale 

figure(10) 

loglog(w,Response_spectra_Acc),grid,title('Response Spectra for Acc'),... 

        axis([0.001 15 10e-17 10e-2]) 

xlabel('\omega') 

 

 

%Plots response sepctra of displacment 

 figure(11) 

 hold on 

 plot(w,Response_spectra),grid,title('Response Spectra') 

 xlabel('\omega') 

 ylabel('S_r(\omega)') 

 hold off 

end 

 
 

C.16 Function file acceleration in resonance Strømmen 
 
function [Accel_Strommen] = resonance(Mg,w_fundamental,J_sqr,rho,width,... 

                            cf,Hhat_N,w,zeta,zetaair,Co_b) 

 

%Determines the accelartion just for the resonance according to Strömmen 

 

N=length(w); 

 

%Integrating the response function over the frequency domain 

Int_H_hat=0; 

for i = 1:N 

    Int_H_hat=Int_H_hat+(Hhat_N(i))^2; 

end 

Int_H_hat=Int_H_hat*(max(w)/N); 

 

 

%Position of the natural frequency and corresponding acceptence 
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%function value 

Position=floor(w_fundamental/(max(w)/N)); %Floor to be conservative 

J_sqr_pos=J_sqr(Position); 

Co_b_pos=Co_b(Position); 

 

%Standard deviation of response in resoncance part 

Stand_dev_dis_resp=(1/(w_fundamental^2*Mg))^2*((rho*width*cf)^2*... 

                    J_sqr_pos*Co_b_pos*Int_H_hat); 

 

%Standard deviation of acceleration in resoncance part 

Accel=w_fundamental^2*sqrt(Stand_dev_dis_resp); 

 

%Standards deviation of acceleartion in resonance part 

Accel_Strommen=w_fundamental^2*sqrt((1/(w_fundamental^2*Mg))^2*... 

((pi*w_fundamental*(rho*width*cf)^2*J_sqr_pos*Co_b_pos)/... 

(4*(zetaair+zeta)))); 

end 

 
 

C.17 Function file acceleration according to EN 1991-1-4 
 
function [Accel_EC] = EC(cf,rho,Iu_zs,me,width,zeta,zetaair,... 

        Ey,fundamental_frequency,Ter,v_mean_zs,v_mean,MS_int,Iu); 

 

%To determine the According to EN 1991-1-4 Appendix B 

 

%%%---Determines the resonance response------ 

 

%Power Spectral 

alpha=0.67+0.05*log(Ter(1)); 

 

%Integral length scale 

Lzs=300*((0.6*Ey(1))/200)^alpha; %According to EC 

Lz=150;                          %According to Kamal Handa 

 

%Wind spectral density 

fL=fundamental_frequency*Lz/v_mean_zs; 

SL=(4*fL)/(1+70.8*fL^2)^(5/6); 

 

%Correlation factors 

nah=((4.6*Ey(1))/Lzs)*fL; 

nab=((4.6*width)/Lzs)*fL; 

Rh=(1/nah)-(1/(2*nah^2))*(1-exp(-2*nah)); 

Rb=(1/nab)-(1/(2*nab^2))*(1-exp(-2*nab)); 

 

%Resonant response coeffcient 

R_EC=sqrt((pi^2/((zeta+zetaair)*2*pi*2))*SL*Rb*Rh); 

 

 

%-------Dimensionless koefficient Kx---------- 

 

 

%Rectangular rule for integration 

N=length(v_mean); 

sum=0; 



 
 
 

CHALMERS Civil and Environmental Engineering, Master’s Thesis BOMX02-17-32 121 

for i=1:N 

sum=v_mean(i)^2*MS_int(i)+sum; 

end 

int1=sum*(Ey(1)/N); 

 

%Rectangular rule for integration 

sum=0; 

for i=1:N 

sum=MS_int(i)^2+sum; 

end 

int2=sum*(Ey(1)/N); 

 

Kx=int1/(v_mean_zs^2*int2); 

 

%-----Accel----- 

%Final expression for acceleration according to EC 

Accel_EC=(cf*rho*width*Iu_zs*v_mean_zs^2)*(R_EC*Kx)/me; 

end 

 
C.18 Function file mean deflection 

 
function [y_m] = y_m1(cf,rho,width,vtop,MS_int,powerlaw,... 

                        w_fundamental,Mg,Ey) 

 

%Function file that determines the mean defelection 

y_int=0; 

N=length(MS_int); 

 

%Integration with rectangular rule 

for i=1:N 

y_int=y_int+MS_int(i)*(i/N)^(2*powerlaw); 

end 

y_int=y_int*(1/N); 

 

%Mean deflection at top of the building 

y_m=(1/2)*rho*cf*Ey(1)*width*vtop^2*y_int/(w_fundamental^2*Mg) 

end 

 
C.19 Function file coherence for width 

 
function [H_C] = H_C1(width,fundamental_frequency,vtop,N_int,Cuu) 

 

%Function file that determines the horizontal correletion of wind 

%acting on facade of building 

 

 

%Rectangular rule used as integration method in loop 

H_C_int=0; 

for i=1:N_int 

for j=1:N_int 

diff_b=abs((j/N_int)-(i/N_int)); 
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H_C_int=H_C_int+exp(-(diff_b)*Cuu*width*fundamental_frequency/vtop); 

end 

end 

 

H_C=H_C_int*(1/N_int)^2; 

 

end 

 
C.20 Function file coherence for height 

 
function [V_C] = V_C1(powerlaw,Ey,MS_int,vtop,Cuu,fundamental_frequency) 

 

%Correlation factor with regard to height of building 

 

 

%Rectangular rule used as integration method 

N=length(MS_int); 

int1=0; 

for i=1:N 

for j=1:N 

diff_h=abs((j/N)-(i/N)); 

int1=int1+MS_int(j)*MS_int(i)*exp(-Cuu*diff_h*Ey(1)*... 

    fundamental_frequency/vtop)*((i/N)*(j/N))^powerlaw; 

end 

end 

int1=int1*(1/N)^2; 

 

%Rectangular rule used as integration method 

int2=0; 

for i=1:N 

int2=int2+(MS_int(i)*(i/N)^(2*powerlaw)); 

end 

int2=int2*(1/N); 

 

%Final expression 

V_C=(int1)/int2^2; 

end 

 
C.21 Function file wind spectral density Handa 

 
function [F] = Wind_Spec(vtop,fundamental_frequency,xf_L_u) 

 

%Wind spectral density at the fundamental frequency of the building 

%according to Karman 

 

F=(4*fundamental_frequency*xf_L_u/vtop)/... 

    (1+70.8*(fundamental_frequency*xf_L_u/vtop)^2)^(5/6); 

 

end 
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C.22 Function file acceleration in resonance Handa 

 
function [Dev_dis,Accel_Handa] = Handa(Iu,y_m,F,V_C,H_C,zetaair,... 

                                        zeta,w_fundamental) 

%Final expression for standard deviation of acceleration according 

%to handa 

 

%Standard deviation of displacement for resonant part 

Dev_dis=sqrt((4*y_m^2*Iu(length(Iu))^2*(H_C*V_C*F)/(zetaair+zeta))); 

 

%Standard deviation of acceleration for resonant part 

Accel_Handa=w_fundamental^2*Dev_dis; 

end 


