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Abstract

Agda is a programming language that utilises dependent types which add
the power to express properties about terms very precisely, but this also
introduces a runtime performance overhead. This thesis presents a new
compiler backend for Agda targeting Epic with the aim to use the types for
optimising programs and for removing the overhead.

One source of inefficiencies is in the data representation. Two ways to
remove these inefficiencies are presented: Forcing, which deletes fields in
constructors that may be inferred, and representing datatypes as primitive
data, which is done by using machine integers for types on a certain form.

Many terms in dependently typed languages have no computational con-
tent (observable at runtime). Three optimisations for getting rid of such
terms are presented: Erasure, which erases types and unused arguments
to functions, smashing, which replaces inefficient computations with a re-
sult that is the only observable one, and injection detection, which detects
inefficient identity functions so that they can be replaced by faster versions.

The results of doing the optimisations are benchmarked, and in some
examples the runtime of an optimised program compared to an unoptimised
one is almost one third and the produced executable size is halved. The
code that is produced is also closer to efficient code written without using
sexy types, and it does not take as long to compile it.

This work makes it more feasible to write programs usable in the “real
world” using Agda, and shows that it is perfectly possible to use dependently
typed languages for programming.



Acknowledgements

We would like to thank everyone who has helped make this thesis possible.
Our supervisor Ulf Norell for the thesis idea and for all his help during its cre-
ation, Stevan Andjelkovic for valuable lunch discussions around the project,
and Edwin Brady for creating Epic and being helpful in correspondences
around its details.

Lastly, we would like to thank our families, without whom the project
would certainly have been impossible.

Olle Fredriksson & Daniel Gustafsson, Göteborg, May 2011



Contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Agda by example . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Strong normalisation . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Target language . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Epic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Optimisations 15
3.1 Compiler overview . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Erasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Injection detection . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Smashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Primitive data . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Partial evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results 31
4.1 Forcing and primitive data . . . . . . . . . . . . . . . . . . . . 31
4.2 Erasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Injection detection . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Smashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Case study: A lambda calculus . . . . . . . . . . . . . . . . . 38
4.6 Case study: A file access DSL . . . . . . . . . . . . . . . . . . 41
4.7 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Discussion 50
5.1 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Erasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Injection detection . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Smashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Primitive data . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Partial evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.7 Laziness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.8 Target language . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Conclusion 59

A Foreign function interface 61

B Haskell lambda calculus 63



1
Introduction

Ensuring that a computer program is correct is increasingly impor-
tant in our society, as large parts of our infrastructures are being
computerised and errors in programs can be catastrophic. A com-

puter program is here said to be correct if it works according to a given
specification. There are several approaches to making sure that a program
does so. One possibility is testing; a program that outputs the correct value
for a large number of inputs can be trusted to be correct to a certain degree.
In some cases it is even feasible to try all possible inputs (but this is not
true in general).

Another approach to correctness is using programming languages where
the set of valid programs is limited. This limitation can be acquired by
providing a way to formally express specifications by giving the type of com-
putations. These types dictate what forms of input are valid to a program,
and what the form of the output will be given inputs on the right form. The
programs can then be checked by a type checker to ensure that they do have
the correct type. For example, a program that expects text as input but is
given an integer number may be rejected. Type systems thus relate values
(a string of text, a number) to their type of value (the type of strings of
text, the type of numbers).

Type systems differ in what programs they allow and in how precisely
the type specifications can be given. This can be a double-edged sword: on
the one hand more bugs may be caught if fewer programs are allowed, but
on the other hand the programmer’s job becomes harder.

One particularly expressive kind of type system is one that allows de-
pendent types, which essentially means that a type may depend on a value
and blurs the distinction between types and values. There has been an in-
creasing interest in dependently typed programming recently. For instance,
a large number of the accepted papers at the International Conference on
Functional Programming 2010 deal with it in some way. Dependent types
allow expressing extremely precise invariants and can even be used to prove
properties about programs, making it possible to write programs that cannot
fail and can be fully trusted to be correct1.

One dependently typed language is Agda [Nor07], which is the focus
of this thesis. Agda is a functional language with a syntax that is similar
to the programming language Haskell’s [P+03] syntax. The current Agda
implementation is geared towards making sure that programs and proofs are

1Assuming the compiler, operating system and hardware are correct as well.
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1.1. OVERVIEW CHAPTER 1. INTRODUCTION

correct by type checking them, and it also has good tool support making
it a practical proof assistant. However, it appears that most users do not
go further to actually produce stand-alone executable programs. This is
unfortunate, in our opinion, as Agda is not just a proof assistant but also a
very powerful programming language.

In this thesis a new compiler backend for Agda is presented. The aim
is to make Agda more usable as a programming language by producing
efficient executable programs. In the context of dependent types, programs
may be more complicated than their counterparts written in languages with
less sophisticated type systems, as using the type system to its full capacity
also means writing out details of programs more precisely to convince the
type checker that the program does in fact follow its specification.

The work presented is aimed to make these programs run faster (to
optimise them) even though they are written with more precise detail. This
is done by exploiting knowledge about programs, their data representations
and which computations actually have an effect on the outcome of a program
at runtime.

A program that computes its result according to the specification but
does it faster and using fewer resources than another is something that is
always desirable. A faster program of course makes it possible to get the
results in less time, but as it may use fewer resources it also makes it possible
to take on more complex problems, and additionally has the potential to
reduce power consumption.

The main contribution of this thesis is showing how optimisations specific
to programming languages with dependent types can be carried out in a
practical implementation of a compiler backend for the language.

1.1 Overview

The rest of the thesis starts out by giving the necessary background knowl-
edge by introducing the compiler’s source language, Agda, its target lan-
guage, Epic, and some related work. This is done in chapter 2.

The background leads up to chapter 3 where the different optimisation
techniques are presented. In this chapter it is shown how to go from naïvely
compiled code to more efficient code, by exploiting knowledge about both
the source and the target language. Optimisations to the data representation
as well as terms are presented.

After the optimisations have been introduced, the results of applying
them are showcased. This is done in chapter 4 by exemplifying how code
is compiled, performing case studies and giving benchmark results. The
results are discussed and suggestions for further improvements and future
work are presented in chapter 5. Lastly the work is concluded in chapter 6.
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2
Background

This chapter will give the background necessary to understand the rest
of the thesis. It first introduces the Agda programming language. In
section 2.4 a small overview of target language alternatives is given,

leading up to section 2.5 which introduces Epic, the target language of the
compiler that is presented. Readers that are already familiar with these
languages may skip parts of this chapter.

2.1 Agda by example

Data definitions in Agda are written in a style similar to Haskell Gadts1

[PWW04]. One difference is that Agda uses a single colon instead of double
colons (: instead of ::) for type annotations. The following is the inductive
definition of Peano style natural numbers N. It is constructed using two
constructors: zero denotes the number 0, and suc which can be used to
construct n+ 1 given a number n.

data N : Set where
zero : N
suc : N → N

In this representation the natural number 2 is suc (suc zero).
Set is used as the type of small types in Agda, corresponding roughly to

the kind * in Haskell.
Agda supports inductive families [Dyb91] which is the inspiration for

Haskell Gadts. In these families each constructor may have a different
result type. The language is dependently typed, which means that types
may depend on values (of another type). Instead of function types on the
form A → B, this allows the type (x : A) → B (where x may appear
in the type B) meaning that the return type depends on the value of the
argument x. This allows expressing more precisely what the valid inputs to
a function are. For example, the vector type defined below depends on a
natural number which states its length.

data Vec (A : Set) : N → Set where
[ ] : Vec A zero
_::_ : {n : N} → A → Vec A n → Vec A (suc n)

1Generalised Algebraic Datatypes.
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2.1. AGDA BY EXAMPLE CHAPTER 2. BACKGROUND

Note that constructors and identifiers in general do not have any lexical
restriction (unlike Haskell). It is perfectly valid to mix symbols and alphanu-
meric characters in an identifier; whitespace is used to separate identifiers.
As such the programmer has to be more generous with whitespace than in
most other languages.

In the above declaration (A : Set) is a parameter to Vec which means
that the identifier A is brought into scope and corresponds to something
of type Set in all constructors (and the rest of the type signature of Vec).
Another difference to the definition of natural numbers is that the type of
Vec A is not Set but N → Set, meaning that Vec A is a family of Set
indexed by a natural number N.

In the definition of the constructor for empty vectors, [ ] : Vec A zero,
the index is zero : N. This is because it is indexed by length and the
empty vector has length zero. In the definition of the _::_ constructor the
return type is Vec A (suc n). Here n is bound in the implicit function space
{n : N} → .... The difference between functions of type f : (x : A) → B x
(parentheses) and g : {x : A} → B x (curly braces) is that Agda will try
to infer what argument to pass to g while the programmer has to supply
the argument to f. Thus g takes implicit arguments2 while f takes explicit
arguments. The length of a vector constructed with _::_ which adds an
element in front of of another vector is one more than the length of that
vector.

Agda allows the definition of mixfix operators by using the underscore
character. The underscores are used as holes for arguments during parsing.
x :: xs is equivalent to _::_ x xs but gives more flexibility in the notation.
The programmer is not restricted to just two underscores but can define
functions like if_then_else_ and use it as if p then x else y.

To write the lookup function for vectors, it is convenient to first define a
type of bounded numbers Fin n, representing a natural number smaller than
n : N:

data Fin : N → Set where
fz : {n : N} → Fin (suc n)
fs : {n : N} → Fin n → Fin (suc n)

The intended meaning of a term of this type is similar to that of N. For
example, fs (fs fz) denotes the natural number 2 (compare suc (suc zero)).
The difference is that the type is also indexed by an argument of type N
that is always bigger than the number that is being represented. The fz
constructor states that the number 0 is less than n + 1 for any natural
number n. The fs constructor states that the number x+1 is less than n+1
if x is less than n.

2If necessary g can be applied to an explicit argument using the g {e} syntax.
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2.1. AGDA BY EXAMPLE CHAPTER 2. BACKGROUND

With this type it is possible to write the lookup function _!_, by per-
forming pattern matching in a style similar to Haskell’s:

_!_ : ∀ {A n} → Vec A n → Fin n → A
[ ] ! ()
(x :: xs) ! fz = x
(x :: xs) ! (fs i) = xs ! i

First some explanation of the function’s type. The forall sign ∀ is used
to make Agda infer the type of the arguments. The ∀ {A n} is equivalent
to {A : } {n : } where a single underscore is used to tell Agda to infer
this term. Here it will be inferred to be {A : Set} {n : N}. This latter
syntax is also a convenient shorthand allowing the programmer to give a
list of types and bind their terms to names. It is called a telescope, and is
syntactic sugar for {A : Set} → {n : N} → . ..

In the first clause of _!_ the first argument is matched against [ ] which
means that n is zero. Therefore the second argument is of type Fin zero.
But no constructor of Fin has zero as the index, which means that the
clause is impossible. This is called an impossible pattern and is marked
with (). How did Agda detect that no constructor of Fin have zero as in-
dex? The answer is unification. In this case both constructors of Fin have
Fin (suc n) as the return type. For the types to unify an equation on the
form Fin zero = Fin (suc n) has to hold. This equation can however never
hold since constructors of inductive types are injective3, meaning that zero
and suc n are different.

In order to unify (or as in this case refute) these types the type checker
may have to reduce an open term, i.e a term containing unknown variables,
into weak head normal form (in this case into a constructor application). If
the type was Vec A n → Fin (f n) → A for some function f : N → N
for example, the type checker would have to normalise f zero when matching
against [ ] and f (suc m) for some m in the case of _::_. This is a consequence
of having terms in types (dependent types) – the type checker has to perform
normalisation on open terms.

Dot patterns When working with dependent types it is expected that
sometimes the types actually do depend on each other. Take vectors for
example; when matching on them something is learnt about their length.
This is illustrated by the map function that is explicit about the natural
number used as the vector’s length index:

map : {A B : Set} → (n : N) → (A → B) → Vec A n → Vec B n
map zero f [ ] = [ ]
map (suc n) f (_::_ {n} x xs) = f x :: map n f xs

3This applies to both type and data constructors.
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2.1. AGDA BY EXAMPLE CHAPTER 2. BACKGROUND

This pattern matching is problematic since the pattern is no longer linear
(as they must be in Haskell) due to multiple occurrences of the variable n on
the left-hand side. But the natural number, which states the length of the
vector, has to be zero when the vector is empty, and suc n when the vector
is not. So the matching on the natural number is not necessary as only one
possibility exists. This is expressed using a dot pattern:

map : {A B : Set} → (n : N) → (A → B) → Vec A n → Vec B n
map .zero f [ ] = [ ]
map .(suc n) f (_::_ {n} x xs) = f x :: map n f xs

Here it is clear that the natural number has that particular form, not by
pattern matching but due to types. Inside the dot pattern is an expression,
not a pattern, which states what the value of that argument is known to be.
The representation of the inverse of a function is an example where the type
checker will find an expression which would not be a valid pattern:

data Inv {A B : Set} (f : A → B) : B → Set where
inv : (x : A) → Inv f (f x)

invert : {A B : Set} → (f : A → B) → (y : B) → Inv f y → A
invert f .(f x) (inv x) = x

The type Inv f y is a type that represents the inverse of f at y; the value
in its constructor is an x such that y = f x. The function invert picks out
this x and returns it. The interesting bit is the y argument, which is known
to be equal to f x which is expressed by the dot pattern, as f x is certainly
not a valid pattern by itself.

with clauses Sometimes it is useful to perform pattern matching on an
expression involving a function’s bound arguments. In these cases a with
clause may be used. This construct is akin to pattern guards in Haskell
[EJ00] since new variables may be bound. For example here is a way to
define a minimum function:

minimum : {n : N} → Vec N (suc n) → N
minimum xs with sort xs
minimum xs | y :: ys = y

The with is written after the patterns to add a new expression that the
following lines can pattern match on, and a | is used to mark that the next
pattern comes from a with. In this case no further pattern matching is done
on the previous pattern xs, which is such a common case that there is special
syntax for when only adding pattern matching on the new terms introduced.
Before the vertical bar delimiter three dots ... are written to indicate that
it is the same pattern as above:

6
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minimum : {n : N} → Vec N (suc n) → N
minimum xs with sort xs
... | y :: ys = y

2.2 Examples

In this section two examples of dependent types are given. The first ex-
ample shows a problem in GUI4 application frameworks that can be solved
nicely with dependent types, and the second shows that a dependently typed
programming language can be used to perform formal proofs.

GUI A real world example of dependent types is GUI applications with
events. In these systems it is common to have the possibility of registering
callback functions for when an event is raised (e.g when a button is clicked
or a window is redrawn). A problem with this approach is that the callback
functions need different data depending on what kind of event they are
connected to. For example, the callback for the button click may want
to know which button was pressed, whereas a window redraw event may
contain a window element and coordinates of the area to be redrawn. The
callback functions do not have the same type in general, which would imply
that a different register function is needed for every type of callback. It is
not necessarily so, as this can be solved nicely with dependent types:

data Event : Set where
ButtonPressed : Event
WindowRedraw : Event
...

CallBack : Event → Set
CallBack ButtonPressed = Button → IO >
CallBack WindowRedraw = (w : Window) → Coordinate w → IO >
...

CallBack is a function that takes an event and returns the type of a
callback function for that event. With these it is possible to give the type
of a register function that will work for all the different events:

register : (e : Event) → CallBack e → IO >
register = ...

The type of register WindowRedraw is ((w : Window) → Coordinate w →
IO >) → IO > so the function register will only get callback functions of
the correct type and it is guaranteed by the type checker.

4Graphical User Interface.
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Proofs One of the interesting aspects of dependent types is that through
the lens of the Curry-Howard isomorphism (which relates type theory to
logic), programs are proofs. For example dependent functions correspond to
intuitionistic universal quantification. The other quantifier in intuitionistic
logic, ∃x ∈ A.P (x), is interpreted as a pair of an actual witness x and a
proof that P (x) holds. It is possible to define Σ, which will act as existential
quantification in Agda, as follows:

data Σ (A : Set) (P : A → Set) : Set where
, : (x : A) → P x → Σ A P

A language with dependent types does not only have to be used as a
programming language, but can also be used as an assistant for performing
formal proofs.

An important datatype for proofs is the equality datatype, defined as
follows:

data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x

The datatype has both a type parameter of type A, called x, and a
type index of type A (which comes after the colon). The refl (for reflexive)
constructor fixes the type index to be the same as the parameter. In order
for a type a ≡ b to unify with the type of the refl constructor (making it
valid to pattern match on the term of type a ≡ b) a has to be equal to b
according to Agda’s internal definition of equality.

Using this datatype the proof that the addition operation _+_ on nat-
ural numbers N is commutative gets the following type5:

+-comm : (m n : N) → m + n ≡ n + m
+-comm m n = ...

2.3 Strong normalisation

Since arbitrary Agda terms can occur in a type, and the type checker evalu-
ates terms in types, termination of the evaluation of open terms is of interest.
There are several choices to make regarding checking termination:

• Allow arbitrary terms and limit the number of evaluation steps the
type checker may perform. This is the approach taken by the Cayenne
language [Aug98].

5The implementation is omitted here.
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• Program only with eliminators for inductive types, and prove that
evaluation with eliminators always terminates. This is how Epigram
[MM04] works. By introducing views it is still possible to get some-
thing similar to ordinary pattern matching.

• Run an external checker that checks that the terms are terminating.
This is usually done by checking if recursive calls are always performed
on something structurally smaller than their current values. Agda uses
this approach, and a similar syntactic check is also used in Coq [Tea09].

• Using sized types [Abe10] in which all types also contain an upper
bound on the size of data. When making recursive calls this size has to
decrease. This is similar to checking that the argument is structurally
smaller, but instead of making a syntactic check a more semantic com-
parison is used.

• Allowing arbitrary terms, but recording termination effects in the
types. These effects can either be total for terminating terms, or gen-
eral for terms which have not yet been proven to terminate. The
type checker only evaluates terms that are marked as total. When the
programmer wants a total term but only has a general one the term
has to be cast using a termination cast [SSW10] provided that the
programmer can prove that the term actually terminates.

Strong normalisation is a property of programs that helps when writing
a compiler. As there are no computations that loop endlessly, evaluation
order does not affect the outcome of running a program, and the meaning
of a program is not changed depending on if it is lazily or strictly evalu-
ated. This also allows the compiler to remove computations of results that
it is not interested in. Optimisations like this are not always possible in
ordinary languages since the computation may be non-terminating, and it is
not semantically valid for an optimiser to make an non-terminating program
terminating.

2.4 Target language

An important decision to make when creating a compiler is what language
to compile to – picking a target language. Compiling to machine code is not
a viable solution in most cases as a new backend would have to be created
for each target architecture. Thus, there are two families of languages that
are good candidates:

Low-level languages One alternative is to pick a systems programming
language such as C or LLVM as the target language. As C and LLVM
compile to most architectures a cross-platform compiler is gotten for free.

9
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The compilers for these languages are also mature, producing optimised
machine code. The only problem is that these imperative languages are far
from functional languages in terms of semantics, and it is quite a task just
to get partial function applications (closures) working, which is something
that is taken for granted in functional languages.

High(er)-level languages Using a target language which is close to the
source language makes the implementation simpler as the focus does not
have to lie on low-level details. Since Agda is a functional language a natural
choice would be another functional language for which there already is a
compiler.

There exists an Agda backend targeting Haskell, presented by Marcin
Benke [Ben07]. A problem with compiling to Haskell is that Haskell is
strongly typed, but not dependently typed. For the generated programs to
pass Haskell’s type checker, type coercions6 are used, which unfortunately
prevents Haskell from performing some optimisations.

The target language used in this thesis is Epic, presented in the next
section, which avoids the typing problem altogether as it is not type checked,
while still being relatively high-level.

2.5 Epic

Epic7 is a strict functional language that is intended as the backend for
dependently typed functional languages. It was made by Edwin Brady for
Epigram but has received wider use in both Idris and now Agda. Epic has
type annotations which are not checked, and they are also normally not
used when compiling a program. This allows languages with different type
disciplines to use Epic as a backend. The following is the definition of the
map function in Epic:

map (f : Any, xs : Data) → Any = case xs of
{Con 0 () → Con 0 ()
; Con 1 (y : Any, ys : Any) → Con 1 (f (y),map (f, ys))
}

Any is a type that can stand for anything, Data is the type of (applied)
constructors, and Con stands for a constructor and has a tag and a list of
fields. The constructor tag is just an integer, and as such all constructors of
a certain type have to be associated with a unique integer. In the example
the tag 0 is used for the [ ] constructor and tag 1 for the _::_ constructor
of Lists.

6A (sometimes unsafe) function that casts a term to a different type.
7Epigram Compiler.
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If the tag is known before the case analysis is performed it is unneces-
sary to check it before getting at the constructor’s fields. For these cases
Epic provides field projections. This is common for Agda records, but can
also occur due to dependent types only allowing one constructor in certain
contexts. Field projections are written e ! i where e is the expression and
i is the field position. The following example of uncurry illustrates how this
can be used. Here p is a pair, and it must be of the right tag (0 in this case),
since pairs only have one constructor.

uncurry (f : Any, p : Data) → Any
= case p of
{Con 0 (x : Any, y : Any) → f (x, y)
}

This can be rewritten to the following more efficient version, which does
not need to check the tags, but simply projects the fields of the pair:

uncurry (f : Any, p : Any) → Any =
let x : Any = p ! 0

y : Any = p ! 1
in f (x, y)

Epic has a type called BigInt, which allows for an efficient representation
of unbounded integers and simple operations on them.

The following describes the syntax of the Epic language in BNF form8

(although some type annotations are omitted):

p ::= def Program
def ::= x(x) = t Top level definition

Terms t ::= x Variable
| t(t) Application
| Con i (t) Constructor application
| if t then t else t If term

| case t of alt Case term
| let x = t in t Let term
| lazy t Suspended term
| t ! i Field projection
| i Constant

alt ::= Con i (x)→ t Constructors
| i→ t Integer constants
| default→ t Match anything

8Here an overline, such as the one in x, denotes a list of things.
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The operational semantics (the precise meaning of the programs) of Epic
will not be presented here, but follow what is expected of a strict functional
language.

Epic has a foreign function interface which makes it possible to call func-
tions written in C from an Epic definition. The following example defines
the function openFile which uses the C function fopen to get a file handle
from a filename and a mode string. This file handle can then be passed
around and used in calls to other C functions, and is represented by the
Epic type Ptr (which is the type of C pointers).

openFile (filename : String,mode : String) → Ptr
= foreign Ptr "fopen" (filename : String,mode : String)

Using the foreign function interface, the type annotations are important,
because Epic uses them to marshal values from its own representation to a
C representation. For example, a String may be represented by a struct
with a tag (an integer) stating that the value is a String and a pointer
to a null-terminated C-string in Epic. To marshal this into a C-string of
type char* is to just use the pointer instead of the whole struct. In this
way the C function fopen can be used normally even though Epic’s internal
representation of Strings differs from that of C.

In appendix A examples of how to call Epic (and by transitivity C)
functions from Agda are given.

2.6 Related work

The act of compiling dependent types is treated rather sparsely in the lit-
erature, but a large part of what applies to compiling functional languages
also applies here. This section will give a brief overview over the approaches
to compiling dependently typed languages that do exist.

Epigram Edwin Brady’s excellent PhD thesis [Bra05] explains how the
compiler for a language called Epigram works. Most of what is presented
there is also relevant to this thesis, although there are differences between
Epigram and Agda. The most noticeable difference is that Epigram’s case
analysis is not written using pattern matching but is instead performed by
using eliminators. These eliminators are generated by the data structure,
or created by the programmer (in terms of the generated eliminators). The
following example is the eliminator for Vec:

12
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Vect-Elim : ∀ A : ? . ∀ n : N . ∀ v : Vect A n .
∀ P : (∀ n : N . ∀ v : Vect A n . ?) .
∀ mε : P 0 (ε A) .
∀ m:: : (∀ k : N . ∀ x : A . ∀ xs : Vect A k .

∀ ih : P k xs . P (s k) (:: A k x xs)) .
P n v

Vect-Elim A 0 (ε A) P mε m::  mε

Vect-Elim A (S k) (:: A k x xs) P mε m::

 m:: k x xs (Vect-Elim A k xs P mε m::)

The generated eliminators are given by pattern matching, but this is
hidden from the programmer. Vect-Elim is the only function that performs
pattern matching, which is exploited in some optimisations, and allows for
local reasoning about all functions that inspect a Vec for example. In Agda
all functions can perform pattern matching on a Vec argument and hence
all functions need to be inspected when performing certain transformations
that change the way pattern matching is done.

In the later stages of the Epigram compiler the eliminators are inlined
and all functions can perform pattern matching, which is done because pat-
tern matching can be compiled into more efficient code.

Cayenne The Cayenne language [Aug98] is a dependently typed language
which compiles to Lennart Augustsson’s own compiler for LML9. Cayenne
performs type erasure which removes the programs’ type information and
then compiles to LML, which is run without type checking. This works since
the LML compiler itself does not rely on the fact that the terms are type
correct in the LML language, only that they “make sense” (just like Epic,
although LML code is more high-level). One drawback of this approach is
that since LML does not keep the types, type-based optimisations are not
applicable at this level.

MAlonzo - Agda’s Haskell backend As mentioned in section 2.4 a
backend targeting Haskell may not be the perfect fit for Agda, as Agda’s
type system is more expressible than Haskell’s. The backend has to insert
coercions around the result of all function calls and all function arguments
to make the program pass the type checker.

Agda has pragmas for expressing how types should be represented in the
compiled Haskell code and there is also a mechanism for adding bindings to
Haskell functions. The translation of Agda’s internal code representation to
Haskell is rather easy and amounts to nothing more than pretty printing.
No optimisations are applied at this level in the hope that the GHC compiler
will compile good code.

9A lazy variant of ML.
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Some of the optimisations presented in this paper would also apply to
the MAlonzo backend.

Program Extraction The Coq language employs program extraction tar-
geting both OCaml [OCa] and Haskell. The possibility to do program ex-
traction [Let03] is a consequence of the Curry-Howard isomorphism, stating
that it is possible to translate formal proofs in Coq to programs in respective
language. This can be used to get certified programs in these languages, and
has for example been used to verify the window manager XMonad’s func-
tionality [Swi11].

14



3
Optimisations

This chapter presents the details and theory of the different optimisa-
tions that are performed in the Epic backend for Agda. Some of the
optimisations also apply to different implementations of dependently

typed theories.
Chapter 2 gave the background needed to understand the optimisations,

but no details on the specifics of the compiler. Before the optimisations are
presented a brief overview of the compiler and the different representations
that Agda code goes through before it becomes executable will thus be
presented (section 3.1).

3.1 Compiler overview

Figure 3.1 provides an overview over the different representations that an
Agda program goes through, that are relevant to the compiler presented in
this thesis. Parsing, which produces terms in Agda’s internal syntax is left
out. Type checking is also left out, but works on Agda’s internal syntax.

Auxiliary
AST

Agda
splitting
trees

Agda’s
internal
syntax

Epic C

Figure 3.1: Compiler overview

Agda’s internal syntax has pattern matching, which is compiled into case
splitting trees using a well-known algorithm [Aug84]. It is on these splitting
trees that the Epic backend starts its work, by first translating it into an
auxiliary abstract syntax tree (AuxAST), which is syntactically very similar
to Epic. The AuxAST is then pretty printed into an Epic source file, which
Epic compiles to C. The last step is to run a C compiler on the C code,
producing an executable program, which is performed by the Epic compiler.

Most optimisations work on AuxAST terms, but in some cases it is
convenient to use Agda’s internal syntax for doing analyses, as the Agda
implementation already provides many helpful functions for working with
that structure.

Pattern matching and case splitting trees The difference between
pattern matching and case splitting trees is that pattern matching allows
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simultaneous and nested pattern matching on several arguments, while a
case splitting tree matches an expression to a list of constructors and vari-
ables (with no patterns in patterns). To exemplify this, consider the zipWith
function on vectors which combines two vectors of equal length by running a
function down the vectors element wise, first written using pattern matching:

zipWith : {A B C : Set} {n : N}
→ (A → B → C) → Vec A n → Vec B n → Vec C n

zipWith f [ ] [ ] = [ ]
zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys

An equivalent case splitting tree is the following:

zipWith f as bs = case as of
[ ] → case bs of

[ ] → [ ]
_::_ x xs → case bs of

_::_ y ys → f x y :: zipWith f xs ys

Note that in the second version of the function, only one variable is
considered at a time and the execution order is made more explicit.

As mentioned above, Agda’s internal syntax uses pattern matching and
subsequent representations in the compiler use case splitting trees. In the
rest of the thesis, both pattern matching and case splitting will be used de-
pending on what is appropriate for examples given and what representation
is being considered.

3.2 Forcing

The type of finite natural numbers that was introduced in section 2.1 stores
the type index in every constructor. This may have a big impact on how
much space is required. For example, consider how the representation of the
number 2 is in the type Fin 3 (with explicit arguments):

data Fin : N → Set where
fz : (n : N) → Fin (suc n)
fs : (n : N) → Fin n → Fin (suc n)

ex : Fin 3
ex = fs (suc (suc zero)) (fs (suc zero) (fz zero))

The above representation is particularly wasteful since the type index
is always in scope when pattern matching on a term of a Fin type. This is
true because it is needed to be able to provide the type index to the Fin
argument. Observe for example the function inject which converts a Fin n
to a Fin (suc n) (but still represents the same number):
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inject : (n : N) → Fin n → Fin (suc n)
inject .(suc n) (fz n) = fz (suc n)
inject .(suc n) (fs n i) = fs (suc n) (inject n i)

Since n occurs in the first argument, inject can be rewritten as inject’
given below, which does not use the n from the Fin argument:

inject’ : (n : N) → Fin n → Fin (suc n)
inject’ zero ()
inject’ (suc n) (fz .n) = fz (suc n)
inject’ (suc n) (fs .n i) = fs (suc n) (inject’ n i)

For Agda to see that this function is total a new equation has been
introduced, with an impossible pattern.

It is always possible to infer the n : N argument to the constructors of
Fin when it is used, which means that it is not necessary to store it. Fin
can thus be changed into the following, where constructor fields that are red
and underlined are not actually stored in the compiled representation:

data Fin : N → Set where
fz : (n : N) → Fin (suc n)
fs : (n : N) → Fin n → Fin (suc n)

The optimisation of identifying and rewriting the arguments of a con-
structor that can be inferred from their use as type indices has been explored
in Epigram [BMM04], and is there called forcing. These arguments do not
need to be stored in the constructor and so less space is used to represent
the data. It is noteworthy that the Fin type without the indices has the
same form as the type of ordinary natural numbers, N. This correspondence
allows the Fin type to be represented as a primitive integer, which will be
further explained in section 3.6.

Detecting indices that do not need be stored To find the fields of
a constructor that can always be inferred from the outside scope, the con-
structor’s return type is first examined. The zero constructor from the Fin
type illustrates the point:

fz : (n : N) → Fin (suc n)

The return type of the fz constructor is Fin (suc n). To find variables
that can potentially be forced, each variable that can be obtained by pattern
matching on the index term (here suc n) is collected. This is true for variables
in constructor applications, which means that n above is a candidate since it
is applied to the constructor suc. Now n can be gotten by pattern matching
on the type index guaranteed to be in scope in a function using the datatype.
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If the term, however, looks like Fin (f n) for some function f, it is not certain
that the function has a computable inverse, so then n can not (generally) be
considered.

After the collection of variables obtainable from the outside, the field in
the constructor where each collected variable is bound is found and marked
as forced. In fz : (n : N) → Fin (suc n), n is bound in the first field of
the constructor, which is then marked.

Rewriting patterns Internally Agda uses splitting trees to describe pat-
tern matching in functions. The inject function is represented internally
as:

inject n i = case i of
fz n’ → fz (suc n’)
fs n’ i → fs (suc n’) (inject n’ i)

To make it valid to remove type indices from constructors, the case tree
has to be rewritten so that the code does not use n’, as it was marked as
forced. The case should instead be performed on n to get n’. In general,
for every case that introduces variables that can be forced, a new case on
the argument used in the type index is created to “dig out” the forced vari-
ables. If the forced variable is equal to an already existing variable a simple
substitution in the body will suffice. For inject the new case-tree looks like
this:

inject n i = case i of
fz n’ → case n of

suc n’ → fz (suc n’)
fs n’ i → case n of
suc n’ → fs (suc n’) (inject n’ i)

The constructor fields marked with red and underline can now be re-
moved, as they are not used anymore. Since n must be a suc constructor
there is also need to check the constructor tag, so n’ can be gotten using a
projection in Epic.

The equalities between previous variables and the current pattern can
be found by using unification on their types. A telescope of the types of in-
scope variables is introduced and updated as the case tree is traversed. At
first the telescope is (n : N) (i : Fin n). When the fz n’ branch is inspected
the type of the fz constructor is unified with the current telescope.

Since fz : (n’ : N) → Fin (suc n’) the unification with Fin n yields
n = suc n’, and hence it is possible to get the value of n’ by pattern
matching on n.

A more general algorithm will now be presented, for transforming case
expressions in a function with a type environment represented by the tele-
scope Γ.
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The algorithm is run on each case expression on the following form:

... case i of
C1 x1 ... xk → ...

...
Cn x1 ... xm → ...

Here i represents the variable that is being cased on, and has a type in
the telescope Γ. Now suppose that i has type T ∆ α (overlines are used
here, e.g α, denoting lists of things) where ∆ are the parameters of the type
and α are the indices. For each case Cj where the constructor is of type
τj = ∆→ Θ→ T ∆ β, the following is done:

1. τj is applied to ∆ yielding τj ∆ = Θ → T ∆ β, the type of the
constructor with the correct parameters applied.

2. The i:th position in the telescope Γ is replaced with Θ, so that the
telescope is updated with the variables that come into scope in the
branch.

3. All occurrences of i in Γ are replaced with Cj Θ, since more is known
about i as we enter the branch.

4. α, the type indices from the type of i, is unified with β, the type indices
from the type of the current branch’s constructor, in the (updated)
telescope Γ.

The equality constraints from this unification are used to rewrite the
body of the case such that no forced variable is used. Assume that x
is a forced variable. Then the following two types of constraints may
be found:

• y = ...x...: An unforced variable y is equal to an expression
containing x in a position that can be reached through pattern
matching. Here x is reachable in e if:

– e = x, i.e they are equal
– e = C es, where x is reachable in at least one e’ ∈ es such

that e’ is not forced in C.

In this case pattern matching on y can be performed to reach an
x’ that does not stem from something that is forced such that
x’ = x. Then x’ can be substituted for x in the body and the
telescope.

• x = e: The forced variable is equal to an expression e. In this
case all occurrences of x in the body of the current case and the
telescope are replaced by e.
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3.3 Erasure

Agda has no way of performing pattern matching on types, which means
that there is no information that can be gained from a term of type Set
at runtime. Therefore the runtime behaviour of functions that receive an
argument of type Set may not depend on which Set it is. The following
example illustrates the point:

f : Set → N
f x = c

It is not allowed to perform any pattern matching on the input x of the
function, which means that the function must return some constant value
c (of type N). This means that at runtime, types have no computational
content and do not even need to be stored, as they have no way of affecting
the result of the program.

A correctness proof of this in a similar setting is done in [Aug98], for the
dependently typed functional language Cayenne, which also has no way of
performing pattern matching on types.

Instead of using full type erasure, the worker/wrapper [GH09] method
is here used to remove unused arguments. And since it is not possible to
pattern match on types they will never be used in a function other than as
an argument to another function. The map function is an example of this:

map : (A B : Set) (n : N) (f : A → B) → Vec A n → Vec B n
map A B .0 f [ ] = [ ]
map A B .(suc n) f (_::_ {n} x xs) = _::_ {n} (f x) (map A B n f xs)

The arguments A and B are only used in the recursive call, and are hence
not needed. Using the worker/wrapper transform map is compiled into two
functions:

The worker which only takes the needed arguments.

The wrapper which takes the same arguments as the originalmap function
and calls the worker.

This method is also used in Brady’s PhD thesis [Bra05]. The following is
the result for the map function:

mapwrap A B n f xs = mapwork n f xs

mapwork .0 f [ ] = [ ]
mapwork .(suc n) f (_::_ {n} x xs) = _::_ {n} (f x) (mapwork n f xs)

The wrapper is what other functions call from the outside, and the
worker function does all the actual work. One added benefit of this ap-
proach is that the wrapper function is non-recursive and rather small. A
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perfect candidate for inlining! If a function application of map is fully satu-
rated it will be inlined and becomes a call to the worker without the unused
arguments.

If forcing is also applied then n also becomes unused1 and an even better
mapwork can be made. This corresponds to the usual map function for Lists:

mapwork f [ ] = [ ]
mapwork f (x :: xs) = f x :: mapwork f xs

Identification of unused arguments To find the arguments that are
unused, so that the worker/wrapper transform can be performed, an abstract
interpretation of the function definitions in the AuxAST is used. In the
interpretation the domain consists of two values:

0 The argument is definitely not used.

1 The argument may be used.

The return value of a function call in this interpretation answers the
question whether any of the arguments that are 1 may have been used in
the function. The idea is that any argument that does not appear on the
right-hand side of a definition or only appears as an argument to a function
in which it is unused should be marked as unused.

Since there may be circular dependencies, there is no linear order of
evaluation that will yield the correct result. One way to calculate it is by
using the fix-point of a series of approximations, where the result becomes
increasingly refined in each step.

Consider the following example functions:

f x y z = z + g x y x
g x y z = y + f x y y

Addition uses both of its arguments, and is thus the boolean or function
in this interpretation. This means that if any of its arguments are used, the
result of the function call will also be used.

x + y = x ∨ y

The first approximation, approximation zero, is that each argument is
unused. This approximation will then be used in successive approximations,
yielding better and better results.

f0 x y z = 0
g0 x y z = 0

1Actually n could be removed in the above example as well, but that is because n is
bound in the _::_ and not from the N parameter of the function.
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In general, approximation n will use approximation n − 1 instead of
recursive calls:

fn x y z = ... f(n - 1) ... g(n - 1) ...
gn x y z = ... g(n - 1) ... f(n - 1) ...

In the example, the following approximations are gotten:

f1 x y z
= z + g0 x y x
= z ∨ 0
= z

g1 x y z
= y + f0 x y y
= y ∨ 0
= y

f2 x y z
= z + g1 x y x
= z ∨ y

g2 x y z
= y + f1 x y y
= y ∨ y
= y

f3 x y z
= z + g2 x y x
= z ∨ y

g3 x y z
= y + f2 x y y
= y ∨ y ∨ y
= y

A fix-point is reached here, as the fourth approximation is the same as the
third.

To determine whether an argument may be used in a function, the ab-
stractly interpreted version of the function gotten from the approximation
is called with that argument set to 1 while the others are set to 0. This
means that f uses y and z and g uses only y in the example.

The details of going from an ordinary definition to the abstract inter-
pretation will now follow. Here JeK stands for the abstract interpretation of
e.

A variable is simply translated to itself (but will now be in the domain
of the abstract interpretation), and constants are interpreted as 0, as they
do not affect any of the variables. This means that a call to the + function
with constant arguments yields the result 0.

JvK = v v is a variable

JcK = 0 c is a constant
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In a constructor application, the constructor itself does not affect any
variables so it can be left out in the abstract interpretation. The argu-
ments may however contain uses of variables, so the interpretations of the
arguments are combined together.

JC e1 ... enK = Je1K ∨ ... ∨ JenK Hello Ulf!

A function call is transformed into a function call to the abstract inter-
pretation of f. When using successive approximations as was done above,
this will be the previous approximation.

Jf e1 ... enK = f# Je1K ... JenK f# is the abstract interpretation of f

Let-bound expressions, which are sometimes used in the AuxAST, are
substituted into body of the let expression, since the effect of using the
bound variable is that of using the variables from the expression.

J let v = e in tK = Jt [e / v]K Koen would have found this.

Since the bound variables in case branches stem from the value that was
cased on, they are replaced with that in the abstract interpretation.

Jcase e of
p1 → e1
...
pn → enK
=

JeK ∨ Je’1K ∨ ... ∨ Je’kK

each e’i is ei with e substituted for all
variables in pi

3.4 Injection detection

The following function takes a length indexed vector and converts it into a
list2. It forgets the length indexing:

forget : ∀ {A n} → Vec A n → List A
forget [ ] = [ ]
forget (x :: xs) = x :: forget xs

When forcing has been done, the index of the vector is removed, which
makes the representation of vectors essentially the same as lists. If the

2Note that the constructors for lists and vectors have the same name here, which is
allowed in Agda.
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constructor tags for the two constructors are chosen to be the same for both
lists and vectors, the compiled function looks like this:

forget A n (Con 0) = Con 0
forget A n (Con 1 (x, xs)) = Con 1 (x, forget xs)

In both clauses, the function’s return value is the same as its third argu-
ment, so it is really an inefficient identity function, and could be simplified
to the following:

forget A n xs = xs

The new function runs in constant time, whereas the original ran in
linear time in the length of the vector. A similar optimisation is applicable
to the inject function introduced in section 3.2:

inject : {n : N} → Fin n → Fin (suc n)
inject fz = fz
inject (fs i) = fs (inject i)

To do this in general, the idea is to not choose tags for constructors
until functions for which the above transformation would work have been
identified. When that has been done, the tags can be chosen using the
information from the identification.

Identification of injective functions Consider a function on the follow-
ing form in Agda’s internal syntax:

f p11 ... pn1 = b1
...

f p1k ... pnk = bk

The first step of the process is to pick an argument index i from {1, . . . , n}.
For each branch body with index j, the branch body bj is reduced and com-
pared to argument i’s pattern in that branch, pij , to find what preconditions
there are to this function being an injection in that argument.

A precondition can be one of three things:

Never The precondition can never hold. Comparing two different con-
structors from the same datatype will for example never hold, as they
cannot have the same constructor tag, meaning that there cannot be
an identity function between them.

Always The precondition will always hold. A function which does not
pattern match on one of the arguments but just returns it, or one that
maps it to the same constructor as the pattern adds no precondition.
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c1 = c2 The precondition holds as long as the constructor tags for c1 and c2
are equal. An example is the forget function mentioned above, which
can only be an injection if the constructor tags for vectors and lists
are the same.

The comparison is done by case analysis in the following way:

• If the branch body bj reduces to a recursive call to f on the form f a1
...an, the induction hypothesis that the function is in fact an injection
for pattern i is assumed to hold true. The body is substituted for ai,
and the comparison is done again with this value.

• If the branch body bj reduces to a constructor application on the form
c1 a1 ...am and the pattern pij is a constructor pattern on the form
c2 b1 ...bm, where c1 and c2 come from different datatypes, then the
injection holds under the precondition that c1 = c2. If they come from
the same datatype and are the same constructor, it always holds, and
it never holds if they are not the same constructor. The preconditions
gotten from comparing a1 ...am and b1 ...bm are also added as
preconditions. When doing this comparison, forced arguments should
not be compared, since they will not appear as constructor arguments
in the generated code at all. Failure to do so would not let the forget
function be an injection.

• If the branch body bj reduces to a variable that is equal to pij , the
precondition always holds.

• If the pattern pij is a dot pattern on the form .(f e1 ...en) and the
branch body bj is f e′1 ...e′n the precondition always holds if the
preconditions gotten from comparing e1 ...en and e′1 ...e′n are also
added as preconditions.

• In all other cases, the precondition never holds.

When this comparison has been run for all argument indices on all func-
tions, the result can be used to select the tags for all constructors in a way
that makes many functions injections.

Choosing constructor tags A straight-forward way to choose construc-
tor tags that we have found to work well for us in practice is described
here:

1. The preconditions for functions that have been chosen to hold are kept
track of in equivalence classes over the constructors that must have
the same tag. Initially, all constructors are in their own equivalence
classes.
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2. Two equivalence classes can be unified if there are no two (different)
constructors from the same datatype in the resulting union. If that
does not hold there is a conflict between preconditions.

3. For each function that has not previously been tested, the precon-
ditions for that function are checked to see if they conflict with the
preconditions that have been chosen to hold. If that is not the case,
the function’s preconditions are unified with the equivalence classes,
and the function is marked as an injection.

4. At the end of the algorithm the tag for each of the constructors in
every equivalence class can simply be chosen to be a tag which is not
yet used in any of the datatypes that the constructors in the class
appear in.

All the functions marked as being injections in argument i can now be
transformed into the following efficient definition:

f v1 ... vi ... vn = vi

3.5 Smashing

The following code is proof that the addition operation on N is commutative
taken from Agda’s standard library. The details are not important, but do
note that it does a recursive call and thus takes time (at least3) linear in its
first argument.

+-comm : (m n : N) → m + n ≡ n + m
+-comm zero n = sym $ proj2 +-identity n
+-comm (suc m) n = begin

suc m + n
≡〈 refl 〉
suc (m + n)
≡〈 cong suc (+-comm m n) 〉

suc (n + m)
≡〈 sym (m+1+n≡1+m+n n m) 〉

n + suc m �

Now consider the definition of the equality datatype that +-comm re-
turns, which was explained in section 2.2. It has only one constructor with
zero arguments:

3If _+_ is a primitive function running in constant time, it takes time in O(m · n),
and if not it is even worse.

26



3.6. PRIMITIVE DATA CHAPTER 3. OPTIMISATIONS

data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x

The representation of such a constructor at runtime is just a constructor
tag. Its type and the type indices cannot affect the outcome (observed at
runtime) of a function and thus have no computational content. This means
that the runtime version of +-comm might as well be rewritten to simply
become the following:

+-comm m n = refl

We call this optimisation smashing. In general, a function can be
smashed if there is only one way to construct a value of its return type,
which means that the value can be inferred without looking at any argu-
ments. If this is the case the function does not need to do anything other
than return that value. A simple criterion which can be used to find some
types which are inferable is the following:

• A datatype can be inferred if it has only one constructor which

– has no fields, or

– has fields which are all inferable

In the example above, m + n ≡ n + m is inferable because refl has no
fields, and thus +-comm can be smashed. All other functions which return
something of the equality type can be smashed, since their return types are
inferable.

3.6 Primitive data

Consider the datatype of natural numbers:

data N : Set where
zero : N
suc : N → N

The representation of a number in this datatype is a series of applications
of the successor constructor followed by a zero. For example, the number
three is represented by the following:

3 = suc (suc (suc zero))

This would be compiled to the following Epic expression:

Con 1 (Con 1 (Con 1 (Con 0 ())))
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In this encoding, natural numbers take up space that is proportional
to the number they correspond to. A more space-efficient way to represent
numbers is to use BigInts, which exploit the target machine’s native integers.
For most (non-huge) natural numbers used in a program the space cost of
this representation is constant.

All datatypes that have two constructors similar to the ones for natural
numbers – one constructor with zero arguments and the other constructor
with a recursive argument – can use BigInts as their compiled representation.

As was shown in section 3.2, the Fin datatype does not need to store
all the fields of its constructors. Notice how similar the following definition
is to that of N if the forced fields (red and underlined) are not taken into
consideration:

data Fin : N → Set where
fz : (n : N) → Fin (suc n)
fs : (n : N) → Fin n → Fin (suc n)

The Fin datatype can thus also be represented more efficiently using this
scheme.

Translation of a datatype where one constructor has no arguments, call
it zero, and one constructor with one argument, call it suc, will now be
presented:

• The zero constructor is translated to the BigInt 0.

• The expression suc n is translated to 1 + n’, where n’ is the translation
of n.

• Case expressions on following form (left) are translated into if expres-
sions (right):

case n of
zero → ez
suc n’ → es

if n == 0
then ez
else let n’ = n - 1 in es

Here == is the equality comparison function on BigInts. The transla-
tion is also done recursively in subexpressions.

Primitive operations Consider the following operator on natural num-
bers:

_+_ : N → N → N
zero + m = m
suc n + m = suc (n + m)
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This function is recursive in its first argument, so takes time proportional
to the number that its first argument represents. But since the numbers are
now compiled as BigInts the same result would be gotten if the function was
compiled as addition on BigInts.

It is possible to mark datatypes and functions as built-in in Agda. Func-
tions marked as addition and multiplication on natural numbers will be
changed to use the corresponding BigInt operations. Some extensions to
this scheme are proposed in section 5.5.

3.7 Partial evaluation

As languages with dependent types do normalisation when type checking,
there already exists functionality to evaluate open terms. This is called
partial evaluation, and a classical example of its usage is the power function
on natural numbers:

power : N → N → N
power n zero = 1
power n (suc k) = power n k * n

When the second argument is known at compile time, the function can
be specialised for that number statically. If the user wants the fourth power
of some unknown number n, the function can be normalised to the following:

power n 4 = n * n * n * n

Since the second argument is the one being cased on, the branches are
known in advance and the recursive calls have been inlined.

The only addition to Agda to make this work is to expose the function-
ality to the user. This is done by making it possible to mark functions for
which usages should be normalised at compile time. In the current imple-
mentation, a pragma is used to do so:

{-# STATIC power #-}

This example marks the power function as STATIC, which means that
the optimisation should be applied to it before the code is compiled.

To get this optimisation to work, all terms in a program are gone through,
looking for function calls to functions marked with STATIC. When such a
call is found, it is normalised. This is done on Agda’s internal syntax, so
that the already existing normalisation functionality can be used.

The following function is an example using power:

somePowers : N → N
somePowers n = 1 + power n 2 + power n 3
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When power is marked as STATIC, somePowers will be transformed into
the following efficient definition at compile time:

somePowers n = 1 + n * n + n * n * n

Partial evaluation has previously been used to improve the performance
of domain-specific languages [BH10]. A larger example of using partial eval-
uation will be developed in section 4.6.
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4
Results

This chapter presents the effectiveness of the compiler in different as-
pects and scenarios. It starts out by showing how the code quality is
affected by the different optimisations. The applicability of smashing

in some modules of Agda’s standard library is presented in section 4.4. Sec-
tion 4.5 shows a case study over how the different optimisations apply to an
interpreter for simply typed lambda calculus, and section 4.6 shows a case
study using partial evaluation which displays how interpretative overhead
can be removed.

Finally, in section 4.7, the results of benchmarks comparing the run-
time, executable size and compilation time of four different programs using
different compiler backends are presented.

4.1 Forcing and primitive data

Forcing is an important optimisation as it applies to many datatypes and
allows other optimisations to kick in. It is especially important for repre-
senting data as primitive BigInts. As has previously been shown, the Fin
datatype can be represented as a BigInt after forcing.

The following are examples of datatypes where forcing applies, some of
which can also be represented as BigInts. To show which constructor fields
have been forced, red colour and underlines are used.

The _6_ datatype describes the less than or equal relation between
two natural numbers. It is inductively defined; the z 6 n constructor relates
zero to any natural number, since zero is less than or equal to any other
number in N, and the s 6 s constructor relates m+ 1 and n+ 1 given that
m is less than or equal to n:

data _6_ : N → N → Set where
z 6 n : ∀ {n} → zero 6 n
s 6 s : ∀ {m n} (lt : m 6 n) → suc m 6 suc n

After removing forced constructor fields this datatype has one construc-
tor with zero arguments and one constructor with a recursive argument – it
can be represented as a primitive BigInt!

The Ordering relation is what is called a comparison view [MM04], and
is used to compare two natural numbers.
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data Ordering : N → N → Set where
less : ∀ m k→ Ordering m (suc (m + k))
equal : ∀ m → Ordering m m
greater : ∀ m k→ Ordering (suc (m + k)) m

It is usually coupled with a function compare : (m k : N) → Ordering m k
which provides information on how two numbers relate to each other.

In all of the constructors them field can be forced and does not need to be
stored. The less constructor can only be constructed when the first number is
less than the second, and it also has information about the difference between
the first and second number in the relation (k). The equal constructor relates
a number to itself, and finally greater is the flipped version of less. Note that
any two natural numbers can be related in exactly one way. With this
datatype and the compare function it is for example possible to define a
subtraction function:

_-_ : N → N → N
a - b with compare a b
.m - .(suc (m + k)) | less m k = 0
.m - .m | equal m = 0
.(suc (m + k)) - .m | greater m k = suc k

The _∈_ predicate is the predicate that a certain element is in a Vec.
Elements of x ∈ xs can be constructed only if x is somewhere inside xs. This
datatype can also be used to find out where.

data _∈_ {A : Set} (x : A) : {n : N} → Vec A n→ Set where
here : ∀ {n} {xs : Vec A n} → x ∈ x :: xs
there : ∀ {n y} {xs : Vec A n} (x∈xs : x ∈ xs)→ x ∈ y :: xs

The constructor here can be constructed if x is the head of the Vec since
the return type is x ∈ x :: xs. Here x occurs twice to denote that both are
the same. The second constructor, there, can be constructed if x occurs in
the tail of the Vec no matter what the head is.

Perhaps surprisingly, this datatype can be represented as a primitive
integer, as almost all of its constructor fields do not have to be stored at
runtime, leaving just a constructor with zero arguments and a constructor
with a recursive argument. The value of the integer that it can be repre-
sented as corresponds to the index into the Vec that the element is at.

4.2 Erasure

Sometimes when working with dependent types one has to deal with unnec-
essarily complicated functions. This may be because the function does not
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follow the structure of the data type. The example below illustrates this
problem. At first sight it seems to be the ordinary append function but the
result type is Vec A (n + m) instead of Vec A (m + n), hence the name
append’. This innocent looking difference forces the programmer to write
some proofs that the types are indeed the same. In doing so the following
two lemmas are needed:

+-right-identity : (n : N) → n + zero ≡ n
+-suc-right : (n m : N) → n + suc m ≡ suc (n + m)

Only the types are stated as the implementations are of no importance.
Smashing will make these functions just return refl. Now append’ can be
implemented:

append’ : (A : Set) (m n : N) → Vec A m → Vec A n
→ Vec A (n + m)

append’ A .zero n [ ] ys with n + zero | +-right-identity n
... | .n | refl = ys
append’ A (suc m) n (x :: xs) ys with n + suc m | +-suc-right n m
... | .(suc (n + m)) | refl = x :: append’ A m n xs ys

This function uses the with construct for doing the pattern matching
necessary to convince Agda that the types are indeed correct. The with
construct will be desugared into mutual function definitions by the type
checker. These functions receive all variables in scope and the extra ar-
guments that were requested for pattern matching. As such the append
function gets desugared into the following mutual1 block2.

mutual
append’ : (A : Set) (m n : N) → Vec A m → Vec A n
→ Vec A (n + m)

append’ A .zero n [ ] ys
= append’a A n ys (n + zero) (+-right-identity n)

append’ A (suc m) n (x :: xs) ys
= append’b A m n x xs ys (n + suc m) (+-suc-right n m)

append’a : (A : Set) (n : N) → Vec A n → (n+0 : N)
→ n+0 ≡ n → Vec A n+0

append’a A n ys .n refl = ys
append’b : (A : Set) (m n : N) → A → Vec A m → Vec A n
→ (n+sm : N) → n+sm ≡ suc (n + m) → Vec A n+sm

append’b A m n x xs ys .(suc (n + m)) refl
= x :: append’ A m n xs ys

1Normally Agda functions can only depend on functions written above them, but
mutual allows them to use all function inside the block as well.

2Notice that n+0 and n+sm are identifiers and not usages of the _+_ operator.
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In the AuxAST the pattern matching on the left hand side is given by
case expressions. The above definitions correspond to the following code:

mutual
append’ : (A : Set) (m n : N) → Vec A m → Vec A n
→ Vec A (n + m)

append’ A m n xs ys = case xs of
{[ ] → append’a A n ys (n + zero) (+-right-identity n)
; x :: xs → case m of
{suc m’ → append’b A m’ n x xs ys (n + suc m) (+-suc-right n m)}
}

append’a : (A : Set) (n : N) → Vec A n → (n+0 : N)
→ n+0 ≡ n → Vec A n+0

append’a A n ys n+0 prf = case prf of
{refl → ys}

append’b : (A : Set) (m n : N) → A → Vec A m → Vec A n
→ (n+sm : N) → n+sm ≡ suc (n + m) → Vec A n+sm

append’b A m n x xs ys n+sm prf = case prf of
{refl → x :: append’ A m n xs ys}

Notice that in both append’a and append’b the pattern matching on prf
is unnecessary since there is no other possible value than refl for _≡_. For
ease of presentation both of these functions will be inlined back into append’
(but this is not necessary for the removal of unused arguments in general).

append’ : (A : Set) (m n : N) → Vec A m → Vec A n
→ Vec A (n + m)

append’ A m n xs ys = case xs of
{ [ ] → ys
; x :: xs’ → case m of
{suc m’ → x :: append’ A m’ n xs’ ys}
}

The proofs have disappeared and the structure is very similar to the
append’ function on Lists save for two extra length arguments. By following
the steps outlined in section 3.3 for removing unused arguments the following
equations are gotten in the abstract interpretation:

append’0 A m n xs ys = 0 -- Initial assumption
append’1 A m n xs ys = xs ∨ ys -- m is not used since suc m’

-- is the only branch and m’ not used
append’2 A m n xs ys = xs ∨ ys -- fixed point reached

By the abstract interpretation only the Vecs are needed and the rest of
the arguments can be removed in the worker/wrapper stage. This gives the
final function that is identical to append’ for Lists:
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append’wrap A m n xs ys = append’work xs ys

append’work xs ys = case xs of
{ [ ] → ys
; x :: xs’ → x :: append’work xs’ ys
}

4.3 Injection detection

In this section some functions that get detected as injections are presented,
which shows that injection detection is applicable in ordinary (not always
contrived) programs.

List to tree conversion The examples that have been shown so far have
been on functions between structures that are isomorphic (after forcing)
with a bijection between them, yet the optimisation has been called injec-
tion detection all along. Thus, it might not come as a surprise that it is
also possible to detect functions between non-isomorphic datatypes that are
injections. The following example illustrates it using the type of trees with
either one or two branches at each node, to which lists can be converted:

data List (A : Set) : Set where
[ ] : List A
_::_ : A→ List A→ List A

data Tree (A : Set) : Set where
♦ : Tree A
_C_B_ : Tree A→ A→ Tree A→ Tree A
_B_ : A→ Tree A→ Tree A

listToTree : {A : Set} → List A → Tree A
listToTree [ ] = ♦
listToTree (x :: xs) = x B listToTree xs

The listToTree function becomes an injection and is simply replaced by
listToTree xs = xs, as the constructor tags for [ ] and ♦ as well as _::_
and _B_ are chosen to be equal. Since the tags are chosen to make as
many functions injections as possible, it does not matter in which order the
constructors are written in the definitions of List and Tree.
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An example from Agda’s standard library The module Data.BoundedVec.
Inefficient from the standard library is a good example of the effectiveness
of injection detection. This module consists of three functions which all
become injections. It is not so inefficient after all!3

data BoundedVec {a} (A : Set a) : N→ Set a where
[ ] : ∀ {n} → BoundedVec A n
_::_ : ∀ {n} (x : A) (xs : BoundedVec A n)→ BoundedVec A (suc n)

A BoundedVec differs from a Vec in that its N index does not state the
actual length of the vector, but its maximum possible length. Something of
type BoundedVec N 3 is thus a vector of length between 0 and 3.

A BoundedVec of maximum length n can easily be converted to a BoundedVec
of maximum length suc n, which is what the function for increasing the
bound does:

↑ : ∀ {a n} {A : Set a} → BoundedVec A n→ BoundedVec A (suc n)
↑ [ ] = [ ]
↑ (x :: xs) = x :: ↑ xs

The difference in the resulting vector is not visible in the code, as it uses
implicit arguments, but the constructor field named n actually changes.

This function becomes an identity function as the index to the vector is
forced (so the field that is changed is removed). It can simply be replaced
with ↑ xs = xs at runtime and thus goes from linear (in the length of the
vector) time complexity to a constant.

The following conversion functions from and to lists are also identity
functions after forcing has been done:

fromList : ∀ {a} {A : Set a} → (xs : List A)→ BoundedVec A (length xs)
fromList [ ] = [ ]
fromList (x :: xs) = x :: fromList xs
toList : ∀ {a n} {A : Set a} → BoundedVec A n→ List A
toList [ ] = [ ]
toList (x :: xs) = x :: toList xs

Optimisations helping each other In section 4.1, the _6_ datatype
was introduced, and it was noted that after forcing it could be represented
as a primitive integer:

data _6_ : N → N → Set where
z 6 n : ∀ {n} → zero 6 n
s 6 s : ∀ {m n} (lt : m 6 n) → suc m 6 suc n

3This code uses set level (universe) polymorphism, which is not relevant to our work,
but explains why Set is given a parameter.
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Now consider the following function, which is proof that a natural num-
ber m is always less than or equal to m + n (for all n):

lemma : (m n : N)→ m 6 m + n
lemma zero n = z 6 n
lemma (suc m) n = s 6 s (lemma m n)

Notice that in the clause where the first parameter is zero, it returns the
constructor of the _6_ datatype that corresponds to zero in its primitive
representation. In the same way, the function returns the constructor that
corresponds to suc in the clause where the first parameter is a suc. This
means that the function is actually an identity function, and shows how
forcing helps with finding more potential injective functions, and that some
datatypes and functions on them can really get a lot more efficient.

4.4 Smashing

This section examines to what extent the smashing algorithm that was de-
scribed in section 3.5 is applicable. In the following table some modules
from Agda’s standard library are listed. These modules have been picked to
give an overview of how many functions return inferable data and can thus
be smashed.

Module Functions Smashed %
Algebra 905 71 8%
Data.Fin 23 3 13%

Data.Fin.Props 74 21 28%
Data.Nat.Properties 143 78 55%

Data.Nat 36 8 22%
Data.Vec 42 0 0%

Data.Vec.Properties 94 58 62%
Relation.Binary.PropositionalEquality 25 11 44%

Relation.Binary.Vec.Pointwise 46 5 11%

Table 4.1: The percentage of function smashed in a selection of modules

The module Data.Nat.Properties is filled with proofs returning equalities,
so smashing is expected to be applicable to most functions there. So why
are “only” 55% of the functions smashed? There are 26 functions which can
not be smashed because they are either decidability predicates (i.e. they
are functions returning fancy forms of Bool) or they build other structures
which have multiple inhabitants. Most of these structures are models of
algebraic structures which are records that have fields for operations which
can not be inferred.
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A majority of the functions, 34 to be exact, return something of the
_6_ type. This type is by the current simple criteria not inferable, but a
solution to this is discussed in section 5.4.

4.5 Case study: A lambda calculus

This section will give a bigger example of an Agda program and how vari-
ous optimisations apply to it. The program is a normaliser for simply typed
lambda calculus where natural numbers have been added, making the lan-
guage slightly more interesting. This example will be using some of the
techniques often used when working with dependent types in general.

The syntax of the terms will guarantee that the terms are well typed, so it
has been fused with the corresponding typing rules. This makes it impossible
to construct terms that are not well typed. This particular calculus contains
two type formers, one for the type of natural numbers and one for the
function space:

data Type : Set where
N# : Type
_⇒_ : Type → Type → Type

Ctx : Set
Ctx = List Type

Here N# is the syntactic representation of the type N in the calculus and
similarly _⇒_ denotes the function space. The type Ctx represents a typing
context. Variables will be de Bruijn indices4, so Ctx is just a simple list of
Types. Some more type safety than simple Ns for variables is desirable, so
a type that guarantees that the variable points to a specific type inside the
context is used instead. Forced arguments are marked with red colour and
underlined.

data Var (τ : Type) : Ctx → Set where
here : ∀ {Γ} → Var τ (τ :: Γ)
there : ∀ {Γ σ} → Var τ Γ → Var τ (σ :: Γ)

This type Var τ Γ should be read as a variable of type τ inside the
context Γ. The constructor here represents a variable that points to the top
of context. Notice that the type τ is really at the top in context τ :: Γ.

The second constructor there is used to point further away inside the
context, so it requires a variable for Var τ Γ as an argument to get the
variable of type Var τ (σ :: Γ) for some σ that is on the top of the context.

After forcing the here constructor takes zero arguments, and the there
constructor takes one recursive argument. It can therefore be implemented

4The variables refer to types in contexts by position instead of using names.
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as a BigInt, so no extra price is paid for the extra type information used
here over using N as indices. Here follows the definition of the terms in the
language. The term e : Expr Γ τ denotes a term e such that Γ ` e : τ .

data Expr (Γ : Ctx) : Type → Set where
var : ∀ {τ } → Var τ Γ → Expr Γ τ
lam : ∀ {τ σ} → Expr (τ :: Γ) σ → Expr Γ (τ ⇒ σ)
_$_ : ∀ {τ σ} → Expr Γ (τ ⇒ σ) → Expr Γ τ → Expr Γ σ

zero : Expr Γ N#

suc : Expr Γ N# → Expr Γ N#

natrec : ∀ {τ } → Expr Γ N# → Expr Γ τ

→ Expr (N# :: τ :: Γ) τ → Expr Γ τ

Here the var simply wraps up a Var for the correct type τ in the context.
The lam constructor produces a term of type τ ⇒ σ by taking a term in
the context Γ extended with the type σ. This added type correspond to
the variable that gets abstracted by the λ. The constructor _$_ represents
function application. The function that gets applied has the type τ ⇒ σ
so the argument must have the same type τ . Notice that the type τ is not
forced since it does not occur in the result type Expr Γ σ.

The last three constructors are used for working with natural numbers.
zero and suc are the basic constructors. The constructor natrec corresponds
to the primitive recursion function, and is the eliminator for natural num-
bers. This function is implemented in Agda as follows:

Natrec : {A : N → Set} → (n : N) → A 0
→ ((m : N) → A m → A (suc m)) → A n

Natrec zero base rec = base
Natrec (suc n) base rec = rec n (Natrec n base rec)

Here it has been given a more dependent type than necessary, to illustrate
that it implements the induction hypothesis of natural numbers.

The normalisation function will give an operational semantics to Expr Γ τ
by returning the corresponding Agda term. The type of this Agda term
depends on the value of τ and is given by the following function:

normal-T : Type → Set
normal-T N# = N
normal-T (τ ⇒ σ) = normal-T τ → normal-T σ

The syntactic type N# becomes the Agda type N and the syntactic func-
tion space _⇒_ becomes functions in Agda. This explains how to translate
τ to Agda, but before the normalisation function can be tackled some way
of dealing with Γ needs to devised. For this purpose yet another data type
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will be constructed: Env Γ which is a datatype for the variable environment
for a typing context Γ.

data Env : Ctx → Set where
[ ] : Env [ ]
_::_ : ∀ {Γ τ } → normal-T τ → Env Γ → Env (τ :: Γ)

lookup : ∀ {Γ τ } → Var τ Γ → Env Γ → normal-T τ
lookup here (v :: ) = v
lookup (there x) ( :: rest) = lookup x rest

An Env matches a typing context, but stores actual values of the types in
the context. The _::_ constructor contains a value of type normal-T τ and
a recursive argument. It is thus similar to a list, but is not homogeneous as
each element’s type is specified by the context.

The lookup function takes a variable of type τ in context Γ and an en-
vironment following the context Γ and finds the value of that variable in
the environment. Since the representation is typed a rather simple imple-
mentation can be given. This function works similar to how _!_ works for
Vec. Because this function does not use the context Γ or the type τ both of
these can be erased in their compiled versions, and since the environment is
known to be _::_, the values needed can just be projected out. Here is the
Epic version of the lookup function:

lookupwork idx env = if idx ≡ 0
then env ! 0 -- ! is epic for projecting out field 0 of the constructor
else lookupwork (idx - 1) (env ! 1)

Finally it is time for the normalisation function. This function will take
a term of the Agda type Expr Γ τ and an environment Env Γ and produce a
value of type normal-T τ .

normal : ∀ {Γ τ } → Expr Γ τ → Env Γ → normal-T τ
normal (var v) env = lookup v env
normal (lam e) env = λ x → normal e (x :: env)
normal (f $ x) env = normal f env (normal x env)
normal zero = 0
normal (suc n) env = suc (normal n env)
normal (natrec n g h) env = Natrec (normal n env) (normal g env)

(λ a b → normal h (a :: b :: env))
eval : ∀ {τ } → Expr [ ] τ → normal-T τ
eval e = normal e [ ]

The eval function does closed term normalisation, i.e starting in the
empty environment. The real deal is the normal function which does the
actual normalisation and is defined by cases on the Expr Γ τ :
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case var v: Lookup the variable v in the environment.

case lam e: In this case the result should be of type normal-T τ → normal-T σ
where e : Expr (τ :: Γ) σ. Since the result should be a function
a lambda is returned that normalises e in the environment extended
with x : normal-T τ .

case f $ x: f will normalise to a function normal-T τ → normal-T σ and x
will normalise to normal-T τ . The result should be of type normal-T σ
so the normalised value of f is applied to the normalised value of x.

case zero: zero is simply 0.

case suc n: suc maps to the suc constructor of type N. Its argument is
normalised to a N before being applied.

case natrec n g h: This corresponds to the Natrec function. When perform-
ing normalisation for h the environment is extended accordingly.

To round off this section an example of using the language will be shown.
It is a simple addition function. The function plus is the Agda function that
is gotten from evaluating add. What it reduces to is shown in the comment:

add : ∀ {Γ} → Expr Γ (N# ⇒ N# ⇒ N#)
add = lam (lam (natrec (var (there here))

(var here)
(suc (var (there here)))))

plus : N → N → N
plus = eval add -- normalises to λ x y → Natrec x y (λ a b → suc b)

The plus function normalises to ordinary Agda functions, which indicates
that eval is a good candidate for partial evaluation. The effectiveness of this
is measured in section 4.7.

4.6 Case study: A file access DSL

One benefit of dependent types is that invariants about programs can be
encoded in the types. In this section an embedded domain-specific language
(DSL) for handling files in the same vein as presented by Edwin Brady and
Kevin Hammond [BH10] is developed in Agda, and is then optimised using
partial evaluation. The DSL will make sure that all files that are opened
will eventually be closed, and that it is only possible to read from open files.

The basic approach here is to create a new language inside Agda, which
makes use of the type system to guarantee the safety properties that are
interesting. Later an interpreter is created that interprets this language
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into the low-level primitive functions. For example, the primitive readFile,
readLine and close functions have the following types:

data Purpose : Set where
Reading : Purpose
Writing : Purpose

openFile : FilePath → Purpose → IO FileHandle
readLine : FileHandle → IO String
closeFile : FileHandle → IO Unit

The openFile function creates a FileHandle which can be passed to readLine,
but there is no static check that the closeFile function has not been called
in between. To remedy this the DSL introduces a new IO type called FIO
which keeps track of the state of the FileHandles before and after running
an action. The functions from above get the following types:

openFile : {n : N} {ts : Files n} (fp : FilePath) (p : Purpose)
→ FIO ts (add (Open p) ts) (Handle (1 + n))

readLine : {n : N} {ts : Files n} (i : Handle n)
{p : openH i Reading ts} → FIO ts ts String

closeFile : {n : N} {ts : Files n} (i : Handle n)
→ FIO ts (set i Close ts) Unit

Here the types are more complex, as they are carrying more information
about the files. The openFile function uses add to add a new file to the state,
which is Open for the particular Purpose (reading or writing). In a similar
way closeFile will change the state by changing the file’s particular Handle
to Closed.

A new burden is put on the programmer, as she must now prove that the
file she is trying to read is actually Open for Reading when calling readLine.
This could be cumbersome but Agda can infer it when working on known
File states.

Overhead of interpreting A price is paid for the extra static guaran-
tees. The primitive IO functions are not called directly, but a datatype is
inspected and depending on this, different function calls are dispatched. All
file handles are also grouped inside an environment so that the file state may
be updated correctly, which also adds an overhead.

The good news is that the program written using the DSL is mostly
known at compile time, and by running the interpreter at compile time it
is possible to get a program that does not mention FIO or use the environ-
ment at all. However, to get the functions to compute well statically, the
FIO type will be written in continuation passing style, meaning that each
constructor has a field representing what to do next. This field is a function
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that takes the return value of the action and continues the execution. The
important point is that the statically known data should not flow through
functions that can only be evaluated during runtime (e.g the flow should not
go through _>>=_).

data FIO (A : Set) {n : N} (fs : Files n)
: {n’ : N} (fs’ : Files n’) → Set where

DONE : (x : A) → FIO A fs fs
OPEN : ∀ {m} {fs’ : Files m} (p : Purpose) → FilePath

→ (Handle (1 + n) → FIO A (add fs (Open p)) fs’)
→ FIO A fs fs’

CLOSE : ∀ {m} {fs’ : Files m} (h : Handle n)
→ FIO A (set h Closed fs) fs’ → FIO A fs fs’

READ : ∀ {m} {fs’ : Files m} (h : Handle n)
{prf : OpenH h Reading fs} → (String → FIO A fs fs’)
→ FIO A fs fs’

WRITE : ∀ {m} {fs’ : Files m} (h : Handle n)
{prf : OpenH h Writing fs} → String → FIO A fs fs’
→ FIO A fs fs’

All the constructors above (except DONE) have a continuation field of
return type FIO. For example OPEN has a function Handle (1 + n) →
FIO A (add fs (Open p)) fs’. The handle is for the newly opened file and the
new FIO action has a state where a new file has been opened, and produces
a new state fs’. A function that does not return a new result (like a new
file handle), such as CLOSE, only has FIO A (set h Closed ts) ts’ as its
continuation.

The constructors READ and WRITE contain proofs that the handle that
they either read from or write to is indeed open for the appropriate action.
This proof can often be inferred when working with a closed term so it is
marked as implicit with curly braces.

It is possible to write a new bind function for the FIO type – otherwise
it would not be much of a monad. This function will be called _>>=′_ and
is defined by pattern matching on the first argument:

_>>=′_ : ∀ {A B n m l} {fs1 : Files n} {fs2 : Files m} {fs3 : Files l}
→ FIO A fs1 fs2 → (A → FIO B fs2 fs3) → FIO B fs1 fs3

DONE x >>=′ f = f x
OPEN p fp k >>=′ f = OPEN p fp (λ h→ k h >>=′ f)
CLOSE h k >>=′ f = CLOSE h ( k >>=′ f)
READ h {prf} k >>=′ f = READ h {prf} (λ s→ k s >>=′ f)
WRITE h {prf} s k >>=′ f = WRITE h {prf} s ( k >>=′ f)

In the interpretation of FIO an environment of Files is needed to store
the “real” file handles. This environment will be updated when interpreting
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the OPEN and CLOSE operations, and will be sent to the continuation.5

runFIO : ∀ {A n m} {fs : Files n} {fs’ : Files m} → Env n
→ FIO A fs fs’ → IO A

runFIO env (DONE x) = return x
runFIO env (OPEN p fp k) =
openFile fp (getMode p) >>= λ h→
runFIO (add env h) (k bound)

runFIO env (CLOSE h k) =
closeFile (env ! h) >>= λ →
runFIO env k

runFIO env (READ h k) =
readFile (env ! h) >>= λ s→
runFIO env (k s)

runFIO env (WRITE h s k) =
writeFile (env ! h) s >>= λ →
runFIO env k

Now, what happens when (partially) evaluating runFIO empty (Open Reading "fp" (λ h →
Close h (Done tt)))? Do the FIO and Env types in fact disappear?6

runFIO empty (OPEN Reading "fp" (λ h → CLOSE h (DONE tt)))
 β

openFile "fp" (getMode Reading) >>= λ h →
runFIO (add empty h) ((λ h → CLOSE h (DONE tt)) bound)
 β

openFile "fp" (getMode Reading) >>= λ h →
runFIO (add empty h) (CLOSE bound (DONE tt))
 β

openFile "fp" (getMode Reading) >>= λ h →
closeFile ((add empty h) ! bound) >>= λ →
runFIO (add empty h) (DONE tt)
 β {-(add empty h) ! bound ≡ h -}
openFile "fp" (getMode Reading) >>= λ h →
closeFile h >>= λ →
return tt

Indeed they do! What is left is just the primitive IO operations, as if
they were written without the extra type safety that the DSL provides.

An example where the computation gets stuck If the FIO type was
not written in continuation passing style, but instead used an explicit BIND,

5bound : {n : N} → Fin (suc n) will create a number as large as possible, denoting
the end of environment.

6a  β b means that a evaluates to b.
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the computation may not go through. This will demonstrate that known
data that goes through abstract functions becomes abstract:

data FIO (A : Set) {n : N} (fs : Files n) : {n’ : N} (fs’ : Files n’)
→ Set where

...
BIND : ∀ {B n m l} {fs’ : Files m} {fs” : Files l}

→ FIO B fs fs’ → (B → FIO A fs’ fs”) → FIO A fs fs”

Here the environment corresponding to fs’ will be needed and hence
runFIO will have to return the new Env as well. If the return type is changed
to IO (A × Env m) a problem occurs. What follows is the example from
above with these changes made to it, which demonstrates the problem:

runFIO empty (BIND (OPEN Reading "fp") (λ h → CLOSE h)
 β

runFIO empty (OPEN Reading "fp") >>= λ v →
runFIO (snd v) (CLOSE (fst v))
 β

(openFile "fp" (getMode Reading) >>= λ h →
return (bound, add empty h) >>= λ v →

runFIO (snd v) (CLOSE (fst v))

Here the computation gets stuck since >>= is an abstract function and
Agda does not know that the monad laws apply. In particular it does not
know that >>= is associative7 and that return is a unit8.

There is another way to make this compute with the BIND constructor,
and that is to instead use the return type IO A × Env m. The Env is passed
around independently of the abstract IO type, and therefore the type is seen
by Agda and can be gotten rid of using partial evaluation.

However, another problem arises when adding the BIND constructor like
this: It is not logically sound. The B in the type of BIND is itself a type, and
this is not allowed in Agda (due to paradoxes similar to Russel’s paradox).

4.7 Benchmarks

This section presents four different benchmarks, which compare the runtime,
amount of memory allocated, executable size and compilation time of the
Epic backend with and without optimisations and the MAlonzo backend. In
the last benchmark, an Agda program compiled using the Epic backend is
compared to an equivalent Haskell program compiled with GHC.

All benchmarks were run on a computer with an Intel Core i7 920 pro-
cessor and 6GB of memory. The memory allocation measurements were

7((m >>= λ h → f h) >>= λ v → k v) ≡ (m >>= \h → f h >>= \v → k v)
8(return x >>= λ v → k v) ≡ k x
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obtained from the garbage collector using the Epic backend and from the
runtime system of GHC using both the MAlonzo backend and Haskell di-
rectly. Note that it is the total memory allocated during the whole run that
is presented, and not the peak memory usage.

Markov chains This benchmark consists of running a Markov chain with
100 states for different numbers of steps. The implementation is doing n
matrix/vector multiplications where the matrix’ sides and the vector’s length
are 100. The matrix is implemented as a Vec (Vec Double 100) 100. The
results are shown in table 4.2.

Backend Epic Epic unopt. MAlonzo
Compilation time 2m 37s 2m 35s 1m 55s
Executable size 4.5MB 5.1MB 8.3MB
n = 1 Time 0.006s 0.006s 0.004s

Alloc. 1.38MB 1.41MB 1.55MB
n = 10 Time 0.017s 0.018s 0.007s

Alloc. 13.1MB 13.3MB 14.7MB
n = 100 Time 0.13s 0.14s 0.041s

Alloc. 130MB 132MB 146MB
n = 1000 Time 1.31s 1.38s 0.42s

Alloc. 1.30GB 1.32GB 1.46GB
n = 5000 Time 7.47s 8.13s 3.1s

Alloc. 6.49GB 6.58GB 7.30GB

Table 4.2: Markov chain benchmark results

The example uses Agda’s standard library, which is the reason for the
rather long compilation times and large files. The speed improvements of
using the optimised backend are not great in this program, since there are not
that many opportunities for optimisations. The main improvement is that
the representation of Vec does not store its length in each _::_ constructor
as it is forced. This is visible in the rows labelled “Alloc.”, which show
the total memory allocated during the whole run (not to be confused with
maximum memory usage). The Haskell compiler, GHC, produces such good
code that it is hard to beat the MAlonzo backend in this benchmark, even
though the MAlonzo backend is not performing optimisations itself.

Total parser combinators This benchmark is an example from a total
parser combinator library developed by Nils Anders Danielsson [Dan10],
which parses arithmetic expressions. It runs quite slow, which explains the
short input strings. Table 4.3 below shows how the different Agda backends
perform, where x is the program’s input string.

46



4.7. BENCHMARKS CHAPTER 4. RESULTS

Backend Epic Epic, unopt. MAlonzo
Compilation time 4m 48s 6m 47s 1h 20m 25s
Executable size 7.5MB 15MB 13MB
x = 1 Time 0.006s 0.006s 0.004s

Alloc. 837kB 808kB 156kB
x = 1 + 2 Time 0.039s 0.039s 0.004s

Alloc. 24.0MB 25.8MB 381kB
x = 1 + 2 ∗ 3 Time 0.75s 0.86s 0.005s

Alloc. 435MB 483MB 1.65MB
x = 1 + 2 ∗ 3 + 4 Time 25.1s 27.0s 0.009s

Alloc. 10.4GB 11.6GB 7.75MB
x = 1 + 2 ∗ 3 + 4 ∗ 5 Time 17m 48s 18m 58s 0.028s

Alloc. 297GB 333GB 27.6MB

Table 4.3: Total parser combinator benchmark results

The executables produced by the Epic backend perform slowly in this
benchmark, and their running time grows much faster as the input size
grows compared to those produced by the MAlonzo backend. The probable
cause is that combinator libraries like this one benefit from laziness, as
control structures unnecessarily evaluate their arguments otherwise. This is
discussed more in section 5.7.

Even though the Epic backend cannot compete with the MAlonzo back-
end in this benchmark, it shows that the optimisations that are performed
in Epic really do help compared to not using them. Also note that the
compilation time with optimisations on is actually lower than without opti-
misations. Even though the compiler does more work, it is faster, because
the code becomes smaller.

Most of the compilation time using the MAlonzo backend is spent in the
Haskell compiler GHC (probably doing type checking) and using the Epic
backend in the Epic compiler (which in turn calls the C compiler GCC).
The size of the modules in Agda’s standard library, which is not tailored
for compiling programs, contributes to the slowness. The compilation time
and code size may be helped further by removing unused functions, which
is discussed in section 5.2.

Simply typed λ-calculus This benchmark uses the lambda calculus that
was defined in section 4.5. The multiplication and power function have been
defined using natrec in this language (in a similar style to the add function
which was presented in that section).

The benchmarks, shown in table 4.4, are simple:

• The first one calculates 500 · 500, i.e eval mul 500 500 where mul is the
term for multiplication.
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• The second one calculates 105, i.e eval pow 10 5 where pow is the power
function.

eval mul 500 500 eval pow 10 4
Backend Optimisation Time Alloc. Time Alloc. Size

Epic opt + static 0.15s 96.2MB 0.84s 492MB 4.5MB
Epic opt 0.23s 161MB 1.37s 850MB 4.5MB
Epic opt + no-forcing 0.25s 185MB 1.35s 984MB 4.5MB
Epic no-opt 0.25s 185MB 1.69s 1.03GB 4.5MB
Epic no-opt + no-forcing 0.25s 186MB 1.48s 984MB 4.5MB

MAlonzo 0.15s 49.1MB 2.91s 283MB 8.1MB
GHC 0.40s 115MB 16.4s 668MB 1.0MB
GHC -O2 0.18s 57.0MB 2.62s 302MB 0.9MB

Table 4.4: Simply typed lambda calculus benchmark results

The benchmarks were run using some different optimisation configura-
tions, showing what yields the most gains:

opt means that all optimisations are on

static means that the eval function is marked as STATIC

no-forcing means that forcing is not performed

no-opt means that no optimisations other than forcing and finding primi-
tive data are performed

An equivalent lambda calculus was also written in Haskell (presented in
appendix B) and compiled using GHC with different optimisation flags.

The table shows that the Epic backend beats both the MAlonzo backend
and GHC when evaluating the power function (comparing execution time),
and it also gets close in the multiplication case. It can be seen that all
optimisations do their part of the job to yield faster programs; the programs
run a bit faster for each optimisation that is turned on.

The power function actually runs slower when using forcing without the
other optimisations (the no-opt case). This is because a function on forced
data may sometimes do more work to “dig out” the forced variables, while
the unforced version can get it directly from a constructor’s fields (though
it uses more memory for the representation).

The factorial function This benchmark shows the infamous factorial
function, written equivalently in Haskell (left) and in Agda (right):
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fac :: Integer → Integer
fac = fac’ 1
fac’ :: Integer → Integer → Integer
fac’ a 0 = a
fac’ a n = fac’ (a * n) (n - 1)

fac : N → N
fac = fac’ 1
fac’ : N → N → N
fac’ a zero = a
fac’ a (suc n) = fac’ (a * suc n) n

In this benchmark, the MAlonzo backend did not perform well and was
only able to produce results for inputs below 9. For fac 9 it is more than 65
times slower than Epic. This is because MAlonzo converts natural numbers
between Integers and a Peano style inductive datatype. When performing
addition and multiplication an Integer is used, but otherwise the inductive
datatype is used. Due to MAlonzo not being able to compete, only Epic
and Haskell are shown in the results, in table 4.5.

Epic GHC GHC -O2
Executable size 78kB 1.2MB 1.2MB

n = 9 0.008s 0.003s 0.003s
n = 100 0.008s 0.004s 0.004s
n = 1000 0.010s 0.004s 0.004s
n = 10000 0.065s 0.061s 0.034s
n = 100000 5.71s 18.42s 3.82s

Table 4.5: Factorial benchmark results

This shows that the Epic backend is almost as performant as Haskell
compiled with GHC. The reason for GHC without optmisations being so
slow for n=100000 is probably due to laziness. The arguments to fac’ become
thunks so all the multiplications are delayed.
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5
Discussion

This chapter hosts a discussion about the way we solved some problems
in our backend and presents some future work that can be done in
areas related to compiling and optimising Agda. It includes a general

comparison of forcing and eliminators in section 5.1. Different ways of doing
type erasure, and a possible extension to our approach to also remove unused
definitions is discussed in section 5.2. The way that the tags are chosen to
benefit injection detection is discussed in section 5.3.

An optimisation that we have not implemented, but that could prove
to work well is collapsing, which would for example help the smashing op-
timisation. It is discussed in section 5.4. Currently we have a fast BigInt
representation for some data types, but not for all operations on them. How
to do this and how more datatypes can get a better representation is dis-
cussed in section 5.5.

Section 5.6 presents some problems with doing partial evaluation and
how they can be solved. Some points on the evaluation strategy are made
in section 5.7, and section 5.8 forms an opinion of whether the choice of
compiling to Epic is the right one.

5.1 Forcing

Forcing is an important optimisation as it enables other optimisations, most
notably using primitive data representations, and makes dependently typed
programs more space-efficient.

In Epigram [BMM04], forcing becomes different than what has been pre-
sented here. This is because the Epigram is a language that uses elimination
operators, and these are the only way to deconstruct data. If that operator
is changed to not use any forced variable, all functions over a datatype to
which forcing applies automatically gain the benefits of forcing.

The current Agda implementation uses case splitting trees, meaning that
all functions can pattern match on data. All functions over a datatype thus
have to be rewritten when forcing has been done. The drawback of this is
that a lot of extra work has to be performed, whereas only one function has
to be changed when using eliminators. The algorithm for removing forced
variables in the context of case splitting trees is also complicated to get right.
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5.2 Erasure

In the Cayenne language [Aug98], type erasure is done by removing types
that are used as arguments to functions, record components or the result
type of a function. Cayenne is similar to Agda in that it has no way to
perform pattern matching on a type. This means that it may be possible to
do this form of type erasure also in Agda.

The route that we took to solve the problem is detecting unused argu-
ments (which will detect most types) and creating wrapper functions calling
worker functions without the unused arguments. Our solution is simple and
also has the benefit of removing not just types, but anything that is not used
in a computation. It may, however, not be as efficient as Cayenne’s solu-
tion, depending on how many wrapper function calls can be inlined (which
is where the real removal of arguments happens). Also, this approach does
not address erasure for higher order functions, which is something Cayenne
does.

If Agda’s metatheory allows it, the optimal solution would be to first
remove types. After that has been done we can also perform the work-
er/wrapper transform to remove unused arguments (which will not be as
many in this case).

Removal of unreachable definitions Another optimisation that would
be interesting to investigate is the removal of definitions in a module that
are actually unreachable; dead code elimination but on the function level.
This is important since Agda allows modules inside modules and also pa-
rameterised modules. A parameterised module has arguments that can be
used in its definitions.

module Map (Key : Set)
(A : Set)
(_<_ : Key → Key → Bool) where

data Map : Set where
. .

empty : Map
insert : Key → A → Map → Map
lookup : Key → Map → Maybe A

module UseOfMap
open Map N String Nat._<_
test : Map
test = insert 0 "hello" empty

The module UseOfMap instantiates the arguments of Map. Internally
these modules will be translated to modules without parameters, by turn-
ing them into parameters to the definitions instead. The places where the
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module gets opened and applied turns into a new module with new defini-
tions where the parameter arguments have already been applied. This new
module introduces a lot of new definitions, some of which may never be
used.

The example above will be compiled to something similar to the follow-
ing:

module Map where
data Map (Key : Set)

(A : Set)
(_<_ : Key → Key → Bool) : Set where

. .

empty : (Key : Set) (A : Set) (_<_ : Key → Key → Bool)
→ Map Key A _<_

insert : (Key : Set) (A : Set) (_<_ : Key → Key → Bool)
→ Key → A → Map Key A _<_ → Map Key A _<_

lookup : (Key : Set) (A : Set) (_<_ : Key → Key → Bool)
→ Key → Map Key A _<_ → Maybe A

module UseOfMap where
module Map’ where

Map = Map.Map N String Nat._<_
empty = Map.empty N String Nat._<_
insert = Map.insert N String Nat._<_
lookup = Map.lookup N String Nat._<_

open Map’
test : Map
test = insert 0 "hello" empty

These definitions take up a lot of space in the code, and makes compi-
lation take more time than necessary. There are also functions that may
not be used anymore due to optimisations. Smashing can for example make
helper lemmas for equality proofs unused and unreachable if they are private
to a module.

Because of the issues with having unnecessary definitions it would be
beneficial to add functionality to remove unused definitions as well as unused
arguments.

5.3 Injection detection

The same optimisation as the injection detection presented in this thesis has
been described in Edwin Brady’s PhD thesis [Bra05]. Our work extends it
by considering injective functions that operate on constructors of different
datatypes whose representations will (partly) be the same, and makes the
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selection of tags only after potentially injective functions have been identi-
fied.

Just like Brady’s work, our implementation may still suffer the problem
with mutually recursive definitions, which may not be detected if reduction
of the body of one of a function f’s clauses calls a mutually recursive function
g with unknown arguments, so that it is not possible to reduce the call to
g further, even though it may be an injective function at runtime. The
problem is that g may be an identity function in one argument as well, and
this fact depends on the fact that f is an identity function in one argument.
But to try all argument combinations that f and g may be identities in would
be too costly, so a smarter algorithm has to be be devised.

Choosing constructor tags The way we choose constructor tags has
been tested on Agda’s standard library and gives the expected results. It
can, however, yield results that are not perfect, as the method does not take
into account what potentially injective functions are blocked by marking
another function as an injection. This means that depending on the order
of functions that the algorithm is run on, it may choose constructor tags to
make different functions injections.

A way to solve this problem would be to use a heuristic when unifying
the preconditions for injective functions to maximise the number of functions
that are solved, or to solve functions which are the most important before
other functions.

We have not yet run into any problems with using the current simplified
approach, as most functions’ preconditions can be solved, but there may be
cases where it performs badly. A point to remember is that all candidate
injection functions can not always be chosen to be injections at the same
time, so a perfect solution is impossible.

Another problem is that the constructor tags are chosen per module,
which is because modules are compiled separately in the backend to not have
to recompile if only one file is changed. For each module that is compiled,
an Agda/Epic-interface file is created, which among other things contains
information about constructor tags.

This means that if lists are defined in one module, vectors are defined
in another module and a third module implements the forget : ∀ {A n} →
Vec A n → List A function there is a possibility that lists and vectors do
not get the same constructor tags, as they were chosen before the forget
function was known. If, however, the forget function is in either of the list
and vector modules, it will work as expected.
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5.4 Smashing

The presented criterion for inferability does not work for functions for which
a constructor can be determined by its indices. For example, a value of type
Vec A 0, vectors of length zero, only has one runtime representation but it
is not caught by the criterion since Vec has two constructors.

A way to solve this problem would be to try to unify the return type of
the function with the type of the different constructors in the datatype. If
the return type can only be unified with one of the constructors, it means
that the function has to return that constructor.

Another possible extension is to walk through the term to find smash-
able subterms. Since the arguments to a function can have known values
in an application, this may allow the return type to reduce to something
smashable, meaning that the application can be replaced with the smashed
value.

Collapsing The type _6_ represents the less than or equal relation
between two numbers, so it is only possible to construct m 6 n if m is
really less than or equal to n. This is can be defined in Agda as follows
(forced arguments are red and underlined):

data _6_ : N → N → Set where
z 6 n : {n : N} → zero 6 n
s 6 s : {m n : N} → m 6 n → suc m 6 suc n

It is possible to perform yet another optimisation called detagging
[BMM04] on this type. It depends on the following observation: The first
index completely determines which constructor it can be. Given a term
le : zero 6 n it is known that le = z 6 n {n} since no other type is
possible. Similarly it must be s 6 s if the first index is suc m for some m.

If detagging is implemented there would be no need to store anything
in the _6_ datatype: No tag since it is detaggable and can therefore be
inferred, and no argument since they are removed by forcing. The only
thing left is the recursive argument m 6 n in s 6 s, but by an inductive
reasoning this does not contain any information either. By this we can
replace _6_ by a simple constant1. When a combination of detagging and
forcing produces a type in which it is possible to decide which constructor it
is with only information from indices and where all non-recursive arguments
are forced, it can be replaced with a constant. This is called collapsing and
is beneficial for space, since it reduces terms of the type to just a constant.
Because it is a constant, it is inferable what value it is during runtime, and
hence functions returning _6_, or any other collapsible types, could also
be smashed.

1This relies on type checking since it is important to not have a constant like 5 6 2.
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5.5 Primitive data

The translation of the Fin type to BigInt makes it more space-efficient. But
it also makes new optimisations possible, namely making use of the time-
efficient operations that BigInt provides. Currently we only use these op-
erations when they are marked as built-in, but there are no such built-in
operations for the Fin type.

It would be interesting to try to detect functions that can be represented
by primitive operations. Below is an addition function _+F_ for Fin which
could be implemented as addition on BigInts.

toN : {m : N} → Fin m → N
toN fz = zero
toN (fs i) = suc (toN i)
_+F_ : {m n : N} (i : Fin m) → Fin n → Fin (toN i + n)
fz +F j = j
fs i +F j = fs (i +F j)

Another way of defining an addition on the Fin datatype is the following:

raiseIdx : {n : N} (m : N) → Fin n → Fin (m + n)
raiseIdx zero j = j
raiseIdx (suc n) j = raiseIdx n j
_+F’_ : {m n : N} → Fin m→ Fin n→ Fin (m + n)
(zero {n}) +F’ j = raiseIdx (suc n) j
suc i +F’ j = suc (i +F’ j)

For this to be detected as an operation on natural numbers, it would
have to use the information that raiseIdx is an identity function in its second
argument. This once again shows that the optimisations sometimes rely on
eachother.

In the same way that injection detection is not limited to constructors
of the same datatype, there is no need to restrict the arguments and results
to be of the same type2. As long as the used arguments and the result
are all represented by BigInts at runtime it will work. An example is the
raise function which increases the value of a Fin by a N. This can also be
represented as BigInt addition at runtime.

raise : {m : N} (n : N) → Fin m → Fin (n + m)
raise zero i = i
raise (suc n) i = fs (raise n i)

2Not even _+F_ conforms to this.

55



5.6. PARTIAL EVALUATION CHAPTER 5. DISCUSSION

More types of data There may be ways to represent many other datatypes
than ones that look like natural numbers more efficiently. The general re-
quirement is that there is a bijection between the new representation and
the constructor representation. For example, another datatype that could
be represented as a BigInt is the following definition of positive binary num-
bers:

data Binary : Set where
_I : Binary → Binary
_O : Binary → Binary
bI : Binary

five : Binary
five = bI O I

To make an alternative encoding of a datatype, a bijection between the
old and the new representation is required.

The problematic bit about detecting this bijection is which of the con-
structors _I and _O should be 1 and 0 respectively. Of course one could
make an arbitrary choice, but it would be better to make the choice based
on what allows us to detect the largest number of operations (e.g _+_ and
_*_).

Another datatype that could be represented differently is Vec, which
could use an array (a continuous memory region). Pattern matching and
returning sub vectors could be done efficiently by using pointers into the
array, and indexing functions could then be detected and changed to use
array indexing. A problem is functions that build new vectors, which may
be more expensive using this representation.

5.6 Partial evaluation

The use of partial evaluation can often remove the overhead of certain ab-
stractions. When using domain-specific languages the overhead of interpret-
ing can for example be removed in some cases. Here it is important to note
that for the example to work the abstraction needs to be able to compute
well during open-term evaluation.

If the function that we want evaluated at compile time depends on a value
that is unknown at compile time (from for example pattern matching), the
computation will block. One technique to solve this is to move the pattern
matching to a separate function that receives continuation arguments for
the different outcomes.

Consider this rather contrived example: An expression language with
one global boolean variable. The language has an IfThen_Else_ construct
to perform a choice depending on this variable.
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data Expr : Set where
zero : Expr
suc : Expr → Expr
IfThen_Else_ : Expr → Expr → Expr
_+_ : Expr → Expr → Expr
-- Assume the Bool is only known during runtime

eval : Expr → Bool → N
eval zero b = 0
eval (suc n) b = suc (eval n)
eval (x + y) b = eval x b N.+ eval
eval (IfThen a Else c) true = eval a true
eval (IfThen a Else c) false = eval c false

If the Bool is not known at compile time a partial evaluation of eval
applied to a IfThen_Else_ constructor will get stuck, and no further com-
putation will occur. This can be remedied as explained above, by changing
the last two lines to:

eval (IfThen a Else c) b = if b then eval a true else eval c false

This will continue to compute, even if the b is unknown, and leaves the
if_then_else_ to be evaluated at runtime. Notice that in the branches the
value of the Bool is known so IfThen_Else_ constructors inside these can be
evaluated completely.

Edwin Brady and Kevin Hammond have a more general partial evaluator
in their paper [BH10]. In their paper, recursive functions which can not
be reduced in all cases can still be specialised for the known input. In
this scheme a new function is created for each of the static applications of
known arguments. The partial evaluator then uses these functions instead
of the general one when the evaluation has failed to give a result. This
is something that we have not yet implemented, due to the need to then
change the normalisation function in Agda to support it, but it would still
be an interesting direction to take in the future.

5.7 Laziness

Epic uses strict evaluation, which means that the arguments to a function
are evaluated before the function is entered. It does, however, have a lazy
keyword, which can be used to create a lazy expression which is only eval-
uated when its value is needed. This is currently only used for co-inductive
definitions (not dealt with in this thesis) in our compiler backend, and for
defining common default branches from case splitting trees.

When defining your own control structures, for example the if_then_else_
function, it is sometimes desirable to have laziness in specific arguments of
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a function. The if_then_else_ function would benefit from being lazy in
the second and third arguments, as only one of them is returned (depending
on the value of the first argument, the Bool). Without laziness, the func-
tion performs some unnecessary work each time it is called. The good thing
about Agda is that we know that all arguments to if_then_else_ terminate,
which means that the result of the program (save for the running time) is
not affected by evaluating the arguments strictly.

One way to solve this problem would be to let the programmer mark
arguments as lazy in functions that need them. Another way would be to
perform a laziness analysis, which would detect functions where an argument
is not used in all pattern matching clauses and thus might benefit from
laziness.

A drawback of both approaches is that Epic currently has no way to mark
arguments to functions as lazy – it only has a keyword to mark expressions
as lazy. Laziness then has to be marked at the call site. In some cases this
leads to not being able to provide laziness where it might be desired. For
example, consider the following function:

test : {A : Set} ( Bool → A → A → A)
→ Bool → A → A → A

test f b x y = f b x y

The test function may be called with if_then_else_ as the first argument,
but it is not possible for the compiler to know that it would be a good idea
to mark the arguments as lazy in the call to the f function, as it may also
be some other function with the same type signature.

To solve this problem, Epic could be changed to allow marking function
arguments as lazy or to be lazy by default.

5.8 Target language

The results of the benchmarks show promising results for our new backend,
but it is still hard to beat the Haskell compiler GHC, which is very mature
and produces fast code. In comparison, Epic is a new and experimental
research language, which does not always produce code of the same quality.

Many of the optimisations shown here would also apply to other target
languages than Epic, so it would be interesting to see them applied to a
backend targeting another language. To get around the problem of type
checking and having to use type coercions when using Haskell as the target
language, it may be possible to plug into the GHC API at a later stage, to
still be able to reap the benefits of that compiler’s optimisations and get lazy
evaluation which may help performance when making your own combinator
libraries.
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6
Conclusion

The goal of this thesis has been to create a compiler for Agda that pro-
duces efficient programs. To do so, a big part of the work has gone
into optimisations. As programs written in a dependently typed lan-

guage often differ from those of conventional programming languages, it also
means that the optimisations that help the most are different ones. There
are also optimisations that simply do not apply to conventional languages.
The focus of our work has been on optimisations that are specific to de-
pendently typed languages, as that has previously been explored to a lesser
extent.

We have looked at a number of different optimisations (chapter 3), show-
cased the results by examples and measurements (chapter 4) and lastly dis-
cussed what could have been done differently and in what direction future
work can be taken (chapter 5).

The optimisations fall into two broad categories:

Data representation Agda has a minimal core and even natural numbers
are defined as ordinary inductive datatypes. In a compiled program,
that representation is not efficient enough, which is why we look at the
shape of datatypes to determine if they can be represented more effi-
ciently on the target platform by using native integer representations,
and if so, rewrite the code to do so. This has been explored previously
in Edwin Brady’s thesis [Bra05].

Dependent types allow for a new kind of expressiveness in defining
datatypes, but it also means that naïve data representations would
store some values in constructor fields which are used as type indices.
It has previously been shown that these can be removed, as they can
always be inferred from the context [BMM04]. This optimisation is
called forcing and it also means that more datatypes can be represented
natively, as some datatypes are isomorphic to natural numbers once
their forced arguments have been removed.

In the context of Agda, the forcing algorithm takes a different form
than what has been dealt with previously, since Agda has pattern
matching while Epigram uses an underlying type theory with elimina-
tion operators.

Term optimisations Parts of terms written in a dependently typed lan-
guage may not have any computational meaning and can be removed
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at runtime. An example is types, which only have a meaning stati-
cally and can be removed at runtime. This sort of type erasure has
been done before in the Cayenne language [Aug98]. We present an
implementation that uses an abstract interpretation and simply looks
for unused arguments, which means that it can remove more than just
types.

Another source of inefficiencies is computations that do something
complicated but can only have one outcome at runtime. Since Agda is
pure and does not allow non-terminating or partial functions it means
that these computations can simply be replaced by their values. We
call this optimisation smashing.

Some functions may be (recursive) identity functions in disguise in
their compiled representation. By exploiting our knowledge of the low-
level representation of data we can choose constructor tags in a way
that even allows functions between different datatypes to be replaced
with non-recursive identity functions.

The work that we have presented in this thesis has been carried out in a
real-world implementation of a dependently typed programming language.
Our work shows that there are a lot of opportunities for optimisations in
languages of this kind, and it is very likely that there are many more optimi-
sations that can be carried out (some have even been mentioned in chapter
5). While there is still room for improvement, our compiler certainly makes
Agda more viable to use as a programming language by producing smaller
and faster programs faster than before.
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Foreign function interface

There is an Agda pragma, COMPILED_EPIC, which makes it possible
to run arbitrary Epic functions in an Agda program. The following
example shows how it is used:

postulate natToString : N → String
{-# COMPILED_EPIC natToString (n : BigInt) → String

= bigIntToString (n) #-}

The pragma looks like an ordinary Epic definition, but the first argument
is parsed as an Agda identifier (natToString in the example above). Each
reference to the postulate in the Agda code will, in the generated Epic code,
be to a definition where the code from the COMPILED_EPIC pragma has
been pasted verbatim.

As Epic also has a foreign function interface, i.e making it possible to
call C functions, this functionality is automatically exposed in Agda. The
following example defines a function numArgs which calls the C function
numArgsBig:

postulate numArgs : N
{-# COMPILED_EPIC numArgs () → BigInt

= foreign BigInt "numArgsBig" () #-}

In this way it is possible to create bindings to C libraries.

IO Similar to the way it is done in Haskell, IO is implemented as a monad.
The interface is built up using postulated functions whose definitions are
given in COMPILED_EPIC pragmas.

postulate
IO : Set → Set
return : ∀ {A} → A → IO A
_>>=_ : ∀ {A B} → IO A → (A → IO B) → IO B
putStrLn : String → IO Unit
readStr : IO String

To make the order of IO actions explicit, the type IO A is modelled
in Epic as the type Unit → A. Since Epic does not make a distinction
between pure and impure functions this function can also have a side effect.
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The point is that the side effect will not happen until the function is applied
to a unit.

In Agda it is not possible to make a call to an IO function from a pure
(non-IO) function using this interface, since the type IO A cannot be used
in place of A.

The return function just returns its argument when applied to a unit. Its
first argument is the type A which is seen in the postulated signature of the
function. The type argument will not be used, so it is safe to assume that
it is a unit.

{-# COMPILED_EPIC return (a : Unit, x : Any, u : Unit) → Any
= x #-}

The bind function _>>=_ runs two computations sequentially. In its Epic
definition the first two arguments are the types A and B from the signature,
and its last argument is the unit it gets from being an IO computation. The
Epic pragma %effect is used to mark effectful computations as such, so that
Epic does not optimise away the side effect.

{-# COMPILED_EPIC _>>=_
(a : Unit, b : Unit, ioa : Any, f : Any, u : Unit) → Any
= %effect (f (%effect (ioa (u)), u)) #-}

The functions putStrLn and readStr simply call the functions that do
the job that is wanted. The only difference between these and an ordinary
definition of these functions in Epic is that they take the above-mentioned
unit.

{-# COMPILED_EPIC putStrLn
(a : String, u : Unit) → Unit
= epic_putStrLn (a) #-}

{-# COMPILED_EPIC readStr
(u : Unit) → String
= epic_readStr () #-}

The main function in an Agda program acts as its entry point, and has
type IO A for some type A. When the Epic code is generated, the main
function is applied to a unit, so that it is run.

The following code is an example of a simple IO program:

main : IO Unit
main = putStrLn "What is your name?" >>= λ →

readStr >>= λ name →
putStrLn ("Hello, " ++ name ++ "!")
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Haskell lambda calculus

data Var t g where
Here :: Var t (t, g)
There :: Var t g → Var t (s, g)

data Expr g t where
Var :: Var t g → Expr g t
Lam :: Expr (t, g) s → Expr g (t → s)
App :: Expr g (t → s) → Expr g t → Expr g s
Zero :: Expr g N
Suc :: Expr g N → Expr g N
NatRec :: Expr g N → Expr g t → Expr (N, (t, g)) t → Expr g t

data Env g where
Nil :: Env ()
Cons :: t → Env g → Env (t, g)

lookupEnv :: Var t g → Env g → t
lookupEnv Here (Cons v ) = v
lookupEnv (There i) (Cons rest) = lookupEnv i rest

natrec :: N → t → (N → t → t) → t
natrec 0 base rec = base
natrec n base rec = rec n’ (natrec n’ base rec)

where n’ = n - 1

normal :: Expr g t → Env g → t
normal (Var v) env = lookupEnv v env
normal (Lam e) env = λ x → normal e (Cons x env)
normal (App f x) env = normal f env (normal x env)
normal Zero = 0
normal (Suc n) env = 1 + normal n env
normal (NatRec n g h) env = natrec (normal n env) (normal g env)

(\a b → normal h (Cons a (Cons b env)))
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eval :: Expr () t → t
eval e = normal e Nil

add :: Expr g (N → N → N)
add = Lam (Lam (NatRec (Var (There Here))

(Var Here)
(Suc (Var (There Here)))))

mul :: Expr g (N → N → N)
mul = Lam (Lam (NatRec (Var (There Here))

Zero
((add ‘App‘ Var (There (There Here)))

‘App‘ (Var (There Here)))))

power :: Expr g (N → N → N)
power = Lam (Lam (NatRec (Var (There Here))

(Suc Zero)
((mul ‘App‘ Var (There (There Here)))

‘App‘ (Var (There Here)))))
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