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Mathematical modelling of the human physiology
Developing a new framework for creating mathematical models adapted to the digital
twin project and modelling the neurovascular coupling
Gustav Magnusson
Department of Physics
Chalmers University of Technology

Abstract
This master’s thesis is carried out within the field of systems biology and aims to
contribute to the advancement of mathematical modelling for human physiology.
This is important for many reasons, e.g. the potential reduction of animal testing.
The work consists of two related parts: firstly, the development of a new frame-
work for creating mathematical models to fulfill requirements of the Digital twin
project, an undertaking currently being performed by Gunnar Cedersund’s group at
Linköping University. The Digital twin project aims to produce a detailed computer
model of an individual person which can be tuned to their unique physiology, i.e.
a digital twin. This digital twin could then be used to improve patient compliance
and/or understanding by simulating the likely effects of a medical treatment, or to
make risk predictions for various diseases. The second part of the thesis revolves
around the development of a neurovascular coupling model. This model is used to
test the hypothesis that the post-stimulus response seen in a typical blood oxygen
level dependent signal, measured by a magnetic resonance imaging camera, is due
to a change in relative excitatory and inhibitory neural activity. This neurovascu-
lar coupling model also serves as a test for the new modelling framework described
above.
A first version of a digital twin software, where the new modelling framework plays
a central role, was successfully completed and provides a solid foundation for further
development in the digital twin project. The neurovascular coupling model was suc-
cessful in showing the capabilities of this new modelling framework, however due to
concerns regarding its validity it cannot definitively support the neural hypothesis.
Instead, the model demonstrates the importance of thoroughly understanding the
underlying physiology in order to assess the legitimacy of a neurovascular coupling
model. This thesis has provided that understanding, and therefore can be viewed
as a good starting point for future efforts to model the neurovascular coupling phe-
nomenon.

Keywords: mathematical modelling, systems biology, object-oriented modelling,
neurovascular coupling, fMRI, BOLD.
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1. Introduction

1
Introduction

1.1 Animal testing

Modern medicine has seen an accelerating development with revolutionary discovery
such as anesthesia, antibiotics, imaging techniques and vaccine (Hajar, 2015). With
the scientific revolution taking place at the end of the 18th century humans learned
how to make careful observation and draw empirical conclusions about biological,
chemical and physical laws and processes that governs the world. This principle
of carefully observing is very evident in medical studies. Before any new drug or
medical procedure is allowed to be delivered to humans it has to undergo many
safeguarding experiments to validate its function. One of these safeguards is animal
testing (Hajar, 2011). Today the standard procedure for drug testing is a several
stage process where animal testing is an essential link in the chain of validating a
new drug, see figure 1.1.

Figure 1.1: Statistics from the US Food and Drug Administration (FDA). The
different phases when assessing the validity of a New Molecular Identity (NME) as
a potential drug. The red boxes show the percentage of drugs that reaches the next
phase and the number at the bottom shows the probability for a drug in this phase
to succeed in all remaining phases and becoming approved by the FDA. Animal
testing are included in the preclinical phase and human clinical trials includes phase
1-3. Reprinted from Lovell-Badge, 2013.
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1. Introduction

Even though this system of testing and validating is standard across the world
it is not very effective. Over 90% of all drugs that pass through the preclinical
stage of non-human testing, which includes animal testing, are stopped at one of
the later human trial stages because of unforeseen effects on humans. The infamous
’Elephant man’ trials from 2006 is one example. Six volunteers faced life threatening
conditions after testing the drug TGN1412 which caused multi-organs failure and
swelling of the head, giving name to the trials (Attarwala, 2010). The drug, which
was develop for treatment of autoimmune diseases, had shown no serious side effects
in the preclinical studies and had been tested on primates in much higher doses
than given to the six volunteers. It is no secret that animal models are far from
perfect models of the human physiology. In fact, the use of animals is motivated
by the notion that animals are different from humans. Research in Alzheimer’s
disease is one example where the use of animal models have been questioned on how
useful they are at modelling the human pathology (McDonald and Overmier, 1997;
Drummond and Wisniewski, 2017). In order to study Alzheimer’s disease animals,
often mice, are artificially given the same symptoms which are seen in a typical
Alzheimer’s patient (Philipson et al., 2010), often an increase of β-amyloid plaques
and neurofibrillary tangles which are believed to be good biomarkers (Reitz, 2012).
But drugs successfully treating these symptoms in animals have so far not been able
to stop the progression of the disease in humans (Kolata, 2020). The core problem
is that Alzheimer’s disease is poorly understood and whether amyloid plaques and
neurofibrillary tangles are the source or just symptoms of the disease is not known
(Markou et al., 2009). Nevertheless, animal testing is the standard benchmark
when it comes to assessment and validation of new drugs and medical procedures.
However, the high percentage of stopped drugs and the known dissimilarities in
human and animal physiology makes one question the justification of the current
system. The suffering and horrors experienced by millions of animals used every
year in various animal testing are motivated by the essential need for these tests
(Ferdowsian and Beck, 2011). Not just that most drugs passing animal trials are
latter stopped in human trials, but what about all the drugs that potentially would
work on humans but are stopped because of negative outcome on animals? These
arguments should perhaps not be used to discredit the current system, but instead
motivate the search for alternative methods.
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1. Introduction

Figure 1.2: The top figure shows different ways of gaining scientific evidence for the
functionality of a new drug or medical device. Traditionally animal studies, bench
testing and clinical trials have been used, but now with improved computer power
an alternative of using computer models has opened up new opportunities. Some of
these opportunities are shown in the bottom figure. Reprinted from Morrison et al.,
2018.

There is now a growing amount of research trying to find more effective alternatives
to the current system of medicine development (Doke and Dhawale, 2015). The
3Rs is an initiative to Reduce, Refine and Replace animal testing and multiple
3Rs centers has been established, for example here in Sweden, to assist and fund
research with the long-term goal to face out animal testing. One successful example
comes from the US in the development of insulin pumps. Patient with diabetes
type 1 need to have insulin given to them externally in response to a meal. Failing
in meeting the rise in blood glucose with an appropriate increase in blood insulin
can cause hyperglycemia and be life threatening to a person. Insulin pumps are
designed to measure the blood glucose level and regulate it by releasing insulin into
the blood stream. These insulin pumps used to be validated using animals, usually
dogs (Cobelli, Renard, and B. Kovatchev, 2011). But since 2008, the Food and
Drug Administration (FDA) has accepted the use of simulation program to validate
insulin pumps (B. P. Kovatchev et al., 2009). This has made the use of animals
obsolete as companies both save time and money by using simulation instead of
animals (Morrison et al., 2018). This is an example where facing out animal testing
has benefited the industry as well as animal welfare.
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Figure 1.3: An In Silico simulation environment, where the functionally of the
insulin controller, shown in red text above, can be tested by computer simulations.
Since 2008, FDA has approved these types of alternative methods for validating
insulin pumps for patient with type 1 diabetes. This has caused animal testing,
which used to be the standard validation procedure, to become obsolete. Reprinted
from B. P. Kovatchev et al., 2009.

1.2 Aim of thesis

This master’s thesis is taken place at Gunnar Cedersund’s group at Linköping Uni-
versity where work is being done with in the field of systems biology to model various
biological systems (Cedersund, 2020). The group is partly funded by the Swedish
3Rs center as it aims to develop mathematical models of the human physiology that
has the potential to replace animal models. One major goal of the group is the dig-
ital twin project, a computer platform which would allow users, such as a patient,
to interact with the computer models describing their own physiology, i.e. a digital
twin. The work of this thesis is within the digital twin project and has two main
focuses:

• Create a new modelling framework which is adapted for the digital twin
project. The models need to be made interactive, both with other models
in order to be simulate larger and more complex systems and with a user who
are using the digital twin software to understand his or her physiology.

• Study and develop a model for the neurovascular coupling between neural
activity, oxygen consumption and blood flow. The main goal is to test the
claims made by Mullinger et al., 2017 about the origin of the post-stimulus
response, seen in a typical Blood Oxygen Level Dependent (BOLD) signal.
The developed model also serves to test the new modelling framework.
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Figure 1.4: The new modelling framework, which is one of the main focuses of
this thesis. The goal is to develop a more flexible modelling framework which is
adapted for the new challenges of building a digital twin software. The main idea is
to think of the models as autonomous entities, objects, that be combined with other
models to perform more complex simulations. These models, or objects, should also
be communicative and able to provide information about themselves to other parts
of the digital twin software.

Figure 1.5: The second focus of this thesis is to build a neurovascular coupling
model which relates a change in neural activity to a corresponding change in oxygen
consumption and blood flow which gives rise to changed oxygenation of the blood,
which in turn is captured by the Blood Oxygen Level Dependent (BOLD) signal,
measured by a Magnetic Resonance Imaging (MRI). The goal is to test the claims
made by Mullinger et al., 2017 about the origin of the post-stimulus response, seen
in a typical BOLD signal, being causes by a relative change of neural activity. The
developed model would also serve to test new modelling framework.

1.2.1 Limitation
The digital twin project is a large endeavor and there are multiple hurdles in the way
before a functional platform is at place. One such hurdle is to make the computer
models interactive, both with each other and with a user, which is the main problem
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addressed in this thesis. The aim is not to develop or adapt all the models that are
thought to be incorporated into the digital twin. Also, the actual user and model
interface are not developed here, their development is the main focus of a bachelor
thesis group, doing their work within the field of computer science. There is however
a close collaboration between this master’s thesis work and the work done in the
bachelor group, but with the clear separation with the user and model interface being
developed by the bachelor group and the modeling framework being developed here.
The neurovascular coupling has been extensively studied and many different models
have been developed which address everything from the actual neurotransmitters
and proteins involved to the imaging accusation (Richard B. Buxton, 2013). The
model developed in this master’s thesis is building, to a large extent, on previous
work and is not aimed at extensively model all the different aspect of the neurovas-
cular coupling. Instead, it focuses on the observations made by Mullinger et al.,
2017 which suggest that the post-stimulus response in the BOLD signal is due to a
relative change in excitatory and inhibitory neural activity.
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2. Background and theory

2
Background and theory

2.1 Systems biology

This work is done within the field of systems biology. Systems biology seeks to ex-
plain and model biological processes through the use of mathematics and computer
simulations, even though the exact definition of systems biology is not crystal clear.
This has opened a new way of understanding the vast complexity of biological pro-
cesses. The main difference from classical biological studies is that instead of being
a purely linear process, where the focus is on either proving or disproving a given
hypothesis, systems biology allows for a more circular approach when developing
new knowledge. In the light of experimental data, a model is hypothesized which
describes the underlying biological process. From model simulations predictions are
produced, these can then, by the use of statistical tools, be compared with the ex-
perimental data to validate the model as acceptable or not (Johansson, 2017). If not
accepted this gives, apart from an updated belief in your hypothesis, insight how
the actual model should look like. When a sufficiently good model is developed, it
can be used to find prediction that further distinguish the model from others, these
predictions are called ’core predictions’ (Cedersund and Roll, 2009). The core pre-
dictions give clues where to look next for more experimental data to further validate
the model and drive the development forward. This approach is at heart a circular
process where models are being developed according to existing experimental data
and new experimental data is gathered through the insight gained from the models,
see figure 2.1.

Page 7 of 69



2. Background and theory

Figure 2.1: Showing the intersections of systems biology, being dependent on both
biology, mathematics and technology. The figure also shows the circular process at
the heart of systems biology. Experimental data give rise to a model hypothesis.
The model, if accepted, can be used to guide the experimentalist in gathering new
data by making core predictions that distinguish the model. This will hopefully lead
to new insight and further drive the development forward.

The above figure also illustrates the intersection of systems biology between biology,
technology and mathematics.

2.1.1 Differential equation and computer models

The types of computer models studied in this thesis are so called dynamical ca-
sual models (DCM), based on ordinary differential equations (ODE). Differential
equation describes changes in a systems over time with in the realm of differential
calculus. Biological systems are often identified through the changes in its internal
states and interaction with other systems, for example metabolic flows or neural
activity due to stimulus, why ODE:s are a useful tool. The main difference to other
scientific fields, where mathematics and computer simulations have been used for a
long time, is the great complexity found in biological systems (Johansson, 2017). As
an example, consider the gene network shown in figure 2.2. A certain gene codes for
a certain protein and the transcriptions rate is controlled by other proteins, which
can both be increased or decreased. The transcripted protein can in turn affect
the transcription rate of other proteins and thus allowing for a complicated nested
network.
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2. Background and theory

Figure 2.2: A gene network, illustrating the great complexity found in biological
systems. The transcription rate of certain protein, showing as a triangle node in
the above figure, depends on other proteins, the connected circular nodes. These
other proteins are themselves also dependent on other proteins, which allows for
complicated networks with feedback loops. Reprinted from Johansson, 2017.

Proteins, such as those shown in figure 2.1, would in a computer model be repre-
sented by a state variable ~P, perhaps describing the number density of the individual
proteins ~Pi. The dynamics would then be described as coupled ODE:s:

d~P
dt =~f(t, ~P(t), u(t)) (2.1)

where ~f describe the production and clearance of proteins as a function of time t,
the current protein density ~P(t) and some input function u(t), could for example
be an experiment defined function. The actual modeling goes into to the choice of
the function~f(t, ~P(t), u(t)), which in principle could be any sort of function, but is
chosen given some hypothesis about the underlying biological system. The strength
of a computer model lies in its ability to be easily changed and adapted to test
different hypothesis, simply by changing the function ~f . Often, when building a
computer model, the shape of the function is fixed but parameters, ~p, determining
the exact behaviour of the function are free to change. These parameters could
describe timescales, coupling strengths or physical quantities that are not exactly
known, but often bounded to some interval. Thus, we should really consider the
model function to be a function of the parameters as well:

~f =~f(t, ~P, u(t), ~p). (2.2)
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2. Background and theory

2.1.2 Bayesian inference
There are multiple ways to obtain optimized parameters that try to make the model
mimic the data as close as possible, often done by minimizing a cost function, such
as the mean square error. But these different methods will usually only produce a
point estimate of the ’best parameters’ and not give a measure of the uncertainty in
the parameters. An alternative approach, which lets you incorporate prior knowl-
edge and will produce a joint probability distribution over all the parameters, is
Bayesian inference. In Bayesian inference, we are interested in computing the con-
ditional probability function P (~p | Data,~f), which is the probability for a given set
of parameters ~p being true, or correct, given the data at hand and the assumption
that the model function ~f is valid. This distribution is often not possible to di-
rectly calculate but instead, it can be retrieved by the use of Bayesian theorem, see
equation (2.3).

P (~p | Data,~f) = P (Data | ~p,~f) · P (~p |~f)
P (Data |~f)

(2.3)

Here the probability P (~p | Data,~f) is called the posterior distribution and is related
to the likelihood function P (Data | ~p,~f), prior probability P (~p |~f) and the evidence
P (Data | ~f). What makes Bayes theorem useful is that the expression on the left
hand side of equation (2.3) can be computed given some assumptions about the
model and data statistics. Important to remember is that it is assumed that the
model function ~f is correct and are only computing the posterior distribution for
the parameters under this assumption. It is really this assumption that is to be
tested: can the model function ~f satisfactory describe the data and what are the
corresponding parameter values. To save space and make the equation more readable
I will not write out this assumption explicitly and instead write Bayes theorem as
in equation (2.4).

P (~p | Data) = P (Data | ~p) · P (~p)
P (Data) (2.4)

Then it is important to remember the implicit assumption that model function~f is
valid.
In equation (2.4), the denominator P (Data) is generally not necessary to compute
as it only a normalization factor and do not depend on the parameters ~p. However,
P (Data)can be used when comparing two or more competing models, which is not
done here. Thus, to compute the posterior distribution P (~p | Data) it is only the two
terms in the nominator, namely the prior probability and the likelihood function,
that needs to be computed. The first of these, the prior, is simply chosen, the
idea is that it will incorporate prior knowledge about the parameters. This may be
knowledge from previous studies or simply just reasonable values for the parameters.
The posterior probability can be seen as the updated version of the prior, reflecting
the new knowledge gained from the data. For simplicity it is assumed that the prior
distribution describes independent parameters so that it can be separated into the
individual parameter prior distributions, see equation (2.6).

P (~p) =
p∏
i=1

P (pi) (2.5)

Page 10 of 69



2. Background and theory

I will assume normal distributions for the priors, with parameter pi being described
by mean µp

i and standard deviation σp
i according to equation (2.6).

P (pi) = 1√
2π

exp
(
− 1

2

[
pi − µp

i

σp
i

]2)
(2.6)

The likelihood function measures how likely the data was given a specific set of
parameters. To compute the likelihood function, assumption needs to be made
about the underlying system being modelled. Often, by taking several samples of
the data Dj

i , where the index i is the data point index and the index j is the sample
index, the central limit theorem is invoked to argue that the sample mean Di is
normally distributed, see equation (2.7-2.10).

Di = 1
s

s∑
j=1

Dj
i (2.7)

σD
i =

√√√√ 1
s− 1

s∑
j=1

(Dj
i −Di)2

/
√
s (2.8)

µ(Dj
i ) = µD

i (2.9)
Di ∼ N (µD

i , σ
D
i ) (2.10)

Here the mean µD
i is the mean value for the individual samples Dj

i and σD
i is the

unbiased estimate of the sample mean standard deviation. Notice in equation (2.8)
the denominator

√
s, this is because this is the standard error of the mean, SEM,

and not the standard deviation, SD, see equation (2.11).

SEM = SD√
Number of samples (2.11)

In terms of the model, it is the mean µD
i that is usually being predicted. The

likelihood function then looks like in equation (2.12).

P (Data | ~p) =
d∏
i=1

1√
2π

exp
(
− 1

2

[
Di −Mi

σD
i

]2)
(2.12)

Where Mi is the model predicted value for data point i, perhaps resulting from a
time series with data collected at time points ti, and Di and σD are the sample mean
and standard deviation from equation (2.7) and (2.8).
We can now compute the posterior distribution as a product of individual factors
using equation (2.5), (2.12) and (2.6), however this product tends to be a very small
number so instead the logarithmic of the posterior is often computed, see equation
(2.13).

log(P (~p | Data)) = log
(
P (Data | ~p) · P (~p)

P (Data)

)

=
d∑
i=1
−1

2

(
Di −Mi

σD
i

)2
+

p∑
i=1
−1

2

[
pi − µp

i

σp
i

]2
(+ constant terms) (2.13)
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Here the constant terms are the prefactors 1√
2π from equations (2.5) and (2.12) and

the denominator P (Data from equation (2.4), which can all be seen as normalization
factors which generally don’t have to be computed.
The sum in equation (2.13) is also, a part from a factor −2, a chi-2 distributed
variable. This fact will be used when setting a threshold value on the sampled
posterior distribution, see section 3.2.3.

2.2 Digital twin project

For systems biology to be a serious alternative to existing animal testing, it needs to
be able to model large complex systems on multiple different time and length scale.
This is the goal of the digital twin project being developed in Gunnar Cedersund’s
group at Linköping University. The aim of the digital twin project is to develop a
platform in which models describing the human physiology can be combined and
provide an interface from which they can be simulated. The models parameters
would be adapted to a user’s medical data such that the models mimic that specific
user’s physiology, i.e. a digital twin. The digital twin would assist to answer question
such as risk factors for various diseases or help patient to stay on medical plan by
illustrating the effect of a certain treatment. The project is so far in its cradle and
the work of this thesis is focused on developing a modelling framework for combining
models in a standardized way and making them interactive with a user and model
interface.

2.2.1 Module based modelling

The human physiology is very complex and a process taking place in one part of
body will unavoidable affect other, perhaps remote, parts as well. An example is the
glucose homeostasis which maintain the blood sugar level within acceptable values.
It works through a close feedback system between food intake, the pancreas, liver,
brain and other peripheral tissues such as fat and muscle. An increase in glucose
level of the blood from eating food will signal the pancreas to start producing insulin
which in turns enables the uptake glucose by other organs in the body. In a similar
way will a decrease in glucose blood level, perhaps due to an increased activation of
muscles, signal to the pancreas to start producing glucagon which tells the liver to
secrete glucose, stored in the liver as glycogen, into blood stream. Also, the brain
is believed to play a central part through the brain-centered glucoregulatory system
(BCGS) (Scarlett and Schwartz, 2015). Thus, a complete model needs to, in varying
detail, incorporate models of all of these different organs and tissues. An overview
of glucose homeostasis is shown in figure 2.3.
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Figure 2.3: An overview of glucose homeostasis which incorporates many different
organs and tissues which all plays a role in regulating the glucose levels of the blood.
Thus, to model the glucose homeostasis there needs to be, in varying detail, models
of all these different organs and tissue. Reprinted from Rosen and Spiegelman, 2006.

However, different organs and tissues are often studied and modelled independently,
as separate parts of a larger system. The reasons for this are many, but the most
obvious is perhaps the sheer complexity of accounting for the entire system in one
big model, which would make the modelling task unfeasible. What then is needed is
a way to combine smaller models into larger ones, such that a complicated system
can first be understood by its integral parts, before being modelled in its entire com-
plexity. This is a module-based approach where models are seen as being composed
by several smaller modules. The modules can be replaced or refined, without af-
fecting the other modules in the model, they may also be reused in other modelling
task, which perhaps also requires models for fat or muscle tissue.

2.2.2 Current modelling framework
The current modelling framework used in Gunnar Cedersund’s group is based on the
IntiQuan MATLAB (IQM) toolbox developed for MATLAB (IntiQuan, 2017). It’s
a simple to use toolbox that transform differential equation defined in a text-based
environment to a compiled MATLAB executable (MEX) file, which then can be run
from within MATLAB to perform simulations. Once the file is compiled it is not
possible to do any further adjustment apart from changing parameters and initial
state values. Most importantly, this means that models can’t communicate with
other models or share variables as they are being simulated, a big limitation of the
current toolbox. Models developed independently needs to have the ability to be
incorporated into a larger model, where they can influence each other, just as they
would do in real experiment. An example is taken from the work done in Gunnar
Cedersund’s group where three different models describing weight loss (Hall and
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Jordan, 2008), food intake (Dalla Man, Rizza, and Cobelli, 2007) and adipose tissue
(Brännmark et al., 2013) are combined into a larger whole body model, see figure
2.4. This new model can simultaneously model weight changes as well as cellular
changes of adipocytes in response to a meal.

Figure 2.4: An example of how models are being combined into larger more com-
plicated models. Here three models describing weight loss (Hall and Jordan, 2008),
food intake (Dalla Man, Rizza, and Cobelli, 2007) and adipose tissue (Brännmark
et al., 2013) are combined into a whole body model. One of the limitations of the
old framework is however that each new combination of smaller models needs to
compiled into its own MEX-file. Meaning if anything changes in a smaller model all
bigger models where the smaller model is used needs to be updated and recompiled.

However, in the current framework an entirely new model needs to be created and
compiled into a new MEX-file, separate from the individual models. This is a very
static solution since any new combination of models needs to be compiled in this
way, further, if anything changes in any of the smaller models the changes needs to
be updated in every bigger model where the smaller model is used, a logistic long-
term nightmare. These current limitation of the toolbox needs to be eradicated in
order to achieve a more flexible and functional digital twin software, which is one of
the main focuses of this thesis.

2.2.3 User and model interface

For the models to be useful in a clinical application there needs to be an interface
that enables users, such as patient, to easily interact with the models and perform
simulation. Such an interface is being developed in parallel by a bachelor thesis
group doing their bachelor in computer science. They are using the interactive
program MeVisLab that has been developed for medical imaging and procession,
see figure 2.5. MeVisLab allows developers to incorporate their own software into
the program, (also) called modules, which makes it easy to adapt to specific needs.
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Figure 2.5: An illustration of development inside of MeVisLab where new func-
tionality can be added by creating new modules, boxes shown in the picture. The
idea is to use MeVisLab to create an interactive interface from which the models can
be simulated by a user, this is done in parallel by bachelor thesis group. Reprinted
from MeVisLab, 2020.

The idea is then to build a platform from which the models can not only communi-
cate with each other but also with an interface provided by MeVisLab. The models
would supply information about them self and then, through choice being made
by the user, be simulated with other models to provide an interactive simulation
environment.

2.3 Neurovascular coupling

Magnetic resonance imaging (MRI) has given us the capability to non-invasive look
inside the brain to investigate the physiological processes taking place there. One
technique extensively used since its initial development is the Blood Oxygen Level
Dependent (BOLD) response (Ogawa et al., 1990). It relies on the fact that when dif-
ferent parts of the brain are stimulated, the local change in neural activity alters the
metabolic rate and blood flow in an unequal way. The cell metabolic consumption
of oxygen (CMRO2), which is closely related to the energy expenditure of activated
neurons (Attwell and Laughlin, 2001), is increased less than the accompanied in-
crease in cerebral blood flow (CBF) (Davis et al., 1998). The driving mechanism
is believed to be a feed forward network from neural activity to blood flow, thus
the name ’Neurovascular coupling’ (Hillman, 2014), see figure 2.6. The unequal
change in CBF and CMRO2 causes the relative concentration of oxyhemoglobin to
deoxyhemoglobin to increase, which in turn changes the local magnetic susceptibil-
ity since oxyhemoglobin is diamagnetic whereas deoxyhemoglobin is paramagnetic
(Ogawa et al., 1990). This change in local magnetic susceptibility is captured by
an MRI camera which allows for a functional mapping of the brain due to vari-
ous types of stimulus. But even though the technique has been extensively used,
the question still stand as to exactly what physiological process are measured in
the BOLD-response (Mishra et al., 2016). The evidence points towards CBF and
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CMRO2 being controlled in parallel by neural activity but haemodynamic effects
such as change in cerebral blood volume (CBV) makes the casual relation between
the BOLD-response and neural activity obscured (Richard B. Buxton et al., 2014).
To make a heuristically connection between the underlying physiological processes
and the BOLD-response computer models are used. Building realistic models of the
neurovascular coupling is valuable for many reason, for example to understand dif-
ferent neurological diseases which often are accompanied with an altered hyperemia
(Petzold and Murthy, 2011).

Figure 2.6: Showing a feed forward network from synaptic activity to blood flow
with the believed important metabolites (not discussed here). Neurons constantly
signal to local arterioles their current energy demand and the arterioles respond
by either dilating or constricting to increase or decrease the local supply of oxy-
gen and glucose. The communication is believed to be mediated through different
substrates such as nitrogen oxide (NO) and glial cells such as astrocytes. As the
oxygen consumption increase there is a relative larger increase in blood flow which
alters the local concentration of hemoglobin to deoxyhemoglobin, which can be cap-
tured by MRI camera. This is used to map local brain activity in the so-called
BOLD-response. Reprinted from Attwell, Buchan, et al., 2010.

2.3.1 Physics behind the BOLD-response
Magnetic resonance imaging relies on one thing, nuclear spin, or more specifically the
spin of hydrogen nucleus. Human are largely made up by water, about 60%, which
means that there is a large amount of hydrogen atoms spread out of the human
body (Plewes and Kucharczyk, 2012). Nuclear spin is a fundamental property of
matter and has with it an associated magnetic moment, which is being probed by
the MRI technique (Richard B. Buxton, 2013). In MRI, a magnetic field causes
the magnetic moment of the hydrogen nucleus to align with the field, then a short
radio frequency (RF) pulse causes the magnetic moment to flip with an angle to
the applied magnetic field, the flip angle. When the RF pulse then is turned off the
magnetic moment will precess around applied magnetic field with a frequency given
by the Larmor frequency, see equation (2.14).

ω = γ |B| (2.14)
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Here ω is the precession frequency around the applied magnetic field B and γ is the
gyromagnetic constant, which for a hydrogen nucleus has the value 2.675× 108 rad T−1.
A typical magnetic field used in MRI is 3 T which gives a precession frequency
f = ω 2π ≈ 128 MHz.

Figure 2.7: The top part of the figure shows hows the magnetic moment of the
hydrogen nucleus, H+, is first aligned with an applied magnetic field in the low-
energy state. A radio frequency pulse, tuned to the hydrogen nucleus, is then applied
to flip the magnetic moment away from the direction of the magnetic field, this will
in turn cause the magnetic moment to precess with a frequency given by the Larmor
equation (2.14). The middle part of the above figure shows how the nuclear moments
of the hydrogen nucleus return, or decay, back to pointing along the magnetic field,
which give rise to the T1 signal measuring the longitudinal magnetization. The
decay time is different for different tissue why the T1 signal can be used to visualize
tissue content. The bottom part shows a top view with the magnetic field pointing
out of the paper. Magnetic field inhomogeneities will cause hydrogen nucleus at the
different spatial location to precess at slightly different frequency, causing them to
come out of phase and reducing the transverse magnetization which gives rise to the
T2 signal.

This precession will in turn cause a electromagnetic signal that is being measured
by the MRI camera. The key aspect that makes MRI useful is that the magnetic
moment returns, or decays, to its original state in different time depending on the
environment the nucleus is in. In this way the MRI scan can differentiate between
fat, bone, muscle and other types of tissue by comparing the decay time of the
induced precession signal. There are two different types of signal, the T1 and T2
signal, which is the signal along the magnetic field and the signal perpendicular
to the magnetic field, respectively. The signal decay measured in the T1 signal is
caused by nuclear spins returning to aligning with the magnetic field after initially
being flipped by the RF pulse, see picture 2.7. The signal decay measured in the
T2 signal is largely due to the nuclear spins coming out of phase from each other
and pointing in random directions in the plane perpendicular to the magnetic field,

Page 17 of 69



2. Background and theory

see figure 2.7. This dephasing is caused by several effects such as local variation in
magnetic field strength causing a slightly different Larmor frequency and diffusion
of atoms and molecules (Richard B. Buxton, 2013).
It is the sensitivity to local magnetic field variation that makes the T2 signal useful
to detect changes in relative concentration of oxyhemoglobin and deoxyhemoglobin.
Oxyhemoglobin and deoxyhemoglobin have different magnetic properties, oxyhe-
moglobin being diamagnetic and deoxyhemoglobin being paramagnetic. Therefore,
a change in the relative concentration of oxyhemoglobin/deoxyhemoglobin will alter
the local magnetic field and thereby affecting the decay of the T2 signal. Many
factors plays in to the exact response such as blood vessel diameter and orientation,
blood volume fraction and magnetic field strength, but in general since brain tissue
is mostly diamagnetic, like oxyhemoglobin, deoxyhemoglobin will cause a greater
magnetic field strength variation and thus a larger decay of the T2 signal (Richard
B. Buxton, 2013), see figure 2.8.

Figure 2.8: Schematic overview of the effect of change of the relative concentration
of oxyhemoglobin and deoxyhemoglobin to the T2 signal. The T2 signal is sensitive
to local magnetic field variation. Oxyhemoglobin is diamagnetic like the surrounding
tissue whereas deoxyhemoglobin is paramagnetic. Blood coming from the lungs
contains almost 100% oxygenated hemoglobin, illustrated as red blood cells in the
above figure, as the blood vessel branch into smaller vessel in the capillary bed
oxygen diffuse to the surrounding tissue which consumes it to produce energy for
its cells. Blood returning to the lungs in the veins has then a lower amount of
oxyhemoglobin and a larger amount of deoxyhemoglobin, illustrated as blue blood
cells in the above figure. A larger extraction of oxygen, and thus a larger amount of
deoxyhemoglobin, will cause greater magnetic variation which in turn will cause a
faster decay of T2 signal. The opposite is also true, a smaller extraction of oxygen
will increase the amount oxyhemoglobin and cause a slower decay of T2 signal.

The amount of oxygenated hemoglobin and deoxygenated hemoglobin further de-
pend on the local extraction of oxygen from the blood to the surrounding tissue,
happening at the capillary bed. What is surprising with the BOLD-response is that
increased neural activity, and thus increased consumption of oxygen, results in an
increased concentration of oxyhemoglobin and thus an increased T2 signal. This
is counter-intuitive since this means the local extraction of oxygen has decreased
as the consumption of oxygen increase. To understand this phenomenon, we have
to understand the interplay between blood flow, oxygen concentration and energy
consumption.
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2.3.2 Physiology behind BOLD-response
The brain constantly consumes energy, and even though it only comprise 2% of the
total body mass it accounts for around 20% of the total rest energy consumption
(Raichle and Gusnard, 2002). It mainly gets its energy from oxidative metabolism
of glucose and therefore rely on arterial blood supply of both glucose and oxygen
(Raichle and Gusnard, 2002). Oxygen has very low solubility in water, which is
the main component of blood. Evolution has therefore equipped human with red
blood cells containing hemoglobin molecules which binds oxygen and increase the
solubility of oxygen by a factor 30-50 (Richard B. Buxton, 2013). The binding of
oxygen to hemoglobin follows an approximate sigmoidal curve with a near saturation
of hemoglobin at oxygen partial pressure (pO2) larger than 100 torr, which is the
typical pressure in lungs, see figure 2.9. The partial pressure in brain tissue is around
pO2 = 20 torr, close to the believed pO2 of the atmosphere about two billion years
ago when the first oxidative metabolism developed (Richard B. Buxton, 2010).

Figure 2.9: Binding of oxygen to hemoglobin as function of partial pressure of
oxygen. The figure shows the typical partial pressure in both lungs and tissue,
it also illustrates how the delivery of oxygen from the lungs to tissue is increased
from about 38% to 66% by the cooperation between the subunits of hemoglobin.
Reprinted from Berg, Tymoczko, and Stryer, 2002.

The above figure shows how hemoglobin increase the delivery of oxygen from the
lungs to tissue compared to a hypothetical non-cooperative protein, about 1.7 times
more of oxygen can be delivered by the fact that hemoglobin’s subunits cooperate
(Berg, Tymoczko, and Stryer, 2002).
When a certain brain region is activated, due to some type of stimulus, you would
expect the local concentration of oxygenated hemoglobin to decrease, because of the
increased consumption of energy and therefore the increased consumption of oxygen.
But the opposite is seen in the BOLD-response, an increase in the consumption rate
of oxygen, CMRO2, measured per tissue volume and time with unit mM min−1, is
accompanied with an increase in local oxygenated blood. This counter intuitive
reaction is due to the fact that cerebral blood flow, CBF, defined as the amount
arterial blood delivered per volume tissue and time with unit min−1, increase about
two times more than the CMRO2 in response to increased brain activity. These two
quantities are related by a simple mass balance equation:

CMRO2 = E · CBF · [O2]a (2.15)
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where E is the local oxygen extraction factor and [O2]a is the arterial oxygen concen-
tration, measured in mM and largely reflecting the saturation level of hemoglobin
and the hematocrit. Assuming that the delivered arterial blood contain a near con-
stant concentration of oxygen, about 98% saturation, we see from equation (2.15)
that a smaller quotient CMRO2/CBF is accompanied with an decreased extraction
factor E. A decrease in local extraction fraction leads to an increased average blood
oxygen concentration and thus resulting in the counter intuitive BOLD-response.

2.3.2.1 Oxygen diffusion hypothesis

The question then arises what physical aspect demands for an increased blood oxy-
gen concentration in response to an increase oxygen consumption? One possible
answer can be understood by considering a simple oxygen diffusion model as done
by Buxton (Richard B. Buxton, 2010). In this model the local delivery of oxygen
from arterial blood to brain tissue can increase due to two things: recruitment of
new capillaries or an increased oxygen gradient between blood and tissue leading
to greater diffusion. The first options is believed to be negligible or have very little
effect (Göbel, Theilen, and Kuschinsky, 1990). For the later options, either the av-
erage pO2 in the tissue must drop or the average pO2 in the blood must increase.
Richard B. Buxton, 2010 hypothesized that in response to an increased oxygen con-
sumption the tissue partial pressure, pOtissue

2 , is prevented from dropping by instead
increasing the blood partial pressure, pOblood

2 . They provide two main reason why
it would be beneficial for pOtissue

2 to remain close to baseline. The first has to do
with reaction kinetics and the fact that many reactions in the brain has Michaelis
constants, Km, close to baseline values of pOtissue

2 and therefore sensitive to changes
in partial pressure. The other reason has to do with thermodynamics for oxidative
metabolism. The change in Gibbs free energy, ∆G, for oxidative metabolism of
glucose depends on the local concentration of oxygen, if the concentration is de-
creased so is also the available energy to produce ATP from ADP and Pi, which is
thermodynamic uphill process.

Believing the constant pOtissue
2 hypothesis, the oxygen diffusion is increased by in-

creasing pOblood
2 . For the pOblood

2 to increase there needs to be a decrease of the
local extraction fraction E, which, as we pointed out earlier, means a decreased ra-
tio CMRO2/CBF. In this way, the mismatch between the change in CMRO2 and
CBF is explained by the need for increased oxygen diffusion at the same time as
pOtissue

2 is kept constant or close to baseline values, see figure 2.10.
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Figure 2.10: A schematic picture of the oxygen diffusion hypothesis which ex-
plain the unequal change in blood flow and oxygen consumption seen in the BOLD-
response to arise from the need of a larger partial oxygen concentration gradient.
It is hypothesis that partial pressure of oxygen in tissue, pOtissue

2 , is kept close to
baseline, whereas the partial pressure of oxygen in the blood, pOblood

2 , can increase
by decreasing the local extraction fraction E, see equation (2.15).

An important quantity when talking about changes in CBF and CMRO2 is the
coupling factor n, defined in equation (2.16) as the relative change in oxygen con-
sumption divided by the relative change in blood.

n = ∆rCBF
∆rCMRO2

(2.16)

Here ∆r indicate a relative change with respect to baseline (∆rCBF = (CBF −
CBF0)/CBF0 where CBF0 is the baseline value). An increased coupling factor means
a relative larger increase of CBF compared to CMRO2 and thus a reduced extraction
fraction E, see equation (2.15). The coupling factor has been measured in various
parts of the brain with PET scans and calibrated-BOLD measurement with typical
values between 2-4, see figure 2.11. The oxygen diffusion model develop by Richard
B. Buxton, 2010 also predicts coupling factors in this range in order to keep pOtissue

2
constant, see the solid red line in figure 2.11.
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Figure 2.11: Experimental measurement of the change in blood, CBF, and oxygen
consumption, CMRO2. PET measurements are indicated with open symbols and
calibrated-BOLD measurements are indicated by filled symbols, different symbol
shapes are used for different brain areas, as indicated. The dashed lines shows
constant values for coupling factor n from equation (2.16) and the solid red curve
shows the contour for constant pOtissue

2 . All reported values lies above n = 1 which
indicate a proportional larger response of CBF compared to CMRO2, which is the
cause of the BOLD-response. The oxygen diffusion hypothesis suggests that this to
avoid a large drop in tissue pO2. Reprinted from Richard B. Buxton, 2010.

But even though a oxygen diffusion model can provide a physiological arguments
for the unequal change in CMRO2 and CBF, it doesn’t provide the full picture of
the underlying neural activity causing the change in the first place. For example,
the coupling ratio n is seen to vary for different types and duration of stimulus
(Richard B. Buxton, 2010). This variation has been suggested to reflect a varying
degree of excitatory and inhibitory neural activity, with excitatory and inhibitory
neural activity affecting CMRO2 and CBF in an unequal way (Richard B. Buxton
et al., 2014). To understand why this might be the case we must understand how
neurons consume energy.

2.3.2.2 Neural signalling

Neurons in the brain primarily consume energy as they respond to and transfer elec-
trical signals (Attwell and Laughlin, 2001). Neurons maintain a negative potential
across their membrane, around −70 mV, mainly through pumping out sodium ions,
Na+, and pumping in potassium ions, K+, in a ratio 3 to 2 (Richard B. Buxton,
2013). The membrane potential is further regulated by opening and closing a variety
of ion channels which lets ions such as sodium, potassium, calcium and chlorine pass
in and out of the cell. For example, since sodium ions is maintained at much higher
concentration outside the cell, the opening of sodium channels will cause a rapid
influx on these positive charge ions and quickly depolarize the cell. On the other
hand, the high concentration of potassium ions inside the cell means that the open-
ing these channels will cause K+ ions to leave the cell and cause a hyperpolarization.
These ion channels are in turn controlled by other neurons by either electrical or
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chemical contact. The point of contact happens in synapses where the axon from one
neuron meets the dendrite of another neuron. The most common scenario is that an
action potential, travelling down the axon of the presynaptic neuron, will cause the
release of neurotransmitters which then migrate over the synaptic cleft and binds
to ion channels at the dendrites of the postsynaptic neuron. The combined effect
of all synaptic activity at the dendrites are summed up to determine the overall
membrane potential of the cell. If the cell membrane potential is pushed passed a
threshold value, approximately −55 mV, an new action potential is generated at the
axon hillock, sitting between the soma (cell body) and the axon, which propagates
down the axon and influence other neurons. In this way input signals are summed
up to determine if a new outgoing signal should be generated, see figure 2.12.

Figure 2.12: Overview of neural signaling between two neurons in the brain. A
neuron comprises of a the soma (cell body), dendrites extending out from the soma,
an axon covered in a myelin sheet to provide insulation and axon terminals which
makes connection with other neurons in synapses. An action potential travelling
down a neuron’s axon, the presynaptic neuron, will upon arrival at the axon termi-
nals cause the release of neurotransmitters. The neurotransmitters will migrate over
the synaptic cleft to the dendrites of another neuron, the postsynaptic neuron, where
they bind to specific ion channels. Depending on which ion channels the transmitters
bind to specific ions are either let in or out of the cell which in turn either decrease
or increase the membrane potential which at rest is kept at around −70 mV. The
activity at all synapses is summed up at axon hillock, sitting between the soma and
the axon, if the potential is pushed above a threshold, around −55 mV, a new action
potential will be created. There are two large classes of neural activity, excitatory
and inhibitory, with excitatory activity causing an increase of the membrane poten-
tial and inhibitory activity causing a decrease. The most common neurotransmitter
associated with excitatory activity is glutamate which opens sodium and calcium
ion channels, the most common neurotransmitter associated with inhibitory activity
is GABA which opens chlorine and potassium channels.

Neural activity that shifts membrane potential in the positive direction, and thus
closer to the threshold, is called excitatory neural activity, the most common neural
transmitter associated with excitatory activity is glutamate which opens sodium
and calcium ion channels (Meldrum, 2000; Lauritzen, 2005). On the other hand,
neural activity that shifts the membrane in the negative direction, hyperpolariza-
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tion, is inhibitory neural activity, the most common neural transmitter is gamma-
Aminobutyric acid (GABA) which opens chloride and potassium ion channels (Bow-
ery and Smart, 2006).

2.3.2.3 Energy cost for neural activity

The energy cost of neural activity comes largely from clearing neurotransmitter
and repacking them from the synaptic cleft, generating and propagating the action
potential along the axon and restoring electrochemical gradient across membranes
(Richard B. Buxton, 2013). Most energy is believed to be associated to postsynaptic
activity (Richard B. Buxton, 2013), which involves pumping out ions to restore
electrochemical gradients across cell membrane, about three quarters of all energy
consumed (Attwell and Iadecola, 2002). Different ions are kept closer or further
from their equilibrium potential across the cell membrane in the baseline state, why
restoring their gradient will cost different amount of energy. As mentioned earlier
are sodium ions kept far away from equilibrium why restoring its chemical potential
is a costly process (Attwell and Laughlin, 2001). Chlorine ions, Cl−, and calcium
ions, Ca2+, are kept at high extracellular concentration but because of the negative
potential across the membrane Cl− ions are close to electrochemical equilibrium and
Ca2+ ions are far from equilibrium (Richard B. Buxton, 2013). Potassium ions, K+,
are kept at a high intracellular concentration and close to equilibrium because of the
negative membrane potential (Richard B. Buxton, 2013). This is why it is believed
that it is excitatory neural activity that accounts for the majority of energy budget
of neural activity. Inhibitory neural activity still has an energy cost for repacking
neurotransmitters, but the opening of channels such as chloride tends to stabilize
the membrane potential around low values why the effect of sodium and calcium
current might be reduced, inhibitory neural activity might therefore even have a
negative impact on the energy consumption (Richard B. Buxton et al., 2014).
Because of the unequal energy consumption of excitatory and inhibitory neural
activity, is has been suggested that the two types also cause different relative changes
of CBF and CMRO2 and thus different coupling factors n (Richard B. Buxton et al.,
2014). Excitatory activity, being a big consumer of energy, is believed to cause a
large dilation of blood vessel and increased blood flow (Attwell, Buchan, et al., 2010).
For inhibitory neurons the pictures is not as clear as some inhibitory neural activity
cause a vasoconstriction and decreased blood flow (Uhlirova et al., 2016; Cauli et
al., 2004) and others can cause vasodilation and increased blood flow (Estrada and
DeFelipe, 1998). The potential variation in coupling factors n for excitatory and
inhibitory neural activity could perhaps be used to determine the underlying neural
activity seen in a typical BOLD-response (Richard B. Buxton et al., 2014).

2.3.3 The BOLD-response signal
The MRI signal that is important for the BOLD-response is the T2 signal, S(t),
discussed earlier, and decays exponentially with a decay constant R2, see equation
(2.17).

S(t) = exp(−R2 · t) (2.17)
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The decay constant depends on the local concentration of deoxyhemoglobin with
an increased amount deoxyhemoglobin causing a faster decay, see section (2.3.1).
Another important quantity in an MRI experiment is the echo time, TE, which is
the time after the RF pulse that the signal is being measured. It should be large
enough, so the signal has had time to decay, but not too large to cause the signal
to complete vanish. The BOLD signal, y, is then measured as the relative change
of the signal S from the baseline state S0, see equation (2.18).

y = ∆S
S0

= S(TE)− S0(TE)
S0(TE) = exp(−R2 · TE)− exp(−R0

2) · TE)
exp(−R0

2) · TE) =

= exp
(
−[R2 −R0

2

)
] · TE)− 1 ≈ −[R2 −R0

2] · TE = −∆R2 · TE (2.18)

Where R2 is the decay rate of the system and R0
2 is the baseline value. Notice to

measure the BOLD signal y you need have measurement of the baseline state, which
is usually taken as an average over some period of time when the subject, whose
brain is being monitored, is assumed to be in a resting state.
The BOLD signal is usually measured due to some stimulus, although interesting
investigation is also being done on the resting state of the human brain (Heuvel
and Hulshoff Pol, 2010). Then the BOLD-response is often divided into two sepa-
rate phases, the primary response and the post-stimulus response, see figure 2.13.
The primary response is associated with an increase of oxyhemoglobin during stim-
ulus whereas the post-stimulus response is associated with an increase of deoxyhe-
moglobin.

Figure 2.13: A typical BOLD-response due to some stimulus. We see the initial
dip that may or may not show up due to low time resolution, the primary response
peak and the post-stimulus undershoot.

The BOLD-response may look different from brain region to brain region, and also
trial to trial, but some characteristic features are often seen which. includes the ini-
tial dip, the succeeding peak and the final undershoot (Richard B. Buxton, 2013),
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see the above figure. These different features gives clues to the underlying physio-
logical processes taking place (Havlicek, Roebroeck, K. J. Friston, et al., 2017). The
initial dip is associated with an initial increase in deoxyhemoglobin before the blood
flow has responded to the increased neural activity, it happens though on such a
small timescale that it is not always observed due to poor time resolution of the
MRI camera (Richard B. Buxton, 2013). The post-stimulus undershoot is believed
to be attributed many different factors such as an uncoupling between blood flow
and blood volume, as described in the Balloon model (Richard B Buxton, Wong,
and Frank, 1998), where the blood volume decrease slower than the blood flow caus-
ing a apparent increase in deoxyhemoglobin, another effect could be a post-stimulus
energy storage restoration (Richard B. Buxton, 2013).
The exact reason for post-stimulus response has been one the most debated topic
for the last two century and even though many possible explanation has been given
no clear consensus has been reached (Zijl, Hua, and Lu, 2012). For this reason, the
post-stimulus response was the focus for Mullinger et al., 2017 in their 2017 study,
which this thesis focuses on.

2.3.4 The Mullinger study
Mullinger et al., 2017 studied the BOLD-response along with other measurement of
the blood flow and electromagnetic activity in a visual cortex experiment, see method
section 3.2.1. They hypothesized that the post-stimulus response is primarily neural
in origin and is due to relative change of excitatory and inhibitory neural activity
from the primary response which can be quantified by a change in coupling factor
n1 Using the combined result from their different measurement they argued that
their data supported this claim as they saw a decrease in coupling factor going from
the primary to the post-stimulus response. They were also able to correlate the
magnitude of the post-stimulus undershoot to an overall increase of neural activity
measured by electroencephalography (EEG).
In light of these findings they suggested a qualitative explanation how the different
neurological activities can explain the change in coupling factor n from the primary
to the post-stimulus response, an explanation which is to be investigated in this
thesis. Their qualitative explanation goes like this:

• In the primary response the stimulus drives foremost excitatory neural activity,
nE, which in turn cause an increase inhibitory neural activity, nI , ∆nE > 0
and ∆nI > 0, see figure 2.14.

• Both excitatory and inhibitory is a positive drive for CBF and CMRO2 but
both cause a relative larger increase of CBF.

• This causes the coupling factor n = CBF/CMRO2 to increase in primary
response.

• In the post-stimulus response the stimulus is removed which causes the ex-
citatory activity to quickly drop and become negative relative to baseline,

1Mullinger et al., 2017 definition of the coupling factor is actually the reciprocal of the definition
given in equation (2.16), thus their definition is n = CMRO2/CBF.
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∆nE < 0, the inhibitory neural activity which is not primary driven by the
stimulus remains elevated, ∆nI > 0.

• Excitatory neural activity is the primary drive for both CBF and CMRO2 and
will cause a reduction in these which is partly offset by the inhibitory neural
activity which remains elevated.

• But since inhibitory neural activity consume less energy than excitatory ac-
tivity it is believed to be a relative larger drive for CBF than CMRO2 when
compared to excitatory neural activity. Thus the offset is greater for CBF
than for CMRO2. Causing a decreased in coupling constant n from the pri-
mary response.

These arguments are illustrated in figure 2.14.

Figure 2.14: An overview of Mullinger et al., 2017 suggestive explanation for the
different coupling factors n seen in the two different phases of the BOLD-response.
They argue that in the primary response both the excitatory and inhibitory neural
activity is positive. Since both activities are proportional larger driver for both
CBF than CMRO2 the coupling factor n = CBF/CMRO2 is increased. In the post-
stimulus phase the stimulus cessation cause excitatory neural activity to quickly
reduce and become negative relative to baseline, the inhibitory activity remains
elevated. The primary drive for both CBF and CMRO2 is excitatory neural activity
which will lead to a reduction of these, this reduction is however offset by the
inhibitory neural activity remaining elevated. The crucial part is that inhibitory
activity is larger drive for CBF than CMRO2 when compared to excitatory activity,
which cause the offset to be larger for CBF. This in turn cause a decrease of the
coupling factor from the primary response.

The goal with this thesis is to build a neurovascular coupling model which incor-
porate the necessary physiological processes so that the claims made by Mullinger
et al., 2017, summarized below, can be tested on a quantitative basis.

• The post-stimulus is primary a neural phenomenon, reflecting a relative change
in excitatory and inhibitory neural activity.
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• Both excitatory and inhibitory neural activity are positive drivers from CBF
and CMRO2 with inhibitory neural activity being a proportional larger driver
for CBF than CMRO2 compared excitatory neural activity.

• This cause the seen reduction in coupling factor n from the primary to post-
stimulus response, explained above in figure 2.14.
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3
Method

3.1 Digital twin project
The aim of the digital twin project is to develop user adapted models, digital twins,
which can simulate physiology and help answer questions such as: If I do a thirty-
minute work after a meal containing this and that what will happen to my glucose
level? Or: If I continue with this certain lifestyle what are my chances of developing
atherosclerosis when I’m fifty? These types of questions would be answered by
simulating a user’s digital twin doing these activities or living that particularly
lifestyle. For this to be possible there needs to be an interface which enables users
to simulate models and pose question such as those above. Also, models describing
specific organs or tissue need to be able to be combined and simulated together in
order to model a large-scale human.
In order to meet these requirements a first version of a digital twin software was
developed which encompassed a user and model interface and a new modelling frame-
work, each described below.

3.1.1 New modelling framework
The IQM toolbox, currently used for modelling development in Gunnar Cedersund’s
group, compiles the model ODE:s, defined in text form, to C-files which can interact
with the CVODE package developed by SUNDIALS which numerically integrate
the ODE:s Sundials. These C-files are written with a specific format which makes
them executable by MATLAB (MEX files). Once the mathematical model, i.e.
the differential equations, has been compiled into a MEX-format they cannot be
further changed but only simulated. The MEX files are static, they can simulate and
integrate their differential equation given a set of initial conditions and parameter
values, that’s it. What is needed for in the digital twin is to have models that
are more dynamically, that can be simulated with other models to perform larger
and more complex simulations. To achieve this the models needs to have ways of
communicating with each other and inform what variables they simulate and what
variables they need some other models to simulate. Also, the idea with digital twin
is to have users, that have no experience with mathematical models, to be able to
perform simulations and make decision about the type of stimulation to be applied,
such as training, eating or sleeping (we call these stimulation activities). This puts
entirely different demands on the modelling framework, which needs to be able to
communicate to the user what things can be simulated and then from choices made
by the user put together the relevant models and perform the simulation.
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Figure 3.1: The current and new modelling framework. In the old modelling
framework, based on the IQM toolbox for MATLAB, a mathematical model, defined
as a set of differential equations, was compiled in two steps, first from a pure text file
into C-files and then into a executable MATLAB file (MEX file), see above picture.
The MEX file could then be run fromMATLAB to simulate the mathematical model.
This framework was built for researchers who are developing the models and know
how to the models works. The digital twin project calls for a completely new way of
performing simulations as the central idea is that users, with no previous experience
of programming or mathematical models, should be able to make simulations and
understand the result. It was therefore decided to build a new framework, see lower
picture, where the mathematical models would be more autonomous and able to
communicate with each other and also with the user.

As the project started it became clear that the current framework relying on MEX
files was to limitating in the way models where handled and a new framework was
needed to be built to handle the new demands from the digital twin. The hope
was however that the new framework would be compatible with the current way
of developing models in simple text from. A schematic picture of the old and new
framework is shown in figure 3.1.

3.1.1.1 Model-classes and model-objects

The idea with the new framework was to think about the mathematical models as
different classes which here are referred to as model-classes. These model-classes
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would serve as blueprints from which actual model-objects are created which are
able to communicate with other model-objects and be simulated together. An object
inherits all its properties from the class it is created but is its own entity at the same
time, it has its own variables and states which is separate from other objects created
from the same class. In this way there is a clear separation between the mathematical
model, i.e. the model-class, and the realization of the model, i.e. the model-objects.
For example, it may be desirable to treat adipose tissue at different locations in the
body separately when developing a large scale human model, indeed the fat cells
in the liver have no direct link with fat cells in other parts of the body, except the
fact that they are all fat cells. With the model-class-object framework all adipose
tissue can be created from the same mathematical model, the same blueprint, of real
adipocytes, but still be separate from each other and able to interact with other,
different, model-objects, perhaps in the vicinity of their spatial location, see figure
3.2.

Figure 3.2: The idea with new framework where a real objects, such as adipocytes,
are turned into a mathematical model, which in the new framework is represented as
a model-class. From this single model of a adipocyte multiple model instances can be
created. These model instances, or model-objects, can be located at different spatial
location in a large scale human model and interact with different model-objects in
order to perform more realistic spatially varying modelling.

This setup allows for a much more scalable modelling solution than the previous
framework as there is no limit, except perhaps a computational limit, in how many
model-objects you could have to describe tissue at different locations. All model-
objects created from the same model-class inherits the same properties from the
original mathematical model but are not bound to interact with the same model-
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objects. To put it in other words: the model-class provide the rules of the game,
but it is the model-objects who are doing the actual playing. Also, thinking about
models as objects is a closer abstraction of the real world and allows for the models
to be interactive in way that simply was not possible in the old framework.
It was decided to write the new framework in Python as it has advanced tools
for integrating C-code with regular Python code. In this way new functionality,
such as a user and model interface, could be written using Python but at the same
time keeping the C-file structure that had been used for the mathematical models
in the IQM toolbox, for example using CVODE integrator to solve the differential
equations. Without going into detail in the actual code I will try to explain the new
framework through its functionality.

3.1.1.2 Python-C extension modules

There are several different ways C-code can be integrated into Python, but Python-
C extension modules has a straightforward way of creating new object-classes, pre-
cisely what was needed for the new framework. It was decided that new modelling
framework needed to encompass three different types of objects-classes to meet the
modelling and interaction demands of the digital twin software. The first type of
class is model classes, discussed above, which contains the mathematical equation
defining the physiological model. These classes also have attributes and method to
allow them to be queried about such things as which time unit is assumed in their
differential equations, how many inputs and outputs the model has, what physi-
ological variables are simulated by the model. It also keeps tracks of its internal
state-variables, variables that are not public to the rest of the program but are
needed for the model to simulate. For each physiological model there will be one
model-class, from which multiple model-object can be created, see figure 3.2.
The second type of object-class is a simulation-class from which simulation objects
are created. Simulation objects are used to simulate various number of model-
objects, created from different model-classes, simultaneously. It needs to check
whether or not the model-objects are compatible which each other, for example some
models need input from other models in order to simulate, which the simulation-
object will check before simulating. To do the actual simulation, which basically
means integrating the differential equations defined in the model-objects, it uses
the CVODE integrator mentioned above. Having a distinct simulation-class makes
it possible to change how the models are simulated without changing the rest of
the framework. For example, there are models that uses differential algebraic equa-
tions (DAE) which cannot be solved by the CVODE integrator. Support for solving
DAE:s can be added in the future simply by defining a new type of simulation-class,
perhaps one that uses the IDA integrator, also developed by Sundials Sundials.
The last type of object-class is the activity-class, which enables outside information,
perhaps defined by a user, to be sent to the model-objects as they are being sim-
ulated. These activities would represent various types of stimulus, for example a
meal which would stimulate a model simulating the gastrointestinal tract or perhaps
a cardio exercise which would change your oxygen and glucose consumption. The
activities are treated as input to the various model-objects which is controlled by
the simulation-object.
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The different classes and objects are all shown schematically in figure 1.4 from
chapter 1.

3.1.2 User and model interface
Parallel to the work focused on in this thesis, which largely revolved around building
the new modelling framework discussed above, a group of bachelor students also
worked on developing a user and model interface which would enable users to interact
with the models and simulate them. The user interface, or frontend, would provide a
graphical interface to the users, showing them a representation of their digital twin
and a simulation panel where simulations request can be created. The simulation
request would contain the physiological variables and stimulus that the user wants to
simulate and how long the simulation should last. The stimulus could for example be
eating, sleeping or training. The model interface, or backend, would communicate
to the frontend information about the models such as the physiological variables
they contain and which activities they can simulate. When receiving simulation
requests from the frontend the backend would put together the necessary models
and activities in a simulation-object to perform the simulation. The result would
then be sent back to the frontend where it would be shown to the user. The digital
twin software, with the relation between the frontend, backend and new modelling
framework, is shown in figure 3.3.

Figure 3.3: The digital twin software, showing the relationship between the fron-
tend, backend and new modelling framework. The frontend holds a graphical in-
terface for the user to see and interact with its digital twin and also make choices
about simulation which are requested from the backend. The backend provides the
model interface between the frontend and the models. Given a simulation request
the backend creates a simulation-object with the appropriate models and activities
that are to be simulated. The result is then sent back to the fontend where it is
displayed to the user.

The frontend and backend are constantly communicating with each other as the
frontend takes in instructions from the user and passes them on to the backend which
in turn is providing the frontend with information about the models and possible
simulations. By making a clear distinction between the frontend/user interface and
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the backend/model interface these two can be potentially located on different servers.
There could even be multiple types of user/model interfaces, each developed for a
certain type of application.
The frontend was built using the medical image processing and visualization program
MeVisLab, see figure 2.5. MeVisLab labs is a module-based program where new
modules and functionality can be added on, why it was thought suited for the
digital twin interface where the long term goal is to have medical scans of patient
which shows organs and tissue which is linked to the different mathematical models.
New modules for MeVisLab, written in Python, was developed by the bachelor
thesis group. The same group also did the mayor work in developing the backend,
which was also written in Python. The work of this thesis focused mainly on the
development of the new modelling framework. However, the development of the
frontend, backend and new modelling framework was all done in consultation of
each other as these all relied on each other.

3.1.2.1 Digital twin

The digital twins themselves are nothing more than the various models with an
optimized parameter set to a specific user’s test data. Exactly what data is used
and how the parameters are optimized was not the focus here. Instead the focus was
on having a representation of the digital twin which the user can see and interact
with. The interaction with the digital twin revolved around doing simulation and
viewing the response that is produced. The representation would be a graphical
view of the user showing different organs to which specific models are associated.
The user would be able to rotate and zoom into different parts of their digital twin
to inspect different organs and models. The models should be able to inform the
user which physiological variables and activities they can simulate.

3.2 Neurovascular coupling model
The goal of building a neurovascular coupling model was to see if the claims made by
Mullinger et al., 2017 in their 2017 paper could be supported on a quantitative basis,
these claims are explained in section 2.3.4. The model would also serve as a test
for the newly developed modelling framework as well as the digital twin software,
explained above. The developed model builds largely on previous work done by
Havlicek, Roebroeck, K. Friston, et al., 2015; Havlicek, Roebroeck, K. J. Friston,
et al., 2017 but also ads some novel parts to adapt to the specific data at hand. The
idea is to fit the model to the data by using Bayes inference, as explained in section
2.1.2, and by looking at the simulated variables and fitted parameter see if support
can be given to Mullinger et al., 2017 about the origin of the post-stimulus response
being neural. We will first describe the data.

3.2.1 Mullinger data
The data used in this thesis comes from the previously mentioned study by Mullinger
et al., 2017 where they perform a visual cortex experiment, we will briefly walk
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through the study here and refer to the original paper for more details.
The data set is collected by letting sixteen volunteers watch a screen displaying a
checkerboard to the left eye at the same time as EEG-(electroencephalography),
ASL-(arterial spin labeling) and BOLD-data was being collected of the right, con-
tralateral, and left, ipsilateral, visual cortex brain region. ASL is a method for
measuring arterial blood flow and the EEG signal allowed for a correlation between
the overall brain activity to other neural responses such as those recorded in the
BOLD-data. The checkerboard was displayed for 10 seconds and after followed 30
seconds long pause to record post-stimulus data before the test was repeated again.
Previous work had seen different post-stimulus response depending on the stimulus
being static or flickering, why the test was both conducted with the checkerboard
being shown statically and flickering with a frequency of 3 Hz. The contrast of the
checkerboard was reduced by 33% for the flickering signal to produce a similar pri-
mary response as the static stimulus. The test was repeated 32 times for both the
static and flickering checkerboard and the average response was calculated over all
subjects, see figure 3.4 showing the contralateral visual cortex ASL- and BOLD-data.
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Figure 3.4: The selected data from the Mullinger study (Mullinger et al., 2017)
which is used to train the developed model. The visual cortex experiment was
performed with the checkerboard both showing statically and flickering with a fre-
quency of 3 Hz. Data from EEG, BOLD and ASL where simultaneously collected for
the contralateral (stimulated) and ipsilateral (non-stimulated) visual cortex region,
here the focus was on the ASL-, measuring the cerebral blood flow (CBF), and the
BOLD-data for the contralateral visual cortex, which is shown in the figure above.

We are focusing on the ASL- and BOLD-data, as these data are more straightforward
interpret in terms of the model equations, see below. The intention was to study
both the contralateral and ipsilateral visual cortex, as there is a cross-talk between
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these regions (Bocci et al., 2014). Unfortunately did time not allow for studying this
bilateral interplay between the left and right hemisphere, instead the focus was on
only the data from the contralateral brain region (the activated side of the brain)
and the study of the connection between the two hemispheres was left as a future
project.

3.2.2 Model equation
The neurovascular coupling (NVC) model developed was largely based on the work
done by (Havlicek, Roebroeck, K. Friston, et al., 2015; Havlicek, Roebroeck, K. J.
Friston, et al., 2017), who developed a model aimed at capturing the coupling be-
tween neural activity, oxygen consumption and blood flow. The model was essen-
tially comprised out of three different parts:

• A neural model, describing the connection between stimulus input and exci-
tatory and inhibitory neural activity in the visual cortex.

• A neurovascular model, connecting the neural activity to changes in blood
flow, CBF, and oxygen consumption, CMRO2.

• A BOLD model, describing the change in MRI signal due to changes in oxyhe-
moglobin and deoxyhemoglobin concentrations as a result of changed CMRO2
and CBF.

This clear distinction between the different parts of the model can be exploited
in the new modelling framework where independent models for each part can be
developed and then later combined when simulated. This way of modelling, dividing
complicated models into multiple constitutive parts, is one of key features of the new
modelling framework, why the neurovascular coupling model serve as a perfect test
for this new approach. The original model of Havlicek, Roebroeck, K. Friston, et
al., 2015 was therefore separated into three different models, each describing the
different parts mentioned above, an illustration is also shown in figure 1.5 in the
introduction. Each model, a neural model, a neurovascular model and a BOLD
model, will be described separately along with the different adaptions made, the
larger combined model will be referred to as the neurovascular coupling model.
First a small note on notation used. The models describe changes to systems and
are therefore not concerned with absolute values of their system variables, instead
they model the relative changes from baseline. Capital letters are used to donate
the absolute variable values, such as V , and baseline values are denoted with a 0-
subscript (or superscript), V0. Relative quantities are denoted by lowercase letters
and lowercase letters with a tilde:

v = ∆V
V0

= V − V0

V0
(3.1)

ṽ = V

V0
= v + 1 (3.2)

where v is the relative change with respect to baseline and ṽ is the relative amplitude
with respect to baseline. Since all the relative quantities are scaled by their baseline
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values, and are therefore dimensionless, they can be directly compared with each
other.

3.2.2.1 Neural model

The neural model is exactly the same as the one developed by Havlicek, Roebroeck,
K. Friston, et al., 2015 with no adaptation. It divides neural activity based on two
types of activity, excitatory and inhibitory, and describes changes in these relative
to baseline. It is assumed that stimulation, from the visual field, u(t) only affect the
excitatory population, nE, controlled by the parameter c. The excitatory activity
in turn activates the inhibitory population nI through the coupling constant λ, see
equations (3.3) and (3.4). The inhibitory activity is further coupled to the excitatory
activity through a negative feedback controlled by the parameter µ.

dnE
dt = −σ · nE − µ · nI + c · u(t) (3.3)
dnI
dt = λ · (nE − nI) (3.4)

(3.5)

This is an extremely simplified model of the neurological activation, but the hope is
to capture some of the dynamics in neurological activity where research have shown
that excitatory and inhibitory neurons exist in a close interplay with each other. It
has been observed that a small disturbance in the relative population of excitatory
and inhibitory neurons can have large impact on the overall functionality of the
neural network (Isaacson and Scanziani, 2011), this motivate equation (3.4) where
the term λ(nE − nI) will cause the relative change in inhibitory activity to follow
the relative change in excitatory activity.

3.2.2.2 Neurovascular model

The neurovascular model describe the coupling between neural activity, see equation
(3.3) and (3.4), and blood flow and oxygen consumption. The coupling to blood
flow is modelled as a two-stage process where the excitatory and inhibitory neural
processes creates an activation signal a which in turn modulate the blood flow f :

da
dt = −ρ · a+ ξE · nE + ξI · nI (3.6)
df
dt = −χ · f + φ · a (3.7)

The only differences in the model equations compared with those proposed by
Havlicek, Roebroeck, K. Friston, et al., 2015 are found in equation (3.6) where
the parameter ξE is inserted in front of nE and the term ξI · nI is added. This is
done in accordance with the claims made by (Mullinger et al., 2017) which suggested
that the coupling between neural activity and blood flow is different for inhibitory
and excitatory neural activity. The activation signal a in turn cause a change in the
blood flow through equation (3.7). The parameters ρ and χ sets the dynamics for
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the coupling and the parameters ξE/I and φ sets the overall strength of the coupling
between neural activity and arterial blood flow.
What was missing in the original model by Havlicek, Roebroeck, K. Friston, et al.,
2015 is a direct link between neural activity and oxygen consumption. To model
this a linear dependence was assumed between the relative change of oxygen con-
sumption, cmrO2, and neural activity, see equation (3.8). To allow for a small delay
between the increased neural activity and increased oxygen consumption we add
the state variable r which converge to the oxygen consumption cmrO2 with time
constant δ, see equation (3.9). The idea being that the change in neural activity,
and therefore oxygen consumption, will not immediately affect the oxygen extrac-
tion from the blood, which is really what is being modelled, but the change has to
propagate through the local tissue to the blood supply.

cmrO2 = θE · nE + θI · nI (3.8)
r = δ · (cmrO2 − r) (3.9)

It is the variable r that is of interest and describes the rate of oxygen extraction
from the blood, the quantity needed to model the BOLD-response described next.

3.2.2.3 BOLD model

The actual BOLD-response signal, described in section 2.3.3, has been modelled
extensively and several different models are available (Richard B. Buxton, 2013).
Havlicek, Roebroeck, K. Friston, et al., 2015 uses a detailed model developed by
Richard B Buxton, Wong, and Frank, 1998 which takes into account many different
physiological aspects. Here a simpler model, the Davis model, has been chosen
which was originally developed by Davis et al., 1998 and also used in the paper by
Mullinger et al., 2017 from which the data is taken. The Davis model is one of the
most common models and is appreciated for its simplicity. And even though many
of the physical aspects are left out, detailed studied carried out by Griffeth and
Richard B. Buxton, 2011 has shown that the Davis model is surprisingly accurate,
and can be made even more accurate by using optimized parameters.
Davis et al., 1998 assumed the following relationship between the decay rate of the
T2-signal R2, the blood volume fraction V and the deoxyhemoglobin concentration
[dHb]:

R2 = k · V · [dHb]β (3.10)
where k is proportional constant which depends on the field strength of the applied
magnetic field and β is a complex parameter which reflects the size of blood vessels
causing the decay rate of the MRI signal. For large vessel, radius > 10 µm, it
has the value of 1 and for the smallest of capillary vessels it has the value of 2,
radius ≈ 2.5 µm (Richard B. Buxton, 2013). In the original model by Davis et
al., 1998 a value of 1.5 was proposed to compromise between these two values, in
more recent studies a value of 1.3 has often been used (Richard B. Buxton, 2013).
In the mentioned study by Griffeth and Richard B. Buxton, 2011 a value 0.9 was
suggested. These type of uncertainty in exact parameter value is easily dealt with
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when performing a Bayesian inference since you define a prior distribution which
reflects the uncertainty in exact parameter value, see section 2.1.2.
Then, by using equation (2.18) from section 2.3.3, the following equation for the
relative change of the MRI signal y is retrieved:

y = −∆R2 · TE = (R0
2 −R2) · TE = k · TE · (V0 · [dHb]β0 − V · [dHb]β)

= k · TE · V0 · [dHb]β0 (1− V

V0
·
( [dHb]

[dHb]0

)β
). (3.11)

Assuming that the majority of the signal originates from the venous department
the change in deoxyhemoglobin [dHb]/[dHb]0 is equal to the change in extraction
fraction E/E0 which, by using equation (2.15), can be expressed the quotient between
CBF and CMRO2: E/E0 = CMRO2/CBF

/
CMRO0

2/CBF0 = r̃/f̃ where r̃ is the
relative oxygen consumption and f̃ is the relative blood flow with respect to baseline.
Putting this into equation (3.11) we arrive at the Davis model:

y = M ·
[
1− ṽ ·

( r̃
f̃

)β]
(3.12)

where the parameter M is the combined term k · TE · V0 · [dHb]β0 which may vary
between brain regions and different subjects. Here M will be treated as any other
parameter that needs to be fitted to the data.
What is often done when applying the Davis model is to assume a fixed relationship
between the cerebral blood flow, CBF, and the cerebral blood volume fraction,
CBV, as first described by GRUBB et al., 1974, see equation (3.13). The value
of the parameter α was originally estimated to be 0.38 but this value has come
into question in more recent studies (Mark, Fisher, and Pike, 2011), here α will be
treated as a parameter to be optimized.

CBV = CBFα (3.13)

The above relationship between blood flow and volume is a static and thus neglects
viscoelastic affects, such as those describe in the ’Balloon model’ by Richard B
Buxton, Miller, et al., 1998 where blood flow and blood volume is partly decoupled.
This is one of the concerns raised by Mullinger et al., 2017 as they analyze their
data using the Davis model. To overcome this shortcoming of the Davis model it
was decided to model the venous volume as a mass balance between inflow, f , and
outflow, fout:

dv
dt = f − fout

t0
. (3.14)

as was done by Havlicek, Roebroeck, K. Friston, et al., 2015. Here t0 is the mean
transit time for the blood to pass through the blood compartment. The arterial
blood inflow, f , is modelled by the neurovascular model, see equation (3.7). What
is missing is an equation for fout, which would have been described by f̃out = ṽ1/α

if assuming the static assumption from equation (3.13). Instead, by adding a vis-
coelastic term τ dv

dt to the right hand side and using equation (3.14) we can include
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viscoelastic effects, as explained by Richard B Buxton, Uludağ, et al., 2004, see
equation (3.15).

f̃out = ṽ1/α + τ
dv
dt

(3.14)= 1
t0 + τ

(t0 · ṽ1/α + τ · f̃) (3.15)

Where τ is parameter setting the strength of the viscoelastic effect and which will
be optimized.
By using equation (3.14) and (3.15), rather than equation (3.13), to model to the
blood volume fraction v the viscoelastic effects are incorporated into to the Davis
model, which, to the writer’s knowledge, is the first time this has been done. Thus,
by creating a rigorous mathematical model it was possible to handle one of the
concerns raised by Mullinger et al., 2017 as they draw their conclusions, namely
including viscoelastic effects.
Since the data used in this study is an average over all the subjects performing the
visual cortex experiment, as explained above, the models and parameters should
also be seen as modelling the average subject. It is most likely that the specific
parameter values differ between subjects, one example is the parameter M which
depends on the baseline values of deoxyhemoglobin. It is therefore important to
note that this is a model of the ’average’ neurovascular coupling.
All the parameters in the above models have the dimension of inverse time.

3.2.3 Bayesian inference

A common approach when building a model and fitting to data is simply to find
the parameters that makes the model mimic the data as close as possible, according
to some measure. In Bayesian inference the methodology is somewhat different.
Instead of trying to find the parameters that most closely models the data, they are
thought of as stochastic variables, whose probability distribution are to be found.
The problem then boils down to computing the posterior probability for the joint
distribution over all parameters: P (~p | Data, see section 2.1.2. Here a Markov Chain
Monte Carlo (MCMC) sampling method was used, where walkers randomly explore
the parameter space and by cleverly updating their positions the random walk will
mimic the posterior probability, which is of interest, see below.

3.2.3.1 Prior distribution

The first thing that one needs to do when performing Bayesian inference is choosing a
prior distribution P (~p) for the parameters ~p, see equation (2.4). Here it is assumed
that the parameters are independent such as described by equation (2.5). It is
also assumed that all parameters are described by a normal distribution or a log-
normal distribution if there is a positivity requirement on the parameter, such as
time scales or coupling parameters. Superscripts N/L will be used whenever it is
needed to make a distinction between these two types. For both types of parameters,
choosing a prior is then equivalent to choosing a mean, µi, and variance σ2

i , for their
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respective normal distribution:

pNi ∼ N (µi, σ2
i ) (3.16)

pLi ∼ exp[N (µi, σ2
i )]. (3.17)

The exact choice of prior, such as the type of distribution and distribution parame-
ters, is somewhat arbitrary, mainly because the parameters in a model will never be
measured directly but instead inferred from other measurement. Here, reasonable
values are chosen based on previous work. For example, the parameter M depends
on many factors such as magnetic field strength and deoxyhemoglobin baseline val-
ues, Mullinger et al., 2017 accounts for this in their study and assume values of M
between 0.06 and 0.42 (Uludağ et al., 2004; Gauthier and Hoge, 2013). These values
are used when choosing a prior for the parameterM such that they represent the 2.5
and 97.5 percentile respectively. Most of the parameters in the neural and neurovas-
cular model had priors chosen based on values reported in Havlicek, Roebroeck, K.
Friston, et al., 2015; Havlicek, Roebroeck, K. J. Friston, et al., 2017. The optimized
values reported by Griffeths (Griffeth and Richard B. Buxton, 2011) was used to
decide the priors for the parameters α and β. Some parameters simply did not have
a clear range of values beforehand, such as ξE/I and θE/I , describing excitatory and
inhibitory effect on arterial blood flow and oxygen consumption respectively. For
these parameters the prior mean and variance was simply chosen to be zero and
one respectively. The choice of zero mean was done to make minimum assumption
about the relative effect that the different neural activity has blood flow and oxygen
consumption, which is one of the things that is hoped to be studied with developed
model. A variance of one seemed reasonable since all equations are normalized by
their baseline values. The prior distribution is shown in figure 3.5 and the exact
value for the distribution parameters µi and σ2

i can be found in table A.1 in the
appendix.
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Figure 3.5: The prior distribution shown for each model, the parameters follows
either a normal or log-normal distribution, see table A.1 in the appendix. The boxes
include 50% of total probability and the whiskers includes 90%, the line in each box
shows the median. The priors were chosen according to previously reported values
and when no such values existed, they were simply chosen to be as non-informative
as possible.

It can seem unscientific to simply choose a prior probability distribution, but this
is not something that can be redeemed, other optimization algorithms may not to
talk about prior probabilities and simply optimize the model parameters to fit the
data as good as possible, perhaps with some hard bounds on the parameters space.
But this is the same as having a uniform prior, with equal probability within the
bounds. Not regarding a prior probability will not make the problem disappear but
simply make you unaware of it, it is therefore better to make an explicit choice for
a prior and be aware that the result you get are dependent on that choice.

3.2.3.2 Likelihood-function

After a prior had been chosen the next step was to identify the likelihood function,
see equation (2.4). The data is shown in figure 3.4 where the cerebral blood flow and
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BOLD-signal is shown for the two types of stimulus, static and flickering, giving a
total of four different time series with fifteen time points each (the first time points
in figure 3.4 is not modelled as it is the initial value and taken to be zero for all-time
series). In the neurovascular coupling model the relative change in blood flow is
modelled by the variable f from equation (3.7), the BOLD-signal is modelled by
the variable y from equation (3.12) and the stimulus is represented by the function
u(t) from equation (3.3). The data was modelled by simulating the neurovascular
coupling model twice, one time for static stimulus, S, and one time for flickering
stimulus, F, and storing the values for fS/F(t) and yS/F(t) at the data time points ti.
This was thus the computational most costly part, all differential equation defined in
the neurovascular coupling model needed to be solved twice each time the likelihood
function was to be computed for a new set of parameters.
The individual data points was assumed to be independent and normal distributed
such that the likelihood-function P (Data | ~p could be written as product of prob-
abilities for individual data points, see equation (2.12) from section 2.1.2. It was
however the logarithm of the likelihood-function that was of interest which is given
in equation (3.18).

log[P (Data | ~p)] =
∑
ti

(
fD

S (ti)− fS(ti)
σD
f,S(ti)/

√
16

)2
+
(
yD

S (ti)− yS(ti)
σD
y,S(ti)/

√
16

)2
+

+
∑
ti

(
fD

F (ti)− fF(ti)
σD
f,F(ti)/

√
16

)2
+
(
yD

F (ti)− yF(ti)
σD
y,F(ti)/

√
16

)2
+ constant terms

(3.18)

Here the first sum is for the static stimulus and the second sum for the flickering
stimulus. The time series fD

S/F(ti) and yD
S/F(ti) are the data time series shown in

figure 3.4 and σD
f,S/F(ti) and σD

y,S/F(ti) are their respective standard deviation, also
shown in figure 3.4. The constant terms are all normalization factors which can be
ignored when performing an MCMC sampling, see below. Notice the factor

√
16,

where 16 is the number of subjects in the study. By adding this factor the standard
deviation, SD, is turned into the standard error of the mean, SEM, see equation
(2.11). Remember that it is the mean neurovascular coupling that is being modelled
why the SEM should be used and not the SD.
To test the model the log-likelihood-function from equation (3.18) was first maxi-
mized by using a basin-hopping algorithm found in the Python-package SciPy. The
basin-hopping algorithm takes in a number of arguments, but only a few were used
which are shown in table 3.1, for more information about the algorithm see the
support site (SciPy, n.d.).

Table 3.1: The options used through the project for the basin-hopping algorithm
found in the SciPy-package.

Option Choice
Local minimizer method Nelder-Mead

Initial step-size 0.1
Temperature 1

Number of iteration 100
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One thing that quickly became apparent was that the model would not be able to
satisfactory describe both static and flickering stimulus with the same parameters,
this was observed simply by visual inspection of the data and the optimized model
predictions computed from the basin-hopping algorithm. It was first thought that
allowing for two different values of the parameter c, controlling the input signal
strength in equation (3.3), for the static and flickering stimulus would redeem this
problem. This was believed to be appropriate since the checkerboard’s contrast for
the static and flickering input was different, see section 3.2.1. Denoting the two
parameters cS/F, the data S/F-Data and all other parameters ~pO, the log-likelihood
function now looked like:

log[P (Data | ~p)] = log[P (S-Data | cS, ~pO)] + log[P (F-Data | cF, ~pO)]. (3.19)

This however, also turned out to be unsatisfactory as there was still large difference
between the model and data, even though smaller than before. It was therefore
accepted that our simple neurological model could not fully describe the two dif-
ferent stimulus signals with one parameter set, perhaps because the parameters are
modulated in some way by the different stimulus. To handle this obstacle, it was
decided to allow all the neural parameters, c, σ, µ and λ, to have different values
for the static and flickering stimulus. This would turn out to be satisfactory and
the final log-likelihood function thus looked accordingly:

log[P (Data | ~p)] =
log[P (S-Data | cS, σS, µS, λS, ~pO)] + log[P (F -Data | cF, σF, µF, λF, ~pO)]. (3.20)

3.2.3.3 Markov chain Monte Carlo sampling

After that the prior distribution and likelihood function had been defined the pos-
terior probability could be computed, see equation (2.4). To do this a Metropolis-
Hasting, MH, algorithm was used with the help of the emcee-package for Python
(Goodman and Weare, 2010). The MH sampling algorithm is special type of MCMC
sampler which samples a function, any function, by performing many random walks
where the new position of each random walker is updated in such a way that the
cumulative positions visited, after many iterations, resembles the function wanted.
It is a method that comes handy when you want to sample a high dimension func-
tions where simply computing the function at enough positions is no time efficient.
For example sampling a function in 10-dimensional space with 1000 steps in each
dimension would call for 100010 computation, a ridiculous large number of compu-
tation.
The simple version of MH-sampling algorithm goes something like this:

1. Initialize the walkers at some position in parameter space and calculate the
function F at the current position.

2. Suggest a new position, xsuggest, for the random walkers.

3. Calculate the function, F , at the suggested position.
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4. Update the position, xnew, of the walkers in the following manner: If F (xsuggest)
F (xold) <

γ then xnew = xold otherwise xnew = xsuggest, where γ is random variable with
a uniform distribution between zero and one.

5. Save the current position of the walkers and iterate a fix number of times by
going back to step 2.

Often, is not the actual function that MH-algorithm deals with, but the logarithm
of the function, this is to avoid computational error when working with very small
numbers, which is usually the case if F describes a probability distribution. The
update step number 4 above is then re-written as F (xsuggest)

F (xold) < γ ⇔ log(F (xsuggest))−
log(F (xold)) < log(γ), here it is easy to understand why any constant term in log(F )
can be ignored, it will be cancelled when comparing function values. Also, when
applying the MH algorithm, as described above, you can change how the sampling
behaves and how fast the it converges onto the actual function by changing how new
positions, the second step, are suggested. For this the standard class Stretch-Move
was used with the stretch parameter a set to two, the Stretch-Move class suggest
a new position for one walker by using the relative distance between two others,
randomly chosen, walkers. It will not be discussed in further details, instead for
more information see the article by Foreman-Mackey et al., 2012 which explains the
Stretch-Move in simple terms. Also, a common approach is to do a ’burn-in’ phase
before the actual sampling of the function. In the burn-in phase the walkers are
moving around for a certain number of iterations to settle into the function, their
then updated position is used as the initial position in step 1 above.
An issue that might arise when sampling a function is that the walkers get stuck
in local maximums, especially if the function is multi-modal with large ’valleys’
between each extremum. This is more likely to be the case with a large parameter
space, which is the case here with twenty-one parameters, two sets of four parameters
for the neural model (for static and flickering stimulus), eleven parameters for the
neurovascular model and two parameters for the BOLD model, see figure 3.5. If the
walkers can’t move from extrema to extrema you get an incorrect sampling of the
target function, and thus may draw wrong conclusions. There are ways of handling
this, as explained here Foreman-Mackey et al., 2012, but unfortunately time did not
allow to extensively try out all different possibilities. Instead, the simplest solution
of only sampling the posterior probability around its global maximum was chosen.
The global maximum was found by again using the basin-hopping algorithm found
in the SciPy-package by maximizing the log-posterior from equation (2.13). This is
of course a big limitation as only a part of the parameter space will be sampled, but
hopefully the most important part if indeed the global maximum has been found.
To ensure this the basin-hoping algorithm was re-run several times with different
starting points.
Once the location for the global maximum had been identified the walkers was ran-
domly initialized around this point, with the variance from the prior distributions
serving as measure of the spread for each parameter, see figure 3.5. Two-hundred
walkers was used with one-hundred burn-in steps and one-thousand sampling itera-
tion, given a total of two-hundred-thousand sampling points. The different settings
used for the MH-sampling is shown in table 3.2.
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Table 3.2: The settings used for the MH-sampling algorithm.

Option Choice
Position update Stretch-Move (scaling parameter a = 2)
Initial position Global maximum found with the basin-hopping algorithm

Number of walkers 200
Number of burn-in steps 100

Number of sampling iteration 1000

When sampling, and especially when doing large samples, you will get samples with
very low probability, outliers is another name. These outliers are not of interest why
a threshold value on the posterior probability was set to only include samples high
probability. There are multiple ways this threshold can be set, here, the fact that
the logarithmic of the posterior is a chi-2 distributed variable, apart from a factor of
-2, see equation 2.13. The degree of freedom for the chi-2 distribution is equal to the
number of fitted data points plus the number of parameters, however, since the data
had been fitted by the adjusting the parameters these are normally not counted.
Thus, the degree of freedom was taken to be the number of data points which was
equal to 4×15 = 60, four time series with fifteen time points each. A chi-2 test with
significance level of 0.01 was done to compute a threshold value for the log-posterior
and remove outliers. The remaining samples should then be a correct representation
of the posterior-probability around the global maximum.
The sampled posterior distribution of the parameters was then used to see if the
statements made by Mullinger et al., 2017, presented in section 2.3.4, could be
supported by the neurovascular coupling model.
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4
Result and Discussion

4.1 Digital twin software

The new digital twin software was successfully finished in time and was tested by
implementing the neurovascular coupling model, see next section. The software
comprised of a frontend (user interface), a backend (model interface) and a new
modelling framework. The frontend and backend were the main focus of the bachelor
thesis group, doing their work in parallel to this master thesis which main focus was
the new modelling framework which is first described.

4.1.1 New modelling framework

The goal was to have a new modelling framework which allowed for a more flexible
way of developing models, where multiple smaller models could be combined into
a larger one. The new framework also needed to be compatible with the current
way of developing models in Gunnas Cedersund’s group which is based on the IQM
toolbox built for MATLAB. The end result is thus a framework in which the actual
mathematical models are written down in the same manner as before, in simple text
format, see figure 4.1. The only difference is the added sections at the end of the text
file which allow to specify how this specific model fits in with other models. There
it is specified what time unit is assumed in the model, what inputs and outputs
it has to interact with other models and last which variables, or features, that are
interesting to look at for this specific model. More sections can be added as more
functionality is asked for.
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Figure 4.1: The new way of specifying models in the new modelling framework,
which is built on top of the current modelling framework used in Gunnar Cedersund’s
group. The format of the text file specifying the differential equation looks very
similar as before but new sections, marked with red above, is added to make the
text file able to be compiled into a Python-class, illustrated above, instead of into a
MEX-file as in the old framework, see figure 3.1.

The above figure tries to illustrate that the text file are now being compiled into a
Python-class, a model-class, from which objects, model-objects can be created, see
figure 3.2 from the method section. This is an entirely new way of working with
models compared with the old framework were the text files were compiled into
MEX-files, see figure 3.1. The actual work revolved around how to do the actual
compiling of the text-file to a Python-class, not so easy to show in a figure, however.

4.1.2 Digital twin frontend and backend
The digital twin frontend, which allows users to see and interact with the models,
is shown in figure 4.2. There is a representation of the digital twin to the right in
which the user can zoom into and rotate. If a specific organ is clicked on, a list
with all the relevant features that can be simulated for that organ is shown, this
could be the glucose or insulin level of the liver for example. To the left is a panel
in which choices can be made about the type of simulation that the users wish to
perform on their digital twins, there are three types of choices that can currently
be made: How long the simulations should run for and what features and activities
should be simulated. The simulation can be repeated multiple times to perhaps
simulated a regular day for an entire month. The features that are to be simulated
must be connected to the activities that the users choose. For example, if the user
wishes to simulate a meal (the activity) and see how the glucose in the blood (the
feature) changes there must be a model which simulates the glucose of the blood
and also depend, directly or indirectly, on the fact that a meal is being consumed.
These types question is exactly what is handled by the backend which communicate
both with the models and the frontend, an overview is shown in figure 3.3 from the
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Figure 4.2: The digital twin user interface, or frontend, allowing users to see a
representation of their digital twin, to the right, and a simulation panel, to the
left, where they can make decision about different types of simulations they want
to perform on their digital twin. The different activities showing, such as ’Simple
Meal’, ’Simple Exercise’ etc., are not implemented but are there to show how the
interface is supposed to work. What is implemented is the ’Visual Stimulus’-activity
which is simulated in the neurovascular coupling model developed in this thesis.

method section.
So far the activities showing in figure 4.2 are not all implemented, but they are
there to show how the digital twin software is planned to work. However, the visual
stimulus activity is implemented by the use of the neurovascular coupling model
explained next.

4.2 Neurovascular coupling model

The development of the NVC model had two main objective, one was to test the
digital twin software and one was to test the claims made by Mullinger et al.,
2017. The building of the model was successful and so was the testing of the digital
twin software, which could simulate the model and make decision about the simula-
tion. Thus, the NVC model completed one of its objective, for the claims made by
Mullinger et al., 2017 the model could partly support the claims but the validity of
the model can be questioned, this is discussed below.

4.2.1 Posterior distribution

After the global maximum had been identified by basin-hoping algorithm the poste-
rior distribution for the parameters in the NVC model could be sampled around this
point. For this the Metropolis-Hasting sampling method was used and the resulting
marginalized posterior distribution for each parameter can be seen in figure 4.3.

Page 49 of 69



4. Result and Discussion

ξE θE ξI θI ρ φ χ δ τ t0 α

−1

0

1

2

3

4

Neurovascular model parameters

c σ µ λ

0.2

0.4

0.6

0.8

1

Neural model parameters

Static
Flicker

M β

0.2

0.4

0.6

0.8

Bold model parameters

Figure 4.3: The marginalized posterior distribution sampled by the Metropolis-
Hasting sampling method around the global maximum identified by the basin-hoping
algorithm. The boxes contain 50% of the total probability and the wishers mark
the 5 and 95 percentiles, the line in each box marks the median. The parameters
are divided according to which model they belong to, the parameters for the neural
model are further divided for the different types of input.

First note the distinction between the parameters ξE/I and θE/I where the excitatory
parameters, E, have a positive distribution and the inhibitory parameters, I, have a
negative distribution. The parameters ξE/I and θE/I control neural activities impact
on blood flow and oxygen consumption respectively, see equations (3.7) and (3.8).
Next look at parameters for the neural model, which were allowed to be different for
static and flickering stimulus. First, we see that the parameter c is about double as
large for the flickering stimulus as it is for the static stimulus. This make sense since
the flickering stimulus is off half time compared to the static stimulus, which can be
compensated by doubling the parameter c. We can also see a clear reduction of the
parameter σ and an increase of the parameter µ going from static to the flickering
stimulus. The parameter σ controls the overall dynamics for the excitatory neural
activity, see equation (3.3), which can be viewed as low-pass filter with the cut-off
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frequency set by σ. It thus seems as the model compensate for the fast dynamics of
the flickering stimulus by reducing σ and thus blocking high frequency input. The
parameter µ controls the negative feedback from inhibitory neural activity to exci-
tatory neural activity, see equation (3.3). The fact that it is increased for flickering
stimulus is perhaps not surprising, Mullinger et al., 2017 discussed the possibility of
there being an active increase in inhibition as result of stimulus cessation, which is
happening frequently in the flickering stimulus. Since the NVC model doesn’t ex-
plicitly include any such effect it would seem reasonable that it would compensate
by instead increasing the negative feedback µ. The possibility of an active inhibition
due to stimulus cessation was not investigated further but could be interesting for a
future project. We can also see that the parameter λ is similar for both static and
flickering stimulus, perhaps good since it seems hard to find any good reason why
it should change.

From the posterior distribution shown in figure 4.3 one-thousand samples was drawn
randomly to simulate the NVC model and produce model prediction for key vari-
ables, shown in figure 4.4.
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Figure 4.4: The simulation of one-thousand randomly drawn parameters from
the posterior distribution shown in figure 4.3, showing the mean and plus minus one
standard deviation. Characteristic features for each model are selected together with
the data used to train the model, both for the static and flickering input stimulus.
The topmost row shows the stimulus which is an input to the neural model and then
propagates to the other models to produce the simulated result. The division of a
larger model into smaller constitutive parts lies at the heart of the new modelling
framework and produce a new way of developing more complex models.
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The above figure shows shows key variables for the three different models, a neural
model, a neurovascular mode and a BOLD-response model, comprising the full neu-
rovascular coupling model as described in the method section. The three models are
distinct from each other but at the same time dependent on each other. The input
signal, first row in figure 4.4, is stimulating the neural model to produce the excita-
tory and inhibitory neural activities, second row. These are then used to calculate
the blood flow and oxygen consumption, third and fourth row, in the neurovascular
model which in turn are used by the BOLD model to calculate the resulting BOLD
signal, fifth row. This it the whole idea of the new modelling framework, to be
able to develop larger complex models from smaller and more simplistic constitutive
parts. This opens up a whole new world of possibilities, for example, any of the
smaller models shown in figure 4.4 could in turn be broken down in to multiple
models or exchanged for another model, without having to interfere with the larger
model as a whole. This modularity is believed to be key when going forward with
the digital twin project

4.2.2 The Mullinger claims

One of the main task for the NVC model was to see if quantitative support could
be given to the qualitative claims made by Mullinger et al., 2017, see section 2.3.4.
Looking closer at the result shown in figure 4.4, we see that in the primary response
where the input stimulus is present, 0 s–10 s, both the excitatory and inhibitory
neural activities are positive and in the post-stimulus response, 10 s–40 s, the exci-
tatory activity drops below baseline while the inhibitory activity remains elevated.
Thus, our model predicts a clear change in neural activity for the primary and post-
stimulus response which supports the claims made by Mullinger et al., 2017, see
figure 2.14, where they argue that the cause for the post-stimulus response is due
to a change in relative neural activity.
One important motivation for Mullinger et al., 2017 conclusions is the observed
changed in coupling factor n = ∆rCBF/∆rCMRO2 which decreases going from the
primary to the post-stimulus response. Mullinger et al., 2017 suggested that this
could be caused by inhibitory neural activity having a proportional larger impact
on CBF than on CMRO2 when compared to excitatory neural activity, see figure
2.14. Unfortunately could the coupling factor for the simulations in figure 4.4 not be
determined satisfactory for either the primary or post-stimulus response, mainly be-
cause of the large uncertainty in oxygen consumption. However, believing Mullinger
et al., 2017 that the coupling factor is reduced in the post-stimulus response, the
NVC model can be used to give an alternative explanation how this might happen
due to changed neural activity.
The main assumption made by Mullinger et al., 2017 was that both excitatory and
inhibitory neural activity are positive drivers for CBF and CMRO2. This is in direct
conflict with what was found by the NVC model, see figure 4.3, where it clearly shows
that the inhibitory parameters ξI and θI have a negative posterior distribution.
Further, by looking at the posterior-probability for the quotient θE/I/ξE/I , as in
figure 4.5, we can compare excitatory and inhibitory neural activities’ relative impact
on CBF and CMRO2.
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Figure 4.5: The posterior distribution for the quotient θE/I/ξE/I for both exci-
tatory and inhibitory neural activity. The inhibitory distribution θI/ξI seem to
be shifted slightly to higher values compared to the excitatory distribution θE/ξE.
This would mean that inhibitory neural activity have a proportional larger impact
on CMRO2 than CBF compared to excitatory neural activity. However, the large
overlap also suggest that the different neural activity have a similar proportional
impact on CMRO2 and CBF.

Though the overlap of the two distribution is large, it seems like the inhibitory
neural activity has a slightly larger quotient and thus a relative larger impact on
CMRO2 than CBF when compared to excitatory neural activity, which is opposite
to what was suggested by Mullinger et al., 2017.
In light of these observation of the parameters ξE/I and θE/I the NVC model would
suggest an alternative explanation for the change in coupling factor for the primary
and post-stimulus response compared to the one given by Mullinger et al., 2017:

• In the primary response the stimulus drives excitatory neural activity which
in turn cause an increased inhibitory neural activity, ∆nE > 0 and ∆nI > 0,
see figure 4.4.

• Excitatory neural activity is a positive drive for both CBF and CMRO2 while
inhibitory activity is negative driver.

• In the primary response excitatory neural activity is the primary drive for both
CBF and CMRO2 and will cause an increase in these which is partly offset by
the inhibitory neural activity.

• Since inhibitory neural activity is a proportional larger (negative) driver for
oxygen consumption the offset is larger for CMRO2, see figure 4.5.

• This causes the coupling factor n = ∆rCBF/∆rCMRO2 to assume a value
larger than 1.

• In the post-stimulus phase the stimulus is removed which causes the excitatory
activity to quickly drop and become negative relative to baseline, the inhibitory
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neural activity which is not primary driven by the stimulus remains elevated,
see figure 4.4.

• The changed sign of excitatory neural activity cause excitatory and inhibitory
neural activity to now drive blood flow and oxygen consumption in the same
direction.

• The resulting coupling factor will reflect the two population’s relative effect
on CBF and CMRO2.

• In any case, because of excitatory and inhibitory neural activities unequal
drive for CBF and CMRO2 the result will be a decrease in coupling factor n
from the primary response.

This if further explained in figure 4.6.

Figure 4.6: An alternative explanation for the different coupling factor n seen by
Mullinger et al., 2017 in the primary and post-stimulus BOLD-response. In the pri-
mary response CBF and CMRO2 is largely driven by excitatory activity which cause
a positive increase of these. The increase is however offset by inhibitory neural activ-
ity having a negative impact on CBF and CMRO2, the offset is largest for CMRO2
since inhibitory activity has a proptional larger impact on oxygen consumption than
on blood flow. This result is an increased coupling factor n = CBF/CMRO2. In the
post-stimulus response the removal of stimulus cause the excitatory neural activity
to drop below baseline while inhibitory activity, which is not primarily driven by
the stimulus, to remain elevated. The result is that the two types of neural activity
now drives CBF and CMRO2 in the same direction which cause the coupling factor
to decrease from the primary response.

In the above figure the different relative impact on CBF and CMRO2 for excitatory
and inhibitory neural activity is grossly exaggerated. The large overlap in figure
4.5 suggest that excitatory and inhibitory neural activity has quite similar relative
impact on blood flow and oxygen consumption.

4.2.3 The validity of the NVC model
However, there is serious reason to doubt the developed NVC model. The most
obvious is the relative low ∆rCMRO2, see figure 4.4. As stated, the coupling factor
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was unable to be computed but we can get a sense for its magnitude by looking
at the maximum oxygen consumption which is around 8%, see figure 4.4, compare
this to the maximum blood flow which is about 70%, this tells us that the coupling
factor n = ∆rCBF/∆rCMRO2 is of the order 10, a value much larger than any
experimental determined value, see figure 2.11. We can further see that something is
not quite right with the NVC model if we look at the calculated oxygen concentration
in tissue, pOtissue

2 , see figure 4.7, which is calculated by using the oxygen diffusion
model developed by Richard B. Buxton, 2010 and the simulated blood flow and
oxygen consumption for static stimulus.
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Figure 4.7: Showing the change in oxygen partial pressure in tissue, computed by
using the simulate blood flow and oxygen consumption for static stimulus from figure
4.4 together with the the oxygen diffusion model developed by Richard B. Buxton,
2010, baseline value pOtissue

20 = 25 Torr. We can see large changes in pressure, about
9 Torr, which is not in line with the oxygen diffusion hypothesis, see section 2.3.2,
and makes one question the validity of the NVC model.

The above figure show the change of oxygen partial pressure from baseline, which
in accordance with Richard B. Buxton, 2010 was set 25 Torr. We see that the
NVC model predicts a large rise in pOtissue

2 , about 9 Torr, which corresponds to
a relative increase of about 36%. This is not what we expect given the oxygen
diffusion hypothesis, see section 2.3.2, which states the uneven change in blood flow
and oxygen consumption is to keep the partial pressure of oxygen in tissue close to
baseline. This artifact can also be related to the fact that the NVC model predicts
a very small change in CMRO2. The reason the model can predict a relative small
change in CMRO2 and still model the blood flow and BOLD signal reasonably well,
see figure 4.4, is because it at the same time predicts a small value for the parameter
β = 0.6± 0.1. Compare this with the value used by Mullinger et al., 2017, β = 1.3,
which is taken from literature (Mark, Fisher, and Pike, 2011).
Using the value β = 1.3 and inverting the BOLD model from equation (3.12) the
oxygen consumption can be computed directly from the BOLD signal, blood flow
and blood volume. This leads to more reasonable values shown in figure 4.8, also
showing in the figure is the change in pOtissue

2 if this oxygen consumption would have
been used in the oxygen diffusion model.
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Figure 4.8: Showing the oxygen consumption, orange plot, if the parameter β
would have been equal to 1.3 instead of the optimized value shown in figure 4.3
and calculating it directly by inverting the BOLD model in equation (3.12). Also
showing is the change in pOtissue

2 , olive plot, if this oxygen consumption would have
been used. These plots were computed by using the simulated values for the BOLD
signal, blood flow and blood volume due to static stimulus 4.4.

We now see a much larger change in oxygen consumption, maximum change about
35%, which means a coupling factor of about two, which is much more reasonable.
We can also see that the partial pressure is fairly close to baseline value, only drifts
about −3 Torr in the primary response, which is expected given the oxygen diffusion
hypothesis.
The reason the parameter β is allowed to assume so small values in the NVC model
is because Griffeth and Richard B. Buxton, 2011 suggested to abandon the physical
interpretation of β, which reflects the relative size of blood vessel impact on the
local change in magnetic field, see section 3.2, and instead use an optimized value
to make the Davis model more accurate. Griffeth and Richard B. Buxton, 2011
suggested a value of β = 0.9. Therefore the prior distribution for β, see figure 3.5,
was chosen to include a wide range of values.
Realizing the issue with a too small value of β, a new prior was set with a much
narrower band around the value of 1.3. However, this did not redeem the problem,
and NVC model still predicted small changes of CMRO2, now by changing the value
of the parameter M to very small values, M < 6%, which is smaller than reported
values (Mullinger et al., 2017). Therefore it seems that the NVC model has an
inherit issue, predicting to small changes in oxygen consumption, perhaps because
the simple linear model assumed to relate neural activity to CMRO2 is not adequate,
see equation (3.8).
It could also be that the believed global maximum found by the basin-hoping algo-
rithm is not the true maximum, in any case, the NVC model would need further
investigation before taking its prediction to serious.
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5
Conclusion

This project had two main goals: to develop a new modelling framework adapted to
the needs of the digital twin project, and building a neurovascular coupling model
which could test the new modelling framework and the claims made by Mullinger
et al., 2017. Both of these goals were met to varying degrees.
The new framework for modelling proved to be a powerful tool and will be cen-
tral going forward with the digital twin project, where large scale human computer
models will need to be built from smaller, simpler models. The neurovascular cou-
pling model on the other hand, was mostly successful in testing the new modelling
framework and demonstrating its novel capabilities. However, the coupling model
could not definitively prove the claims made by Mullinger et al., 2017. This model
consistently underestimated oxygen consumption and appeared to push parame-
ters toward nonphysical areas, which draws into question the overall validity of the
results.
The work done thus far highlights the importance of understanding underlying phys-
iology to better assess the validity of a neurovascular coupling model. Had the oxy-
gen diffusion hypothesis not been fully understood, it would have been all too easy
to erroneously overestimate the developed model’s accuracy by only looking at the
overall fit to data, see figure 4.4. This thesis can therefore be seen as a comprehensive
review of underlying physiological and physical aspects of the described neurovas-
cular coupling, given that immense effort was applied in researching relevant and
current knowledge in the field. In conclusion, this study serves as a springboard
for future researchers, to launch them in their efforts investigating human computer
modelling or the neurovascular coupling phenomenon.

Page 59 of 69



5. Conclusion

Page 60 of 69



REFERENCES

References

Attarwala, H. (2010). “TGN1412: From discovery to disaster”. In: Journal of Young
Pharmacists 2.3, pp. 332–336. issn: 09751505. doi: 10.4103/0975-1483.66810.

Attwell, David, Alastair M. Buchan, et al. (Nov. 2010). Glial and neuronal control
of brain blood flow. doi: 10.1038/nature09613.

Attwell, David and Costantino Iadecola (2002). “The neural basis of functional brain
imaging signals”. In: Trends in Neurosciences 25.12, pp. 621–625. issn: 01662236.
doi: 10.1016/S0166-2236(02)02264-6.

Attwell, David and Simon B Laughlin (2001). An Energy Budget for Signaling in
the Grey Matter of the Brain. Tech. rep.

Berg, JM, JL Tymoczko, and L Stryer (2002). “Hemoglobin Transports Oxygen
Efficiently by Binding Oxygen Cooperatively”. In: Biochemistry. 5th. New York:
W H Freeman. Chap. 10.2. url: https://www.ncbi.nlm.nih.gov/books/
NBK22596/.

Bocci, Tommaso et al. (Feb. 2014). “Visual callosal connections: Role in visual pro-
cessing in health and disease”. In: Reviews in the Neurosciences 25.1, pp. 113–127.
issn: 03341763. doi: 10.1515/revneuro-2013-0025.

Bowery, N G and T G Smart (Jan. 2006). “GABA and glycine as neurotransmitters:
a brief history”. eng. In: British journal of pharmacology 147 Suppl.Suppl 1, S109–
S119. issn: 0007-1188. doi: 10.1038/sj.bjp.0706443. url: https://pubmed.
ncbi.nlm.nih.gov/16402094%20https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC1760744/.

Brännmark, Cecilia et al. (2013). “Insulin signaling in type 2 diabetes: Experi-
mental and modeling analyses reveal mechanisms of insulin resistance in human
adipocytes”. In: Journal of Biological Chemistry 288.14, pp. 9867–9880. issn:
00219258. doi: 10.1074/jbc.M112.432062.

Buxton, Richard B. (2010). “Interpreting oxygenation-based neuroimaging signals:
the importance and the challenge of understanding brain oxygen metabolism”. In:
Frontiers in Neuroenergetics. issn: 1662-6427. doi: 10.3389/fnene.2010.00008.

– (Sept. 2013). “The physics of functional magnetic resonance imaging (fMRI)”.
In: Reports on Progress in Physics 76.9. issn: 00344885. doi: 10.1088/0034-
4885/76/9/096601.

Buxton, Richard B. et al. (2014). “Variability of the coupling of blood flow and oxy-
gen metabolism responses in the brain: A problem for interpreting BOLD studies
but potentially a new window on the underlying neural activity”. In: Frontiers in
Neuroscience 8 JUN. issn: 1662453X. doi: 10.3389/fnins.2014.00139.

Page 61 of 69

https://doi.org/10.4103/0975-1483.66810
https://doi.org/10.1038/nature09613
https://doi.org/10.1016/S0166-2236(02)02264-6
https://www.ncbi.nlm.nih.gov/books/NBK22596/
https://www.ncbi.nlm.nih.gov/books/NBK22596/
https://doi.org/10.1515/revneuro-2013-0025
https://doi.org/10.1038/sj.bjp.0706443
https://pubmed.ncbi.nlm.nih.gov/16402094%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1760744/
https://pubmed.ncbi.nlm.nih.gov/16402094%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1760744/
https://pubmed.ncbi.nlm.nih.gov/16402094%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1760744/
https://doi.org/10.1074/jbc.M112.432062
https://doi.org/10.3389/fnene.2010.00008
https://doi.org/10.1088/0034-4885/76/9/096601
https://doi.org/10.1088/0034-4885/76/9/096601
https://doi.org/10.3389/fnins.2014.00139


REFERENCES

Buxton, Richard B, K Miller, et al. (1998). “BOLD signal dynamics: the balloon
model with viscoelastic effects”. In: Sixth Meeting, International Society for Mag-
netic Resonance in Medicine, Sydney, Australia, p. 1401.

Buxton, Richard B, Kâmil Uludağ, et al. (2004). “Modeling the hemodynamic re-
sponse to brain activation”. In: NeuroImage 23, S220–S233. issn: 1053-8119. doi:
https://doi.org/10.1016/j.neuroimage.2004.07.013. url: http://www.
sciencedirect.com/science/article/pii/S1053811904003787.

Buxton, Richard B, Eric C Wong, and Lawrence R Frank (1998). Dynamics of Blood
Flow and Oxygenation Changes During Brain Activation: The Balloon Model.
Tech. rep.

Cauli, B. et al. (2004). “Cortical GABA interneurons in neurovascular coupling:
Relays for subcortical vasoactive pathways”. In: Journal of Neuroscience 24.41,
pp. 8940–8949. doi: 10.1523/JNEUROSCI.3065-04.2004.

Cedersund, Gunnar (2020).Webpage: Integrative System Biology group. url: https:
//isbgroup.eu/research/biology.php.

Cedersund, Gunnar and Jacob Roll (2009). “Systems biology: Model based eval-
uation and comparison of potential explanations for given biological data”. In:
FEBS Journal 276.4, pp. 903–922. issn: 1742464X. doi: 10 . 1111 / j . 1742 -
4658.2008.06845.x.

Cobelli, Claudio, Eric Renard, and Boris Kovatchev (Nov. 2011). Artificial pancreas:
Past, present, future. doi: 10.2337/db11-0654.

Dalla Man, Chiara, Robert A Rizza, and Claudio Cobelli (Oct. 2007). “Meal sim-
ulation model of the glucose-insulin system.” eng. In: IEEE transactions on bio-
medical engineering 54.10, pp. 1740–1749. issn: 0018-9294 (Print). doi: 10.1109/
TBME.2007.893506.

Davis, Timothy L. et al. (Feb. 1998). “Calibrated functional MRI: Mapping the
dynamics of oxidative metabolism”. In: Proceedings of the National Academy of
Sciences of the United States of America 95.4, pp. 1834–1839. issn: 00278424.
doi: 10.1073/pnas.95.4.1834.

Doke, Sonali K. and Shashikant C. Dhawale (July 2015). “Alternatives to ani-
mal testing: A review”. In: Saudi Pharmaceutical Journal 23.3, pp. 223–229.
issn: 1319-0164. doi: 10.1016/J.JSPS.2013.11.002. url: https://www.
sciencedirect.com/science/article/pii/S1319016413001096.

Drummond, Eleanor and Thomas Wisniewski (Feb. 2017). “Alzheimer’s disease:
experimental models and reality”. eng. In: Acta neuropathologica 133.2, pp. 155–
175. issn: 1432-0533. doi: 10 . 1007 / s00401 - 016 - 1662 - x. url: https : / /
pubmed.ncbi.nlm.nih.gov/28025715%20https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC5253109/.

Estrada, C and J DeFelipe (Mar. 1998). “Nitric oxide-producing neurons in the
neocortex: morphological and functional relationship with intraparenchymal mi-
crovasculature.” In: Cerebral Cortex 8.3, pp. 193–203. issn: 1047-3211. doi: 10.
1093/cercor/8.3.193. url: https://doi.org/10.1093/cercor/8.3.193.

Ferdowsian, Hope R. and Nancy Beck (2011). “Ethical and scientific considerations
regarding animal testing and research”. In: PLoS ONE 6.9. issn: 19326203. doi:
10.1371/journal.pone.0024059.

Page 62 of 69

https://doi.org/https://doi.org/10.1016/j.neuroimage.2004.07.013
http://www.sciencedirect.com/science/article/pii/S1053811904003787
http://www.sciencedirect.com/science/article/pii/S1053811904003787
https://doi.org/10.1523/JNEUROSCI.3065-04.2004
https://isbgroup.eu/research/biology.php
https://isbgroup.eu/research/biology.php
https://doi.org/10.1111/j.1742-4658.2008.06845.x
https://doi.org/10.1111/j.1742-4658.2008.06845.x
https://doi.org/10.2337/db11-0654
https://doi.org/10.1109/TBME.2007.893506
https://doi.org/10.1109/TBME.2007.893506
https://doi.org/10.1073/pnas.95.4.1834
https://doi.org/10.1016/J.JSPS.2013.11.002
https://www.sciencedirect.com/science/article/pii/S1319016413001096
https://www.sciencedirect.com/science/article/pii/S1319016413001096
https://doi.org/10.1007/s00401-016-1662-x
https://pubmed.ncbi.nlm.nih.gov/28025715%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253109/
https://pubmed.ncbi.nlm.nih.gov/28025715%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253109/
https://pubmed.ncbi.nlm.nih.gov/28025715%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253109/
https://doi.org/10.1093/cercor/8.3.193
https://doi.org/10.1093/cercor/8.3.193
https://doi.org/10.1093/cercor/8.3.193
https://doi.org/10.1371/journal.pone.0024059


REFERENCES

Foreman-Mackey, Daniel et al. (Feb. 2012). “emcee: The MCMC Hammer”. In: doi:
10.1086/670067. url: http://arxiv.org/abs/1202.3665%20http://dx.doi.
org/10.1086/670067.

Gauthier, Claudine J and Richard D Hoge (May 2013). “A generalized procedure
for calibrated MRI incorporating hyperoxia and hypercapnia”. In: Human Brain
Mapping 34.5, pp. 1053–1069. issn: 1065-9471. doi: 10.1002/hbm.21495. url:
https://doi.org/10.1002/hbm.21495.

Göbel, U, H Theilen, and W Kuschinsky (Feb. 1990). “Congruence of total and
perfused capillary network in rat brains.” In: Circulation Research 66.2, pp. 271–
281. doi: 10.1161/01.RES.66.2.271. url: https://doi.org/10.1161/01.
RES.66.2.271.

Goodman, J and J Weare (2010). “Ensemble Samplers With Affine”. In: Communi-
cations in Applied Mathematics and Computational Science 5.1, pp. 65–80.

Griffeth, Valerie E.M. and Richard B. Buxton (Sept. 2011). “A theoretical frame-
work for estimating cerebral oxygen metabolism changes using the calibrated-
BOLD method: Modeling the effects of blood volume distribution, hematocrit,
oxygen extraction fraction, and tissue signal properties on the BOLD signal”. In:
NeuroImage 58.1, pp. 198–212. issn: 10538119. doi: 10.1016/j.neuroimage.
2011.05.077.

GRUBB, ROBERT L. et al. (Sept. 1974). “The Effects of Changes in Pa CO
<sub>2</sub> Cerebral Blood Volume, Blood Flow, and Vascular Mean Transit
Time”. In: Stroke 5.5, pp. 630–639. issn: 0039-2499. doi: 10.1161/01.STR.5.5.
630. url: https://www.ahajournals.org/doi/10.1161/01.STR.5.5.630.

Hajar, Rachel (Jan. 2011). “Animal testing and medicine”. eng. In: Heart views :
the official journal of the Gulf Heart Association 12.1, p. 42. issn: 0976-5123.
doi: 10.4103/1995-705X.81548. url: https://pubmed.ncbi.nlm.nih.gov/
21731811%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123518/.

– (2015). “History of medicine timeline”. eng. In: Heart views : the official journal of
the Gulf Heart Association 16.1, pp. 43–45. issn: 1995-705X. doi: 10.4103/1995-
705x.153008. url: https://pubmed.ncbi.nlm.nih.gov/25838882%20https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4379645/.

Hall, Kevin D and Peter N Jordan (Dec. 2008). “Modeling weight-loss maintenance
to help prevent body weight regain.” eng. In: The American journal of clinical
nutrition 88.6, pp. 1495–1503. issn: 1938-3207 (Electronic). doi: 10.3945/ajcn.
2008.26333.

Havlicek, Martin, Alard Roebroeck, Karl J. Friston, et al. (2017). “On the impor-
tance of modeling fMRI transients when estimating effective connectivity: A dy-
namic causal modeling study using ASL data”. In: NeuroImage. issn: 10959572.
doi: 10.1016/j.neuroimage.2017.03.017.

Havlicek, Martin, Alard Roebroeck, Karl Friston, et al. (2015). “Physiologically
informed dynamic causal modeling of fMRI data”. In: NeuroImage 122, pp. 355–
372. issn: 10959572. doi: 10.1016/j.neuroimage.2015.07.078.

Heuvel, Martijn P van den and Hilleke E Hulshoff Pol (2010). “Exploring the
brain network: A review on resting-state fMRI functional connectivity”. In: Euro-
pean Neuropsychopharmacology 20.8, pp. 519–534. issn: 0924-977X. doi: https:

Page 63 of 69

https://doi.org/10.1086/670067
http://arxiv.org/abs/1202.3665%20http://dx.doi.org/10.1086/670067
http://arxiv.org/abs/1202.3665%20http://dx.doi.org/10.1086/670067
https://doi.org/10.1002/hbm.21495
https://doi.org/10.1002/hbm.21495
https://doi.org/10.1161/01.RES.66.2.271
https://doi.org/10.1161/01.RES.66.2.271
https://doi.org/10.1161/01.RES.66.2.271
https://doi.org/10.1016/j.neuroimage.2011.05.077
https://doi.org/10.1016/j.neuroimage.2011.05.077
https://doi.org/10.1161/01.STR.5.5.630
https://doi.org/10.1161/01.STR.5.5.630
https://www.ahajournals.org/doi/10.1161/01.STR.5.5.630
https://doi.org/10.4103/1995-705X.81548
https://pubmed.ncbi.nlm.nih.gov/21731811%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123518/
https://pubmed.ncbi.nlm.nih.gov/21731811%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123518/
https://doi.org/10.4103/1995-705x.153008
https://doi.org/10.4103/1995-705x.153008
https://pubmed.ncbi.nlm.nih.gov/25838882%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379645/
https://pubmed.ncbi.nlm.nih.gov/25838882%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379645/
https://doi.org/10.3945/ajcn.2008.26333
https://doi.org/10.3945/ajcn.2008.26333
https://doi.org/10.1016/j.neuroimage.2017.03.017
https://doi.org/10.1016/j.neuroimage.2015.07.078
https://doi.org/https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/https://doi.org/10.1016/j.euroneuro.2010.03.008


REFERENCES

/ / doi . org / 10 . 1016 / j . euroneuro . 2010 . 03 . 008. url: http : / / www .
sciencedirect.com/science/article/pii/S0924977X10000684.

Hillman, Elizabeth M.C. (2014). “Coupling Mechanism and Significance of the BOLD
Signal: A Status Report”. In: Annual Review of Neuroscience 37.1, pp. 161–181.
issn: 0147-006X. doi: 10.1146/annurev-neuro-071013-014111.

IntiQuan (2017). IQM toolbox. url: https://iqmtools.intiquan.com.
Isaacson, Jeffery S and Massimo Scanziani (2011). “How Inhibition Shapes Cortical
Activity Excitation and inhibition walk hand in hand”. In: Neuron 72.2, pp. 231–
243. doi: 10.1016/j.neuron.2011.09.027.

Johansson, Rickard (2017). Model-based hypothesis testing in biomedicine : how sys-
tems biology can drive the growth of scientific knowledge. Department of Biomedi-
cal Engineering Linköping University, Sweden. isbn: 9789176854570. url: https:
//login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.
aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.929369&lang=
sv&site=eds-live&scope=site%0Ahttp://urn.kb.se/resolve?urn=urn:nbn:
se:liu:diva-141614.

Kolata, Gina (2020). An Alzheimer’s Treatment Fails: ‘We Don’t Have Anything
Now’. url: https://www.nytimes.com/2020/02/10/health/alzheimers-
amyloid-drug.html.

Kovatchev, Boris P et al. (2009). “In silico preclinical trials: A proof of concept
in closed-loop control of type 1 diabetes”. In: Journal of Diabetes Science and
Technology. Vol. 3. 1, pp. 44–55. doi: 10.1177/193229680900300106. url: www.
journalofdst.org.

Lauritzen, Martin (Jan. 2005). “Reading vascular changes in brain imaging: is den-
dritic calcium the key?” eng. In: Nature reviews. Neuroscience 6.1, pp. 77–85.
issn: 1471-003X (Print). doi: 10.1038/nrn1589.

Lovell-Badge, Robin (Jan. 2013). Nine out of ten statistics are taken out of context.
Tech. rep. London: MRC National Institute for Medical Research. url: www .
understandinganimalresearch.org.uk.

Mark, Clarisse I, Joseph A Fisher, and G Bruce Pike (2011). “Improved fMRI cali-
bration: Precisely controlled hyperoxic versus hypercapnic stimuli”. In: NeuroIm-
age 54.2, pp. 1102–1111. issn: 1053-8119. doi: https://doi.org/10.1016/j.
neuroimage.2010.08.070. url: http://www.sciencedirect.com/science/
article/pii/S1053811910011675.

Markou, Athina et al. (Jan. 2009). Removing obstacles in neuroscience drug discov-
ery: The future path for animal models. doi: 10.1038/npp.2008.173.

McDonald, Michael. P and Bruce. J Overmier (Dec. 1997). “Present Imperfect: A
Critical Review of Animal Models of the Mnemonic Impairments in Alzheimer’s
Disease”. In: Neuroscience & Biobehavioral Reviews 22.1, pp. 99–120. issn: 0149-
7634. doi: 10.1016/S0149-7634(97)00024-9. url: https://www.sciencedirect.
com/science/article/pii/S0149763497000249.

Meldrum, Brian (May 2000). “Glutamate as a Neurotransmitter in the Brain: Review
of Physiology and Pathology”. In: The Journal of nutrition 130, 1007S–15S. doi:
10.1093/jn/130.4.1007S.

MeVisLab (2020).MeVisLab. url: https://www.mevislab.de/mevislab/features/
image-processing.

Page 64 of 69

https://doi.org/https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/https://doi.org/10.1016/j.euroneuro.2010.03.008
http://www.sciencedirect.com/science/article/pii/S0924977X10000684
http://www.sciencedirect.com/science/article/pii/S0924977X10000684
https://doi.org/10.1146/annurev-neuro-071013-014111
https://iqmtools.intiquan.com
https://doi.org/10.1016/j.neuron.2011.09.027
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.929369&lang=sv&site=eds-live&scope=site%0Ahttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141614
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.929369&lang=sv&site=eds-live&scope=site%0Ahttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141614
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.929369&lang=sv&site=eds-live&scope=site%0Ahttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141614
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.929369&lang=sv&site=eds-live&scope=site%0Ahttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141614
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=cat00115a&AN=lkp.929369&lang=sv&site=eds-live&scope=site%0Ahttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141614
https://www.nytimes.com/2020/02/10/health/alzheimers-amyloid-drug.html
https://www.nytimes.com/2020/02/10/health/alzheimers-amyloid-drug.html
https://doi.org/10.1177/193229680900300106
www.journalofdst.org
www.journalofdst.org
https://doi.org/10.1038/nrn1589
www.understandinganimalresearch.org.uk
www.understandinganimalresearch.org.uk
https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.08.070
https://doi.org/https://doi.org/10.1016/j.neuroimage.2010.08.070
http://www.sciencedirect.com/science/article/pii/S1053811910011675
http://www.sciencedirect.com/science/article/pii/S1053811910011675
https://doi.org/10.1038/npp.2008.173
https://doi.org/10.1016/S0149-7634(97)00024-9
https://www.sciencedirect.com/science/article/pii/S0149763497000249
https://www.sciencedirect.com/science/article/pii/S0149763497000249
https://doi.org/10.1093/jn/130.4.1007S
https://www.mevislab.de/mevislab/features/image-processing
https://www.mevislab.de/mevislab/features/image-processing


REFERENCES

Mishra, Anusha et al. (Dec. 2016). “Astrocytes mediate neurovascular signaling to
capillary pericytes but not to arterioles”. In: Nature Neuroscience 19.12, pp. 1619–
1627. issn: 15461726. doi: 10.1038/nn.4428.

Morrison, Tina M. et al. (2018). “Advancing regulatory science with computational
modeling for medical devices at the FDA’s office of science and engineering labo-
ratories”. In: Frontiers in Medicine 5.SEP. issn: 2296858X. doi: 10.3389/fmed.
2018.00241.

Mullinger, K. J. et al. (Aug. 2017). “Post-stimulus fMRI and EEG responses: Evi-
dence for a neuronal origin hypothesised to be inhibitory”. In: NeuroImage 157,
pp. 388–399. issn: 10959572. doi: 10.1016/j.neuroimage.2017.06.020.

Ogawa, S. et al. (1990). “Brain magnetic resonance imaging with contrast dependent
on blood oxygenation”. In: Proceedings of the National Academy of Sciences of the
United States of America 87.24, pp. 9868–9872. issn: 00278424. doi: 10.1073/
pnas.87.24.9868.

Petzold, Gabor C. and Venkatesh N. Murthy (2011). Role of astrocytes in neurovas-
cular coupling. doi: 10.1016/j.neuron.2011.08.009.

Philipson, Ola et al. (Mar. 2010). Animal models of amyloid-β-related pathologies in
Alzheimer’s disease. doi: 10.1111/j.1742-4658.2010.07564.x.

Plewes, Donald B. and Walter Kucharczyk (2012). “Physics of MRI: A primer”.
In: Journal of Magnetic Resonance Imaging 35.5, pp. 1038–1054. issn: 10531807.
doi: 10.1002/jmri.23642.

Raichle, Marcus E and Debra A Gusnard (Aug. 2002). “Appraising the brain’s energy
budget”. eng. In: Proceedings of the National Academy of Sciences of the United
States of America 99.16, pp. 10237–10239. issn: 0027-8424. doi: 10.1073/pnas.
172399499. url: https://pubmed.ncbi.nlm.nih.gov/12149485%20https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC124895/.

Reitz, Christiane (2012). Alzheimer’s disease and the amyloid cascade hypothesis: A
critical review. doi: 10.1155/2012/369808.

Rosen, Evan D and Bruce M Spiegelman (2006). “Adipocytes as regulators of en-
ergy balance and glucose homeostasis”. In: Nature 444.7121, pp. 847–853. issn:
1476-4687. doi: 10.1038/nature05483. url: https://doi.org/10.1038/
nature05483.

Scarlett, J and M Schwartz (2015). “Gut-brain mechanisms controlling glucose
homeostasis”. In: F1000Prime Reports 7.

SciPy (n.d.). Basin-hopping. url: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.basinhopping.html.

Sundials (n.d.[a]). Sundials CVODE. url: https://computing.llnl.gov/projects/
sundials/cvode.

– (n.d.[b]). “Sundials IDA”. In: ().
Uhlirova, Hana et al. (2016). “Cell type specificity of neurovascular coupling in
cerebral cortex”. In: eLife 5.MAY2016, pp. 1–23. issn: 2050084X. doi: 10.7554/
eLife.14315.

Uludağ, Kâmil et al. (2004). “Coupling of cerebral blood flow and oxygen consump-
tion during physiological activation and deactivation measured with fMRI”. In:
NeuroImage 23.1, pp. 148–155. issn: 1053-8119. doi: https://doi.org/10.

Page 65 of 69

https://doi.org/10.1038/nn.4428
https://doi.org/10.3389/fmed.2018.00241
https://doi.org/10.3389/fmed.2018.00241
https://doi.org/10.1016/j.neuroimage.2017.06.020
https://doi.org/10.1073/pnas.87.24.9868
https://doi.org/10.1073/pnas.87.24.9868
https://doi.org/10.1016/j.neuron.2011.08.009
https://doi.org/10.1111/j.1742-4658.2010.07564.x
https://doi.org/10.1002/jmri.23642
https://doi.org/10.1073/pnas.172399499
https://doi.org/10.1073/pnas.172399499
https://pubmed.ncbi.nlm.nih.gov/12149485%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC124895/
https://pubmed.ncbi.nlm.nih.gov/12149485%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC124895/
https://doi.org/10.1155/2012/369808
https://doi.org/10.1038/nature05483
https://doi.org/10.1038/nature05483
https://doi.org/10.1038/nature05483
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html
https://computing.llnl.gov/projects/sundials/cvode
https://computing.llnl.gov/projects/sundials/cvode
https://doi.org/10.7554/eLife.14315
https://doi.org/10.7554/eLife.14315
https://doi.org/https://doi.org/10.1016/j.neuroimage.2004.05.013
https://doi.org/https://doi.org/10.1016/j.neuroimage.2004.05.013


REFERENCES

1016/j.neuroimage.2004.05.013. url: http://www.sciencedirect.com/
science/article/pii/S1053811904002903.

Zijl, Peter C.M. van, Jun Hua, and Hanzhang Lu (Aug. 2012). The BOLD post-
stimulus undershoot, one of the most debated issues in fMRI. doi: 10.1016/j.
neuroimage.2012.01.029.

Page 66 of 69

https://doi.org/https://doi.org/10.1016/j.neuroimage.2004.05.013
https://doi.org/https://doi.org/10.1016/j.neuroimage.2004.05.013
http://www.sciencedirect.com/science/article/pii/S1053811904002903
http://www.sciencedirect.com/science/article/pii/S1053811904002903
https://doi.org/10.1016/j.neuroimage.2012.01.029
https://doi.org/10.1016/j.neuroimage.2012.01.029


Appendices

67





A. Prior distribution

A
Prior distribution

Table A.1: The prior distribution for the parameters is either a normal distribution,
N , or a log-normal distribution, L. In both cases are the prior distribution fully
described by the mean, µi, and variance, σ2

i , for their respective normal distribution,
which we give here, see equations (3.16) and (3.17). Just remember for the log-
normal distribution that the mean and variance given for the normal distribution is
not the same as the mean and variance for the actual prior distribution2.

Model Parameter Mean (µi) Variance (σ2
i ) Distribution

N
eu
ra
l c -2.3 1.0 L

σ -0.9 0.49 L
µ -0.9 0.49 L
λ -1.6 0.0625 L

N
eu
ro
va
sc
ul
ar

ξE 0.0 1.0 N
ξI 0.0 1.0 N
ρ -0.5 0.25 L
φ 0.4 0.16 L
χ -0.5 0.25 L
θE 0.0 1.0 N
θI 0.0 1.0 N
δ -0.8 0.64 L
τ -0.9 3.24 L
t0 0.7 0.25 L
α -1.97 0.16 L

BO
LD M -1.9 0.25 L

β -0.1 0.09 L

2They are however related by a simple transformation: µL = exp
(
µ+ σ2

2

)
, σ2

L = [exp
(
σ2)−

1] · µ2
L.
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