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Abstract

The design procedure has made the manufactures through experience aware that
the tolerances in gear machines plays a significant influence on the system. In liter-
ature there is only a few studies that investigates the phenomena of the geometrical
micro details. This due to the complexity of the problem since it involves multiple
domains and scales. This work will prove how it is possible to investigate the problem
involving micro level details and the goal has been to study the effects with the aim
of quantifying and proving the impact of a chamfer on the gears lateral side.

The work has been performed by coupling the tooth space pressures solved by
HYGESim (Hydralic Gear machines Simulator) with a numerical solver developed in
an OpenFOAM environment. The simulations are carried out by solving Reynolds
equations which has been proven to give accurate solutions to problems involving
fluid films. Simulations involving both with and without the balancing squeeze term
has been performed.

Two different chamfers has been compared to a case without a chamfer at a fixed
and constant gap height. The different cases are compared to each other by first
separation the terms in Reynolds equation and then comparing the leakages to the
drain and the power losses. It was found out that chamfer generates translational
squeeze effects, which makes this study first of its kind. It was also found out that the
generated hydrodynamic effects tends to increase with an increased chamfer. When it
comes to the leakages, the chamfer has a positive effect, i.e decreased leakages. When
comparing the power losses for one of the chamfers, the smaller one gives decreased
losses while the bigger one generates increased losses.

Simulations are also performed with the normal squeeze term taken into account,
this to balance the generated forces by tilting the bushing. The results indicate that
the hydrodynamic pressures generated to balance the bushing mainly originate from
the tilt and not from the chamfer, even though the chamfer tends to decrease the
maximum generated pressure and decreasing the tilt constant, t.

Keywords: External gear pump, lateral, bushing, CFD, openfoam, balance, gsl, reynolds
equation, leakages, power losses
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1 Introduction

Fluid power are energy transmitted and controlled by pressurized fluid, liquid or gas.
Fluid power applications are widely used, commonly in construction machines, agricultural
machines, aircrafts and military. The key elements exists as either a pump or a motor
and were for several year designed and developed by empirical procedures. Nevertheless,
modern design techniques such as FEM (finite element method) have been applied and
used for stress analyses, tools to understanding the main flow etc. However, the design
procedure is still mainly dependent on empirical studies and there is not yet any advanced
design tools to answer many important problems.

The design procedure has made the manufacturers through experience aware of the high
level of tolerances and micro level geometry details influence on the system. In literature
there is only a few studies that investigates the phenomena of the geometrical micro details.
This is due to the complexity of the problem since it involves multiple domains and scales.

This work will prove how it is possible to couple different tools to investigate the
problem involving micro level details. Since an existing tool was available for the main
flow of external gear machines, it was possible to put an effort of that work, to accomplish
the goal of this work, to implement and study the tolerances of the gears lateral profile.

The work itself corresponds to an, un-investigated or not, well known aspect of the
external gear machines. One of the secrets in the design of the lateral sides of the gear
seems to be this aspect.

This work will study this aspect with the aim of quantifying and proving the impact
of different design choices of the operation. A commercial pump will be taken as reference
throughout the work.

The work will begin by introducing the reader by showing the functionality of the
external gear machine and describing the unit with its details.

1.1 External gear pump overview

This introductory chapter are written to help the reader through the report to understand
the basics of an external gear pump.

The external gear pump belongs to the hydraulic class of machines named hydrostatic
pumps. The hydrostatic pump class has numerous amount of different designs but what
makes them as a class is their principle of working by displacement, thereby displacement
machines. Furthermore two different groups of the displacement machines exist, they can
be categorized by how the motion of the displacement are transferred within the machine.
Either by translatory motion, in other words by a piston, or by rotary motion. The rotary
motion are performed by vanes, screws or teeth.

If the displacement machine are driven by an external power source is it categorized as a
pump and if the motion of the fluid drives the gears it is categorized as motor. Theoretically,
the design of pumps and motors is the same but in practice are they designed as either a
pump or a motor, this to get an optimal design.
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Figure 1.1 – Classification of displacement machines.[1]

The external gear pumps are basically a housing containing two equal gearwheels, each
of them held in a housing. This mechanical simplicity is one big reason for their success,
in addition to this the external gear pump is very light, small when it comes to volume,
suited for hard conditions and can handle a wide range of different flow rates. At last, the
external gear pump is one of the cheapest displacement machines on the market, which
makes it a good competitor compared to other displacement machines.

Operation conditions

Min Max
Displacement [cm3/rev] 0.1 50 to 300

Speed [rpm] 300 to 700 2000 to 8000
Pressure [bar] 80 to 350 400

Table 1.1 – External gear pumps minimum and maximum operation conditions.[1]

According to Table 1.1 it can be seen that the external gear pump has a big range when
it comes to displacements, pressure and speed but the has also a couple of drawbacks.
They have fixed displacement volumes, becomes noisy and have a high flow pulsation. To
reach favorable efficiencies the production cost will be influenced due to different materials,
treatments and higher tolerances.

2 , Applied Mechanics, Master’s Thesis 2011:49



Figure 1.2 – External gear pump,
CASAPPA PLP20 11.2 Standard

Figure 1.3 – Exploded view of an ex-
ternal gear pump, CASAPPA PLP20
11.2 Standard.

Figure 1.3 shows an exploded view of an external gear pump. From left to right it
contains a sealing to prevent oil leakage (1), the sealing is mounted on the flange (2)
followed by the case sealing (3). This is followed by an anti-extrusion ring (4) and a seal
which has the same shape as the seal in the following bushing (5), the anti-extrusion ring
separates the suction area from the delivery area, this to avoid extrusion of the sealing
parts. In general, the bushings are affecting the performance of the machine, internal
pressure peaks, cavitation and sealing of the volumes[3].

Figure 1.4 – Front view of the bushing,
high pressure port at the top and low pres-
sure port at the lower part. Low pressure
connected to the drain.

Figure 1.5 – Back side of the bushing, high
pressure port connected to the back side to
generate a balancing force. Low pressure
port connected to the drain at the lower
part.

The external gear pump contains two sliding bushings (or bearing blocks) (5) and (7),
one at each side of the two gears (6). The sliding bearings have multiple purposes, they seal
the fluid during the transfer process and also works as a communicator between the tooth
space volumes, pressure and suction ports, this helps to avoid huge pressure peaks. The
communication between the suction and pressure side of the pump are done by creating
interstices on the bushing, Figure 1.4 and Figure 1.5. Usually the bushing also play an
important role when it comes to the balancing of the pump. Old pumps used perfectly
smooth lateral faces and stator where modern pumps are self-balanced. Between the two
bushings are the two gears located (6), the driving gears which is connected to an external
power source, and the slave gear which is driven by the drive gear.

Above the second bushing, the second anti-extrusion ring (8) and a seal is found,
followed by case sealing (9) and the cover (11). At last, the housing (10) which surrounds
all parts and contains the suction port (inlet port) and the pressure port (outlet port).
Usually the pressure port is larger than the suction port, and the most common way is to
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mount them opposite to each other.
When the pump is operating the delivery pressure should be at maximum over the

whole upper chamber and the lowest pressure inside the pump will be found at the suction
side. The pressure should increase proportionally from the first tooth space volume until
it reaches a maximum at the delivery section. This pressure increase causes the pump to
feel radial loads which increasing from the suction side to the delivery side. The stresses
due to the pressure differences are therefore highest at the delivery area of the pump.

1. 2. 3.

4. 5. 6.

Figure 1.6 – Meshing process through an external gear pump, basic principles.

The fluid through the pump is transferred by the meshing process which is caused by
the sliding elements, i.e rotation of gears inside the pump. The process is well descried
by Figure 1.6. The process begins with the fluid that enters the gear pump at the low
pressure region in the bottom, the gear teeth pushed the fluid around by rotation. These
gears creates an expanding volume on the suction side of the pump. The liquid that flows
in the cavity will be trapped by the gears as they rotate. The liquid will continuously,
travel around the interior of the casing, trapped in the volume created by the gear teeth
and the casing. Thereby is the flow rate through the pump depended on the sum of
volumes between the gear teeth and casing. An optimal design is therefore, according
to a specific gear diameter, to choose as large number of teeth as possible[1]. The fluid
transport process ends when the meshing of the gears forces the liquid through the outlet
under high pressure, this area is commonly called the discharge chamber[4].

1.2 Background and state-of-the-art

Despite the fact, the gear pump is a mechanically simple machine, the limited number of
internal elements shows a tendency to influence each other in such way that they strongly
complicates the design of the machine. An excellent understanding of the machine is
therefore of significant importance when it comes to the design process. This includes
understanding of the energy transfer, motion transmission, displacing action, sealing and
timing for the lateral elements etc.[2],[5].

These features have been of interest to scientists for years and several analytical and
geometrical approaches have been developed. A quite common approach in the literature
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is to describe a model for the fluctuations of the external ports. Most common are the
lumped parameter models, like [6] and [7] but recently several includes more complex CFD
modelling approaches, [8] and [9]. The difference between the two approaches is that the
CFD approach contains more complex features and allows a deeper understanding of the
problem, like describing the lubricating gap. In these cases is it common to describe the gap
with a constant gap height, even if its a big simplification of the problem it still increases
the understanding of the gap phenomena.

The phenomena that there occurs a gap between the bearing blocks and the lateral side
of the gears are well known, more described in Figure 1.7 and Figure 1.8. This gap occurs
in magnitude of microns and are changing according to rotational speed and pressure of
the gear pump. According to experimental data, an equilibrium can be reached, which is
defined as the position where a balance is reached between the torques and forces acting
on the bushings. This is experimentally proved by installing displacement transducers on
the end faces of the gear teeth, [10], [11]. In the end is the design of the influenced parts
(gears, bushings) attempting to minimize the leakages across the lateral side of the gears
even if an adequate fluid film has to exist to prevent wear and increased shear stresses and
last also to reduce the noise generation.

The balance is simply achieved by feeding high pressure oil from the high pressure
side to the back side of the bushings, this creates a force that should even out the forces
generated by the gap itself and the teeth space volumes, Figure 1.4 and Figure 1.5.

MAHA Fluid Power Research Center in Lafayette, IN, are under Dr. Andrea Vacca
developing an open-source numerical application in OpenFOAM environment that should
be able to predict the lubricating gap inside the external gear pump and by that be able
to predict the tilt of the bushings by studying the generated forces. The development
of the numerical solver was initially started by Marco Zecchi in the end of 2009, the
continuous development was taken into possession by Sujan Dhar which at this date has the
responsibility for the developing process, both worked/s under supervision of Dr. Andrea
Vacca.

Figure 1.9 – Structure of the combined HYGESim model with presented flux between the
different modules.

The solver for the lubricating gap is more or less a part of a complex fluid dynamic
model developed to characterize the flow throughout the entire external gear pump, HY-
GESim (Hydralic Gear machines Simulator)[2]. HYGESim was combined with the solver
of the lubricating gap to gain a better understanding of the fluid flow field inside the
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external gear pump. They are coupled together by exchanging teeth space pressure and
leakages. HYGESim solves the internal flow and calculates the pressure inside each tooth
space volume at all instantaneous positions during a revolution, the calculated pressure
acts as input data, boundary conditions, to the gap solver developed in OpenFOAM. The
gap solver calculates the leakages in the gap which are used by the fluid solver HYGESim.
The HYGESim modules are showed in Figure 1.9 and describes the flux of data between
them.

The numerical gap solver could at the date when the thesis was written, solve the
Reynolds equation and give an initial solution to the pressure distribution and the genera-
tive forces inside the gap. It was also possible to give a first preview of the actual tilt of the
bushing but in the end, to increase the accuracy of the solver and the physical agreement to
experimental data and predictions, further implementations has to be made, which brings
the background to the purpose of this thesis.

1.3 Purpose

According to previous work, there are no investigations performed regarding the micro
level surface features. This study is therefore based on the empirical knowledge that tiny
geometrical changes can make a significant difference to the system.

It is a well known fact that different manufactures tends to add through the machinery
process a chamfer on the gears lateral side in the external gear pump. The shape and size
of the chamfer are usually kept in secret by the company itself and even if the effects from
the chamfer is positive the physical explanations are unknown. Recent studies, such as [2],
[8] and [9] used a simplified approach where the gear profile are assumed flat but to get an
advanced understanding of the physical phenomenas that originates from the assumption
that micro level surface features can play a significant role, the chamfer implementation to
the solver is a natural step in the development.

The micro level surface features should be easy to implement and to modify, it is by
that restriction natural to use the CAD drawings as a reference. The development should
therefore origin from the CAD drawings and end with an implementation in the numerical
gap solver. Continuously the effects generated by the micro level surface features should be
investigated and compared to a case without any features in terms of pressure distributions,
leakage and shear stress comparisons.

The goal is in short terms to investigate the physical effects generated due to a non-flat
gear profile incorporated generally in the machinery process.

1.4 Sustainable developement

By taking into account the environmental factors a deeper understanding of the generated
physical effects is of great importance to be able to continue the development of external
gear pumps. The ambition is to decrease the losses in terms of leakages, power and noise.
Therefore it is of great importance to continue the theoretical and physical understanding
of the external gear pumps when looking in a sustainable development perspective.
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Figure 1.7 – Transparent view of an external gear pump.

Figure 1.8 – Transparent view of an external gear pump describing
location of the lubrication gap, between the gears and the bushing.
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2 Theoretical complementary

The derivations and explanations mentioned under the theoretical complementary are writ-
ten to help the reader with the mathematical understanding of the solved equations and
procedures to predict leakages, shear stresses and power losses.

2.1 Reynolds Equation

Reynolds equation are mainly derived from Navier-Stokes and the continuity equation, [12].
Reynolds equation takes in consideration the viscocity varitations in the film and slip at
the bearing surfaces and are generally used to solve lubricated flow problems. Lubricated
systems consist of moving surfaces (one may be considered stationary), loaded or unloaded
with a thin film between them. The thin film supports the load by the surfaces and
minimizes the friction[13]. The derivation of Reynolds equation begins with Navier-Stokes
equation with a couple of assumption.

2.1.1 Navier-Stokes equations

∂ρvi
∂t

+
∂ρvivj
∂xj

=
∂p

∂xi

+
∂

∂xj

(

µ
∂vi
∂xj

)

(2.1)

General assumption:

• By assuming steady-state,
∂ρvj
∂t

will be zero.

• In Reynolds equation the inertial forces are negliable compared to the viscous ones,
thereby could

∂ρvivj
∂xj

neglected.

• Gradients in gap direction are much larger than the ones in other directions, ∂v1
∂x3

�
∂v3
∂x1

, ∂v2
∂x3

� ∂v3
∂x2

and v1 � v3, v2 � v3.

• Pressure is not a function of the gap height, p = p(x1, x2).

Figure 2.1 – Coordinate system over a lubrication gap, where h is the gap hight.
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By this the Navier-Stokes equation can be reduced to

∂p

∂xi

=
∂

∂xj

(

µ
∂vi
∂xj

)

(2.2)

and since ∂v1
∂x3

� ∂v3
∂x1

, ∂v2
∂x3

� ∂v3
∂x2

the set of equations can be reduced to the following

∂p

∂x1

=
∂

∂x3

(

µ
∂v1
∂x3

)

∂p

∂x2

=
∂

∂x3

(

µ
∂v2
∂x3

) (2.3)

Follow by integrating Equation 2.3 twice gives Equation 2.4. Notice that the viscosity is
treated as the average value across the film even though it is well known that the viscosity
may change across the film due to temperature changes[14].

v1 =
x2
3

2µ

∂p

∂x1

+ A
x3

µ
+B

v2 =
x2
3

2µ

∂p

∂x2

+ C
x3

µ
+D

(2.4)

The constants can be determined by imposing the following boundary conditions

v1 = ut and v2 = vt and x3 = ht

v1 = ub and v2 = vb and x3 = hb

Inserting boundary conditions in Equation 2.4 gives

ut =
h2
t

2µ

∂p

∂x
+ A

ht

µ
+B

vt =
h2
t

2µ

∂p

∂y
+ A

ht

µ
+B

ub =
h2
b

2µ

∂p

∂x
+ C

hb

µ
+D

vb =
h2
b

2µ

∂p

∂y
+ C

hb

µ
+D

(2.5)

which after some manipulation gives Equation 2.6. This equation corresponds to the
velocity components in the lubricating gap. The derivatives of the velocity components
will simply give the velocity gradients.

v1 =
1

2µ

∂p

∂x1

(x2
3 − x3(ht + hb) + hthb) + x3

ut − ub

ht − hb

+
ubht − uthb

ht − hb

v2 =
1

2µ

∂p

∂x2

(x2
3 − x3(ht + hb) + hthb) + x3

vt − vb
ht − hb

+
vbht − vthb

ht − hb

(2.6)

Equation 2.6 consists of two components, one due to pressure gradients and one due to
dragging effects caused by the walls[12].
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2.1.2 Continuity equation

Use the continuity equation and integrate with respect to the gap height limits hband ht.

∂ρ

∂t
+

∂(ρvi)

∂xi

= 0 (2.7)

According to previous assumptions of steady-state flow and incompressible fluid, Equation
2.7 can be reduced to

∂(vi)

∂xi

= 0 (2.8)

Since the gradients in gap direction are much bigger than the ones in flow direction the
solution to the integral can be expressed as

∫ ht

hb

∂v1
∂x1

dx3 +

∫ ht

hb

∂v2
∂x2

dx3 +

∫ ht

hb

∂v3
∂x3

dx3 = 0 (2.9)

The intergration in x3-direction can be performed directly

∫ ht

hb

∂v3
∂x3

dx3 =

∫ ht

hb

dv3
dx3

dx3 = v3

∣
∣
∣
∣

ht

hb

= vht
− vhb

(2.10)

With respect to Fig 2.1, assuming the bottom surface below the reference plane, Equation
2.9 can be separated into upper and lover part. This combined with implementing the
direct integration in Equation 2.10 gives

∫ ht

0

∂v1
∂x1

dx3 +

∫ 0

hb

∂v1
∂x1

dx3 +

∫ ht

0

∂v2
∂x2

dx3 +

∫ 0

hb

∂v2
∂x2

dx3 + vht
− vhb

= 0 (2.11)

∫ ht

0

∂v1
∂x1

dx3 −

(∫ hb

0

∂v1
∂x1

dx3

)

+

∫ ht

0

∂v2
∂x2

dx3 −

(∫ hb

0

∂v2
∂x2

dx3

)

+ vht
− vhb

= 0 (2.12)

Since v1and v2 are functions depending on f(x1, x2, x3) with respect to Equation 2.6, Leib-
nits rule of integration has to be taken in to account

∫ h

0

∂f(x1, x2, x3)

∂x1

dx3 = −f(x1, x2, x3)
∂h

∂x1

−
∂

∂x1

∫ h

0

f(x1, x2, x3)dx3 (2.13)

By implementing Leibnits rule on Equation 2.12:

∫ ht

0

∂v1
∂x1

dx3 −

(∫ hb

0

∂v1
∂x1

dx3

)

+

∫ ht

0

∂v2
∂x2

dx3 −

(∫ hb

0

∂v2
∂x2

dx3

)

+ vht
− vhb

= 0 (2.14)

10 , Applied Mechanics, Master’s Thesis 2011:49



The following expression is then calculated

−v1(x1, x2, x3)

∣
∣
∣
∣
x3=ht

∂x3

∂x1

+
∂

∂x1

∫ ht

0

v1(x1, x2, x3)dx3

−

(

−v1(x1, x2, x3)

∣
∣
∣
∣
x3=hb

∂x3

∂x1

+
∂

∂x1

∫ hb

0

v1(x1, x2, x3)dx3

)

−v2(x1, x2, x3)

∣
∣
∣
∣
x3=ht

∂x3

∂x2

+
∂

∂x2

∫ ht

0

v2(x1, x2, x3)dx3

−

(

−v2(x1, x2, x3)

∣
∣
∣
∣
x3=hb

∂x3

∂x2

+
∂

∂x2

∫ hb

0

v2(x1, x2, x3)dx3

)

+vht
− vhb

= 0

(2.15)

Equation 2.15 can according to the boundary condition be simplified to the following
expression

−ut

∂ht

∂x1

−

(

−ub

∂hb

∂x1

)

+
∂

∂x1

∫ ht

hb

v1(x1, x2, x3)dx3

−vt
∂ht

∂x2

−

(

−vb
∂hb

∂x2

)

+
∂

∂x2

∫ ht

hb

v2(x1, x2, x3)dx3

+vht
− vhb

= 0

(2.16)

Continue by substituting from Equation 2.6

−ut

∂ht

∂x1

−

(

−ub

∂hb

∂x1

)

− vt
∂ht

∂x2

−

(

−vb
∂hb

∂x2

)

+
∂

∂x1

∫ ht

hb

(
1

2µ

∂p

∂x1

(x2
3 + x3(ht − hb) + hthb) + x3

ut − ub

ht − hb

+
ubht − uthb

ht − hb

)

dx3

+
∂

∂x2

∫ ht

hb

(
1

2µ

∂p

∂x2

(x2
3 + x3(ht − hb) + hthb) + x3

ut − ub

ht − hb

+
ubht − uthb

ht − hb

)

dx3

+vht
− vhb

= 0

(2.17)

Integrate the equation and get the Reynolds equation.

−ut

∂ht

∂x1

− ut

∂ht

∂x2

+ ub

∂hb

∂x1

+ ub

∂hb

∂x2

−
∂

∂x1

(
1

12µ

∂p

∂x1

(ht − hb)
3

)

+
∂

∂x1

(
ut + ub

2
(ht − hb)

)

−
∂

∂x2

(
1

12µ

∂p

∂x2

(ht − hb)
3

)

+
∂

∂x2

(
ut + ub

2
(ht − hb)

)

+vht
− vhb

= 0

(2.18)

The Reynolds equation are usually expressed in the so-called general form, where ht−hb =
h, together with a couple of rewritings
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−
∂

∂x1

(
1

12µ

∂p

∂x1

(h)3
)

−
∂

∂x2

(
1

12µ

∂p

∂x2

(h)3
)

︸ ︷︷ ︸

I

h
∂

∂x1

(
ut + ub

2

)

+ h
∂

∂x2

(
ut + ub

2

)

︸ ︷︷ ︸

II

+
(ut + ub)

2

∂h

∂x1

+
(ut + ub)

2

∂h

∂x2
︸ ︷︷ ︸

III

−ut

∂ht

∂x1

− ut

∂ht

∂x2

+ ub

∂hb

∂x1

+ ub

∂hb

∂x2
︸ ︷︷ ︸

IV

+vht
− vhb

︸ ︷︷ ︸

V

= 0

(2.19)

Again, notice that no consideration has been taken to varying properties, i.e varying ρ and
µ. With this in consideration the ending Reynolds equation will contain a couple of extra
terms, for example a local expansion term where the variation of ρ over time is taken into
account.

2.1.3 Physical meaning of different terms in Reynolds equation

The meaning of the different terms in the Reynolds equation becomes of importance trough
out the report. Discussion will be made according to the influence of the different terms to
the system. Notice that the term II. and III. can by using summation rules be converted
to one term. This term is not described below and are known as the Couette-term. A
more common approach is to describe Reynolds equation as in Equation 2.19. The terms
in Equation 2.19 have the following meaning

I. Poiseuille term, describes the net flow rates within the lubricated gap due to the
pressure gradients.

II. Stretch term, consider the rate at which a surface velocity changes in the sliding
direction. To develop positive pressure, the surface velocities have to decrease in
sliding direction.

III. Physical wedge term, is the best known term for pressure generation. It arises from
the fact the h varies across the lubricating gap. The variation of h causes the flow
rate to vary, and a balanced situation can only be reached if balance in the Poiseulle
term is imposed. The load carrying capacity of the flow will increase only if the
thickness of the lubricant film decreases in flow direction.

IV. Translational squeeze term, is the results from the translation of inclined surfaces.
For example causes an inclined bearing surfaces translational squeeze.

V. Normal squeeze term, provides cushioning effects when the two surfaces in the lubri-
cating gap tends to pressure to each other. It can be told that the Squeeze term and
the Physical wedge term are the two main terms generating hydrodynamic force.

2.2 Axial balance

To reach a stable solution the summation of the forces acting on the bearing should end up
equal to 0. There are totally four different forces assumed to act on the bearing, Fbalance,
FTSV , Freliefgrooves and Fgap. It is only the Fbalance that pushes the bearing towards the
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Figure 2.2 – The bearing with the different forces and their direction against the bushing.

gears, the other forces pushes the bearing away from the gear, Figure 2.2. The balance
forces are generated mainly by high pressurized fluid is pushed through tiny accurately
measured openings between the output and the bushings[15], Figure 1.4 and Figure 1.5.
The high pressurized fluid generates a force that should be equal to axial forces generated
by the gears motion. The gear becomes due to this more or less self-balanced and that
intends to ensure a good performance over a wide range of pressures.

Figure 2.3 – FTSV Figure 2.4 – Freliefgrooves Figure 2.5 – Fgap

The relief groove force (Freliefgrooves) are generated by the pressures in the relief grooves.
The tooth space force, (FTSV ) are generated by the axial pressure in the tooth space volume.
The calculation of the balance force, relief groove force and the tooth space force are all
performed by HYGESim fluid dynamic model and are therefore used as input data. It is
only the gap force (Fgap) that is calculated by the OpenFOAM solver by solving Reynolds
equation. The generated force are calculated by a summation over the pressure in each
cell multiplied by the area of the cell.

Fgap =
N∑

i=0

piδAi (2.20)

By summing up the forces, the result should end up zero, Equation 2.21.
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∑

F
z
= Fbalance − Freliefgrooves − FTSV − Fgap ≡ 0 (2.21)

The point of application of the forces are often of interest to gain a better understanding
of the balancing procedure. The point of application are calculated by the OpenFOAM
solver by simply summarizing over each one of the cells on pressure field

Fx,POA =
N∑

i=0

pixiδAi

Fy,POA =
N∑

i=0

piyiδAi

(2.22)

and then dividing by the generated force

xPOA =
Fx,POA

∑N

i=0 piδAi

yPOA =
Fy,POA

∑N

i=0 piδAi

(2.23)

2.3 Gap height calculation

The variation in gap height is calculated by considering three datum points on the bearings.
The bearing are assumed not to bend or deform, the variations are assumed to follow a
plane. The three datum points are sketched in Figure 2.6. By using the three points the
gap height the plane could be calculated by:

h(x, y) = x
2hT2

− hT1
− hT0

2(d+R)
+ y

hT1
− hT0

2R
+

hT0
+ hT1

2
(2.24)

By taking the time derivatives of the gap, the result will be equal to how the gap height
changes over time, ∂h

∂t
.

∂h

∂t
(x, y) = x

2
∂hT2

∂t
−

∂hT1

∂t
−

∂hT0

∂t

2(d+R)
+ y

∂hT1

∂t
−

∂hT0

∂t

2R
+

∂hT0

∂t
+

∂hT1

∂t

2
(2.25)

The values on the ∂h
∂t

are the same as the normal squeeze term in Equation 2.19. The
transformation from vht

− vhb
are described by simplifications in Section 3.3.1. Another

expression for the change in gap height over time are the squeeze velocities, i.e ∂h0

∂t
, ∂h1

∂t

and ∂h2

∂t
. The sliding velocities are assumed to be unknown from the equilibrium of forces

acting on the sliding elements[5], 2.21.

2.4 Lateral leakages derivation

Two main leakages occurs inside the external gear pump, radial leakages and lateral leak-
ages. The radial leakages are caused by mainly the casing profile, as result from the
break-in process and the position of the bearing. The lateral leakages are caused due to
the lubricating gap and are therefore of interest in this thesis.
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Figure 2.6 – Sketch over the three datum point at the bearings. Notice the high pressure
and low pressure grooves.

Figure 2.7 – Leakages between the tooth
space volume and leakages to the drain at
the gears lateral side.

Figure 2.8 – Boundary patches where the
lateral leakages are calculated, including a
zoom of a representing boundary face.

The lateral leakages due to the lubricating gap are almost proportional to the gap width,
the larger gap, the larger leakages, which in the end increases the flow to the drain or
between the teeth space volumes, Figure 2.7. The leakages are calculated with respect to
the pressure field of the flow and the velocity contribution. The flow can be evaluated by
summation of the integral of fluid velocity over each face of the boundary, Figure 2.8.

Qleakages =
∑

∫∫

A

ViniδAi (2.26)

As seen in Figure 2.8, n is the normal vector of the face where the V is the fluid velocity.
The fluid velocity can be derived by the same procedure as in the Reynolds equation, i.e
assuming similar assumption and boundary conditions, which ends up with Equation 2.6.
Additionally, the lateral side of the gears are assumed to be the only part in motion, i.e
the bearing motion is zero, which gives ut = 0 and vt = 0. The statement re-formulates
Equation 2.6 to
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v1 =
1

2µ

∂p

∂x1

(x2
3 − x3(ht + hb) + hthb)−

x3ub

ht − hb

+
ubht

ht − hb

v2 =
1

2µ

∂p

∂x2

(x2
3 − x3(ht + hb) + hthb)−

x3vb
ht − hb

+
vbht

ht − hb

(2.27)

By integration over the boundaries face width and the gap height, described in Figure 2.8,
the leakage flow can be calculated by

Qleakages =

∫ s1

s0

ds

∫ β(s)

α(s)

(un1 + vn2)dx3 =

∫ s1

s0

ds

∫ h0+
h1−h0
s1−s0

s

hb

(un1 + vn2)dx3 (2.28)

where h0 +
ht1−ht0

s1−s0
s takes into account the tilt on the bearing and ht has in Equation

2.27 to be replaced by h0 +
ht1−ht0

s1−s0
s. The tilt on the bearing is assumed to be linear,

therefore the tilt over the patch elements is also linear. Assuming that s0 = 0 and s1 = δ
and by integrating Equation 2.28 together with some manipulations the leakages over the
boundaries containing N faces can be expressed with the following summation

Qleakages =
N∑

i

[

−
δi
48

((

n1i
1

µ

∂p

∂x1

∣
∣
∣
∣
i

+ n2i
1

µ

∂p

∂x2

∣
∣
∣
∣
i

)

(−4h3
b + 6h1ih

2
b + 6h0ih

2
b − 4h2

1ihb − 4h2
0ihb − 4h0ih1ihb + h3

0i + h2
0ih1i + h0ih

2
1i + h3

1i)

)

+
δi(h0i + h1i − 2hb)

4
(un1 + vn2)

]

(2.29)

The leakage formulation takes into account both the tilt on the bearing side of the gap and
the surface variations due to a non-uniform chamfer on the gears. Equation 2.29 is also
very similar to the equation derived in [5], if hb is assumed 0, i.e without a chamfer, the
ending equation will be equal to the one in [5].

The leakage equation consists of two parts, the first part takes into account the pressure
distribution due to the pressure gradient of the flow, the second part takes into account
the velocity contribution, as mentioned before.

2.5 Shear stress derivation

The viscous shear stresses can be calculated by first deriving the two equations for the
velocity, Equation 2.6 due to x3. The derivation of Equation 2.6 ends of with the following
result

∂v1
∂x3

=
1

2µ

∂p

∂x1

(2x3 − (ht + hb)) +
ut − ub

ht − hb

∂v2
∂x3

=
1

2µ

∂p

∂x2

(2x3 − (ht + hb)) +
ut − ub

ht − hb

(2.30)

The viscous shear acting on the gear or the bushing can be expressed as

τzx = µ(
∂v3
∂x1

+
∂v1
∂x3

)

τzy = µ(
∂v3
∂x2

+
∂v2
∂x3

)
(2.31)
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Same assumptions are made as in Section 2.1, i.e that the gradients in gap direction are
much larger than in the other directions, ∂vi

∂x3

� ∂vi
∂x1

, ∂vi
∂x3

� ∂vi
∂x2

. This reduces the shear
stress equation, Equation 2.31 to

τzx = µ
∂v1
∂x3

=
1

2

∂p

∂x1

(2x3 − (ht + hb)) + µ
ut − ub

ht − hb

τzy = µ
∂v2
∂x3

=
1

2

∂p

∂x2

(2x3 − (ht + hb)) + µ
ut − ub

ht − hb

(2.32)

This allows calculation of the viscous shear stress acting on the gear or at the bushing in
the following way

(τzx)x3=hb
=

(

µ
∂v1
∂x3

)

x3=hb

=
1

2

∂p

∂x1

(hb − ht) + µ
ut − ub

ht − hb

(2.33)

−(τzx)x3=ht
= −

(

µ
∂v1
∂x3

)

x3=ht

=
1

2

∂p

∂x1

(hb − ht)− µ
ut − ub

ht − hb

(2.34)

(τzy)x3=hb
=

(

µ
∂v2
∂x3

)

x3=hb

=
1

2

∂p

∂x2

(hb − ht) + µ
ut − ub

ht − hb

(2.35)

−(τzy)x3=ht
= −

(

µ
∂v2
∂x3

)

x3=ht

=
1

2

∂p

∂x2

(hb − ht)− µ
ut − ub

ht − hb

(2.36)

The derivation is very similar to the one derived in [14], the difference between the deriva-
tions is that the present one takes into account micro level surface features, which means
that a chamfer could be taken into account. Notice that there are two parts that generates
the shear stress, the first part arises from the pressure gradient inside the gap and the
second one arises from rotation rotational speed of the gears. In a physical aspect, both
and increased pressure and an increased rotational speed will increase the viscous shear
stress, i.e the losses of the pump.

2.6 Power losses

The viscous shear stress is as mentioned in Section 2.5, losses in the pump. The losses
could be measured in terms of energy (J/s) by calculating the torque and multiply it with
the rotational speed of the gears. The torque is calculated by

T =
N∑

i=0

2Ai(ri × τi) (2.37)

The reason why Equation 2.37 is multiplied by two is due to the fact the there are two
lubricating gaps in an external gear pump, one on each side of the gear. The energy losses
in terms of joules per second could easily be calculated by

Ploss = Tω (2.38)

3 Modelling approach

This chapter describes the modeling approach used during the project by first introducing
the mesh generation and its procedure and benefits. This is followed by a description of
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the used boundary conditions and the implementations in OpenFOAM. The theory behind
the implementations are found in the Theoretical Complementary, Section 2.

The modelling approaches are performed on a CASAPPA Standard external gear
pump[16], Figure 1.2. Shell Tellus Oil T46[17] oil was used as fluid medium during the
simulations.

3.1 Mesh generation

The mesh generation was performed by ANSYS Workbench 12.1 and its meshing software
Meshing. The input to ANSYS was one, out of the two gears, taken from the CAD
drawings. The gears were exported to a STL-file which later was read by ANSYS. The
generated mesh for the drive gear from ANSYS was duplicated, translated and rotated by
OpenFOAMs mesh manipulation tools, some in-house built utilities, for example a utility
smoothen boundaries and keep track of the patch names.

To be able to fully describe a proper chamfer, boundary layers had to be added to the
gears, the size and number of boundary layers were changed according to the size of the
chamfer. An amount of 15 to 20 boundary layers were chosen to smoothly represent the
chamfer in all cases. Except for the boundary layers, the cell size on the gear was set to
1e − 4 m. This has been proven by earlier simulations to give a proper resolution of the
mesh and in the end the results. Refinements on the mesh were performed on the right
side of the gear on the teeth that neighbor, or will neighbor due to rotation of the gears, to
the high pressure and low pressure grooves, Figure 3.1. The refinements were performed to
avoid overlapping cells due to the projections of the grooves. It was found out during the
project that the smoothing of boundaries at the high and low pressure grooves were very
sensitive to thin, small boundary layers. As mentioned earlier, it was only one of the two
gears that was extracted from the CAD drawings. The gear contains 12 teeth and because
of that the slave gear had to be rotated a half tooth, 15◦ and translated in x-direction, to
match the drive gear. To fully take advantage of the refinements, i.e match the refinements
from the drive gear with the slave gear, the slave gear was rotated additionally 150◦, see
Figure 3.1.

3.1.1 Mesh rotation

To be able to simulate the lubricant gap of an external gear pump a dynamic mesh had
to be considered. A dynamic mesh is capable to follow the rotation of the two gears with
a high level of accuracy. The raw mesh of the two gears, must be modified during the
simulation according to the angular position of the gears.

The grooves at the bearing, the high and low pressure groove, play a significant role
on the lubricating gap. Within the grooves, there is no leakage flow and the instantaneous
pressure is uniform and equal to the pressure at the suction side (inlet) or pressure side
(outlet). Due to this, the regions on the lubricating gap that interact with the groove, do
not have to be considered when solving Reynolds equation. By this fact, the cells that
occur within the grooves, have to be eliminated, Figure 3.2. The removed cells create a
rough surface of cells that has to be smoothen out to preserve the geometrical details of the
geometry. The process is simple, cell nodes closest to the boundary are moved to perfectly
follow the geometrical details, see Figure 3.3 and Figure 3.4. To simulate the rotation of
the gears and to keep the preservation of the geometrical details 30 different meshes were
produced, the difference between them are the rotation of the gears, the gears are rotated
1◦ each step i.e dynamic mesh. The rotation of the gears are symmetric and repetitive after
30◦, because of 360◦/12 = 30◦. So, the projection of the grooves, the smoothening of the
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Figure 3.1 – Mesh with boundary layers and refinements made in ANSYS Workbench.

Figure 3.2 – Mesh with the high pressure and low pressure ports. Cells intersecting with
the ports are removed.

boundaries are only being performed 30 times. This approach of using rotation are chosen
because it simplifies the solving procedure and is very flexible by excluding all information
about the pressure grooves and rotation of the gears. The solver is then focused only
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Figure 3.3 – Non-smoothen surface. Figure 3.4 – Smooth surface which per-
fectly follow the geometrical details.

to solve the Reynolds equation without any mesh considerations, just to re-load a new
mesh for each time-step. The time-step for the simulations are perfectly matched to 1◦ of
rotation, due to the rotational speed. The final mesh is showed below for three different
angles, Figure 3.5.

Mesh at 0◦

Mesh at 10◦
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Mesh at 20◦

Figure 3.5 – Mesh with 100 µm chamfer at different angular positions.

3.2 Boundary conditions

The pressure boundary conditions are taken from HYGESim (HYdraulic GEar machines
Simulator) fluid dynamic model, Section 1.2. HYGESim is developed to solve the internal
flow of an external gear pump and calculate the pressure inside each tooth space volume.
The output from HYGESim contains the instantaneous or time varying pressure pressure
inside each tooth space volume which are applied to the matching patch on the domain,
which is done for each of the angular positions of the mesh. This means that the boundaries
has to be reread at each angular position by OpenFOAM since the instantaneous pressure
changes due to rotation inside each tooth space volume.

Figure 3.6 – Boundary patches along the drive and slave gear.

An illustrative figure over the boundary patches can be seen in Figure 3.6. All 12 gear
teeth are shown in Figure 3.6 where the drive gear patches are labeled DRi

TS or DRi
TT ,

and slave gear DN i
TS or DN i

TT , TS refers to tooth space and TT to tooth tip. DRd and
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DNd are the gear drains. At last, between the gears, the HPR and LPR are found, high
pressure port and low pressure port respectively. The pressure is assumed to be uniform
and equal to the drain pressure on the gears drain, on the relief grooves, the pressure is,
as mentioned earlier equal to the high and low pressure ports. The teeth tips are assumed
to have a linearly varying pressure along each boundary, which is based on the hypothesis
of laminar flow in the gap between the tooth tip and the casing of the pump.

By fully reread all boundaries between each time-step and move to a new mesh with
an updated angular position, complex phenomenas like pressure peaks and cavitation can
be taken into account during the simulation.

Two different boundary conditions from HYGESim were used during the project, one
HYGESim boundary condition that assumes perfect sealing. This one were used in the
simulations when the balancing part of the solver where activated. The reason why the
perfect sealing boundary conditions were used originates from the fact the it was found out
to be more stable. The other one, the more realistic HYGESim data, are used on every
cases where the gap height are fixed.
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Figure 3.7 – Difference between the two used boundary conditions from HYGESim.

The difference between the boundaries are plotted in Figure 3.7. The biggest difference
between the two boundaries is that the perfect sealing boundary changes pressure instantly
at the high pressure groove, and instantly back later. Another difference is that the perfect
sealing boundary assumes constant pressure during the meshing process, where the other
one does not. Both boundaries turn back to low pressure again as soon as the angular
position is equal to the end of the high pressure port, Figure 3.8.
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Figure 3.8 – Back side of the bearing, showing the high pressure groove and its start at
118◦.

The instant change for the ideal HYGESim boundary occurs at 118◦, the reason for this
and for both boundaries are the high speed groove on other side of the bearing, showed
in Figure 3.8. The high speed groove prevents an unbalanced bearing by allowing high
pressure oil balance the forces acting on the bearing, described in Section 2.2.

3.3 OpenFOAM solver and implementations

The simulations in this work were performed by the open-source CFD software OpenFOAM
[18], verision 1.6.x. The solver for computing is an completely in-house developed by
MAHA Fluid Power Research Center[19] and gives a prediction of the lubricating gap by
solving Reynolds Equation, Equation 2.19. In addition to this, functions such as separation
of the different terms in Reynolds equation, implementation of geometrical changes to the
gears lateral profile and leakage calculations are performed by additional implementations
to the solver. The solver is under development and more functions are assumed to be
implemented in the future.

3.3.1 Solving Reynolds Equation

The derivation of Reynolds equations are found under Section 2.1. The derivation assumes
that both top and bottom plates are moving but the simulations in this work allow some
simplifications of Equation 2.19:

• The surface in motion is the bottom surface, it is defined by the gears lateral side,
i.e the gears and its rotational speed, ub = ugears.

• The top surface, the bearing side are fixed, ut = 0.

• vht
− vhb

defines the changes in gap height, the squeeze velocity. The change on the
gears lateral side is assumed zero, it is assumed that the bearing side contributes with
the change in gap height. The velocity term can be rewritten into time derivative of
the gap height, ∂h

∂t
.
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Equation 2.19 are therefore simplified to:

−
∂

∂x1

(
1

12µ

∂p

∂x1

(h)3
)

−
∂

∂x2

(
1

12µ

∂p

∂x2

(h)3
)

+h
∂

∂x1

(ugears

2

)

+ h
∂

∂x2

(ugears

2

)

+
ugears

2

∂h

∂x1

+
ugears

2

∂h

∂x2

+ugears

∂hb

∂x1

+ ugears

∂hb

∂x2

+
∂h

∂t
= 0

(3.1)

Equation 3.1 is represented in OpenFOAM by, note that h = ht − hb:

lduMatrix : : so lverPer formance sp = so l v e
(

− fvm : : l a p l a c i a n (pow( ( (∗ ht ) − (∗hb ) ) , 3 . 0 ) / ( 1 2 . 0 ∗ (mu) ) , (∗ p ) )
+ ( ( 0 . 5 0∗ (∗ Ugears ) ) & ( fvc : : grad ( (∗ ht ) − (∗hb ) ) ) )
+ ((∗Ugears ) & ( fvc : : grad (∗hb ) ) )
+ ( ( (∗ ht )−(∗hb ) ) ∗ ( fvc : : d iv (∗Ugears /2 ) ) )
+ (∗ dhdt )

) ;

It can be seen that the solver solves the Reynolds equation on a 2D-mesh. hb, ht, p, ugears

and ∂h
∂t

are fields only on the 2D mesh with x and y coordinates but where the value on
the field are given in the third direction. This knowledge is very important when it comes
to the understanding of the solver.

3.3.2 Creation of gears lateral profile

As mentioned earlier the implementation of the micro level surface features should be done
with respect to the CAD drawing of the gear pump. This will in the end allow both
the user and the pump developer to easily change geometrical shapes of the gear profile.
Briefly, the conversation from CAD-drawings to OpenFOAM friendly data was carried out
by exporting a single tooth of a complete gear to a .STL-file. The tooth surface has to be
converted to become OpenFOAM friendly input data. OpenFOAM loads the data, links
the data to a field with a searching algorithm, which then were used in the simulation.

.STL-file hbFieldMaker
OpenFOAM

input

Figure 3.9 – hbFieldMaker

The application used to convert the information from the CAD drawings to OpenFOAM
were performed by hbFieldMaker, which was developed during the project by the author
in a C++ envirnoment. The application allows refinements of the field by using an imple-
mentation of the open-source meshing software gMSH [20] and the only input data that is
required to be set-up by the user is the .STL-file from the CAD and the outer radius of
the tooth.
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Figure 3.10 – Surface geometry described by a STL file.

The extracted .STL-file contains information about the tooth surface, it describes the
tooth by raw unstructured triangles in ASCII format, see Figure 3.10, which is the input
to the hbFieldMaker. The hbFieldMaker selects nodes that have a normal in z-direction
larger than 0, i.e the upper surface of the tooth including the chamfer. Continuously,
hbFieldMaker moves the tooth to a correct position in space according to the user input
by an iterative process. The ending part is to duplicate the tooth and rotate it to create
a complete gear and finally output the information to a file, which in the end is read by
OpenFOAM.

To speed up the searching algorithm in OpenFOAM, the nodes from the complete
surface are splitted into 8 parts according to the angular position of the nodes. This was
done since it was found out that the searching algorithm in OpenFOAM to link the chamfer
to a field was very time consuming. The different parts are represented by different columns
in the input file for OpenFOAM, Figure 3.11. The searching algorithm will be explained
in more details in Section 3.3.3.
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Figure 3.11 – Input-file to OpenFOAM, the different columns represent different angles on
the complete gears lateral profile. i represents row and 0...π4 the range of angular position of
the nodes.

3.3.3 Implementation of micro level surface features in OpenFOAM

The micro level surface features is built up in OpenFOAM as a pre-process before the
actual solving of the Reynolds equation begin. Huge matrices had to be used during the
building of the gear profile, this was solved by using the open-source GSL’s library[21] and
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its gsl_matrix. Briefly, when the solver was executed by the user, the solver first loaded
the hbField.C which is the implementation that builds and generates the chamfer profile.

hbField.C loads the time derivatives, sets the mesh for the first angular position and
reads the output file from the hbFieldMaker. Since the output file from hbFieldMaker only
contains information for the drive gear, all nodes are being duplicated into a slave gear,
continuously begins the iterative process to match the nodes from the mesh, with the nodes
from the the hbFieldMaker output file. The reason why the nodes has to be duplicated
into slave nodes are because the slave gear rotates in the opposite direction compared to
the drive gear.

The iterative process are basically very simple, it takes the first (x, y) from the mesh
and matches it with the closest (x, y, hbb) from the hbFieldMaker output file by comparing
the distances between the nodes and then moves on to the next mesh node. The hb-value
of the matched input file, Figure 3.11, will be assigned as the value for the corresponding
gear profile field, hb. This process is repeated for all nodes on the mesh, which finally gives
a complete hb-field. Worth to notice, it was found out that the amount of node points
generated by the hbFieldMaker strongly influenced the accuracy of the hb-field used by
the OpenFOAM solver. Too few nodes were shown to give a very poor hb-field, which is
the reason why refinements had to be implemented in the hbFieldMaker, as explained in
Section 3.3.2. The total amount of nodes generated by hbFieldMaker differed between 1.2e6
to 2.5e6. These nodes were matched to a mesh consisted of 0.6e5-1.5e5 cells. By giving
this information it is easier to understand how time consuming the process becomes when
the amount of nodes increases. Worst case scenario in this case would be to match a mesh
with 1.5e5 cells with an output file containing 2.5e6 nodes, i.e 1.5e52.5e6 iterations. The
distances between the the mesh nodes had to be compared to all nodes on the hbFieldMaker
file to ensure that the correct value was assigned to the hb-field. By then dividing the field
according to their position on the gear, Figure 3.11, the savings in time becomes significant.
A complete gear profile splitted in 8 pieces results henceforth with 8 ∗ 1.5e5

2.5e6
8 iterations.

The above described matching process had to be repeated 30 times, one time for each
mesh in the case-folder. The importance of keeping track of the nodes when the mesh was
rotating became obvious. Correct node had to be matched with the correct value. For the
mesh at angular position 1, the driver gear was rotating 1◦ in clockwise direction and the
slave gear 1◦ in counter clockwise direction. Since the output file from the hbFieldMaker
contained a mesh splitted according to Figure 3.11, i.e 0◦ − 45◦ ... 315◦ − 360◦ this had to
be taken into consideration when the mesh was rotating. This was solved by rotating the
hbFieldMaker nodes to the same angular position as the mesh berfore the actual searching
algorithm could begin.

Since OpenFOAM uses both cell faces and patch faces, the above described procedure
had to be repeated for all cell faces and patch faces. The only difference between the two
procedures was that some of the patches had to be excluded from the matching process,
i.e those patches were assigned a hb-value of 0. The affected patched were the HPR (high
pressure relief, LPR (low pressure relief) and the drive and slave drain patches, DR and
DN, described in Figure 3.6.

When the matching procedure was completely finished, the field was written to a
volScalarField.

3.3.4 Numerical solver settings in OpenFOAM

The solver used in simulations is an in-house which takes advantage of OpenFOAMs li-
braries. It solves Reynolds equations, Equation 2.19, over a domain using the finite volume
method.

26 , Applied Mechanics, Master’s Thesis 2011:49



The divergence and gradient terms are solved by using Gaussian discretization linearly,
i.e by using central differencing. The laplacian term, − 5 ( ρh

3

12µ
5 p), are also solved by

using Gaussian discretization but with a corrected scheme. The corrected addition are
assumed to perform an explicit correction against non-orthogonality, details can be found
in [18],[22].

The code solves the linear system of equations with an implementation of pre-conditioning
conjugate gradient method. The pre-conditioner is supposed to increase the convergence
rate where the conjugate gradient method is a iterative solution procedure[23]. The chosen
pre-conditioner is DIC, diagonal incomplete-cholesky.

In cases where the micro motion of the gears are taken into account, i.e ∂h
∂t

is varying,
the law of motion will be calculated with respect of balancing the forces for each instant
time, due to changes in the micro motion. This procedure is iterative which means that
the Reynolds equation needs to be solved several times to reach balance for each angular
position[5].

3.3.5 Balancing procedure

A stable solution occurs when the forces in z-direction of the gap are balanced, at this
moment, the changes on the sliding element becomes very small or equal to zero, ∂h

∂t
→ 0.

When the forces are not equal, the sliding element has to change position, i.e the bushing
moves and the generated gap force changes. This process is used to predict the tilt of
bearings.

Initial conditions

Solve Reynolds

Calculate
∑

F = 0
Powell’s Hybrid

Integrate new
gap height

Success, next
angular position!

No

Updated squeeze velocities

Yes

Figure 3.12 – The schematic solver scheme to calculate the tilt of the bearing and the
∑

F = 0.

In more details, the balancing of the bearing starts with assuming a gap height and
the squeeze velocities as initial conditions. Then solving the Reynolds equation to find the
gap force generated by the pressure distribution on the lubricating gap. The gap force is
thereafter summed up with the other two forces acting in the same direction:

Faxial = Freliefgrooves + FTSV + Fgap (3.2)
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The force generated by the relief grooves and the force generated by the tooth space volumes
are combined in OpenFOAM to one force, i.e the sum of the two forces. By knowing Faxial

the forces acting in the three datum points, Figure 2.6, can be calculated together with
the point of application, Equation 2.23. The point of application allows calculation of the
moments acting on the three datum points. By comparing the Faxial with the Fbalance the
summation should end up zero, if not, the squeeze velocities has to be recalculated, Figure
3.12. The re-calculation of the squeeze velocities are performed by taking advantage of the
open-source libraries from GSL[21], gsl_multiroots.h. to be able to find where the sum
of forces is equal or close to zero.

The used library, named Multidimensional Root-Finding, is used to find the roots of
a nonlinear system. By providing the chosen solver, Powell’s Hybrid, one force equation,
Equation 2.21, and two equations of moment, Equation 3.3 and Equation 3.4, where xr

and yr in the equations are equal to the point of application, the solver could calculate a
new set of squeeze velocities.

Mx = Faxial(yr − ybalance) (3.3)

My = Faxial(xr − xbalance) (3.4)

The new squeeze velocities are used to solve the Reynolds equation again and the procedure
is repeated until the Powell’s Hybrid solver predicts squeeze velocities that are within an
acceptable range of a resultant force of zero. How close the solver will be to a resultant
force of zero is decided by the pre-set residual and the step size in which the solver searches
for the roots of the equations.

When the solver is as close as it can get to a balanced bushing, the simulation quits
the GSL solver, integrates the squeeze velocities according to the time step. The result
is then new predicted h values on the three datum points, Figure 2.6. These values are
then used as initial conditions for the next time step and mesh, continuously the above
described procedure has to be repeated, Figure 3.12.

It was found out during the project that when a chamfer was added to the system, the
solver acted very instable and often crashed due to huge generated pressure distributions.
The problem occurred since the Powell’s Hybrid solver had problems to find a solution
within the pre-set criterion. A solution to this was to smoothly increase the accuracy at
the root finding solver and at the same time the gears lateral profile was slowly added to
the system. This kept the generated pressure peaks and instability problems down to an
acceptable level and the solver was able to continue to iterate.

The initial step size used by the solver was 1e−6, this means that the solver changes the
∂h
∂t

value by 1e− 6 each iteration in order to find a solution that gives a good prediction of
the gap force. The criteria if the gap force was accepted or not (the residual) was initially
set to 1e− 3. This means that the summation of the forces according to Equation 2.21 are
accepted when the summation ended up within ±1e− 3 N. Since it occurred problem due
to the given initial values a smoothening function was implemented both for the value of
the step-size and the residual, both dependent on the number of iterations. The step-size
was changed from 1e− 6 to the variable step-size:

i n t cc ;
cc = pgap −> progAngle ; //Step−s i z e accord ing to i t e r a t i o n
double de l t a ;
i f ( cc < 50){

de l t a = 1e−3; //Step−s i z e i t e r a t i o n 0 − 49
}
i f ( cc < 50 && cc >= 150){
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de l t a = 0 .5 e−3; //Step−s i z e i t e r a t i o n 50 − 149
}
i f ( cc < 150 && cc >= 1000){

de l t a = 1e−4; //Step−s i z e i t e r a t i o n 150 − 999
}
i f ( cc >= 1000){

de l t a = 1e−6; //Step−s i z e i t e r a t i o n 1000 − i n f
}

g s l v e c t o r ∗ v = g s l v e c t o r a l l o c ( 3 ) ;
g s l v e c t o r ∗ dF1 = g s l v e c t o r a l l o c ( 3 ) ;
g s l v e c t o r ∗ dF0 = g s l v e c t o r a l l o c ( 3 ) ;

f o r ( i n t j =0; j <3; j++) {
f o r ( i n t k = 0 ; k < 3 ; k++) {

i f ( k == j )
//Calc new dh/dt
g s l v e c t o r s e t (v , k , g s l v e c t o r g e t (x , k ) + de l t a ) ;

e l s e
g s l v e c t o r s e t (v , k , g s l v e c t o r g e t (x , k ) ) ;

}
. . .
. . .
}
r e turn GSL SUCCESS ;

The accepted value from the summation of the forces were also changes to give a more
stable solution from the initial value of 1e− 3 N to:

do {
i t e r++;
s t a tu s = g s l m u l t i r o o t f d f s o l v e r i t e r a t e ( s ) ;
p r i n tS t a t e ( i t e r , s ) ;

i f ( s t a tu s )
break ;

i f ( cc < 500){
//Acceptable e r r o r a f t e r summation o f f o r c e s , 10 N
// I t e r a t i o n 0 − 499
s t a tu s = g s l mu l t i r o o t t e s t r e s i d u a l ( s −> f , 1 0 ) ;

}
i f ( cc >= 500 && cc < 1000){

//Acceptable e r r o r a f t e r summation o f f o r c e s , 1 N
// I t e r a t i o n 500 − 999
s t a tu s = g s l mu l t i r o o t t e s t r e s i d u a l ( s −> f , 1 ) ;

}
i f ( cc >= 1000 && cc < 1500){

//Acceptable e r r o r a f t e r summation o f f o r c e s , 1e−2 N
// I t e r a t i o n 999 − 1499
s t a tu s = g s l mu l t i r o o t t e s t r e s i d u a l ( s −> f , 0 . 0 1 ) ;

}
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i f ( cc >= 1500){ a
//Acceptable e r r o r a f t e r summation o f f o r c e s , 1e−3 N
// I t e r a t i o n 1500 − i n f
s t a tu s = g s l mu l t i r o o t t e s t r e s i d u a l ( s −> f , 0 . 0 0 1 ) ;

}
}
whi le ( s t a tu s == GSL CONTINUE && i t e r < 1000 ) ;
. . .

As mentioned above, the field at the gears lateral profile was also smoothly added to the
system to avoid instabilities. This was done by solving the Reynolds equation with a
modification, dependent on the iteration:

i f ( progAngle <= 1000){
hbAngle = progAngle ;

}
i f ( progAngle > 1000){

hbAngle = 1000 ;
}
lduMatrix : : so lverPer formance sp = so l v e
(

− fvm : : l a p l a c i a n (pow( ( (∗ ht ) −
(∗hb/(−(9/1000)∗hbAngle +10 ) ) ) , 3 . 0 ) / ( 12 . 0∗ (mu) ) , (∗ p ) )

+ ( ( 0 . 5 0∗ (∗ Ugears ) )
& ( fvc : : grad ( (∗ ht ) −(∗hb/(−(9/1000)∗hbAngle +10))) ) )

+ ((∗Ugears ) & ( fvc : : grad ( (∗hb/(−(9/1000)∗hbAngle +10))) ) )
+ ( ( (∗ ht )−(∗hb/(−(9/1000)∗hbAngle+10)))

∗ ( fvc : : d iv (∗Ugears /2 ) ) )
+ (∗ dhdt )

) ;

The function slowly and linearly adds the gears lateral profile (*hb) to the solver. The field
is completely added after 1000 iterations ((∗hb/(−(9/1000) ∗ 1000 + 10)) = ∗hb) and at
that point and above assumed to generate a stable simulation. hbAngle is by the if-loop
prohibited to grow larger than 1000.

3.3.6 Separation of forces

The developed pressure in the lubricating gap is generated by several different physical
effects. By separating them, Figure 3.13, it simplifies the collation of their influence on
the lubricating gap. The main source of pressure generation is generated by the Poiseuille
effects, Section 2.1.3. The reason to this arises from the fact that the pressure on the
boundaries diffuses into the lubricating gap. The other pressures acting on the gap are
pressures generated by hydrodynamic effects, i.e pressure generated in the gap due to the
rotation of the gears and non-flat or tilted surfaces. The force generated by the hydro-
dynamic pressure could be seen as the sum of pressure generated by the physical wedge
term, normal squeeze term and the translational squeeze term from the Reynolds equation,
Equation 2.19.
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Figure 3.13 – Separation of the pressure generative effects in the lubricating gap.

It is assumed that this work is the first work where the effects from the translational squeeze
term are taken into consideration. Previous work such as [2], [3] and [5] assume a flat gear
profile, i.e the gradient of hb becomes zero and the term disappears. The translational
squeeze due to the upper surface are neglected due to the fixed bearing, i.e zero velocity
in flow direction.

Notice that a fixed gap height results in a neglected normal squeeze term since the
squeeze velocities does not change in time. A chosen pre-given gap height makes the
multi-root solver, Powell’s Hybrid, unnecessary and are therefore not solved, instead the
solver only solves Reynolds equation and then moves on to the next angular position i.e
next time-step. By using the solver with a fixed gap height position it simplifies the
comparison and investigation between the different generated forces, a common approach
to use, but without the balanced solution.

3.3.7 Leakage calculation

The leakages in the lubricating gap are calculated with respect to Equation 2.29 derived in
Section 2.4. The leakages are summed up over specific sections of the gear, and presented
separately to better understand the behavior of the leakages. The leakages are calculated at
the tooth space volumes by following a tooth one cycle, 360◦, by summing up the leakages
to the drain and at last the leakages at the high pressure port and the low pressure port
described in Figure 3.6. Leakages to the drain are represented by the summation of the
leakages to theDRd andDNd. The leakages to the high pressure port and low pressure port
are respectively calculated by the summation of leakages to HPR and LPR, all notations
according to Figure 3.6.

The calculation of the leakages are performed at every angular position, since the
angular position strongly influences the leakages.

3.3.8 Shear stress calculation and power losses

The shear stress is calculated in the solver by solving Equation 2.33 and Equation 2.35
and the power losses by solving Equation 2.38. The shear stress are assumed to me more
or less unchanged during one cycle and are therefore only calculated for the first angular
position of the mesh. It is implemented in OpenFOAM as a volVectorField, where the
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specific shear stress for all cell centers are calculated as a vector consisting of the shear
stress in x- and y-direction.

The power loss is the summation of the losses from all cells, calculated at different gap
heights, rotational speeds and chamfers, but with a fixed pressure at 150 bar.

3.3.9 Initial conditions and geometry dimensions

The three datum point mentioned in Figure 2.6 are located according Table 3.1. The points
originates from origo, described by Figure 2.6.

Table 3.1 – Position of the datum plane points.

Point x y

T0 0 -1.916960e-02 m
T1 0 1.916960e-02 m
T2 5.131960e-02 m 0

The initial conditions for the squeeze velocities are set according to Table 3.2. The initial

Table 3.2 – Initial conditions for the squeeze velocities.

∂h
∂t

x
∂h0

∂t
0

∂h1

∂t
0

∂h2

∂t
0

settings for the rotational speed were varied during the project since different rotational
speeds were compared to each other. Used rotational speeds at specific simulation are
presented together with the results. The viscosity, µ, were assumed constant across the
lubricating gap and therefore fixed to µ = 0.0261 Pa*s according to the used oil, Shell
Tellus Oil T46 at 50◦.

Important geometrical properties had to be set as input data to the solver, Table 3.3.
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Table 3.3 – Pump geometrical properties. POA = point of application

Type Name Size

Teeth number z 12
Gears diameter d 0.03215 m
Drain diameter Dd 0.020499 m
Outer diameter Dout 0383392 m

High pressure groove area HPGrooveArea 80.78457e− 06 m2

High pressure groove POAx HPGrooveCMx 16.075e− 03 m
High pressure groove POAy HPGrooveCMy 7.98946e− 03 m

Low pressure groove area LPGrooveArea 96.145681e− 06 m2

Low pressure groove POAx LPGrooveCMx 16.075e− 03 m
Low pressure groove POAy LPGrooveCMy −7.6689066e− 03 m

High pressure balance area HPBalanceArea 988.49049e− 06 m2

High pressure balance POAx HPBalanceCMx 16.075e− 03 m
High pressure balance POAy HPBalanceCMy 4.7713e− 03 m

Low pressure balance area LPBalanceArea 549.03694e− 06 m2

Low pressure balance POAx LPBalanceCMx 16.075e− 03 m
Low pressure balance POAy LPBalanceCMy −8.5917552e− 03 m

Except for this, the solver needs to be provided with the boundary conditions, Figure 3.6,
calculated by HYGESim. At last, the solver needs the file containing the hb-field data,
Section 3.3.3.

Note that, to be able to easier compare some of different results, the balancing part
of the solver was excluded and the gap height was fixed to a constant value, 10 µm.
This specific gap height was chosen due to a previous investigation between experimental
measured data and simulated data[2]. The results from their experimental are presented in
Figure 3.14. Similar results are also found in previous previous work, [24], [11]. The result
presented by [2] shows that the an increase gap height increases the leakages, as expected,
but also that a gap height of 10 µm gives a good agreement to the experimental data.

The different chamfers that were compared had a shape that followed the equation of
a circle, Equation 3.5. This assumption was assumed to mimic a real chamfer.

r2 = x2 + y2 (3.5)

Three different chamfers were mainly compared during the project, their appearance are
described by Figure 3.15.
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Figure 3.14 – Pump characterization curves for varying gap heights, compared with exper-
imental data[2].
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Figure 3.15 – Different chamfers compared, assumed to follow the equation of a circle,
Equation 3.5.

4 Results

All results pertain to the geometry, of the CASAPPA PLP20 11.2 Standard, 12 teeth
pump.

The results will be presented with focus on comparing the changes in the lubricating gap
depending on the implemented micro level surface features, the chamfer. First a qualitative
comparison between the flow field with and without a chamfer. Then emphasizing the
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effects on the different terms in the Reynolds equations. This follows by comparing how
the leakage changes when a chamfer is added to the system according to the derivation in
Section 2.4, which will include a comparison between different chamfers. The final part
of the chapter presents results from a fully balanced simulation were the normal squeeze
term are changed to get a balanced gear.

4.1 Pressure distribution and sources of hydrodynamic pressure

generation

Figure 4.1 – Pressure distribution without
chamfer, fixed gap height of 10 µm @ 150
bar, 1000 rpm.

Figure 4.2 – Pressure distribution with 45
µm chamfer, fixed gap height of 10 µm @
150 bar, 1000 rpm.

Figure 4.3 – Pressure distribution with
100 µm chamfer, fixed gap height of 10 µm

@ 150 bar, 1000 rpm.

A first look at the total pressure distribution, Figures 4.1, 4.2 and 4.3, indicate that at
a fixed gap height gives no significant difference when comparing the case with and without
a chamfer. The gap height are fixed to 10 µm which also means that the normal squeeze
term in the Reynolds equation ends up as zero.

The main source of pressure generation when considering a constant gap height is
generated by the Poiseuille effect, the Poiseuille term is described in Section 2.1.3 and it
is basically a diffusion term that diffuses the pressure from the boundaries, generated by
HYGESim. Figures 4.4, 4.5 and 4.6 indicate that the pressure distribution generated by
the Poiseuille effects is the main source of pressure generation in the gap with given setup.

The pressure distribution generated by the hydrodynamic effects is generated by the
contribution from the translational squeeze term, physical wedge term and the normal
squeeze term, Section 2.1.3. When the gap height is considered to be fixed the total
pressure generation generated by the hydrodynamic effects is less then 1 % of the total
pressure distribution. The hydrodynamic pressure distribution is plotted in Figures 4.7,
4.8 and 4.9. By separating the hydrodynamic pressure generation into the three included
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Figure 4.4 – Pressure generation by the
Poiseuille effects without chamfer, fixed gap
height of 10 µm @ 150 bar, 1000 rpm.

Figure 4.5 – Pressure generation by the
Poiseuille effects with a 45 µm chamfer,
fixed gap height of 10 µm @ 150 bar, 1000
rpm.

Figure 4.6 – Pressure generation by the
Poiseuille effects with a 100 µm chamfer,
fixed gap height of 10 µm @ 150 bar, 1000
rpm.

terms, Figure 3.13, it is easier to get an understanding of the strength of the generative
terms and the contribution to the total pressure generation inside the gap. As expected is
the hydrodynamic pressure generation negligible when no chamfer is in use in the system
and when the gap height is fixed, see Figure 4.7. Furthermore the biggest chamfer generates
the largest hydrodynamic pressure, 45 µm and 100 µm chamfer.

Note that, the total pressure generation could physically not become negative, the
phenomena that then occurs is cavitation. The negative pressures plotted below does only
occur when the terms are separated and investigated independently from each other.

The generated wedge effects are negligible when there is no chamfer, Figure 4.7. As
mentioned in Section 2.1.3, the physical wedge term plays an important role when it comes
to pressure generation in the lubricating gap, which is also proved by Figures 4.10, 4.11
and 4.12.

The physical wedge effects are assumed to increase with a decreased film thickness in
the flow direction, Section 2.1.3. The figures over the hydrodynamic wedge effects could
therefore easily be mistaken as incorrect. The low pressure regions occur before the high
pressure region, according to the rotational direction of the gears. The underlying reason
to this phenomena are better understood with a further investigation of the numerically
solved terms. The wedge effect originates from the term:

ugears

2

∂h

∂x1

+
ugears

2

∂h

∂x2

(4.1)

Since h is calculated as h = ht − hb the gap height after the subtraction will have the
shape described by the top surface minus the chamfer. This are more detailed described in
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Figure 4.7 – Hydrodynamic pressure gen-
eration without chamfer, fixed gap height
of 10 µm @ 150 bar, 1000 rpm.

Figure 4.8 – Hydrodynamic pressure gen-
eration with 45 µm chamfer, fixed gap
height of 10 µm @ 150 bar, 1000 rpm.

Figure 4.9 – Hydrodynamic pressure gen-
eration with 100 µm chamfer, fixed gap
height of 10 µm @ 150 bar, 1000 rpm.

Figure 4.13. By calculating the gap height h, and letting the bottom surface hb rotate with
the rotational speed of Ugears the high pressure region will occur according to the received
result

Figure 4.13 – Gap height h according to the solved equation, Equation 3.1.

The interesting term to compare is the translational squeeze term, as mentioned in
Section 3.3.6. This work presents a study where additional things are taken into account
in the Reynolds equation compared to previous works, such as the gradient that occurs on
the gears lateral side. The translational squeeze term is according to Figures 4.14, 4.15
and 4.16 a good source of hydrodynamic pressure generation. It indicates that the term is
important. It could be discussed why the results for the translational squeeze effects are
presented for a case without chamfer, Figure 4.14. The point is to prove that the term is
negligible when the gears lateral profile is flat.
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Figure 4.10 – Hydrodynamic wedge effects
without chamfer, fixed gap height of 10 µm

@ 150 bar, 1000 rpm.

Figure 4.11 – Hydrodynamic wedge effects
with 45 µm chamfer, fixed gap height of 10
µm @ 150 bar, 1000 rpm.

Figure 4.12 – Hydrodynamic wedge effects
with 100 µm chamfer, fixed gap height of 10
µm @ 150 bar, 1000 rpm.

Even if the physical wedge effects generates negative pressure in the rotational direc-
tion, the sum of the hydrodynamic pressure generation generates positive pressure in the
rotational direction. In this case it is mainly due to the translational squeeze effects in the
flow.

The stretch term, Equation 3.1 explained in Section 2.1.3, did not during the simulations
show any tendency to influence the results. The term showed in all cases negligible effects
and were therefore chosen not to be presented by separate figures.

In summary, all of the generated pressure arises from the Poiseuille term due to the
boundary conditions from HYGESim. The hydrodynamic pressure generation represents
less than 1% of the total pressure generated inside the gap but is still according to previous
works, [2], [24] of significant importance when it comes to balancing the lubricating gap
and the gear pump.

4.2 Leakage comparision

The leakages inside the lubricating gap is presented to give a better indication and un-
derstanding about the chamfers influence to the system and how the leakages changes
according to a varying outlet pressure and rotational speed. All leakages are calculated
with respect to Equation 2.29, derived in Section 2.4.

4.2.1 Leakage verification

To verify the leakage formulation derived earlier an assumption were made that a tiny
chamfer added to the gears should have similar leakages as a case without a chamfer.
Therefore a simple test case were set-up to verify the leakages. A chamfer of 1e-9 µ
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Figure 4.14 – Translational squeeze effects
without chamfer, fixed gap height of 10 µm

@ 150 bar, 1000 rpm.

Figure 4.15 – Translational squeeze effects
with 45 µm chamfer, fixed gap height of 10
µm @ 150 bar, 1000 rpm.

Figure 4.16 – Translational squeeze effects
with 100 µm chamfer, fixed gap height of 10
µm @ 150 bar, 1000 rpm.

was added to the gears lateral side and the result from the drain leakages is plotted in
Figure 4.17. The result confirm that the leakage formulation are correctly derived and can
therefore be used in the simulations.
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Figure 4.17 – Leakage verification to the drain by comparing a tiny chamfer with a case
without a chamfer.
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4.2.2 Drain leakage comparision

The leakages to the drain are compared at different rpms and different pressures, in order
to get a good understanding of the leakage behavior when adding a chamfer to the system.
The drain leakages are only plotted at its first 30◦. The reason for this is that the leakages
show a repetitive tendency every 30◦, this due to the 12 teeth on the gear.

According to Figures 4.18, 4.19, 4.20, and 4.21 the leakages when changing the pressure
show a similar tendency, a larger chamfer decreases the leakages. A higher pressure tends
also to increase the leakages and this can be explained by the increased influence from the
pressure gradient caused by the diffusion from the boundaries. The differences in leakages
between a pressure of 20 bar compared to a pressure of 240 bar are in a factor 10, from
0.013 to 0.16 l/min.

Notice that the pressure increase in these cases does not change the gap height. The
gap height are kept constant at 10 µm.
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Figure 4.18 – Leakages to the drain @ 20
bar, 1000 rpm.
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Figure 4.19 – Leakages to the drain @ 80
bar, 1000 rpm.
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Figure 4.20 – Leakages to the drain @ 150
bar, 1000 rpm.
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Figure 4.21 – Leakages to the drain @ 240
bar, 1000 rpm.

The leakages to the drain at constant pressure with varying rotational speed show the
tendency differ more at low rotational speed compared to high, according to the result in
Figures 4.22, 4.23, 4.24 and 4.25. Nevertheless the trend is the same as when comparing
different pressures, an increased chamfer decreases the leakages.
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Figure 4.22 – Leakages to the drain @ 150
bar, 200 rpm.
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Figure 4.23 – Leakages to the drain @ 150
bar, 1000 rpm.

0 5 10 15 20 25 30
0.09

0.095

0.1

0.105

0.11

0.115

0.12

Angle

Q
 [

l/
m

in
]

 

 

No chamfer

45 µm

100 µm
No chamfer

mean

45 µm
mean

100 µm
mean

Figure 4.24 – Leakages to the drain @ 150
bar, 1500 rpm.
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Figure 4.25 – Leakages to the drain @ 150
bar, 2500 rpm.

4.3 Shear stress and power losses

The shear stresses acting on the gear are calculated by Equations 2.33 and 2.35, which
means the shear stress is calculated at the gear side of the lubricating gap. The arrows in
the Figures 4.26, 4.27 and 4.28 indicate the direction of the shear stress and an indication
of the magnitude. The direction is dependent on the velocity and the pressure distribution
found in the solved shear stress equations. The plotted surface shows the shear stress
differences between 0 and 60000 N

m2 .

It can be seen that the generated shear stress tends to increase with an increased
chamfer. The red areas on the gear teeth increase which also the vector arrows tends to do
since they represent the magnitude of the shear stress. By looking more on the direction of
the shear stress it can be concluded that the shear stress on the tooth is mainly driven by
the velocity term but pressure driven on the root of the tooth since the shear stress tends
to point in the direction to the drain.

The largest shear stress is found in the region where the teeth interact with each other
and the delivery port, red areas. There is also an increased shear stress on the teeth that
interacts with the high speed groove, Figure 3.8. By furthermore comparing the main
location of the shear stress between with and witout a chamfer it can be seen that without
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Figure 4.26 – Shear stresses generated without chamfer, fixed gap
height of 10 µm @ 150 bar, 1000 rpm.

Figure 4.27 – Shear stresses generated with 45 µm chamfer, fixed
gap height of 10 µm @ 150 bar, 1000 rpm.

Figure 4.28 – Shear stresses generated with 100 µm chamfer, fixed
gap height of 10 µm @ 150 bar, 1000 rpm.

a chamfer the shear stress is constant over the gear surface, but with a chamfer on the
gear teeth, the shear stress tends to be developed mainly on the edges of the gear. This
can be seen more in Figures 4.29, 4.30 and 4.31 that show a zoom over the upper teeth of
the gear.
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Figure 4.29 – Shear stresses generated
without chamfer with a zoom on teeth,
fixed gap height of 10 µm @ 150 bar, 1000
rpm.

Figure 4.30 – Shear stresses generated
with 45 µm chamfer with a zoom on teeth,
fixed gap height of 10 µm @ 150 bar, 1000
rpm.

Figure 4.31 – Shear stresses generated
with 100 µm chamfer with a zoom on teeth,
fixed gap height of 10 µm @ 150 bar, 1000
rpm.

Furthermore the viscous shear stress is a source for the generated power losses inside the
lubricating gap. The power losses inside the gap are calculated with respect to Equation
2.38 at a range of different rotational speeds and gap heights. The values were mapped into
a field which is presented to get good view over the losses at different operation conditions.
At all data conditions, the gap height were set to constant, i.e no tilt were taken into
account.
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Figure 4.32 – Power losses generated in
the lubricating gap without chamfer, power
losses, P, in W , constant gap height.

Figure 4.33 – Power losses generated in
the lubricating gap with 45 µm chamfer, P,
in W , constant gap height.

Figure 4.34 – Power losses generated in
the lubricating gap with 100 µm chamfer,
P, in W , constant gap height.

The power losses follow a predicted behavior, an increased rotational speed follows by
increased losses and an increase gap height follows by decreased losses, Figures 4.32, 4.33,
and 4.34. The reason for the increase in losses due to higher rotational speed could be
explained by Equations 2.33 and 2.35. The velocity term (second part in the equations)
increases, which produces more viscous shear.

The decrease in losses due to increased gap height occurs due to the decrease in pres-
sure gradient inside the gap which means that the pressure generative term in the solved
equations decreases. Highest amount of losses occurs in the case where the rotational speed
is high and the gap height is small. Similar trends are found in previous work [2].

In all setups the energy losses are very low at rotational speeds below 1000 to 1500 and
a gap height bigger than 10 µm. At smaller gap heights increases the losses slightly, same
effects occurs when the rotational speed increases.

How large the absolute difference in power losses is between the two different chamfers
are presented in Figures 4.35 and 4.36. The power losses are in both cases compared to
the case without a chamfer to give a realistic comparison. When looking at the results, it
is interesting to verify that the differences between the two chamfers at different operative
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conditions increases when the chamfer increases. Even if the differences tends to increase
with the size of the chamfer the difference itself can be considered low. Just a couple of
watts in difference which makes it in some perspectives more interesting to present the
differences in percent. The two chamfers are in the same way compared with the case
without a chamfer in Figures 4.37 and 4.38. Notice that the 45 µm chamfer decreases the
losses slightly at all operative conditions compared to the 100 µm that tends to increase
the losses at low gap heights and decrease it at large gap heights. The difference in percent
also gives an indication that the differences tends to be larger at small gap heights almost
independently of the rotational speed. Also large differences at low rotational speeds (<100
rpm).
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Figure 4.35 – Absolute difference in power
losses between without and with a 45 µm

chamfer, P, in W , constant gap height.
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Figure 4.36 – Absolute difference in power
losses between without and with a 100 µm

chamfer, P, in W , constant gap height.
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Figure 4.37 – Difference in power losses
between without and with a 45 µm chamfer,
P, in %, constant gap height.
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Figure 4.38 – Difference in power losses
between without and with a 100 µm cham-
fer, P, in %, constant gap height.

The differences in percent at some specific operative conditions are presented in Table
4.1.
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Table 4.1 – Difference in pump losses at a given operating condition compared to the case
without a chamfer. The case without a chamfer are assumed to be 1.0 and a value below
indicates decreased power losses and vice versa.

No chamfer 45 µm 100 µm

500 rpm
5 µm 1.0 0.990 1.008
10 µm 1.0 0.986 0.991
15 µm 1.0 0.984 0.982

1000 rpm
5 µm 1.0 0.991 1.013
10 µm 1.0 0.987 1.001
15 µm 1.0 0.985 0.992

1500 rpm
5 µm 1.0 0.992 1.015
10 µm 1.0 0.985 1.005
15 µm 1.0 0.984 0.996

2000 rpm
5 µm 1.0 0.992 1.016
10 µm 1.0 0.988 1.007
15 µm 1.0 0.985 0.999

4.4 Pressure distribution generated by fully balanced gear

A stable solution and a fully balanced gear are defined by a system in equilibrium, and when
the sum of the moments and the forces acting on the bushing is zero. The procedure how
the equations are being balances and how the forces change are described in Section 3.3.5.
The differences between a fully balanced gear with and without a chamfer are presented
in a similar way as in Section 4.1, with the differences between the terms in the Reynolds
equation.

The total pressure distribution generated by the balanced gear are presented in Fig-
ures 4.39 and 4.39. It is a noticeable difference when it comes to the maximum pressure
generated inside the lubricating gap, 323 bar without a chamfer and 286 bar with a 45
µm chamfer, a difference of approximately 37 bars. This gives a strong indication that the
balanced gear is influenced by the chamfer.

Figure 4.39 – Pressure distribution with-
out chamfer, balanced gear @ 150 bar, 1000
rpm.

Figure 4.40 – Pressure distribution with a
45 µm chamfer, balanced gear @ 150 bar,
1000 rpm.

According to previous knowledge, the generated poiseuille effects are the same when com-
paring the two different cases, due to diffusion from the boundaries. Instead, the compar-
ision is focused on the hydrodynamic pressure generation, the pressure generation that is
developed to balance out the poiseuille effects.
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By investigate further, the differences in hydrodynamic pressure generation, Figures
4.41 and 4.42, the tendency remains, the chamfer case generates lower maximum pressure.
In addition to this, the effects from the hydrodynamic pressure generation are now much
larger than 1 % of the total pressure generation, seen in Section 4.1. The reason for
this is that the bearing has to be balanced and the only way to generate the amount of
hydrodynamic pressure needed to balance the gears is to tilt the bearing block.

Figure 4.41 – Hydrodynamic pressure
generation without chamfer, balanced gear
@ 150 bar, 1000 rpm.

Figure 4.42 – Hydrodynamic pressure
generation with a 45 µm chamfer, balanced
gear @ 150 bar, 1000 rpm.

The effects generated by the different contributions to the hydrodynamic force are
presented below. The effects generated by the normal squeeze should end up zero when
the gear is balanced, and this is not seen in the following figures, Figures 4.43 and 4.44. The
reason for this is that the presented result is only plotted at one instantaneous position.
When summing the contribution over a complete revolution, the normal squeeze effects
does end up as zero.

Figure 4.43 – Normal squeeze pressure
generation without chamfer, balanced gear
@ 150 bar, 1000 rpm.

Figure 4.44 – Normal squeeze pressure
generation with a 45 µm chamfer, balanced
gear @ 150 bar, 1000 rpm.

Figure 4.45 – Translational squeeze pres-
sure generation without chamfer, balanced
gear @ 150 bar, 1000 rpm.

Figure 4.46 – Translational squeeze pres-
sure generation with a 45 µm chamfer, bal-
anced gear @ 150 bar, 1000 rpm.
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Figure 4.47 – Physical wedge pressure
generation without chamfer, balanced gear
@ 150 bar, 1000 rpm.

Figure 4.48 – Physical wedge pressure
generation with a 45 µm chamfer, balanced
gear @ 150 bar, 1000 rpm.

The main difference occurs when comparing the physical wedge and the translational
squeeze effects. The translational squeeze effect are zero without a chamfer, Figure 4.45,
because the gradient on the gears lateral side ends up zero, ugears

∂hb

∂x1

+ugears
∂hb

∂x2

. The reason
is that the case with a chamfer contains a gradient the contribution by the translational
squeeze becomes significant, Figure 4.46.

The physical wedge, presented in Figures 4.47 and 4.48, is the main source when it
comes to generate hydrodynamic pressure. The case without a chamfer generated almost
36 bars higher maximum pressure compared to the case with a 45 µm and it is here the
difference between with and without a chamfer originates. The contribution generated by
the translational squeeze is a factor 10 lower than the contribution from the physical wedge
when comparing the maximum pressure difference.

Figure 4.49 – Tilt of bearing without
chamfer, balanced gear @ 150 bar, 1000
rpm.

Figure 4.50 – Tilt of bearing with a 45
µm chamfer, balanced gear @ 150 bar, 1000
rpm.

Figure 4.51 – Separated physical wedge
term showing pressure generation due to tilt
@ 150 bar, 1000 rpm.

Figure 4.52 – Separated physical wedge
term showing pressure generation due to
chamfer @ 150 bar, 1000 rpm.

In the end, it is interesting to investigate whether the contribution of the physical wedge
originates from the tilt itself or from the chamfer. When looking at the case without a
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chamfer, the physical wedge effects are only generated by the tilt of the bearing, Figure
4.49. When investigating the effects generated by a case with a chamfer, it can be seen
that the tilt of the bearing is generated both by the chamfer, and the tilt. This can be
explained by studying the physical wedge term in more detail, Equation 4.2, where h =
ht − hb.

ub

2

∂h

∂x1

+
ub

2

∂h

∂x2

=
ub

2

∂(ht − hb)

∂x1

+
ub

2

∂(ht − hb)

∂x2

(4.2)

The effect generated by the tilt of the bearing are caused by the ht-term and the effects
by the chamfer by the hb-term.
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By separating the physical wedge terms the effects generated by tilt, Equation 4.3, and the
chamfer, Equation 4.4, becomes visible. The resulting pressure generation are presented
in Figures 4.51 and 4.52. It can clearly be seen that the pressure generation generated by
the tilt of the bearing are larger than the generation by the tilt, therefore the tilt is the
dominating factor when it comes to produce hydrodynamic pressure.

By studying the tilt itself it can be seen that the largest gap height occurs at the LP-
port and that there is a slight difference between the two cases, Figures 4.49 and 4.50 in
both maximum and minimum values. A common approach to define the tilt is by using
the following formulation, t. This formulation is used in previous works such as [2], [24].

t =
hmax − hmin

2havg

(4.5)

The tilt without a chamfer, Figure 4.51 are t = 0.394 compared to the tilt with a 45 µm
chamfer, t = 0.366, i.e a smaller tilt with a chamfer.

5 Summary and Conclusions

The main concern of this study is to describe, predict and get a good understanding how
micro level surface features influence the lubricating gap within external gear pumps. By
using the open-source CFD software OpenFOAM and a in-house solver to solve Reynolds
equation it is assumed to give an accurate and good prediction of the generated pressures,
leakages and power losses.

The derived version of Reynolds equation in this thesis takes into account effects such as
the translational squeeze on the gears lateral side. Since the effects generated by the gears
shaped lateral side, the chamfer, a well-known procedure in the manufacturing process, it
is of interest to get a better understanding of the reasons why it is used. The following
summary an conclusions are therefore separated into two different parts, where the first
part discuss the simulations involving a chamfer with a fixed gap height, leakages and at
last power losses. The second part of the conclusion and discussion involves simulations
regarding a complete balanced gear and the origin of the generated pressures.
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5.1 Fixed gap height, leakages and powerlosses

By investigate the effects of a chamfer in a steady-state environment with a fixed gap
height it has to be taken into considerations that huge simplifications are being made but
it is still a good procedure to get a good understand of the differences between a case with
a chamfer and without a chamfer.

By taking a first look at the hydrodynamic pressure generation, Figures 4.7, 4.8 and
4.9 a first indication and proof are shown that there is an effect by the chamfer, but its
hard to tell how big the effects are when looking at the complete lubricating gap, it can
only be concluded that there is some effects generated by the chamfer. This conclusions
brings the discussion forward since it has to be mentioned that this is the first presented
work where effects like this, micro level surface features are taken into account, which also
is proved by the ”new” effect, the translational squeeze effects. The translational squeeze
effects is a pure result of the contribution generated by the chamfer, even if the generated
pressure contribution are small compared to the total pressure generation, Figure 4.15.

It can also be concluded that the chamfer itself has a positive effect when it comes to
the drain leakages. The drain leakages according to the result presented in Section 4.2.2
follows a similar behavior where a bigger chamfer tends to decrease the leakages. Even if
the amount of decreased leakages are low, it is a sign and may also be an answer to why
different manufacturers tends to put a chamfer on the gears lateral side. Basically, the
results tells that the decrease in leakages exists at both high and low pressures as well as
at high and low rotational speeds.

When it comes to the shear stresses it can be confirmed that an increased chamfers tends
to increase the shear stresses, the differences can be quite hard to visualize but according
to Figures 4.29, 4.30 and 4.31 can it be seen that the red area increases with increasing
chamfer. When continuously looking at the power losses at different operating conditions
the results give an interesting point of view. The losses tends to decrease with the 45 µm
chamfer compared to the 100 µm chamfer. Even if the decrease is almost negligible at
normal operative conditions its gives a significant contribution to the fact why a chamfer
are used by the manufacturers. Have in mind that the 100 µm in the normal operative
conditions tends to increase the losses which contradicts that a chamfer itself would in all
sizes and forms decrease the losses.

5.2 Fully balanced gear

According to the presented results in Section 4.4 are the differences between a gear profile
with and without a chamfer quite small, but its still interesting that the case with a chamfer
tends to generate a lower maximum pressure according to the without a chamfer, Figures
4.39 and 4.40. The reason for this can be explained by continuing to look at the separated
terms in the Reynolds equation. It has already been concluded that the poiseuille effects
are the same regardlessly if there is a fixed gap height, with or without a chamfer. The
differences are mainly generated by the hydrodynamic effects and according to the results,
especially the physical wedge. The differences between the two cases are here almost equal
to the total pressure differences, i.e a difference of almost 37 bars.

The translational squeeze effects originates as mentioned before only due to the chamfer,
but its contribution according to Figure 4.46 are small when putting the in comparison
with the total pressure distribution. Nevertheless is the effects in such magnitude that they
can not be neglected. The generated pressure contributes to the hydrodynamic pressure
generation which in the end acts as a counteracting force to neutralize the forces acting on
the bushing, Figure 2.2.
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A deeper look into the contributions to the physical wedge, Equation 4.3 and Equation
4.4 concludes that the generated pressure to balance the gear are mainly caused by the
tilt of the bushing and not the chamfer itself. Even though its interesting to have in mind
that the chamfer tends to lower the value t, explained by Equation 4.5. The differences
between the two t values are only 7.6% but nevertheless a difference that can be explain
as an effect by the chamfer.

Finally, to summarize everything; the work has reached its aim to quantifying and prov-
ing the impact generated by a change in the micro geometrical level. It can be concluded
that the chamfer itself by the given and presented results tends to influence the system,
both positively and negatively. The effects are evaluated fairly and should therefore be
considered.

• The effects by the translational squeeze and a negative pressure generation in the
rotational direction by the physical wedge are a proven effects by the chamfer and
proven by running simulations with a fixed gap height.

• A chamfer according to the fully balanced simulations increases the hydrodynamic
pressure generation which gives an increasing and supporting effect to the balancing
of the bushing. The tilt, t, and the maximum generated pressure are lower, as an
effect by the chamfer, which has been proven as an positive effect since the need of
a tilt to balance the gear decreases, which in the end can help avoiding wear. The
contribution to the hydrodynamic forces are still mainly generated by the tilt, the
chamfers are small in comparison.

• The leakages to the drain decreases in all of the tested conditions. Positive when it
comes to avoid leakages but the differences are less than 1 % and may therefore be
neglected.

• The power loss differences in percent generated between the gear and the bushing are
proven to decrease with the 45 µm and this behavior are changes when the chamfer
is increased to a 100 µm chamfer compared to a case without a chamfer. In both
cases occurs the biggest differences at low rotational speeds even if the change itself
are small and almost negligible.

6 Future work

The results in the presented study can be improved in several ways, excluded the different
shapes and chamfer sizes of the gears lateral surface. The following recommendations for
future works are proposed.

• Since the implementation of a micro level surface feature tends to be strongly mesh
dependent an investigation regarding the presented results and how they depends on
the mesh resolution.

• Find out an optimal chamfer size when it comes to terms of hydrodynamic pressure
generation, leakages and power losses. Also try different types of micro level surfaces
changes for example a linear profile on each tooth on the gears lateral side.

• Run simulations when deformation and variabel properties are taken into account.

Furthermore is it important to continue develop the tools used during the present study.
Optimize and continued development of the hBFieldMaker is a demand to get better and
faster implementation of the micro level surface features.
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The linking procedure in OpenFOAM are time-consuming and slow, an implementation
of a C++ tree library is a possible solution, such as ANN [25].
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