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Abstract

The nuclear force is a residual interaction between bound states of quarks and gluons. The most fun-
damental description of the underlying strong interaction is given by quantum chromodynamics (QCD)
that becomes nonperturbative at low energies. A description of low-energy nuclear physics from QCD
is currently not feasible. Instead, one can employ the inherent separation of scales between low- and
high-energy phenomena, and construct a chiral e�ective field theory (EFT). The chiral EFT contains un-
known coupling coe�cients, that absorb unresolved short-distance physics, and that can be constrained
by a non-linear least-square fitting of theoretical observables to data from scattering experiments.

In this thesis the uncertainties of the coupling coe�cients are calculated from the Hessian of the
goodness-of-fit measure ‰2. The Hessian is computed by implementing automatic di�erentiation (AD)
in an already existing computer model, with the help of the Rapsodia AD tool. Only neutron-proton
interactions are investigated, and the chiral EFT is studied for leading-order (LO) and next-to-leading-
order (NLO). In addition, the correlations between the coupling coe�cients are calculated, and the
statistical uncertainties are propagated to the ground state energy of the deuteron.

At LO, the relative uncertainties of the coupling coe�cients are 0.01%, whereas most of the cor-
responding uncertainties at NLO are 1%. For the deuteron, the relative uncertainties in the binding
energies are 0.3% and 0.7% for LO and NLO, respectively. Moreover, there seems to be no obvious
obstacles that prevent the extension of this method to include the proton-proton interaction as well as
higher chiral orders of the chiral EFT, e.g. NNLO. Finally, the propagation of uncertainties to heavier
many-body systems is a possible further application.
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Chapter 1

Introduction

Ever since the first pion-exchange model was proposed by Yukawa in 1935, attempts to accurately
describe the nuclear force have been a recurring theme in nuclear physics. As this force binds nucleons
together and thereby gives rise to nuclei, it is of central importance to the field.

The advent of the quark model and the theory of quantum chromodynamics (QCD) meant a radical
departure from the Yukawa model and similar meson-exchange theories: The nucleons are now under-
stood to consist of quarks, and the nuclear force is nothing more than a residual interaction of the strong
force binding them together. This implies that QCD is the fundamental theory of the nuclear force, but
as it is nonperturbative in the low-energy region relevant for nuclear physics, its direct application to
the nucleus is extremely computationally demanding. [1]

A modern approach to bypass this problem is by approximating QCD as an e�ective field theory
(EFT). EFTs are used in many di�erent contexts in physics, and utilise the fact that the low-energy
behaviour of a theory is insensitive to the details of its short-range nature. Thus, only the long-range
dynamics of the original theory need to be resolved exactly in the approximation, whereas the unresolved
short-range behaviour is imitated by adding local correction terms to the Hamiltonian of the EFT. The
precision of the approximation increases with the addition of more terms. [2] In this thesis, the terms
are denoted as leading-order (LO), next-to-leading-order (NLO), next-to-next-to-leading-order (NNLO),
and so on. As it is essential that the EFT has the same symmetries as the original theory, our EFT must
inherit the chiral symmetry of QCD and it is therefore referred to as chiral EFT. [1]

Each correction term to the Hamiltonian contains a coupling coe�cient, which must be determined
from experimental data. A computer program, nsopt, that uses low-energy scattering measurements
has been developed by Andreas Ekström and Boris Carlsson, in an attempt to find the optimal values
of these coe�cients. This is a part of a larger research collaboration including the Chalmers and Oslo
Universities, Oak Ridge National Laboratory, University of Idaho and Argonne National Laboratory.
The optimisation in nsopt uses a non-linear least-square fit, where the goodness-of-fit measure to be
minimised is denoted by ‰2.

The goal of this thesis is to extend nsopt to allow for the computation of the first- and second-order
partial derivatives of the ‰2-value to be computed with respect to the coupling coe�cients. This enables
an uncertainty quantification of the optimal coe�cient values. To arrive at the derivatives, automatic
di�erentiation (AD) is used. This method is based on the fact that every computer program, no matter
how complex, is implemented using a set of simple operations with well-known derivatives. AD uses this
in combination with the chain rule to calculate the derivatives through the computational chain of the
program, and can do this to machine precision and to an arbitrary derivative order. The AD tool that
is used in this project is Rapsodia [3], which combines custom data types with operator overloading to
facilitate the di�erentiation.

1.1 Specific aims
The aims of this thesis can be summarised in the following list:
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CHAPTER 1. INTRODUCTION

• Implement AD in the existing nsopt code, to allow for the calculation of derivatives.

• Use the computed derivatives to create the covariance matrix and thus find error estimates of the
coupling coe�cients in the chiral EFT.

• Propagate these uncertainties through the model to di�erent physical observables, e.g. the binding
energy of the deuteron.

1.2 Limitations
Due to the limited time frame of the project, not all possibilities could be fully explored. Consequently,
only scattering data from neutron-proton interactions have been used for optimisation in the course of
this study. This means that we have omitted proton-proton scattering data that would have required
implementation of AD in the Coulomb interaction part of nsopt. Furthermore, only the LO and NLO
terms of the chiral EFT were considered.

1.3 Method
Initially, the project consisted of literature studies in the relevant physics and computational techniques.
The subsequent implementation of AD in nsopt was performed in a bottom-up manner, starting at the
beginning of the computational chain and progressing upwards through the various parts of the software.
This gradual approach allowed the AD computed derivatives to be compared with results of numerical
di�erentiation, making errors easier to locate. More details on nsopt and the development process can
be found in Chapter 6.

1.4 Structure of the thesis
In Chapter 2 a general overview of EFTs and the nuclear force is presented. Chapter 3 concerns scattering
theory. The EFT contains a number of parameters that must be determined experimentally. The
determination of these parameters is the subject of Chapter 4, which also addresses how generated
derivatives can be used to produce covariance matrices and error estimates of the parameters. Chapter 5
explains the principle of AD, as well as the use of the Rapsodia AD tool. The actual implementation of AD
in the nsopt program is described in Chapter 6. The results are presented in Chapter 7, and the following
discussion can be found in Chapter 8. Finally, we summarise our conclusions and recommendations in
Chapter 9.
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Chapter 2

E�ective Field Theories and the
Nuclear Force

This chapter serves as a brief introduction to EFT and the nuclear force. The subject is presented here
in the context of the computer model at the centre of this thesis, which attempts to fit a chiral EFT to
experimental data. Due to the magnitude of the topic of chiral EFTs and their applications to nuclear
physics the discussion here is brief. A more formal but still incomplete introduction to chiral symmetry
and its breaking is given in Appendix A.

2.1 A history of the nuclear force
The discovery of the nucleus by Rutherford in 1911, and the subsequent detection of the neutron by
Chadwick, Curie and Joliet in 1932 implied the existence of an at that time unknown force binding
the nucleons together. To counter the repulsive Coloumb interaction between the protons, it had to be
strong enough to overcome the electromagnetic force. At the same time, its range would have to be very
short, otherwise the nuclei of di�erent atoms would interact and destroy the atomic structure.

In 1935, Yukawa proposed that the nuclear force could be explained by a virtual pion exchange
between nucleons. More elaborate theories based on the exchange of pions and other mesons have
been developed since then. However, despite their success in describing many aspects of the interaction
between nucleons, the discovery of quantum chromodynamics (QCD) in the late 1970s meant that these
theories had to be regarded as mere models. QCD is a quantum field theory describing how quarks,
which nucleons have been shown to consist of, interact via the so-called strong force. As the nuclear force
between nucleons is nothing more than the residue of the strong force between their quarks, QCD is in
principle the fundamental theory of the nuclear force. Unfortunately, the strong force is nonperturbative
in the nuclear low-energy region, which severely limits the direct use of QCD in nuclear physics.

In the early 90s, Weinberg managed to apply the concept of EFTs to QCD in the low-energy realm,
resulting in a chiral EFT without the nonperturbative properties of the original theory. Curiously
enough, the chiral EFT describes the nuclear force in terms of pion exchanges just as the original theory
of Yukawa, but with the additional constraint of the broken chiral symmetry, which was not known
earlier.

2.2 E�ective field theories
An EFT is a way of approximating a physical theory without knowing every detail of its behaviour.
The theory introduces an energy limit called a cuto�, denoted by �. Physics above this energy limit is
imitated only to the extent that the resulting approximation will give the right description of the physics
that reside below the cuto�. Consequently, the physics below the cuto� is resolved whereas the physics

3



CHAPTER 2. EFFECTIVE FIELD THEORIES AND THE NUCLEAR FORCE

above is said to be unresolved. The theoretical basis of this process can be found in a technique known
as renormalisation [2].

An example of an EFT approximation can be found by imagining a very small current source that
radiates electromagnetic waves in an unknown way. If only waves with energy below the cuto� are of
interest, only the large-scale structure of the source is significant. This means that distances roughly
equal to the wavelength and above need to be described accurately whereas the smaller details can be
simplified greatly and still give the correct result for long wavelengths. If the current source is much
smaller than the wavelength corresponding to the cuto� the source can be approximated by a set of
point sources. This constitutes a significant simplification, since the behaviour of point sources is well
understood.

Formally, it can be shown that the EFT can be seen as an expansion in the parameter p
� where p < �

is the momentum studied. � is usually a couple of magnitudes larger than the momentum of interest.
To summarise, an EFT needs to:

• Give the correct description of physics at long distances. All features of the long-range behaviour
must be known from the underlying theory.

• Introduce a cuto� from an inherent separation of scales in the system studied.

• Imitate short-range behaviour. This is done with correction terms added to the Hamiltonian,
forming the contact potential. The potential describes the part of the long-range behaviour that
arises from unresolved short-range interactions.

2.3 Chiral symmetry
An object is said to be chiral if it is not identical to its mirror image, the simplest example being the
left and right hands of the human body. The hands are mirror images of each other but impossible to
superimpose, which becomes evident when trying to fit a right-handed glove on the left hand. Chirality
arises in many other parts of nature, including subatomic physics. Chiral transformations in subatomic
physics act independently on so called left and right-handed particles. The definition of left and right-
handed particles is concerned with how the spin is projected on the direction of motion [4].

In QCD, chiral symmetry would appear if the quarks were massless [5]. As we know, this is not the
case, but the concept of chiral symmetry is still useful if it is only broken in a minor way. This is the core;
quark masses are small relative to other masses handled by the theory. A more thorough introduction
to chiral symmetry is given in Appendix A.

2.4 Chiral EFT
Chiral EFT is based on the fact that in low-energy physics the relevant degrees of freedom for the
Lagrangian of QCD are hadrons, contrary to the normal case when they are quarks and gluons. To
make use of the ideas from EFTs a cuto� must be introduced. Since we are studying pion exchange the
cuto� needs to be larger than the pion mass, a simple choice is to take the cuto� to be in the region
of the heavier mesons like the rho meson. To get the EFT an expansion is done with the parameter p

�
as explained in Section 2.2. Along with this a contact potential accounting for short-range behaviour
is needed. To model the short-distance interaction in the potential qualitatively, we rely on meson
theory. According to this, the short-range behaviour is characterised by heavy meson exchange [1]. The
propagator is defined as, ⁄

d3p
eip·r

m2 + p2 ¥ e≠mr

r
.

One property of chiral EFT is that it resides in the low-momentum region. This might cause a problem
of describing heavy meson exchange. The issue is avoided by realising that the concerned momentum is
much smaller than the mass of the meson, p π m. This allows for expanding the propagator as,

4



CHAPTER 2. EFFECTIVE FIELD THEORIES AND THE NUCLEAR FORCE

1
m2 + p2 ¥ 1

m2

3
1 ≠ p2

m2 + p4

m4 + . . .

4
.

A conclusion is that it should be possible to describe the short range interaction in powers of p
m . However,

the contact potential also involves terms from renormalisation theory, which is not treated in this thesis.
Chiral EFT describes the long-range behaviour using virtual pion exchange, the short range behaviour
is described by the contact potential. The contact potential comes with unknown coe�cients that need
to be fitted against experimental data. The fitting of these parameters is a current optimisation problem
in the field.

The model used by the computer program in this study utilises the potential from chiral EFT. The
one-pion exchange and the contact potential results in the LO potential as,

VLO = ≠ g2
A

4f2
fi

·1 · ·2
‡1 · q‡2 · q

q2 + m2
fi

+ CS + CT ‡1 · ‡2, (2.1)

where gA is the axial-vector coupling constant and ffi is the pion decay constant. mfi is the mass of the
pion, ‡1,2 are the spin operators for the two nucleons, ·1,2 are the isospin operators of the nucleons and
q is the momentum transfer between the two nucleons. The two constants CS and CT are the coupling
coe�cients of the contact potential. If correction terms of higher orders are added, it will result in a
chiral EFT of order (NLO), (NNLO) and so on. A detailed discussion about chiral EFT potentials of
LO and higher orders can be found in Ref. [1].
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Chapter 3

Scattering Theory

This chapter contains a brief introduction to two-nucleon scattering theory. Only key concepts of rele-
vance to the computer models are presented. The main purpose is to present how experimental observ-
ables obtained from nucleon scattering experiments are related to those calculated from a theoretical
interaction potential. A more thorough description is given in Ref. [6, 7, 8, 9].

3.1 Nucleon-nucleon states
The nucleus of an atom consists of neutrons and protons. The similarity between these particles makes
it possible to define them both as nucleons di�ering only with an intrinsic property called the isospin,
t. Moreover, the isospin projection is tz = +1/2 and tz = ≠1/2 for the proton and the neutron
respectively. The nucleons, with spin s = 1/2, are fermions and therefore need to obey the Pauli
exclusion principle forcing the total wave function to be antisymmetric. A general two-nucleon wave
function can be expressed as a tensor product between the spatial, spin and isospin part,

�NN = Âspatial ¢ Âspin ¢ Âisospin.

Where the spatial wave function may be decomposed into partial waves as

Âspatial(r,„,◊) =
ÿ

L,M

aLRL(r)YL,M („,◊), (3.1)

aL describing the amplitudes of the partial waves and YL,M („,◊) being the spherical harmonics. To
describe a particular wave the spectroscopic notation known from atomic physics is used, (2S+1)LJ with
J = L + S, where J is the total angular momentum.

The nucleon-nucleon interaction contains a tensor-force component. It is still possible to make the
partial wave decomposition although now a single J state, or channel, can be a mix of di�erent partial
waves. However, the fact that the strong interaction will preserve the total angular momentum J and
the parity fi of the wave function makes only a limited number of the LS couplings possible [4].

The deuteron is a bound two-nucleon system consisting of a proton and a neutron with ground state
Jfi = 1+ and T = 0. The total angular momentum of the system is given by J = L + S, where the sum
of the two particles intrinsic spin, S, are 0 or 1. The parity of the system is determined by (≠1)L hence
only states with even orbital angular momentum is allowed. With J = 1 this leads to the conclusion
that the only possible S value is 1 while L has to be either 0 or 2. Hence, the only possible LS coupling
is given by 3S1 ≠ 3D1.

3.2 Nucleon-nucleon scattering formalism
Scattering experiments are used in order to measure the nucleon interaction. Spin-independent scattering
will be considered to give a basic understanding of how the measurable observables relate to the wave

6



CHAPTER 3. SCATTERING THEORY

Figure 3.1: Two dimensional projection of a basic scattering experiment. An incident plane wave
is scattered against the target resulting in a superposition of spherical and plane waves. A detector
is placed far away from the interaction region and subtends the di�erential cross section d�.

functions. Because of the spin-dependence of the nuclear force we will also introduce the spin-scattering
matrix needed for a complete spin-dependent treatment of the scattering process. [6]

3.2.1 Cross section
The total scattering cross section, ‡, represents the probability of an incident particle to interact and
scatter from the target. To measure the cross section in a scattering experiment the incident flux of
particles needs to be known and compared with the amount of outgoing scattered particles. However,
to measure all scattered particles a spherical detector needs to be used, it is therefore more convenient
to measure just a small part of the outgoing particles, which instead will give a di�erential cross section.
A detector with e�ective area dA at a distance r from the target will subtend the di�erential solid angle

d� = dA

r2 ,

as displayed in Figure 3.1. The number of particles measured will then be Nr = SrdA = Srr2d�, where
Sr denotes the probability current of the scattered wave function. Moreover, the di�erential cross section
is defined as the number of particles scattered in a particular solid angle, divided by the incident flux of
particles [10] resulting in the following expression,

d‡

d� = Srr2

Si
. (3.2)

The total cross section is then given by integrating d‡
d� over the entire solid angle.

3.2.2 Scattering amplitude
The scattering of particles is described by the time-dependent Schrödinger equation with boundary
conditions suitable for scattering. Assuming non-relativistic conditions it is given as

i~ ˆ

ˆt
�(r,t) = H�(r,t). (3.3)

The Hamiltonian is most easily expressed in the relative coordinate system of the particles, H = ≠ ~
2µ Ò2+

V , where µ represents the reduced mass and V is the interaction potential. It is possible to separate the

7



CHAPTER 3. SCATTERING THEORY

spatial and time-dependent parts of the wave function as �(r,t) = Â(r)e≠i Et
~ , which solves Eq. (3.3).

Here, the spatial part, Â(r), is an eigenfunction of the time-independent Schrödinger equation, EÂ(r) =
HÂ(r). [10]

Assuming a spin-independent scattering experiment with incident beams along the z-axis described as
plane waves, the outgoing beams will be scattered as spherical waves after interacting with the target as
illustrated in Figure 3.1. This implies that for regions far away from the interaction the wave function has
to look like a superposition of the incident particles not interacting with the target and those scattered,

Â(r) = eikz + f(◊, „)eikr

r
, r æ Œ. (3.4)

With f(◊,„) defined as the scattering amplitude. In general Â and f(◊,„) also depend on the in and
outgoing wave vectors, and the fact that the scattering probability is low enough to not a�ect the
normalisation of the plane wave. [10]

3.2.3 Di�erential cross section
The probability density current is given by [11]

S(r,t) = ≠ i~
2µ

(�úÒ� ≠ �Ò�ú) = R(�ú ~
iµ

Ò�),

where R denotes the real part. The incident flux of particles will then be

Si = R
3

e≠ikz ~
iµ

d

dz
eikz

4
= ~k

µ
. (3.5)

Given the relation between the wave number and momentum for a free particle, p = ~k, Eq. (3.5) equals
to the velocity of the incoming particle before it reaches the interaction region.

Likewise the outgoing flux from the spherical wave is given by

Sr = R
33

f(◊)e≠ikr

r

4
~
iµ

d

dr

3
f(◊)eikr

r

44
= v|f(◊)|2

r2 + ~|f(◊)|2
iµr3 .

For large r this reduces to approximately v
r2 |f(◊)|2. The expressions for in and outgoing current densities

inserted in Eq. (3.2) relates the di�erential cross section to the scattering amplitude in the following way

d‡

d� = r2Sr

Si
= |f(◊)|2. (3.6)

3.2.4 Phase shifts
Above, we have seen how to relate an experimentally measurable quantity, the di�erential cross section,
with the scattering amplitude. This section will show how to express the wave function in Eq. (3.4)
so that it can be related to the scattering amplitude in a more direct way. For this a partial wave
decomposition as given in Eq. (3.1) is preferable.

If the interaction between the nucleons is central the angular momentum of the system will be con-
served. It is then convenient to separate the wave function in angular and radial parts. In a system that
is spin-independent and thus spherically symmetric, the solution is independent of the azimuthal angle
„. This implies that M is zero in the spherical harmonics YLM (◊,„) for such a system. Inserting (3.1)
in the time-independent Schrödinger equation and remembering that the eigenvalues for the spherical
harmonics acting on the angular part is L(L + 1) gives

1
r2

d

dr

3
r2 dRL

dr

4
+

3
2µ

~2 V (r) ≠ k2 ≠ L(L + 1)
r2

4
RL = 0,

8



CHAPTER 3. SCATTERING THEORY

which is a special case of the Bessel equation with solutions of linear combinations of the Bessel functions
jL and yL [12]. In the case of a free particle, V (r) = 0, the only possible solution is RL = aLjL because
yL diverges at the origin,

Â(r) =
Œÿ

L=0
aLjL(kr)YL0 =

Œÿ

L=0
ALPL(cos ◊),

where PL represents the Legendre polynomials. In particular we have the plane wave expansion,

eikz =
Œÿ

L=0
(2L + 1)iLjL(kr)PL(cos ◊).

Now consider the case when the potential has a finite range. Outside the region in which the potential
acts we have the same case as above, with the exception of no longer being able to discard the yl. This
means that the long-range solution will instead be,

Â(r) =
Œÿ

L=0
(aLjL(kr) + bLyL(kr))PL(cos ◊).

The long range behaviour of the Bessel functions can be approximated by, [12]

jL
ræŒ≠≠≠æ sin(kr ≠ 1

2 Lfi)
kr

yL
ræŒ≠≠≠æ cos(kr ≠ 1

2 Lfi)
kr

.

Using trigonometric identities we now introduce the angle ”l defined as the phase shift, which makes it
possible to express the wave function as,

Â(r) =
Œÿ

L=0

CL

kr
sin (kr ≠ 1

2Lfi + ”L)PL(cos ◊),

with the coe�cient CL being a combination of aL and bL. But we already know from Eq. (3.4) what the
long range solution from scattering ought to look like. Inserting the plane wave expansion and comparing
the coe�cients gives,

f(◊) =
Œÿ

L=0

(2L + 1)
2ik

!
e2i”L ≠ 1

"
PL(cos ◊)

=
Œÿ

L=0
(2L + 1)fLPL(cos ◊),

with fL being the partial wave scattering amplitude. Defining the S-matrix as SL(k) © e2i”L(k) gives the
partial wave scattering amplitude,

fL = SL(k) ≠ 1
2ik

= 1
k

sin ”L(k) ei”L(k).

Integrating the relation between the scattering amplitude and the di�erential cross section in Eq. (3.6)
gives the total cross section as a sum over the partial wave amplitudes,

‡ = 4fi

Œÿ

L=0
(2L + 1)|fL|2.

Even though it is not possible to measure the phase shift, this shows its direct relation to the observables
of a scattering experiment.

9
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3.2.5 The spin-scattering matrix
In the above analysis the spin-dependence of the scattering processes has been neglected. As previously
mentioned nucleon-nucleon scattering experiments has to account for the spin of the particles. The main
di�erence compared to spin-independent scattering is that the spin-scattering matrix needs to be defined
in terms of the S-matrix. We will not go into details of the spin-dependent treatment but instead present
some important relations used in the computer models.

The wave function in Eq. (3.4) has to be modified by redefining the scattering amplitude,

�n = eikz‰n + fn
eikr

r
fn = M‰n.

Where ‰n is a vector representing the nth initial spin state and M(‡1, ‡2, pi, pf ) is a 4x4 matrix called
the spin-scattering matrix depending on the in and outgoing momenta and the pauli spin operators. [6]
The spin-scattering matrix relates to the S-matrix via the following definition,

M(pi, pf ) = 2fi

ik
È◊f „f | S ≠ 1 |◊i„iÍ , (3.7)

where k is the wave vector for the relative motion of the particles and the bra and ket vectors specify
the direction of motion for the in and outgoing nucleons.

The M -matrix elements expressed in partial wave basis for di�erent channels is given in Appendix B.1.
The important di�erence from the previous spin-independent treatment is the existence of several types
of partial wave amplitudes and di�erential cross sections. It is also possible to measure the polarisation
of the scattered particles resulting in a wide range of possible observables.

The Saclay representation of the scattering amplitudes, which is used in the computer models to
calculate the observables, are given by the elements of the M -matrix as [13]

a =1
2(M++ + M00 ≠ M+≠)

b =1
2(M++ + Mss + M+≠)

c =1
2(M++ ≠ Mss + M+≠)

d =(≠M++ + M00 + M+≠)
2cos ◊

e = iÔ
2

(M+0 ≠ M0+).

(3.8)

E.g. with this representation it is possible to express the di�erential cross section of an unpolarised beam
and target as

d‡

d� = 1
2(|a|2 + |b|2 + |c|2 + |d|2 + |e|2). (3.9)

A full list of the di�erent observables and a comprehensive treatment of the spin-dependent scattering
formalism of nucleon-nucleon scattering is given in Ref. [6].

3.3 The Lippman-Schwinger equation
Above the connection between the scattering observables and the partial wave expansion of a wave
function has been established. Now we present the formal solution to the scattering equation (3.3). This
leads to a matrix equation with solutions related to the phase shifts.

In the Heisenberg matrix representation of quantum mechanics the equivalent of the time-independent
Schrödinger equation is formulated as,

(Ĥ0 + V̂ ) |ÂnÍ = En |ÂnÍ .

10
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Where the Hamiltonian operator Ĥ0 contains all information except the short range interactions between
the nucleons. In the simplest case this will only be the kinetic energy but it could in general also include
for example the coulomb interaction in the case of p ≠ p scattering.

The solution of,
(Ĥ0 ≠ En) |ÂnÍ = V̂ |ÂnÍ ,

gives the eigenfunction to the scattering equation. Assuming the matrix inversion exists the wave function
can be expressed as,

|ÂnÍ = (En ≠ Ĥ0)≠1V̂ |ÂnÍ .

Considering the free particle solution V̂ = 0 gives,

Ĥ0 |„nÍ = Ên |„nÍ .

In the case where the Hamiltonian only consists of the kinetic energy, „n will be the plane wave solution.
As the potential goes towards zero this has to be the solution obtained. Therefore, we can suggest the
following equation,

|ÂnÍ = |„nÍ + (En ≠ Ĥ0)≠1V̂ |ÂnÍ ,

which is equivalent to the Schrödinger equation (3.3) with the suitable boundary conditions for scattering
now already included in the the equation.

Multiplying with È„m| V̂ from the left gives

È„m| V̂ |ÂnÍ = È„m| V̂ |„nÍ + È„m| V̂ (En ≠ Ĥ0)≠1V̂ |ÂnÍ . (3.10)

The wave functions Ân are unknown. Instead the transition matrix T̂ is defined as the interaction
expressed in the partial wave basis,

È„m| T̂ |„nÍ = È„m| V̂ |ÂnÍ .

Inserted in Eq. (3.10) yields,

È„m| T̂ |„nÍ = È„m| V̂ |„nÍ + È„m| V̂ (En ≠ Ĥ0)≠1T̂ |„nÍ , (3.11)

which is one form of the Lippman-Schwinger equation and only dependent on „n. The completeness
relation,

1 =
ÿ

n

|„nÍ È„n| , È„n | „mÍ = ”n,m,

inserted in Eq. (3.11) leads to the integral equation

È„m| T̂ |„nÍ = È„m| V̂ |„nÍ +
ÿ

k

È„m| V̂ |„kÍ (En ≠ Êk)≠1 È„k| T̂ |„nÍ , (3.12)

which can be solved for T̂ by matrix inversion.

3.3.1 The Lippman-Schwinger equation in a partial wave basis
Because of the positive energy for the scattering states it is possible to define the reaction matrix
R(k,kÕ)J,S

LLÕ as the real part of the complex T -matrix in Eq. (3.12). The solutions for uncoupled waves
are given by

RJ,S
LLÕ(qÕ,q) = V J,S

LL (qÕ,q) + P
⁄ Œ

0
dk k2 m

q2 ≠ k2 V J,S
LL (qÕ,k)RJ,S

LL (k,q). (3.13)

Where P indicates the Cauchy principal value. For a complete deduction and the solution of coupled
cases see Ref. [8]. The solutions of the R-matrix equation are obtained by numerical matrix inversion
techniques. The details of the procedure is given in Ref. [9]. Once the solution is obtained it is possible
to express the phase shifts in the RJ,S

LLÕ(k0,kÕ
0)-elements.

11
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3.4 Partial wave decomposition of the interaction
The nucleon-nucleon interaction potential given in Section 2.4 needs to be decomposed in a partial wave
basis in momentum space to be able to solve the Lippman-Schwinger R-matrix Eq. (3.13).

The projections on a partial wave basis of the scattering amplitudes of the interaction, V–, is given
as,

AJ(l)(pÕ,p) = fi

⁄ 1

≠1
dzV–(pÕ,p,z)zlPJ(z)

by integrating over the Legendre polynomials, PJ(z). With the help of these nucleon-nucleon amplitudes
it is possible to decompose the interaction in di�erent channels. The results are then used to solve the
coupled and uncoupled Lippman-Schwinger R-matrix equations. The result of this decomposition is
presented in Appendix B.2

3.5 Obtaining an observable from the chiral EFT potential
Here a short summary is given of how the theory in this chapter is explicitly used to calculate the
theoretical observables such as a di�erential scattering cross section, Oth.

If a interaction potential of LO is used, the starting point of the calculation is the interaction potential
in Eq. (2.1) for the one pion exchange. This potential is then decomposed in a partial wave basis by
projecting the interaction amplitudes on a partial wave basis. The general expressions for di�erent
channels are given according to Eq. (B.1). The result is used to solve the Lippman-Schwinger R-matrix
equation (3.13). The scattering phase shifts will be determined by this solution and hence it is possible to
compute the spin-scattering matrix M according to Eq. (3.7). The theoretically determined di�erential
cross section are for example given by Eq. (3.9) which are dependent of the M -matrix solutions. In the
next chapter it will be shown how these are compared with real measurable quantities to determine the
value of the coupling coe�cients through non-linear least-square fitting.

12



Chapter 4

Uncertainty Quantifications

In the previous chapters the theoretical model used to calculate physical observables by chiral EFT has
been presented. This chapter aims to explain how coupling coe�cients can be optimised using non-linear
least-square methods, and how the Hessian of the goodness-of-fit measure ‰2 can be used to quantify
the coe�cient uncertainties.

4.1 Optimisation of the coupling coe�cients
The observables of the theoretical model outlined in the previous chapter, such as Eq. (3.9), can be
considered as functions denoted by Oth

i (c). Here, the index i = 1, ..., Nd represents di�erent observable
quantities that the model tries to reproduce, whereas c = (c1, ..., cNc) represents the di�erent coupling
coe�cients, or parameters, that are part of the model. As previously stated, these coe�cients are
optimised by using non-linear least-square to fit Oth

i (c) to the experimental Oexp
i values from the given

set of Nd experimental data. To gauge the goodness of fit, the following chi-squared value is calculated

‰2(c) =
Ndÿ

i=1

3Oth
i (c) ≠ Oexp

i

wi

42
. (4.1)

The weight, wi, corresponds to the uncertainty in the experimental value. Here we do not include the
numerical or the theoretical uncertainty, but only the experimental one. The set of optimised coupling
coe�cients that minimise ‰2 is called cmin. A good set of parameters has been found if ‰2(cmin) is
approximately as big as Nd (it is a convention in the field to use Nd instead of Nd ≠ Nc) [1]. The nsopt
computer program uses the optimisation library POUNDerS [14] to find cmin.

4.2 Generating error estimates from the Hessian
The Hessian matrix H(c) of the ‰2(c) is defined as

Hi,j(c) = 1
2

ˆ2‰2(c)
ˆciˆcj

.

Assume that the theoretically determined values, Oth
i (c), are only linearly dependent of the coupling

coe�cients, c, in the region where ‰2(c) Æ ‰2(cmin)(1 + N≠1
d ). This gives that the covariance matrix,

C, of the coupling coe�cients can be approximated by [15][16]

C ¥ ‰2

Nd
H(cmin)≠1. (4.2)

The accuracy of the assumption that Oth
i (c) is linear can be tested by studying ‰2(c), which should be

quadratic if the assumption is correct.
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CHAPTER 4. UNCERTAINTY QUANTIFICATIONS

In the covariance matrix, the diagonal elements are the variances whereas the covariances can be
found o� the diagonal. From the covariance matrix the statistical uncertainties, or the standard deviation,
of the coupling coe�cients can be calculated as

�ci =


Ci,i. (4.3)

The statistical uncertainty of a coe�cient describes how much the value of that coe�cient deviates from
the correct value in average. In addition, the elements in the correlation matrix can be calculated from
the covariance matrix as

fli,j = Ci,j
Ci,iCj,j

. (4.4)

The correlation between two parameters, ci and cj , quantify to what extent the values of these parameters
correlate.

4.3 Error propagation
The covariance matrix can be used to determine errors of physical observables that are computed by
using this model of the potential. To do this we need to propagate the parameter errors all the way to
the observable. A multivariate distribution is used for this purpose. The associated probability density
function looks like

f(c) = (2fi)≠ Nc
2 |C|≠ 1

2 e≠ 1
2 (c≠cmin)ÕC≠1(c≠cmin).

Calculating the physical observable for a collection of coupling coe�cients generated with this multivari-
ate normal distribution and then taking the standard deviation of the result will generate an uncertainty
quantification. This method of propagating errors is easy to implement but it requires that the physical
observable is cheap to calculate since it needs to be calculated a large amount of times. This is the
method for propagating the errors that is used in this study.

Another way to calculate the errors of an arbitrary observable, A, is by using the following formula
[15]

�A =
Ûÿ

i,j

GA
i Ci,jGA

j ,

where GA is defined as
GA = ˆcA|cmin .

A disadvantage of this method is that it requires the derivatives of A with respect to the coupling
coe�cients. This method for propagating the errors is not used in this study, but could potentially be
implemented with AD.
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Chapter 5

Automatic Di�erentiation

Although the underlying principles of AD might have been used well before the invention of the digital
computer, the dawn of modern AD can be traced back to the beginning of the 1960s. Early users
of methods that today would be classified as AD included teams at the Lockheed Corporation and the
General Electric Company. Both groups wrote computer programs calculating derivatives using so called
forward mode AD, which is the conceptually simplest variety. Despite a continuing academic interest
in AD into the 70s, especially at the University of Wisconsin-Madison, it failed to receive mainstream
attention. However, in the beginning of the 80s, the development of new programming concepts such as
operator overloading simplified the task of implementing AD. This in combination with the invention of
reverse mode AD set the stage for a revival of the field. Work done by Andreas Griewank and others at
the Argonne National Laboratory played an important role in many of the advances of this period. The
interest in AD has not waned since then, as evident by the increasing number of applications. [17]

In essence, AD is based on the chain rule of elemental calculus,

dy

dt
= dy

dx

dx

dt
,

which is used to propagate derivatives in parallel with the ordinary calculations. This is possible due
to the fact that all mathematical computations expressed in a programming language are implemented
using a set of intrinsic functions (e.g. sin, exp, etc.) and operators (+, ú, etc.) with well-known
derivatives. In forward mode AD, the derivatives are propagated from the input parameters through the
various intermediate variables all the way up to the final results. An alternative to this approach is to
operate in reverse mode, in which, as the name suggests, the computational chain is instead transversed
backwards from the final result down to the input variables. In either case, AD is believed [17] to have
approximately the same precision as the calculations of the original non-derivative value.

The basic principles of AD as well as the use of the Rapsodia AD tool in Fortran are illustrated
in this chapter, but for a more thorough treatment of the theoretical underpinnings of the subject, the
reader is referred to other sources such as Ref. [18].

5.1 A simple example of forward mode AD
5.1.1 First-order derivatives
In order to elucidate the concept of AD, a simple expression such as

z = exp(xy) + y sin(x), (5.1)

can be considered. This can be divided into several atomic operations performed on a series of interme-
diate variables (w1, w2, w3. . . ) in the following fashion:

w1 = x
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w2 = y

w3 = w1w2

w4 = exp(w3)
w5 = sin(w1)
w6 = w2w5

w7 = w4 + w6

z = w7 (5.2)

When actually implementing the expression in a high-level programming language, a programmer would
of course opt for simply writing down (5.1) in code rather than the elaborate construction of (5.2).
However, the latter is more general as more complicated computations where several subroutines are
involved can be described by this framework, including calculations where the final result cannot be
expressed in the input variables as a closed-form formula.

If we would be interested in the derivative of z with respect to some variable t, we would simply have
to derive every step using the chain rule and the well known rules for di�erentiating elemental functions
and operators

ẇ1 = ẋ

ẇ2 = ẏ

ẇ3 = ẇ1w2 + w1ẇ2

ẇ4 = ẇ3 exp(w3)
ẇ5 = ẇ1 cos(w1)
ẇ6 = ẇ2w5 + w2ẇ5

ẇ7 = ẇ4 + ẇ6

ż = ẇ7. (5.3)

We have here used Newton’s notation (ż = dz
dt , z̈ = d2z

dt2 , etc.) for brevity. x and y might be functions
of other variables, and more intermediate variables would in that case be needed to describe the entire
computational chain all the way down to the input variables with respect to which we wish to di�erentiate.
Alternatively, we might think of x and y as being supplied by some black box routine returning both the
values of x and y as well as their derivatives, ẋ and ẏ. As long as we have values and derivatives to feed
in at the bottom of the chain, we will be able to retrieve the value and derivative of the final result.

If x and y are indeed the input variables, we would wish to retrieve the value of z as well as the
values of the partial derivatives zx and zy given certain values of x and y. The act of assigning values
to ẋ and ẏ to get the correct derivatives at the end of the chain is known as seeding. For example, if we
would wish to derive z with respect to x, x will take on the role of the previously mentioned t, and the
correct seeding values will thus be ẋ = dx

dt = dx
dx = 1 and ẏ = dy

dt = dy
dx = 0. Should we wish to arrive at

zy instead, the correct seeding would be ẋ = 0 and ẏ = 1.
It is easy to verify that these two sets of seeding values are indeed valid by inserting them into

ż = (ẋy + xẏ) exp(xy) + ẏ sin(x) + yẋ cos(x),

which does result in the correct partial derivatives

zx = y exp(xy) + y cos(x)
zy = x exp(xy) + sin(x).

Finally, it might be appropriate to yet again emphasise that we do not need the formula (5.1) to
arrive at the derivatives: if we want to compute zx at e.g. x = 2 and y = 7, we simply input these values
as well as the seeding values (ẋ = 1, ẏ = 0) into Eq. (5.2) and (5.3) and calculate all the intermediate
variables and their derivatives until we arrive at ż = ẇ7.
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5.1.2 Second and higher-order derivatives
Computing higher-order derivatives can be done in a manner analogous to the procedure used for first-
order derivatives. When di�erentiating the intermediate variables to the second order, the result is

ẅ1 = ẍ

ẅ2 = ÿ

ẅ3 = ẅ1w2 + 2ẇ1ẇ2 + w1ẅ2

ẅ4 = ẅ3 exp(w3) + ẇ3
2 exp(w3)

ẅ5 = ẅ1 cos(w1) ≠ ẇ1
2 sin(w1)

ẅ6 = ẅ2w5 + 2ẇ2ẇ5 + w2ẅ5

ẅ7 = ẅ4 + ẅ6

z̈ = ẅ7.

To calculate zxx the correct seeding values are

ẋ = d

dx
x = 1 ẏ = d

dx
y = 0

ẍ = d2

dx2 x = 0 ÿ = d2

dx2 y = 0,

and by switching the values of ẋ and ẏ, zyy is produced instead.
It is less evident what seeding values should be used to arrive at the mixed derivative zxy. A naive

approach might be to set both ẋ = 1 and ẏ = 1 (in addition to ẍ = ÿ = 0). When this is inserted into

z̈ =(ẍy + 2ẋẏ + xÿ) exp(xy) + (ẋ2y2 + 2xyẋẏ + x2ẏ2) exp(xy)
+ ÿ sin(x) + 2ẋẏ cos(x) + ẍy cos(x) ≠ yẋ2 sin(x),

the result is

2 exp(xy) + (y2 + 2xy + x2) exp(xy) + 2 cos(x) ≠ y sin(x) =
y2 exp(xy) ≠ y sin(x) + 2(exp(xy) + xy exp(xy) + cos(x)) + x2 exp(xy),

but when compared to the real second-order derivatives

zxx = y2 exp(xy) ≠ y sin(x)
zxy = exp(xy) + xy exp(xy) + cos(x)
zyy = x2 exp(xy),

it can be seen to equal
z̈ = zxx + 2zxy + zyy.

We have thus arrived at a dilemma: if we want to compute mixed derivatives, we cannot set ẋ nor ẏ
to zero, but this will invariably lead to the inclusion of zxx (due to ẋ ”= 0) and zyy (due to ẏ ”= 0).
Therefore, we must interpolate the results of several di�erent sets of seeding values in order to extract
zxy.

5.2 Reverse mode AD
As mentioned at the start of the chapter, AD can operate in reverse mode in addition to the forward mode
described in the previous section. Furthermore, there also exist methods combining the two approaches.
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To apply reverse mode AD to Eq. (5.1), the atomic operations in Eq. (5.2) must once again be
di�erentiated, but this time in the opposite order:

z = w7,

is first di�erentiated with respect to w7, giving rise to the adjoint

w7 = ˆz

ˆw7
= 1.

The adjoints of the intermediate variables w4 and w6 immediately preceding w7 = w4 + w6 are then
given via the chain rule as

w6 = ˆz

ˆw6
= ˆz

ˆw7

ˆw7
ˆw6

= w7 · 1 = w7

w4 = · · · = w7,

and the remaining adjoints can be shown to equal

w5 = w6w2

w3 = w4 exp(w3)
w2 = w6w5 + w3w1

w1 = w5 cos(w1) + w3w2.

Note that the last two adjoints, w1 = ˆz
ˆw1

= ˆz
ˆx and w2 = ˆz

ˆw2
= ˆz

ˆy , are the two sought partial
derivatives, which have been evaluated with only one reverse sweep through the computational chain.
This can be compared with forward AD, where one sweep for each partial derivative would have been
needed. As a consequence, reverse mode AD is generally faster for functions

f : m æ n,

with m ∫ n (i.e. many independent and few dependent variables), whereas forward mode is advantageous
for functions of the type m π n. A disadvantage of the reverse mode is the increased memory usage, as
the calculated adjoints need to be stored in addition to the other variables.

5.3 Software implementations of AD
AD can be incorporated into software by manually adding derivative-calculating code throughout the
program, but it is usually much more convenient to use a pre-existing AD tool. In general, these can be
classified as using either source code transformation (SCT) or operator overloading (OO) to implement
AD in the target program. [18]

SCT based tools edit the original source code automatically and add additional pieces of code,
calculating derivatives, into each relevant subroutine.

In contrast, AD tools relying on operator overloading introduce new numerical data types, allowing
variables to store their derivatives in addition to their original values. Intrinsic functions and operators are
then overloaded to support the AD data types, with the overloaded methods also calculating derivatives
(e.g. the overloaded sin(x) function does not only set y = sin(x) but also ẏ = ẋ cos(x)). The only
changes to the original source code the programmer will have to make is changing the data type of all
variables in the computational chain from the input variables all the way up to the final result, although
this might in itself be a daunting task.

5.4 A simple Fortran example using the Rapsodia AD tool
Rapsodia is an operator overloading-based AD tool, primarily developed by Isabelle Charpentier (cur-
rently at the Icube Laboratory in Strasbourg) and Jean Utke (at the Argonne National Laboratory), with
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additional contributions from Alexis Malozemo�, Darius Buntinas and Mu Wang. In essence, Rapsodia
is a code generator written in Python. Given the maximum order of the derivatives to compute as well
as the number of directions (a term that will be discussed shortly), it will generate a Fortran 90 or C++
library. This library contains special numerical data types and the corresponding overloaded intrinsic
functions and operators. [3]

In order to demonstrate the use of Rapsodia and similar tools, the simple Fortran program below is
used as an example. The program computes the value of the variable z given the input values x = ≠1.2
and y = 3.2. Note that z is not expressed directly as a simple formula of x and y, as it takes a detour
through the SUMS subroutine.

SUBROUTINE SUMS(x, y, squaresum , cubesum )
IMPLICIT NONE
REAL *8, INTENT (IN) :: x,y
REAL *8, INTENT (INOUT ) :: squaresum , cubesum
squaresum = x**2+y**2
cubesum = x**3+y**3

END SUBROUTINE

PROGRAM CALCULATE
IMPLICIT NONE
REAL *8 :: x, y, z, squaresum , cubesum

x= -1.2
y=3.2

CALL SUMS(x, y, squaresum , cubesum )

z=x*y**2+ sin (2*x)- squaresum + cubesum
WRITE (* ,*) ’z=’, z

END PROGRAM

The output of the CALCULATE program is

z= 6.3965368745134015

In order to calculate the derivatives of z, the source code must be modified slightly:

SUBROUTINE SUMS(x, y, squaresum , cubesum )
INCLUDE ’RAinclude .i90 ’
IMPLICIT NONE
TYPE( RARealD ), INTENT (IN) :: x,y
TYPE( RARealD ), INTENT (INOUT ) :: squaresum , cubesum
squaresum = x**2+y**2
cubesum = x**3+y**3

END SUBROUTINE

PROGRAM CALCULATE
INCLUDE ’RAinclude .i90 ’
IMPLICIT NONE
TYPE( RARealD ) :: x, y, z, squaresum , cubesum
REAL *8 z_x ,z_y ,z_xx ,z_yy

x= -1.2
! Arguments : RAset (variable , direction , order , value)
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! In direction 1, set the first order derivative of x to 1
CALL RAset(x, 1, 1, 1D0)
! In direction 2, set the first order derivative of x to 0
CALL RAset(x, 2, 1, 0D0)
y=3.2
CALL RAset(y, 1, 1, 0D0)
CALL RAset(y, 2, 1, 1D0)

CALL SUMS(x, y, squaresum , cubesum )
z=x*y**2+ sin (2*x)- squaresum + cubesum

CALL RAget(z, 1, 1, z_x)
CALL RAget(z, 1, 2, z_xx)
z_xx =2* z_xx
CALL RAget(z, 2, 1, z_y)
CALL RAget(z, 2, 2, z_yy)
z_yy =2* z_yy

WRITE (* ,*) ’z=’, z%v
WRITE (* ,*) "z_x=", z_x
WRITE (* ,*) "z_y=", z_y
WRITE (* ,*) "z_xx=", z_xx
WRITE (* ,*) "z_yy=", z_yy

END PROGRAM

The new CALCULATE program will now display the derivatives zx, zxx, zy and zyy in addition to the value
of z itself:

z= 6.3965368745134015
z_x= 15.485213183949114
z_y= 16.640000400543215
z_xx= -6.4981478451910828
z_yy= 14.800000190734863.

In the modified source code, the INCLUDE ’RAinclude.i90’ statements refer to the library generated
by Rapsodia, in which the RARealD data type is defined as well as the corresponding overloaded intrinsic
functions and operators. This data type is then used for x and y and all intermediate variables all the
way to z. x and y are set to ≠1.2 and 3.2 as usual, and the RAset subroutine is then used to seed
the variables. As we want to calculate derivatives both with respect to x and y, we use two di�erent
directions, which are nothing more than sets of seeding values: in the first direction we set ẋ = 1 and
ẏ = 0, whereas ẋ = 0 and ẏ = 1 applies in the second one.

When x and y have been properly seeded, the derivatives will be propagated through the entire
computation. Both variables are instances of the RARealD type, and the overloaded operators *, **, +
and - defined in the generated library will thus be used instead of intrinsic Fortran operators for REAL*8.
The overloaded operators calculate derivatives in parallel with the original computations in accordance
with the principles outlined in Section 5.1.

Finally, the RAget subroutine is called upon to extract the sought derivatives from the computed z
variable. As the reader might have noticed, the second-order derivatives returned by RAget are multiplied
by 2 before being presented to the user. This is done because the values returned by RAget (and those
sent into RAset) are not the derivatives per se, but rather coe�cients in the corresponding Taylor series,

f(a) + f Õ(a)h + f ÕÕ(a)
2! h2 + f ÕÕÕ(a)

3! h3 + . . . .
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As the second-order coe�cient is actually 1
2! = 1

2 of the second-order derivative, the latter is produced
by doubling the coe�cient.

In summary, the following steps have to be taken to implement Rapsodia in Fortran programs such
as CALCULATE:

• Find the input and output values of the calculation to identify the computational chain.
• Switch the data type of the input variables from REAL to RARealD, and do the same for all variables

depending on these through the entire chain up to the output. For computations involving complex
numbers, Rapsodia provides the RAComplexD data type.

• Seed the input variables with RAset with appropriate seeding values.
• Use RAget at the end of the chain to retrieve the derivatives.
• Modify other parts of the code, such as the WRITE statements in CALCULATE, to support the switch

of data types.

5.4.1 Mixed derivatives
As previously stated in Section 5.1.2, interpolation must be used to extract mixed higher-order derivatives
such as d2z

dxdy . To relieve developers of the burden of implementing their own interpolation code, Rapsodia
includes the HigherOrderTensor tool. This is based on a strategy for computing derivative tensors of
higher orders outlined in [19].

To use this tool in a program in which Rapsodia is already implemented, such as the CALCULATE
program of the previous section, modifications are only needed in two parts of the program: the seeding
of the input variables, and retrieval of the final results.

Given the number of input variables n and the maximum derivative order o, the tool will return the
number of directions needed. This number can be shown to equal

!
n+o≠1

o

"
. To seed the input variables,

a matrix generated by HigherOrderTensor, containing the appropriate seeding values for each variable
in each direction, is used. To get the derivative tensor of the final result, the coe�cients extracted from
each directions with RAget are interpolated using a HigherOrderTensor subroutine.

More details on the HigherOrderTensor tool can be found in the Rapsodia user manual [20], but as
it lacks a Fortran example, a modified version of the program included in the previous section is provided
in Appendix C.1.

5.4.2 AD and external library routines
A recurring theme throughout this chapter has been the assumption that all mathematical operations
expressed in a programming language only use a set of intrinsic functions and operators with well-known
derivatives. In more complex programs, this is usually not entirely true as they often use functions
provided by external libraries. Such non-intrinsic functions are usually not overloaded by Rapsodia and
similar AD tools, making the implementation of AD in these programs more di�cult. A possible solution
would be to implement AD in the library itself. However, even if the developers have access to its source
code, making such substantial changes in the internal machinery of a third party library is usually outside
their field of expertise and is often too laborious to be practical.

In many cases, a better approach is to try to devise an analytical expression for the derivative of the
mathematical operation performed by the library routine and uses this in the code. For example, the
nsopt program at the centre of this thesis uses a matrix inversion routine from the well known LAPACK
library as described in Section 3.3.1. This means that we wish to find the derivative of A≠1, which can
easily be shown to equal

d

dt
(A≠1) = ≠A≠1 dA

dt
A≠1, (5.4)

whereas the second-order derivative can be obtained as

d2

dt2 (A≠1) = 2A≠1 dA

dt
A≠1 dA

dt
A≠1 ≠ A≠1 d2A

dt2 A≠1. (5.5)
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If AD has been implemented in the computational chain all the way up to the matrix inversion, dA
dt and

d2A
dt2 are already available and the inverse A≠1 can be computed using the original library routine. To
arrive at the derivatives dA≠1

dt and d2A≠1

dt2 , we only need to put these values into Eq. (5.4) and (5.5),
respectively. The derivatives can then be used to seed the elements of the inverted matrix and thereby
starting a new computational chain continuing to propagate derivatives throughout the program.

For the sake of completeness, an example of a subroutine using a library routine for matrix inversion
in combination with the analytic derivative approach described above is included in Appendix C.2.
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Chapter 6

Method of Implementation

The nsopt program calculates a set of observables using chiral EFT (to the LO, NLO, NNLO or N3LO
order) with a given set of values of the unknown parameters. These theoretical results are compared
with low-energy scattering data. As mentioned in previous chapters, nsopt uses a non-linear least-
square method, resulting in a goodness-of-fit measure ‰2. Furthermore, nsopt also contains components
for finding an optimal fit of the parameters (i.e. minimising the ‰2 value) against a certain set of
experimental data.

A major part of the work behind this thesis has been to implement automatic di�erentiation in nsopt
using Rapsodia, as described in Chapter 5. This allows the computation of first and second order partial
derivatives of ‰2 with respect to the di�erent parameters, which can be used to calculate error estimates
as described in Chapter 4. In this chapter, the general structure of nsopt will be explained as well as
the modification required to support the computation of ‰2 derivatives.

6.1 The computational chain of nsopt
nsopt is mainly written in Fortran with some more recent parts written in C, although the latter have not
been modified in the course of this project. In the following text, the main steps along the computational
chain will be described. A figure over the workflow is shown in Figure 6.1.

First, the parameters of the chiral EFT are set to user-specified values and the elements of the
potential matrix V (as found in the Lippman-Schwinger equation (3.11)) are computed for a large
number of di�erent linear momenta. In the next step, a reaction matrix R is constructed according
to Eq. (3.13). This makes it possible to calculate phase shifts using a matrix inversion as described in
Section 3.2.4. nsopt uses a routine from the LAPACK library to perform the matrix inversion. The
partial wave amplitudes are then calculated as outlined in the same section, allowing the spin-scattering
matrix to be determined using Eq. (3.7). The program can subsequently evaluate the observables from
the scattering matrix using Saclay representation, as described in Eq. (3.8). Finally, these calculated
observables are compared to experimental proton-proton and neutron-proton scattering data, resulting
in a ‰2 value as defined in Eq. (4.1).

6.2 Implementation of AD in the nsopt program
As seen in Chapter 3 as well as the previous section, the computation of the ‰2 value is a non-trivial
process involving a series of intricate steps. Consequently, it was not possible to implement AD in one
stroke and a more gradual approach had to be chosen. AD was implemented from the bottom up, one
subroutine at a time. This combined with the approach to only add AD support at one chiral order at
a time made the implementation consist of small, almost independent steps. This strategy allowed the
AD computed derivatives to be cross-checked with finite di�erence calculations after each step, making
errors easier to locate.
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nsopt

chiral twobody
 potentials

compute
scattering
observable

Figure 6.1: A diagram showing the workflow of the computer model in nsopt . The names in the
boxes refer to di�erent parts or subroutines of the program.

Most of the programming work consisted of the tedious task of changing data types from REAL*8 to
RARealD and COMPLEX*16 to RAComplexD throughout the computational chain. A more specific challenge
was the implementation of AD support in a matrix inversion routine as described in Section 5.4.2, as
well as in routines for computing the absolute value, conjugate and extracting the imaginary parts of
RAComplexD types.

When first order derivatives of ‰2 could be calculated correctly, adding support for second order
derivatives did not present much of a problem.

A final task was the seeding and interpolation of the second order derivatives at the beginning and
end of the computational chain, respectively. This required the HigherOrderTensor tool described in
Section 5.4.1.

6.3 Requirements on the data imposed by the method
Since this thesis aims to calculate derivatives of ‰2 the computer program must consist of functions that
are di�erentiable with respect to the parameters. If data points at a scattering angle of 180¶ in the centre
of mass system are used, the computation of the corresponding theoretical observables will include the
absolute value of 0. As the derivative of this function at 0 is not defined, calculations involving such data
points will result in nsopt returning NaN (Not a Number) as the values of the derivatives. Consequently,
no calculation at this particular scattering angle can be used in the AD enabled program.

Another obstacle that was encountered during the implementation phase was the di�culty of finding
acceptable minima. If there are any cusps at, or very close to the minimum, inverting the Hessian
generates covariance matrices with negative variances. The reason for this is that the approximation
that is made in Eq. (4.2) is incorrect if the ‰2(c) is not quadratic.

6.4 Propagating errors to the deuteron
The two-nucleon system of the deuteron is a suitable test for the propagation of errors from the cou-
pling coe�cients to many-body physics calculations. The nsopt program may also be utilised for the
calculation of bound state energies. By sampling the parameter space using a multivariate Gaussian
distribution for both the LO and NLO coupling coe�cients the binding energy, Eb, was calculated for
each set of parameters. From this the standard error, �Eb, was determined. Multivariate Gaussian
distributions are described in Section 4.3.
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Chapter 7

Results

The results detailed in this chapter were derived from Hessians of the ‰2 measure with respect to
the coupling coe�cients. These Hessians were computed with AD at one LO and two NLO minima
according to the principles of Chapter 5 and Chapter 6. The minima were optimised against neutron-
proton scattering data, with data points at energies up to 4 MeV and 75 MeV used for LO and NLO,
respectively. For LO and one of the NLO minima the cuto�, �, was set to 500 MeV. In contrast,
� = 450 MeV was used for the other NLO minimum.

Given the Hessians, covariance matrices could be calculated. These matrices were used to obtain
statistical uncertainties of, and correlation matrices between, the coupling coe�cients. Finally, these
uncertainties were propagated to the binding energy of the deuteron. In addition to the results mentioned
above, a comparison between AD and numerical di�erentiation and a demonstration of the linearity of
the calculated observables, as required by the method, are also presented in this chapter.

7.1 Statistical uncertainties of the coe�cients
The statistical uncertainties in the form of the standard deviations of the coupling coe�cients were
generated from the Hessians by using Eq. (4.2) and (4.3) for the examined minima.

7.1.1 Leading-order
The statistical uncertainties for the LO minimum and the corresponding coupling coe�cients can be seen
in Table 7.1. The uncertainties are small for both of the LO parameters.

Table 7.1: The statistical uncertainties of the coupling coe�cients for LO.

Constant ci �ci | �ci
ci

|
Ct_1S0 ≠0.1073 1.795 · 10≠5 0.0167%
Ct_3S1 ≠0.0710 5.024 · 10≠5 0.0708%

7.1.2 Next-to-leading-order
The statistical uncertainties of the NLO minimum with � = 500 MeV can be seen in Table 7.2. Most of
the uncertainties are in the order of 0.01. Some of the parameters have larger statistical errors, possibly
due to the nature of the used scattering data: If the scattering data points used are less dependent on
some of the parameters, these are not as influential in the determination of ‰2. This would presumably
result in larger statistical uncertainties.
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Table 7.2: Statistical uncertainties of the coupling coe�cients at the NLO minimum with � =
500 MeV.

Constant ci �ci | �ci
ci

|
Ct_1S0np ≠0.1502 4.057 · 10≠4 0.270%
Ct_3S1 ≠0.1460 2.545 · 10≠3 1.743%
C_1S0 1.7016 4.280 · 10≠2 2.516%
C_3P0 1.4703 4.864 · 10≠2 3.308%
C_1P1 0.4836 3.982 · 10≠2 8.235%
C_3P1 ≠0.0521 9.687 · 10≠2 185.9%
C_3S1 ≠0.5893 1.915 · 10≠2 3.249%
C_3S1-3D1 0.0391 1.677 · 10≠2 42.94%
C_3P2 ≠0.1703 4.639 · 10≠3 2.724%

The statistical errors and values of the coupling coe�cients for the NLO minimum with � = 450 MeV
are presented in Table 7.3. Comparing this table with that for the other NLO minimum we can see that
each pair of coupling coe�cients has statistical uncertainties of roughly the same size.

Table 7.3: Statistical uncertainties of the coupling coe�cients at the NLO minimum optimised
using � = 450 MeV.

Constant ci �ci | �ci
ci

|
Ct_1S0np ≠0.1560 7.319 · 10≠4 0.469%
Ct_3S1 ≠0.1593 1.949 · 10≠3 1.224%
C_1S0 1.6422 3.298 · 10≠2 2.008%
C_3P0 1.3717 3.659 · 10≠2 2.668%
C_1P1 0.4941 3.476 · 10≠2 7.035%
C_3P1 ≠0.0149 8.146 · 10≠2 545.2%
C_3S1 ≠0.5378 1.720 · 10≠2 3.199%
C_3S1-3D1 0.0701 1.534 · 10≠2 21.89%
C_3P2 ≠0.1899 5.434 · 10≠3 2.862%

7.2 Correlations of the coupling coe�cients
Correlation matrices were calculated from the Hessians by using Eq. (4.2) and (4.4). This was done for
both the LO minimum and the two NLO minima.

7.2.1 Leading-order
The correlation between the two parameters at the LO minimum was calculated as 0.79, meaning that
the parameters are positively correlated. In Figure 7.1 this correlation is illustrated.
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Figure 7.1: The figures illustrate how the Ct_1S0 and Ct_3S1 coupling coe�cients correlate for
LO. The value of the correlation coe�cient is 0.79. The left figure shows the correlation ellipse for
the pair of parameters and the right figure displays the variation in ‰2 as the coupling coe�cients
vary.

Table 7.4: The correlations for the coupling coe�cients of the NLO minimum (with � = 500 MeV)
that is presented in Table 7.2.

Constant Ct
_1

S0
np

Ct
_3

S1

C_
1S

0

C_
3P

0

C_
1P

1

C_
3P

1

C_
3S

1

C_
3S

1-
3D

1

C_
3P

2

Ct_1S0np 1 0.32 0.98 ≠0.23 0.49 0.17 ≠0.26 ≠0.28 ≠0.17
Ct_3S1 0.32 1 0.26 0.22 ≠0.40 0.03 ≠0.78 ≠0.89 0.44
C_1S0 0.98 0.26 1 ≠0.31 0.54 0.24 ≠0.15 ≠0.27 ≠0.21
C_3P0 ≠0.23 0.22 ≠0.31 1 ≠0.61 ≠0.84 ≠0.60 0.11 0.58
C_1P1 0.49 ≠0.40 0.54 ≠0.61 1 0.52 0.47 0.24 ≠0.32
C_3P1 0.17 0.03 0.24 ≠0.84 0.52 1 0.50 ≠0.41 ≠0.13
C_3S1 ≠0.26 ≠0.78 ≠0.15 ≠0.60 0.47 0.50 1 0.40 ≠0.38
C_3S1-3D1 ≠0.28 ≠0.89 ≠0.27 0.11 0.24 ≠0.41 0.40 1 ≠0.36
C_3P2 ≠0.17 0.44 ≠0.21 0.58 ≠0.32 ≠0.13 ≠0.38 ≠0.36 1

7.2.2 Next-to-leading-order
The NLO Hamiltonian has 9 coupling coe�cients, resulting in 36 di�erent pairwise correlation coe�-
cients. Table 7.4 shows the correlation matrix at the NLO minimum as in Table 7.2. In Figure 7.2 we
can see the correlation between two pairs of coupling coe�cients expressed as correlation ellipses.

The correlation between the Ct_1S0np and C_1S0 is close to 1. Thus, at the ‰2 minimum, Ct_1S0np
is to a large extent determined by the value of C_1S0, and vice versa. The correlation between these
parameters are illustrated in Figure 7.2.

Another feature is that the correlation coe�cients with large (either positive or negative) values tend
to correspond to channels with some quantum numbers in common. For example the Ct_3S1 coupling
coe�cient has a large negative correlation with C_3S1 and C_3S1-3D1, with values of ≠0.78 and ≠0.89
respectively. The coupling coe�cients Ct_1S0np and C_1S0 are another example, as well as C_3P0
and C_3P1, which share the same spin and angular momentum quantum state and have a correlation of
≠0.84. However, there are examples that contradict this pattern: For example, the C_3P1 and C_3P2
coupling coe�cients, which have a correlation of merely ≠0.13.
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Figure 7.2: The correlation ellipses for two pairs of coupling coe�cients for the NLO minimum
stated in Table 7.2. The correlation coe�cients for the two pairs that are displayed in the two graphs
are, from left to right, 0.98 and 0.22.

Table 7.5: The correlation-matrix of the NLO minimum (with � = 450 MeV) that is presented in
Table 7.3

Constant Ct
_1

S0
np

Ct
_3

S1

C_
1S

0

C_
3P

0

C_
1P

1

C_
3P

1

C_
3S

1

C_
3S

1-
3D

1

C_
3P

2

Ct_1S0np 1 ≠0.18 ≠0.99 0.34 ≠0.58 ≠0.27 0.07 0.25 0.22
Ct_3S1 ≠0.18 1 0.23 0.36 ≠0.43 ≠0.11 ≠0.84 ≠0.79 0.45
C_1S0 ≠0.99 0.23 1 ≠0.31 0.56 0.24 ≠0.13 ≠0.26 ≠0.20
C_3P0 0.34 0.36 ≠0.31 1 ≠0.60 ≠0.82 ≠0.63 0.08 0.57
C_1P1 ≠0.58 ≠0.43 0.56 ≠0.60 1 0.50 0.46 0.24 ≠0.31
C_3P1 ≠0.27 ≠0.11 0.24 ≠0.82 0.50 1 0.54 ≠0.41 ≠0.08
C_3S1 0.07 ≠0.84 ≠0.13 ≠0.63 0.46 0.54 1 0.34 ≠0.35
C_3S1-3D1 0.25 ≠0.79 ≠0.26 0.08 0.24 ≠0.41 0.34 1 ≠0.39
C_3P2 0.22 0.45 ≠0.20 0.57 ≠0.31 ≠0.08 ≠0.35 ≠0.39 1

In Table 7.5 the correlation of the other NLO minimum investigated (with � = 450 MeV and coupling
coe�cients as in Table 7.3) is shown. Comparing the correlation coe�cients in Table 7.4 and 7.5 we can
see a pattern: For most of the elements the correlation is quite similar between the two di�erent sets of
coupling coe�cients e.g. C_1S0 and C_3S1. For others the correlation di�ers with just the sign, for
example Ct_1S0 and C_1S0. However, there are also pairs of coupling coe�cients that invariably have
values far from each other, such as Ct_1S0 and C_3S1.

7.3 Statistical uncertainty in deuteron calculations
After having obtained the standard errors of the chiral EFT coe�cients, it is possible to propagate these
statistical uncertainties to nuclear observables. The deuteron is the simplest bound nuclear system and
therefore constitutes a suitable test.

In Table 7.7 the amount of samples needed to accurately obtain the propagated error was examined.
10 scans were performed with sample sizes of 100, 1000 and 10000 respectively. The samples were
generated using a multivariate Gaussian distribution determined by the correlation matrices in Section
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7.2. The binding energy Eb was calculated for each set of parameters and the standard error determined
by �Eb = Std(Eb). A sample size for which the standard error is constant, i.e the standard deviation
of �Eb is small, will display the statistical uncertainty correctly. The results indicate that a sample size
above 104 is preferable.

Table 7.6: The standard deviation of �Eb for di�erent sample sizes. 10 di�erent samples of each
size were used to calculate the standard deviation.

Sample size Std(�Eb) [keV]

LO NLO
100 4.652 · 10≠1 9.415 · 10≠1

1000 1.733 · 10≠1 2.829 · 10≠1

10000 3.434 · 10≠2 8.759 · 10≠2
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Figure 7.3: The standard deviation of Eb for a 105 sample size. The deviation is plotted against
the increasing number of samples. Although a point depends on all previous values the standard
deviation is constant between 104 to 105 samples. This indicates that 105 samples are enough to
obtain the propagated error.

To obtain the statistical uncertainty of the deuteron Eb a sample of 105 points was used. Figure 7.3
shows how �Eb varies with the amount of samples, supporting our assessment that a sample size over
104 points is enough.

The calculated binding energy, Eb, and standard deviation, �Eb, is presented in Table 7.7. For both
orders, the relative error are below one percent of Eb. The deuteron binding energy Eb is known to be
2.22 MeV. However, the discrepancy between this and our results is due to the fact that the interaction
potential was not optimised against the binding energy of the deuteron. The results show small deviations
indicating a low statistical uncertainty using chiral EFT in deuteron calculations.

At LO the deuteron is only dependent on the 3S1-partial wave while at NLO it is dependent on three
of the coupling coe�cients. The fact that the LO standard error is smaller than the NLO one is most
likely due to this fact.
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Table 7.7: Calculation of the deuteron binding energy for 105 samples and its standard error for
both LO and NLO.

Order N samples Eb [MeV] �Eb [keV] | �Eb

Eb
|

LO 105 ≠2.113 6.504 0.3078%
NLO 105 ≠2.113 14.93 0.7065%

7.4 AD compared with finite di�erence methods
To ensure the correctness of the derivatives computed with automatic di�erentiation, they were compared
with results from finite di�erence methods. Due to the inherent rounding errors of the latter the AD
values could never be fully replicated, but the numerical derivatives were close enough to verify that the
AD enabled nsopt version did indeed give correct derivatives.

Table 7.8 compares AD derivatives at an NLO-minimum with corresponding finite di�erence deriva-
tives calculated with step lengths h of decreasing size. Initially, the numerical derivatives approach the
AD computed values as h decreases, confirming the validity of the AD results. However, when the step
length goes below a certain value (10≠4 and 10≠6 for the first and second order, respectively) the results
of the two methods start to diverge due to rounding errors, showing the precision advantage of automatic
di�erentiation.

It should be mentioned that the numerical derivatives in Table 7.8 were computed with an external
Python script reading from the output of nsopt, and that some additional rounding errors occur when
nsopt prints the computed ‰2 values. However, this does not change the fundamental fact that finite
di�erence methods are numerically ill-conditioned for small values of h. This was evident at several stages
in the AD implementation in nsopt when the derivatives were cross-checked with numerical derivation
implemented into the program itself.

Table 7.8: A comparison of ‰2 derivatives in an NLO-minimum computed with AD and by finite
di�erence. The table lists the first and second order derivatives with respect to C_3P0, as well
as the mixed second-order derivative with respect to C_3P0 and C_3P1. The finite di�erence
approximation has been computed for various step lengths h, with the approximative values closest
to the AD derivatives in bold.

h First Second Mixed
AD -0.40436387006849017 17381.523865263011 6462.9897938677113
10≠2 -2.25177102686 17387.1881932 6465.35799077
10≠3 -0.42283434891 17381.5805024 6463.01347297
10≠4 -0.404548562756 17381.5246626 6462.98993274
10≠5 -0.404365698614 17381.5465132 6462.99213258
10≠6 -0.404364072892 17379.5342562 6462.64197712
10≠7 -0.404369302487 17394.0861714 6463.09672447
10≠8 -0.404520505981 40927.2615798 10231.8153949
10≠9 -0.403133526561 2273736.75443 966338.120634
10≠10 -0.410409484175 68212102.633 17053025.6582
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7.5 The credibility of the linear approximation
As stated in Section 4.2 the theoretical model has to be approximated as a linear function to be able
to calculate the covariance matrix using Eq. (4.2). A linear theoretical model results in quadratic ‰2

function. Figure 7.4 displays how ‰2 varies with the Ct_3S1 parameter in the relevant range for the
NLO minimum with � = 500 MeV, as well as a fitted quadratic curve. The sum of squared errors of
prediction (SSE) for the 98 values making up the diagram is 2.34 · 10≠5 and the residual sum of squares
(R2) is 1.00, indicating a very good fit.

This investigation is only done with respect to one of the coupling coe�cients. It is nevertheless
plausible to suppose that the result would be similar if one conducted the survey with any of the other
parameters. The reason for this is that similar, but not so carefully produced charts, of other coupling
coe�cients all have a quadratic appearance. Similarities in how the coupling coe�cients are included
in the model also support this reasoning. The conclusion drawn by this examination is that the linear
approximation is sound.

−0.14606 −0.14604 −0.14602 −0.14600 −0.14598 −0.14596 −0.14594
1 210.4

1 210.6

1 210.8

1 211.0

1 211.2

1 211.4

1 211.6

1 211.8

1 212.0

Ct 3S1

χ
2

 

 

Figure 7.4: The change in ‰2 as Ct_3S1 varies. The dots are the values determined by the chiral
EFT model, while the line is a quadratic curve fitting of those values. The similarity between
the measured values and the curve fitting shows that the approximation concerning the covariance
matrix made in this report is correct.
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Chapter 8

Discussion

In this chapter we discuss how the results obtained in this study can be interpreted. Whereas the
conclusions drawn in the previous chapter are more specific, often pertaining to a table or a figure,
the conclusions presented and substantiated here are more general. A central aim of this study was to
investigate whether it is feasible to use AD to obtain statistical uncertainties for the coupling coe�cients
of a chiral EFT model. This is discussed as well as the limitations of this method. Furthermore, the
possibility of extending the computer program further and thus produce additional results is covered.
Lastly we suggest how the generated error estimates and derivatives obtained by AD could be used in
further applications.

8.1 Computing statistical uncertainties with AD
As previously demonstrated it is indeed possible to obtain error estimates for the parameters of LO and
NLO for neutron-proton interactions by using AD. Although we have not implemented this approach for
N3LO or proton-proton interactions there are no obvious obstacles preventing such future developments.
However, there are a few issues that have to be taken into account when using the outlined method:

• The use of some data records will result in a ‰2 that is non-di�erentiable, and the computed
derivatives will therefore be undefined and set to NaN (Not a Number) by the AD enabled nsopt
program. This seems to be a minor problem and we have only needed to remove two out of over
500 data records.

• The computer program that generates the ‰2 must not contain any inaccuracies that could create
cusps in the ‰2(c) function. These cusps risk not only to complicate the minimisation procedure,
but also to prohibit the use of the chosen method of finding covariance matrices, since in doing so
the ‰2(c) needs to be quadratic around the minimum.

• The application of the AD tool Rapsodia to a non-trivial program requires a data type change of
all variables from the input parameters to the final result throughout the computational chain.
To keep the resulting errors few and easy to locate, it is recommended to implement AD in a
stepwise manner and cross-check the resulting derivatives with finite di�erence methods as often
as practically possible.

8.2 Requirements on the data imposed by the method
As discussed in Section 6.3 and the section above there are two requirements of the outlined method
for generating covariance matrices that needs to be taken into account when using it: data points at
scattering angles of 180¶ cannot be used, and there must not be any cusps or discontinuities around the
minima. This section discusses how these problems might be avoided.
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The problem with NaN derivatives arise at scattering angles of 180¶. At these data records the
resulting calculations will include the absolute value of 0, where the absolute value function is not
di�erentiable. Therefore, a singularity will result when nsopt tries to calculate its derivative. There
is a possibility that this singularity is removable. If this is the case it would be possible to replace all
scattering angles at this value with an angle that is very close to 180¶ and still obtain a correct ‰2 as
well as its derivatives.

The problem with cusps in the ‰2(c) function is more di�cult. The only way to proceed is to
somehow remove these cusps. This could be done by removing the problematic data records and then
minimising the ‰2 again. It can also be done by trying to find a new local minimum that preferably is
smaller, with the same data records.

8.3 Possible speed gain by using reverse-mode AD
As noted in Section 5.2, reverse-mode AD tend to be faster than forward-mode AD when seeking partial
derivatives of few dependent variables with respect to many input parameters. nsopt calculates a
single ‰2 value as a function of the parameters in the chiral EFT, which are numerous, especially at
higher orders. It is therefore possible that the program execution time might be significantly reduced
by implementing reverse mode AD in nsopt. The Rapsodia user manual [20] mentions reverse-mode
AD without o�ering any examples of its use, and the di�culty of applying this approach to nsopt thus
remains uncertain.

8.4 Alternative ways to generate the covariance matrix
In this study, Eq. (4.2) has been used to approximate the covariance matrix. There are two other
approximations that can be used. One of them only needs first-order derivatives, whereas the other one
uses both first- and second-order derivatives. For further information, see Ref. [16].

These two other ways of approximating the covariance matrix have not been investigated in this
survey due to the limited time available, but this could be an interesting future goal for two reasons:
Firstly, it could result in a faster method for generating the covariance matrices, since only first-order
derivatives needs to be calculated for one of them. Secondly, it might also add some extra insight
concerning the validity of these approximations, since a comparison between the results generated could
be conducted.

8.5 AD derivatives for optimisation
As mentioned in Chapter 4 the nsopt program uses the optimisation tool POUNDerS to find a minimum
of the ‰2 value. This optimisation algorithm does not use derivatives since they were previously not
available to the developers. One interesting idea could be to employ the derivatives computed with
AD to both speed up the optimising process as well as use it to find new and possibly better minima.
A technique that uses derivatives in the optimising process is the Levenberg–Marquardt algorithm [21].
This method makes use of the derivatives found in this thesis, and would probably improve the optimising
process.

8.6 Statistical uncertainty in many-body physics observables
Obtaining error estimates of the chiral EFT coe�cients presents the possibility of propagating statistical
uncertainties to nuclear many-body observables. As exemplified in the deuteron case this is indeed
possible. However, the methods used in this thesis for the error propagation might not be optimal. Our
conclusion that 105 samples, maybe even fewer, are enough to obtain a statistical certainty in the solution
was obtained by scanning the nine-dimensional parameter space. This process will be computationally
demanding for more complex systems, or for higher orders as NNLO and N3LO. Therefore, other methods
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such as error propagation using derivatives (briefly explained in Section 4.3) or machine learning need
to be examined.
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Chapter 9

Conclusions and Recommendations

This chapter summarises the conclusions drawn in this thesis. More details concerning the conclusions, as
well as justifications, can be found in Chapters 7 and 8. The conclusions presented are divided into three
di�erent categories: those discussing the possibility of implementing AD in chiral EFT, more general
conclusions about chiral EFT, and lastly an outlook for what this method can contribute to in the future.

9.1 The feasibility of the method
• AD can be implemented in the chiral EFT computer model to obtain derivatives of ‰2 with respect

to the coupling coe�cients.

• By using the Hessian obtained by AD, it is possible to calculate the covariance matrix. This
covariance matrix can be used to calculate error estimates of, as well as correlations between, the
coupling coe�cients.

• The calculation of the covariance matrix requires the minimum to be free from cusps. If not, the
approximation made is invalid resulting in unreasonable variances.

• It is possible to propagate the error estimates up to physical observables, such as the binding
energy of the deuteron, by sampling the parameter space with the covariance matrix.

9.2 Discovered features of chiral EFT
• The error estimates for LO coupling coe�cients are of the order 0.01%.

• NLO coupling coe�cients have statistical uncertainties in the order of 1%, although some of the
parameters deviate from this.

• The uncertainty of the deuteron binding energy was calculated to be 0.3% for an LO chiral EFT
and 0.7% for an NLO one.

• There seems to be a higher correlation between coupling coe�cients describing scattering channels
with some quantum numbers in common.

9.3 Outlook
• It is most likely possible to obtain the Hessian for proton-proton data as well as for higher chiral

orders.

• There exists alternative ways to approximate the covariance matrix, one of them only requires
first-order derivatives which would decrease the computational time.
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• A technique that could be investigated is to use the derivatives for speeding up the optimisation
process. An algorithm that probably would fit this purpose is the Levenberg–Marquardt algorithm.

• By implementing reverse-mode AD instead of forward-mode AD it is probably possible to shorten
the computational time.
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Appendix A

Chiral Symmetry

In this appendix a more formal definition of chiral symmetry is given in terms of transformations that
act on a field. We also explain why massive particles break the chiral symmetry.

A.1 Useful matrices
To understand and define chiral symmetry a set of matrices is needed, these are presented below and
will be used later on.

A.1.1 Gamma matrices
The gamma matrices is a set of four 4 ◊ 4 matrices with special commutation and anti-commutation
relations. We will first define these matrices and then give a brief introduction to the anti-commutation
relations to the extent that is needed for this thesis. The contravariant gamma matrices are labelled
“0, ..., “3 and are defined as,

“0 =

Q

cccca

1 0 0 0
0 1 0 0
0 0 ≠1 0
0 0 0 ≠1

R

ddddb

“1 =

Q

cccca

0 0 0 1
0 0 1 0
0 ≠1 0 0

≠1 0 0 0

R

ddddb

“2 =

Q

cccca

0 0 0 ≠i

0 0 i 0
0 i 0 0

≠i 0 0 0

R

ddddb

“3 =

Q

cccca

0 0 1 0
0 0 0 ≠1

≠1 0 0 0
0 1 0 0

R

ddddb
.
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These matrices satisfy certain anti-commutation relations that follows,
Y
___]

___[

{“i, “j} = 0 i ”= j

{“i, “i} = 1 i = 0

{“i, “i} = ≠1 i = 1,2,3.

At last we define the product of the four gamma matrices to be “5 which, despite its name, is not a
gamma matrix.

“5 = i“0“1“2“3 =

Q

cccca

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

R

ddddb

As can be checked by the reader “5 anticommutes with all the four gamma matrices.

A.2 Quantum field theory
To describe what chiral symmetry implies, an object that is invariant under the corresponding symmetry
operation is needed. In this case we will use the Lagrangian for massless fermions, given by [5].

L = iÂ̄ˆµ“µÂ. (A.1)

Chiral symmetry implies that the field is left invariant under the two specific operations of vector
and axial transformation, referred to as �V and �A respectively, and defined as,

Y
_]

_[

�V : Â ≠æ e≠i ·̨
2 ◊̨Â ¥

1
1 ≠ i ·̨

2 ◊̨
2

Â

�A : Â ≠æ e≠i“5 ·̨
2 ◊̨Â ¥

1
1 ≠ i“5

·̨
2 ◊̨

2
Â.

In the above equations, ·̨ is a isospin vector consisting of the gamma matrices [5]. The complex conjugate
of the fields transform like,

Y
_]

_[

�V : Â̄ ≠æ ei ·̨
2 ◊̨Â̄ ¥

1
1 + i ·̨

2 ◊̨
2

Â̄

�A : Â̄ ≠æ e≠i“5 ·̨
2 ◊̨Â̄ ¥

1
1 ≠ i“5

·̨
2 ◊̨

2
Â̄.

For the axial transform the minus sign in the exponent remains because of the anti-commutation relations
between the gamma matrices,

≠i“5
·̨

2 ◊̨ = i
·̨

2 ◊̨“5 = ≠i“5
·̨

2 ◊̨.

With these definitions we can check that the Lagrangian given in Eq. (A.1) really is invariant under
�V and �A:

�V : iÂ̄ˆµ“µÂ ≠æ iÂ̄ˆµ“µÂ ≠ i◊̨

3
Â̄iˆµ“µ ·̨

2 Â ≠ Â̄
·̨

2 iˆµ“µÂ

4
= iÂ̄ˆµ“µÂ

�A : iÂ̄ˆµ“µÂ ≠æ iÂ̄ˆµ“µÂ ≠ i◊̨

3
Â̄iˆµ“µ“5

·̨

2 Â + Â̄“5
·̨

2 iˆµ“µÂ

4
= iÂ̄ˆµ“µÂ.

For the axial transform the terms in the parenthesis cancel each other out since “µ and “5 anti commutes.
Since the Lagrangian is preserved for both operators it is said to have chiral symmetry.
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A.3 Explicit breaking of the symmetry
To understand why the chiral symmetry breaks for massive particles we will introduce a mass term
into the Lagrangian and check if it still is invariant under the symmetry operations. The mass term is
introduced in the Lagrangian as [5],

L = iÂ̄ˆµ“µÂ ≠ mÂ̄Â.

The symmetry operation �V acts on it in the following way,

�V : iÂ̄ˆµ“µÂ ≠ mÂ̄Â ≠æ iÂ̄ˆµ“µÂ ≠ mÂ̄Â ≠ m◊̨

3
Â̄i

·̨

2 Â ≠ Â̄i
·̨

2 Â

4
= iÂ̄ˆµ“µÂ ≠ mÂ̄Â.

As seen the Lagrangian is still invariant under the vector symmetry. Applying the axial symmetry
operation on the Lagrangian results in,

�A : iÂ̄ˆµ“µÂ ≠ mÂ̄Â ≠æ iÂ̄ˆµ“µÂ ≠ mÂ̄Â

≠m◊̨

3
Â̄“5i

·̨

2 Â + Â̄“5i
·̨

2 Â

4
= iÂ̄ˆµ“µÂ ≠ mÂ̄Â ≠ 2m◊̨

3
Â̄i

·̨

2 “5Â

4
,

showing that the Lagrangian no longer is invariant under the axial transformation, meaning that the
chiral symmetry breaks down. The extent of the symmetry breaking is seen to be proportional to the
mass of the particle described by the Lagrangian. If the mass of the particle is small compared to
the working mass scale, the Lagrangian is almost invariant and chiral symmetry can be said to apply
approximately. The fact that the symmetry is almost satisfied may allow for the use of perturbation
theory, which can be a very e�ective approach to describe the nuclear force. When done in a systematic
way, it is known as chiral EFT.

The explicit breaking of the symmetry described above should not be confused with the sponta-
neously breaking of the chiral symmetry. The spontaneously breaking means that the Lagrangian is not
symmetric in its ground state. For more information on this subject consider reference [5].
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Scattering Theory

This Appendix contains more complete expressions for some of the presented concepts in Chapter 3.

B.1 Spin-scattering matrix solutions
The singlet-triplet spin-space matrix is given by

M =

S

WWWWU

M++ M+0 M+≠ 0
M0+ M00 M0≠ 0
M≠+ M≠0 M≠≠ 0

0 0 0 Mss

T

XXXXV

Without any detailed deduction equation (3.7) can be solved and gives the following result for neutron-
proton scattering.

Mss =
ÿ

L

(2L + 1)fLPL(cos ◊)

M++ =
ÿ

L

5
L + 2

2 fL,L + L ≠ 1
2 fL,L≠1 ≠ 1

2


(L + 1)(L + 2)fL+1

≠1
2


(L ≠ 1)LfL≠1

6
PL(cos ◊)

M00 =
ÿ

L

Ë
(L + 1)fL,L+1

LfL,L≠1


(L + 1)(L + 2)fL+1
(L ≠ 1)LfL≠1

È
PL(cos ◊)

M0+ =
ÿ

L

5
≠ L + 2Ô

2(L + 1)
fL,L+1 + 2L + 1Ô

2L(L + 1)
fLL + L ≠ 1Ô

2L

fL,L≠1

Û
L + 2

2(L + 1)fL+1 ≠
Ú

L ≠ 1
2 fL≠1

D
P 1

L(cos ◊)

M+0 =
ÿ

L

C
1Ô
2

fL,L+1 ≠ 1Ô
2

fL,L+1

Û
L + 2

2(L + 1)fL+1 ≠
Ú

L ≠ 1
2 fL≠1

D

M+≠ =
ÿ

L

5
1

2(L + 1)fL,L+1 ≠ 2L + 1
2L(L + 1)fLL + 1

2L
fL,L≠1
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≠ 1
2


(L + 1)(L + 2)
fL+1 ≠ 1

2


(L ≠ 1)L
fL≠1

D
P 2

L(cos ◊)

with the partial wave amplitudes given as

fL = 1
2ik0

!
e2i”L≠1"

fLJ = 1
2ik0

!
e2i”LJ ≠ 1

"

fJ±1,J = 1
2ik0

!
cos(2‘J)e2i”J±1,J ≠ 1

"

fJ = 1
2k

sin(2‘J)ei(”J≠1,J +”J+1,J )

With these expressions it is possible to calculate observables for di�erent types of polarised scattering
experiments.

B.2 Interaction formulas
The partial wave decomposition of the interaction in momentum space is given by ÈLSJ | V (p,pÕ) | LSÕJÍ.
The partial wave projections discussed in Section 3.4 is given in six channels by the following expressions.

W1 = AJ,0
C ≠ 3AJ,0

S + p2pÕ2(AJ,2
‡L ≠ AJ,0

‡L) ≠ (p2 + pÕ2)AJ,0
T + 2pÕpAJ,1

T

W2 = AJ,0
C + AJ,0

S + ppÕ

2J + 1

1
AJ+1,0

LS ≠ AJ≠1,0
LS

2
+

p2pÕ2
3

≠AJ,0
‡L + J ≠ 1

2J + 1AJ+1,1
‡L + J + 2

2J + 1AJ≠1,1
‡L

4
+

3
(pÕ2 + p2)AJ,0

T ≠ 2ppÕ

2J + 1

1
JAJ+1,0

T + (J + 1)AJ≠1,0
T

24

W3 = AJ+1,0
C + AJ+1,0

S + ppÕ J + 2
2J + 3

1
AJ+2,0

LS ≠ AJ,0
LS

2
+ (B.1)

p2pÕ2
3

2J + 3
2J + 1AJ+1,0

‡L ≠ 2
2J + 1AJ,1

‡L ≠ AJ+1,2
‡L

4
+

1
2J + 1

1
2ppÕAJ,0

T ≠ (p2 + pÕ2)AJ+1,0
T

2

W4 = AJ≠1,0
C + AJ≠1,0

S + ppÕ J ≠ 1
2J ≠ 1

1
AJ≠2,0

LS ≠ AJ,0
LS

2

p2pÕ2
3

2J ≠ 1
2J + 1AJ≠1,0

‡L + 2
2J + 1AJ,1

‡L ≠ AJ≠1,2
‡L

4

1
2J + 1

1
≠2ppÕAJ,0

T + (p2 + pÕ2)AJ≠1,0
T

2

W5 = ≠2p2pÕ2


J(J + 1)
(2J + 1)2

1
AJ+1,0

‡L ≠ AJ≠1,0
‡L

2

≠ 2


J(J + 1)
2J + 1

1
p2AJ+1,0

T + pÕ2AJ≠1,0
T ≠ 2ppÕAJ,0

T

2

W6 = ≠2p2pÕ2


J(J + 1)
(2J + 1)2

1
AJ+1,0

‡L ≠ AJ≠1,0
‡L

2

≠ 2


J(J + 1)
2J + 1

1
p2AJ≠1,0

T + pÕ2AJ+1,0
T ≠ 2ppÕAJ,0

T

2
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Appendix C

Additional Rapsodia Examples

C.1 The HigherOrderTensor tool and mixed derivatives
The following code is a modified version of the CALCULATE program of 5.4, using the HigherOrderTensor
tool to calculate mixed second order derivatives.

SUBROUTINE SUMS(x, y, squaresum , cubesum )
INCLUDE ’RAinclude .i90 ’
IMPLICIT NONE
TYPE( RARealD ), INTENT (IN) :: x,y
TYPE( RARealD ), INTENT (INOUT ) :: squaresum , cubesum
squaresum = x**2+y**2
cubesum = x**3+y**3

END SUBROUTINE

PROGRAM CALCULATE
INCLUDE ’RAinclude .i90 ’
USE higherOrderTensorUtil
IMPLICIT NONE

TYPE( higherOrderTensor ) :: T
INTEGER , DIMENSION (: ,:) , ALLOCATABLE :: SeedMatrix
REAL *8, DIMENSION (: ,:) , ALLOCATABLE :: TaylorCoefficients
REAL *8, DIMENSION (: ,:) , ALLOCATABLE :: CompressedTensor
INTEGER :: i, k, N, O, DIRS

TYPE( RARealD ) :: x, y, z, squaresum , cubesum
REAL *8 z_x ,z_y ,z_xx ,z_yy

N=2 ! Two variables
O=2 ! We want derivatives up to the second order

CALL setNumberOfIndependents (T,N)
CALL setHighestDerivativeDegree (T,O)
DIRS = getDirectionCount (T) ! DIRS will be set to 3

ALLOCATE ( SeedMatrix (N, DIRS ))
CALL getSeedMatrix (T, SeedMatrix )
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! SeedMatrix will have the following content :
! x’ y’
! DIR 1: 0 2
! DIR 2: 1 1
! DIR 3: 2 0

x= -1.2
y=3.2

! Seed
DO i= 1,DIRS

CALL RAset(x, i, 1, REAL( SeedMatrix (1,i), KIND= RAdKind ))
CALL RAset(y, i, 1, REAL( SeedMatrix (2,i), KIND= RAdKind ))

ENDDO

! Calculate z
CALL SUMS(x, y, squaresum , cubesum )
z=x*y**2+ sin (2*x)- squaresum + cubesum

! Save Taylor coefficient of z in the various directions
ALLOCATE ( TaylorCoefficients (O, DIRS ))
DO k=1,O

DO i= 1,DIRS
CALL RAget(z, i, k, TaylorCoefficients (k, i))

ENDDO
ENDDO

! Compute derivatives via interpolation of Taylor coefficients
ALLOCATE ( CompressedTensor (O, DIRS ))
CALL setTaylorCoefficients (T, TaylorCoefficients )
! First order
CALL getCompressedTensor (T, 1, CompressedTensor (1 ,:))

! Second order
CALL getCompressedTensor (T, 2, CompressedTensor (2 ,:))

WRITE (* ,*) ’z=’, z%v

WRITE (* ,*) ’First�order� derivatives :’
DO i= 1,DIRS

WRITE (*,’(A,I1 ,A,I1 ,A)’,ADVANCE =’NO’) ’[’, SeedMatrix (1, i), &
’][ ’, SeedMatrix (2, i), ’]:’

WRITE (* ,*) CompressedTensor (1,i)
ENDDO

WRITE (* ,*) ’Second �order� derivatives :’
DO i= 1,DIRS

WRITE (*,’(A,I1 ,A,I1 ,A)’,ADVANCE =’NO’) ’[’, SeedMatrix (1, i), &
’][ ’, SeedMatrix (2, i), ’]:’

WRITE (* ,*) CompressedTensor (2,i)
ENDDO

DEALLOCATE ( SeedMatrix )
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DEALLOCATE ( TaylorCoefficients )
DEALLOCATE ( CompressedTensor )

END PROGRAM

As described in Section 5.4.1, the HigherOrderTensor tool will compute the number of needed directions
as function of the number of independent variables N and the maximum derivative order O. To compute
second order derivatives with respect to two variables, 3 directions are needed, corresponding to the
number of unique elements in a 2x2 Hessian. Based on N and O, the tool will then create a SeedMatrix
with seeding values for each direction. When the computation has finished, the Taylor coe�cients are
extracted with RAget and put into the 2D array TaylorCoefficients. Finally, the Taylor coe�cients
are interpolated with getCompressedTensor, which then associates each direction with a computed first
and second order derivative.

The output of the modified program is

z= 6.3965368745134015
First order derivatives:

[0][2]: 16.640000400543215
[1][1]: 15.485213183949114
[2][0]: 0.0000000000000000
Second order derivatives:

[0][2]: 14.800000190734863
[1][1]: 6.4000000953674308
[2][0]: -6.4981478451910828

where the numbers in the square brackets refer to seeding values of x and y, respectively, in the direction
at hand. When compared with the output of the original program

z= 6.3965368745134015
z_x= 15.485213183949114
z_y= 16.640000400543215
z_xx= -6.4981478451910828
z_yy= 14.800000190734863

we clearly see that all previously computed values are reproduced, and that the second order derivatives
follow interesting pattern: zyy = ˆ2z

ˆy2 is printed in the direction seeded with [0][2], zxx = ˆ2z
ˆx2 is printed

in the [2,0] direction and the last value, which must be zxy = ˆ2z
ˆxˆy , is printed in the [1][1] direction.

This means that the seeding values of x and y in a certain direction corresponds to the number of times
the variables appear in the denominator of the second order derivative associated with that direction.
The order of the first order derivatives are less obvious however, and some manual checks might be
needed to determine which derivative appears where.

As previously mentioned, further information on the HigherOrderTensor tool can be found in the
Rapsodia user manual. [20]

C.2 AD enabled matrix inversion using external library rou-
tines

In the code listed below, a matrix_inversion_RA subroutine is defined which inverts a RARealD matrix
and calculates the appropriate derivatives in an AD manner. It is a slightly simplified version of an
actual routine implemented in the nsopt program. matrix_inversion_RA starts the computation by
inverting the non-derivative part of the matrix using matrix_inversion, which uses LAPACK routines to
perform ordinary matrix inversion. The derivatives of the matrix inverse are then calculated using the
formulas (5.4) and (5.5) described in Section 5.4.2 and attached to the inverted non-derivative matrix.
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SUBROUTINE matrix_inversion_RA (N, A)
! NOTE: THIS SUBROUTINE ONLY SUPPORTS FIRST
! AND SECOND ORDER DERIVATIVES
IMPLICIT NONE
INTEGER , INTENT (INOUT ) :: N
TYPE( RARealD ), INTENT (INOUT ) :: A(N,N)
TYPE( RARealD ), DIMENSION (: ,:), ALLOCATABLE :: A_backup
REAL *8, DIMENSION (: ,:) , ALLOCATABLE :: A_real , A_derv , &
A_derv2 , A_inv_derv , A_inv_derv2
REAL *8 coeff
INTEGER :: dir , i, k, num_dir
num_dir = AD_DIR ! preprocessor variable defined in makefile

ALLOCATE ( A_backup (N,N))
ALLOCATE ( A_real (N,N))
ALLOCATE ( A_derv (N,N))
ALLOCATE ( A_derv2 (N,N))
ALLOCATE ( A_inv_derv (N,N))
ALLOCATE ( A_inv_derv2 (N,N))

! Save the non - derivative values to an ordinary REAL *8 array
A_real = A%v

! Invert the derivative stripped A using
! the ordinary library routine
CALL matrix_inversion (N, A_real )
A_backup = A
A = A_real

! A now holds the inverted matrix inv(A), but not its derivatives
! which we still need to compute for each direction
DO dir =1, num_dir

! Get the first order derivatives of each element in A_backup (N,N)
DO i=1,N

DO k=1,N
CALL RAget( A_backup (i,k),dir ,1, coeff)
A_derv (i,k) = coeff

ENDDO
ENDDO

! Compute the first order derivative of inv(A) according
! to the formula d(inv(A))/ dt=-inv(A)*dA/dt*inv(A)
A_inv_derv = -MATMUL ( MATMUL (A_real , A_derv ), A_real )

! Save these derivatives to A
DO i=1,N

DO k=1,N
CALL RAset(A(i,k),dir ,1, A_inv_derv (i,k))

ENDDO
ENDDO

! Get the second order derivatives
DO i=1,N
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DO k=1,N
CALL RAget( A_backup (i,k),dir ,2, coeff)
! The second order derivative is twice
! the Taylor coefficient f ’ ’/2!
A_derv2 (i,k) = 2* coeff

ENDDO
ENDDO

! Compute the second order derivative of inv(A) according
! to the formula d^2( inv(A))/ dt=
! =2* inv(A)* dA/dt*inv(A)* dA/dt*inv(A)-inv(A)*d^2A/dt ^2* inv(A)
A_inv_derv2 = 2* MATMUL ( MATMUL ( MATMUL ( MATMUL (A_real , A_derv ), &
A_real ), A_derv ), A_real ) - MATMUL ( MATMUL (A_real , A_derv2 ), A_real )

! The second order Taylor coefficient is half the derivative
A_inv_derv2 = A_inv_derv2 /2

! Add the second order derivatives to A
DO i=1,N

DO k=1,N
CALL RAset(A(i,k),dir ,2, A_inv_derv2 (i,k))

ENDDO
ENDDO

ENDDO

DEALLOCATE ( A_backup )
DEALLOCATE ( A_real )
DEALLOCATE ( A_derv )
DEALLOCATE ( A_derv2 )
DEALLOCATE ( A_inv_derv )
DEALLOCATE ( A_inv_derv2 )

END SUBROUTINE matrix_inversion_RA
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