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Abstract 

Wind energy, the world’s fastest growing renewable energy technology, is developing 

towards a major utility source. Turbines are growing in size and are located in more 

remote sites, sometimes even offshore, to benefit from better wind conditions. These 

developments help to maximize the output per turbine but come with challenges for 

operation and maintenance (O&M). Unexpected failures result in longer downtimes and 

consequently higher revenue losses. Hence, maintenance management promises consid-

erable cost saving potential and the analysis of data form the turbine inbuilt supervisory 

control and data acquisition (SCADA) system can effectively support maintenance de-

cisions. 

This thesis aims to investigate possibilities to utilize SCADA data for early failure de-

tection in critical wind turbines (WTs). Therefore, a condition monitoring approach is 

further developed and applied. The method uses artificial neural networks to model tar-

get parameters under normal operating conditions and analyzes deviations from the 

measured values with the help of statistical tools, such as the Mahalanobis distance 

(MHD) measure. In order to increase the robustness and accuracy of the approach, the 

development of several data pre-processing methods is presented. Two different anoma-

ly detection philosophies are investigated by building two different models. A gearbox 

model which is monitoring local variables to indicate component malfunctions and a 

power model which is predicting the turbine’s power output to indicate problems form a 

system’s perspective. 

Based on the available data both monitoring approaches were applied to investigate 

gearbox failures for indirect drive WTs and generator bearing failures for direct drive 

WTs. Furthermore, the power model was found to be an effective method for ice detec-

tion on WT blades. The successful detection of gearbox anomalies long before a final 

component breakdown is presented. However, the model was not able to detect all gear-

related problems investigated. It was concluded that the availability of parameters 

which are potentially affected by component malfunctions play a decisive role in this 

approach. The power model application showed that a different anomaly detection ap-

proach might be better suited for the investigated cases. However, this approach is well 

suited for the detection of icing and recommendations for further studies are derived. 

 

Keywords: Artificial neural networks (ANN), condition monitoring, supervisory con-

trol and data acquisition (SCADA), failure detection, wind power, gearbox monitoring, 

turbine monitoring, icing detection 
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Zusammenfassung 

Windenergie, die am schnellsten wachsende Technologie unter den erneuerbaren Ener-

gien, gewinnt weltweit an Bedeutung. Immer größere Anlagen werden an teilweise un-

zugänglichen Orten, beispielsweise Offshore, errichtet, um von guten Windbedingungen 

zu profitieren und Energieerträge zu maximieren. Diese Entwicklung bringt jedoch Her-

ausforderungen für Betrieb und Wartung der Anlagen mit sich. Eine intelligente, kos-

tenminimale Wartungsstrategie ist daher besonders wichtig. Die Analyse der Daten aus 

dem SCADA-System der Windkraftanlagen kann hierbei wertvolle Informationen zur 

Unterstützung der Wartungsplanung liefern. 

Im Rahmen dieser Arbeit werden Möglichkeiten zur Nutzung von SCADA-Daten für 

die Fehlerfrüherkennung in Windkraftanlagen untersucht. Hierbei wird eine Monitoring 

Methode weiterentwickelt und angewendet, die mithilfe von Neuronalen Netzen Anla-

genparameter unter Normalbedingungen modelliert und Abweichungen von gemesse-

nen Werten durch den Einsatz statistischer Methoden, wie beispielsweise der Mahala-

nobis Distanz, untersucht. Hierbei wird der Ansatz zum einen für das Monitoring einer 

einzelnen Komponente und zum anderen für die Überwachung der kompletten Anlage 

angewendet. Des Weiteren werden, um die Genauigkeit und Robustheit des Ansatzes zu 

erhöhen, mehrere Methoden zur Daten-Aufbereitung vorgestellt. 

Basierend auf den vorhandenen Daten konzentriert sich die Entwicklung und Anwen-

dung des komponentenbezogenen Ansatzes auf das Getriebe der Windkraftanlagen. Die 

Analyse mehrerer Fehlerfälle zeigt, dass die Methode Getriebefehler, lange bevor diese 

in einem kompletten Getriebeschaden resultieren, erkennen kann. Im Rahmen des Sys-

tem-Ansatzes wird die Anlagenperformance überwacht. Die Anwendung auf Anlagen 

mit Fehlern in der Generator-Lagerung zeigt vor allem die Herausforderungen bei der 

Beurteilung von Performance-Abweichungen. Des Weiteren wird gezeigt, dass mit die-

sem Ansatz Eisbildung an den Rotorblättern nachgewiesen werden kann. 
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1 Introduction 

1.1 Background 

Wind energy is currently the fastest growing renewable generation technology and is an 

important pillar for the transition to more sustainable energy systems in many countries. 

The global generation capacity reached 370 GW in 2014 which allows a supply of near-

ly 5 % of the world’s electricity demand [1]. In Europe wind is the leading technology 

in terms of new power capacity installations, far ahead of conventionals. Today approx-

imately 10 % of the European electricity consumption is generated by wind power and 

this share is expected to further grow in the coming years [2]. In other words, wind 

power is developing towards a major utility source. 

With this massive penetration wind energy has to compete with various generation 

technologies and cost of energy (COE) has become an important issue. Therefore, dif-

ferent developments to cut down generation cost can be observed in recent years. Tur-

bine size is increasing steadily to maximize each turbine’s output. In addition, the tur-

bines are erected at sites with best possible wind conditions which are more and more 

often found in remote locations, onshore or even offshore. These trends come with new 

challenges in O&M. Due to difficult logistics unexpected failures can be costly to repair 

and lead to long turbine downtimes, entailing production losses, which can have a sig-

nificant impact on the economics of a project [3]. 

Hence, maintenance management promises considerable cost saving potential and has 

received increasing attention in recent years. Efforts have focused on early failure detec-

tion in critical components of the WT; see for example [4, 5, and 6]. Condition monitor-

ing (CM) concepts provide valuable information and can contribute significantly to in-

creasing turbine reliability. Hence, a smart integration of CM information in the O&M- 

strategy, resulting in so called condition based maintenance (CBM), can help to mini-

mize O&M costs. Among the different CM approaches analysis of SCADA data with 

appropriate algorithms has shown promising results [4, 7]. 

The intention of this thesis is to contribute to early failure detection by analyzing data 

from the turbine‘s SCADA system. Therefore, the approach presented in [4] will be further 

developed and applied to critical WT components. 
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1.2 Task Description 

Wind industry has seen rapid growth in recent years with countries striving to have 

more sustainable energy sources in the electric power system. One of the obstacles for 

the growth of wind industry is high maintenance cost and long downtimes for WTs, 

especially for offshore wind farms [8]. Hence, focus on early detection of failure of crit-

ical components in the WT and condition based maintenance has increased in recent 

times. Traditional condition monitoring using vibration signals has proven to be a useful 

tool for monitoring the health of components. Furthermore, use of information rich Su-

pervisory Control and Data Acquisition (SCADA) data has received increased attention 

in recent years. This thesis aims to contribute to early failure detection by analyzing 

data from the turbine’s SCADA system. 

Within the framework for a wind power maintenance management tool, a methodology 

based on artificial neural networks for anomaly detection in gearboxes was presented in 

[4]. The gearbox is a critical component of the WT in terms of reliability and the ap-

proach has to be further developed and applied to new turbine data in study cases. 

Moreover, the project will analyze the potentials of monitoring the overall turbine per-

formance to detect degradation in one of the subcomponents. In particular, the detection 

of generator bearing failures in direct drive turbines is investigated. 

1.3 WT Data and Project Partner 

This master’s thesis project was carried out in cooperation with Stena Renewable as an 

industrial partner. Stena Renewables operates multiple wind farms in Sweden and pro-

vided data extracted from their SCADA systems. Moreover, Stena Renewable contrib-

uted to the project through their expertise in wind farm O&M. The outcome of the pro-

ject relies both on the correct application of appropriate methods as well as the quality 

of the input data. Thus the most promising data sets were carefully selected. With the 

analysis of the provided data, we hope to be able to contribute to the understanding of 

the recorded problems, as well as an early detection of future failures. 

In addition, SCADA data was provided from a WT manufacturer for different failure 

cases. Unfortunately not much additional information regarding the turbine’s condition 

and maintenance activities was available for these data sets. However, the data has been 

investigated and conclusions were drawn when possible. 
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2 Theoretical Background 

This chapter provides the theoretical background knowledge which is required to un-

derstand and critically discuss the analysis conducted within this master’s thesis. 

Therefore, the first chapter gives an introduction into WTs and the relevant components 

followed by the chapters focusing on reliability and maintenance in WTs. Furthermore, 

the concept of neural networks, the statistical tools used within this thesis and the ap-

proach for anomaly detection in WTs are presented. References are given, when a more 

detailed explanation would exceed the scope of the chapter. 

2.1 Wind Turbines and SCADA 

WTs have long been used to utilize the kinetic energy of the wind. Nowadays mainly 

three bladed horizontal axis WTs are used for power generation. The turbines consist of 

typical sub components, which are briefly described below (based on [9]): 

 Rotor: consists of usually three blades flanged to the hub, which is mounted on 

the front end of the rotor shaft outside the nacelle. The rotor converts the kinetic 

energy of the wind into mechanical energy and transmits the rotation to the 

shaft. 

 Mechanical Drive Train: describes all rotating mechanical components in be-

tween the rotor hub and the generator. Its design can vary significantly depend-

ing on the turbines drive concept. Direct drive turbines are able to operate with-

out the most complex drive train component, the gearbox, but come with special 

requirements for the generator. The drive philosophy also influences the shaft 

bearing concept. 

 Electrical System: Covers all components for the conversion of the mechanical 

into electrical energy with the generator as the main component. Conventional 

synchronous and asynchronous generators can be found in WTs depending on 

the grid connection concept. A common configuration is a synchronous genera-

tor in combination with a converter, which decouples the generator and from the 

grid. 

 Nacelle: protects the whole drive train and the electrical system against envi-

ronmental impacts. Can be turned by the yaw system so that the rotor is always 

facing the main wind direction. Furthermore, the nacelle contains various auxil-

iary systems such as brakes, cooling system or measuring equipment to ensure a 

safe operation. 
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 Tower: The whole previously described configuration is mounted on top of a 

tower to benefit from higher wind speeds above ground. 

Figure 2-1 shows the typical arrangement of the described components. 

 

Figure 2-1: Cut-away view of a typical wind turbine (adopted from [9]) 

2.1.1 The SCADA system 

Contrary to conventional power plants, WTs are unmanned and often situated in remote 

locations. Nevertheless, a wind power plant also needs to be controlled and monitored. 

Therefore, the turbines are equipped with monitoring and data evaluation systems, so 

called Supervisory Control and Data Acquisition (SCADA) systems. On one hand 

SCADA enables to remote control the power plant. Turbines can be switched on or off, 

power output can be curtailed and the power factor adjusted if necessary. On the other 

hand the SCADA system collects measurements of various sensors placed all over the 

WT. Technical parameters, such as bearing and lubrication oil temperatures, electric 

quantities and power output are measured as well as environmental parameters like 

wind speed, wind direction or ambient and nacelle temperature. In fact, each WT manu-

facturer has an individual concept of how to set up the SCADA system of their turbines. 

Figure 2-2 gives an overview over the basic measurements typically collected.  
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Figure 2-2: Measurements available in a typical SCADA system [4] 

Although highly individual, all of them have in common that large quantities of data are 

extracted and stored in databases. Modern turbines store hundreds of data points every 

ten minutes, which leads to a tremendous amount of data over the years. A complete 

yearly SCADA data set of one of the turbines analyzed in this thesis, for example, con-

tained more than half a million single measurements. Extracting them from the database 

for analysis can be time-consuming work, depending on the user-friendliness of the in-

terface and the available hardware. 

The collected measurements give an insight into the turbine’s instantaneous operating 

conditions and thus enable remote turbine monitoring. The SCADA system is, for in-

stance, able to automatically generate alarms and warnings, if a parameter exceeds a 

pre-selected threshold value. However, the information about turbine condition which is 

hidden in SCADA data is not fully utilized by turbine operators nowadays. This is par-

tially due to the fact that the system indicates impending failures too late and generates 

a vast number of alarms and warnings giving operators a hard time to distinguish be-

tween serious and negligible error messages [4]. Nevertheless, information from 

SCADA data can be extracted using more advanced mathematical and statistical meth-

ods. 

2.1.2 Gearbox 

A gearbox is typically used to increase the rotational speed of a WT’s rotor in order to 

utilize it for a higher speed electrical generator. Modern gearboxes can perform gear 

ratios of more than 1:100 and lose only a few percent of the transmitted power [9]. 

There are two main forms of toothed-wheel gearboxes: parallel-shaft systems and the 

technically more advanced planetary gearing. WTs generally require multiple stage gear 

systems and combined planetary-parallel-system can be found (compare Figure 2-3). 

The integrated planetary solution shows clear advantages in size, mass and relative cost 
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and is thus superior in large WTs. Nevertheless, cheap parallel-shaft solutions, which 

are widely available from different manufacturers, are often preferred in small turbines 

[9]. 

 

Figure 2-3: Schematic structure of a three stage planetary gearbox typically used in 

WTs [4] 

Like in other gearbox applications, WT gearboxes contain a gear oil system to ensure 

lubrication and steady temperatures of gears and bearings. Therefore, the multiple cir-

cuit system is equipped with heat exchangers for cooling at high temperatures and heat-

ing at low temperatures. It is controlled based on the gear oil temperature, which is usu-

ally measured in the oil sump and recorded by the SCADA-system. Furthermore, oil 

purity is an important factor for the service life of a gearbox and automated oil filtering 

is implemented in most gearboxes. Nevertheless, the gear oil is usually subject of regu-

lar inspections and has to be replaced during the lifetime of a gearbox [9]. 

Despite experience of almost two decades of WT technology, gearboxes are still a ma-

jor source for turbine failures (compare 2.2.1). Due to difficult dynamic operating con-

ditions and the high number of operating hours throughout a turbine’s lifetime gearbox 

dimensioning is a challenging task. Especially gearbox bearings, the gearwheels and the 

lubrication system are subjects of concern [8]. Unforeseen repairs or replacements of 

bearings, which sometimes necessitate the disassembly of the entire turbine, can be very 

expensive. Therefore, vibrations, temperatures and oil quality of roller bearings are 

normally subjected to online condition monitoring in modern turbines (compare 2.2.3) 

[9]. Moreover, the SCADA-system usually records gearbox bearing temperatures de-

pending on the manufacturer’s practice, the turbine generation and the requirements 

specified by the operator. 
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2.2 Reliability and Maintenance in Wind Turbines 

As shown in the previous sections, WTs contain conventional components and subas-

semblies of mechanical-electrical energy conversion, such as a shafts, bearings, gear-

boxes and generators. Like other technical systems, they have to undergo regular ser-

vice to guarantee their correct operation. Nevertheless, maintenance is particularly im-

portant for a wind power plant, because WTs have to stand harsh environmental condi-

tions where component failures can have a decisive impact on a project’s economic suc-

cess. The following sections will provide information about the reliability of modern 

turbines and highlight the current state-of-art in WT O&M. 

2.2.1 Wind Turbine Reliability 

Once a WT is commissioned it has to operate properly for a design lifetime of at least 

20 years. Unlike other technical systems the turbines operate for several thousand hours 

each year while being exposed to a wide range of wind speeds and temperatures, includ-

ing extreme weather situations such as storms, lightning strikes and hail [9]. In fact, the 

site location has a significant impact on turbine reliability through the prevailing climate 

[10].These rough environmental conditions result in heavy dynamic loads, making WT 

components prone to fatigue failures. In consequence, reliable turbine design and opera-

tion is a challenging task [9]. 

On a system level, reliability is often characterized by turbine availability   which is 

calculated by dividing the mean time to failure MTTF through the sum out of MTTF and 

the mean down time MDT (compare equation 2-1) 

     
    

        
         (2-1) 

Despite the rough operating conditions average availability of today’s onshore turbines 

is usually above 95 % [11]. However, this high availability can only be guaranteed by a 

costly maintenance organization [12]. 

When analyzing turbine reliability in greater detail, it has been observed that some 

components of a WT fail more frequently than others, indicating that they are particu-

larly sensitive. The frequency of a specific failure’s occurrence is typically reported as 

its average failure rate      as failure per turbine and year. Therefore, the absolute 

number of failures    which occurred in a specific component is summed up over a 

certain period and then divided by the observation time   in turbine years (compare 

equation 2-2) [13]. 

     
   
 
 

     
 
 

            (2-2) 



8  

 

However, reliability of a turbine cannot be judged by looking at the failure frequency 

only, because the measure does not indicate the severity of a failure. Therefore, the 

average downtime      per failure caused by a specific component is calculated by 

summing up the individual downtimes    and dividing them by the total number of 

observed failures    (compare equation 2-3) [13]. The result is a measure for the aver-

age severity and production loss related to a certain component’s failure. 

     
     

 
   

 
   

   
 
 

          (2-3) 

Both measures, the average failure frequency of a component and the average down-

time of such a failure, are combined to calculate the average annual downtime caused 

by the turbine component, which indicates the severity of a failure and corresponds to 

the lost revenue due to a malfunction. This number is suggested as an indirect indica-

tor for the economic damage of a failure, in case no financial information is available 

[5]. 

In this thesis, data presented in [14] containing data for more than 620 turbines be-

tween 1997 and 2005 as well as data from a database containing 28 additional WTs with 

more actual data was used for the analysis of turbine reliability. Together, the data rep-

resents almost 3200 years of turbine operation. All of the turbines are located in Sweden 

and their size ranges from several hundred kW up to multiple MW. The results are pre-

sented in Figure 2-4 in form of average number of failures per turbines and year 

grouped by components and their subsequent average downtimes: 

 

Figure 2-4:  Average number of failures per turbine and year by component and the 

resulting downtimes  

The highest failure rate can be found in electrical components, the control system, 

including sensors, and the hydraulic system. However, these failures can often be 
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fixed by a simple restart of the turbine system whereas other components cause much 

longer downtimes due to repair work and maintenance logistics. Breakdowns of main 

turbine components can lead to standstill periods of several weeks. That is why par-

ticularly gearbox failures cause long downtimes even though their average failure rate 

is not exceptionally high. 

It has also been observed, that the majority of a turbine’s annual downtime is caused by 

failures of few components. The failures were primarily related to gearboxes, electric 

systems, the blade/pitch- and the yaw system which account for more than 60% of an-

nual turbine downtime (compare Figure 2-5). Therefore, they are identified as critical 

for system reliability and the economic success of a wind project. 

 

Figure 2-5: Contribution of each component to the annual turbine downtime 

Publications presenting data on WT field failures show similar results and thus draw 

similar conclusions regarding component reliability (compare [12, 13, 15, 16, 17], and 

[8]). 

2.2.2 Maintenance Management in Wind Turbines 

Reliability problems in WTs can lead to high cost for operators. Component degradation 

and failures can result in severe performance degradation, costly repair or replacement 

actions and long turbine downtimes. These risks can be a serious threat to the economic 

success of a wind project. That is why especially small and medium size WT operators 

outsource maintenance and are willing to pay insurance premiums to maintenance spe-

cialists, who then guarantee certain turbine availability. However, O&M cost can ac-

count for up to 20 % of a wind project’s total COE and influences the measure in differ-

ent ways, as can be seen in equation 2-4 [3].  
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            (2-4) 

ICC represents the initial capital cost, usually the most important factor in the equa-

tion, which is multiplied with the fixed charge rate (FCR) and added to the levelized 

replacement cost (LRC), which is determined by turbine reliability. Moreover, reliabil-

ity influences the COE directly through O&M costs as well as indirectly by affecting 

the Annual Energy Production (AEP), which can be severely affected by failure 

caused downtime. Therefore, reducing reliability related costs shows great overall cost 

reduction potential and maintenance management aims to determine the optimal 

maintenance strategy to minimize these costs [3]. 

In maintenance management two main strategies can be distinguished and goal of intel-

ligent maintenance management is to identify a cost optimal strategy between those two 

traditional approaches [7] (compare Figure 2-1). 

 

Figure 2-1: Costs associated with traditional maintenance strategies (Adopted from 

[7]) 

 Corrective, sometimes also called reactive maintenance is a run to failure con-

cept. Maintenance actions are initiated after failure occurrence and detection. 

Thus, cost of repair is potentially high as only minimal failure prevention efforts 

are made. Also, this concept can lead to long turbine downtimes, in case compo-

nents with a long lead time need to be replaced. However, a corrective mainte-

nance approach allows utilizing the component lifetime to its maximum. 

 Preventive maintenance on the other hand intends to prevent an equipment 

breakdown through regular scheduled maintenance or condition based mainte-
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nance (CBM) actions. CBM is a subcategory of preventive maintenance which 

takes additional information about the turbine components into account. With 

the knowledge about the component’s condition actions can be initiated to miti-

gate the consequences of a failure even before failure occurrence. Therefore, it is 

necessary to detect the change in machinery condition on time and to be able to 

interpret the observed change correctly [18]. However, preventive maintenance 

aims for a reduction of repair cost which is partially compensated by the increas-

ing prevention efforts. 

2.2.3 Condition Monitoring in Wind Turbines 

For successful maintenance management, information about the turbine condition is 

essential. Based on that, the appropriate maintenance actions can be arranged. Tradi-

tionally, the information was acquired through manual onsite inspections. However, 

with the increasing number of installed turbines in remote sites frequent inspections 

becomes more challenging and expensive. Therefore, new CM-strategies are developed, 

combining new sensor technology with online of offline data analysis. Table 2-1 gives 

an overview of traditional and state-of-the-art condition monitoring approaches and 

their potential applications in WTs based on [7]. Furthermore, selected techniques are 

introduced in the following paragraphs. 

Table 2-1: Overview of CM techniques applied in WTs based on [7] 

 

 

 Temperature Monitoring: A standard approach for WT CM, which can be 

conducted with thermometers as well as infra-red thermography. It is one of the 

most popular CM tools applied in WTs. As every component has a maximum 

operational temperature which is usually exceeded only in case of abnormally 

high friction, it is a reliable criterion for failure detection. Furthermore, tempera-
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tures are rather slow changing measurements due to the thermal inertia of the 

components. This can be an advantage when analyzing data with a low sample 

rate, for example 10 minute average values stored in a SCADA system. For 

temperature this can be a sufficient resolution for condition monitoring. On the 

other hand, slow changing measures have only limited value in early failure pre-

diction because they simply indicate a failure too late. Nevertheless, tempera-

tures are often used as a secondary criterion in case, for example, the vibration 

monitoring shows an alarm. 

 Vibration Monitoring: One of the well-established technologies for rotating 

machinery is the analysis of vibration signals, since changes in mechanical 

equipment can lead to abnormal vibration signals long before a failure occurs. 

The vibration signals, recorded by different sensors, are usually transformed into 

a frequency domain and then analyzed. In WTs vibration analysis is applied to 

monitor shafts, bearings, gearboxes and blades. Shortcomings of this technology 

are the requirement of additional equipment and difficulties in detecting low-

frequency faults. 

 Oil Analysis: Another broadly applied monitoring technique, especially in tur-

bines with gearboxes. As shown in 2.2.1, gearboxes are especially critical in 

terms of reliability and therefore gear oil analysis commonly used for gearbox 

monitoring, as it is the only method for detecting cracks inside the gearbox. 

Usually the oil’s viscosity, oxidation, water content, particles and temperature 

are recorded either through offline-sample analysis or online monitoring. Even 

though modern on-line sensing methods, such as electromagnetic, flow or pres-

sure-drop and optical debris sensing, are available, offline sample monitoring is 

often used due to the high cost for the online equipment. 

 Strain and Optical Monitoring: Recently, strain measurement and optical fiber 

monitoring for WT structures has received increasing attention as the fatigue 

loads the turbine is exposed to can be estimated. The measurements of strain 

gauges, which can be placed randomly on the structure, are processed with the 

help of finite element method to monitor the effects of the high dynamic loads. 

However, strain gauges are not very long lasting and these techniques require 

expensive measurement equipment. New approaches try to connect available 

SCADA-data measurements and short term strain measurements to extrapolate 

strain estimations. Such applications might help the technology to a broader ap-

plication in the future [19]. 

The technologies presented in the previous paragraphs are mainly used to monitor a 

specific subsystem within the turbine. Other approaches widen the balance limits and 

aim for monitoring the global WT system. Different mechanical and electrical faults for 
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example lead to disturbances in the mechanical as well as in the electrical energy flow. 

Consequently mechanical torque oscillation can also be detected on the electrical side of 

the power train through power signal analysis. That way blade or rotor imbalances can 

be detected. A comparably simple method is the monitoring of process parameters. 

There, the values and relationships of temperatures, power, wind and rotor speed or 

blade angles are compared with specifications and limits determined by manufacturers. 

For this kind of analysis for example SCADA-signals can be used. More advanced ap-

proaches based on parameter prediction and trending are not common today. 

However, the importance of condition monitoring is expected to further increase in the 

future, due to the earlier mentioned developments in the wind industry. The more ma-

ture the new techniques become, the cheaper their application gets. Also, the cost of 

condition monitoring can be compensated with lower premiums for insurances reward-

ing such systems [9] Developing towards more reliable, cost effective, integrated and 

smart solutions condition monitoring is about to become an integral part of modern 

maintenance strategies [7]). 

2.2.4 SCADA based CM using Normal Behavior Models 

Today’s turbines are not necessarily equipped with sensors for stress, vibration or power 

analysis, but with numerous units collecting data for the SCADA system (compare 

2.1.1). The SCADA system collects information about the turbine key features, which 

can be analyzed for condition monitoring purposes. Thus, the analysis of SCADA data 

can be a cost effective integrated way to monitor several critical components of a WT 

[5]. 

Different techniques, ranging from simple threshold checks to complex statistical 

analyses are used to detect anomalies. A comprehensive overview of publications and 

their proposed methods to analyze SCADA data for CM of WTs is provided by [20]. 

A common approach is the application of normal behavior models. Based on inputs 

extracted from SCADA data the model should be able to predict a target parameter 

under normal operating conditions. For anomaly detection the real time signal is com-

pared with the estimated model output. The success of the approach is determined by 

the accuracy of the developed model. Here artificial intelligence methods have proven 

to be a sufficient tool for modelling complex systems, such as WT components [21]. 

Among different approaches neural networks showed particularly good results and were 

successfully applied in WT fault detection [22]. 
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Figure 2-6: ANN based CM approach [4] 

However, the utilization of SCADA data for CM comes with some challenges. Since 

the SCADA system was not originally designed for CM, not all parameters for a full 

turbine CM are available. Also, the data rate of 10 minute average values is too slow 

for some condition monitoring techniques [7]. Moreover, it can be difficult to trace 

back an anomaly in the data to its origin. Therefore, it is important to understand a 

failure’s specific impact on SCADA data. This knowledge can be achieved either 

through the analysis of data along with maintenance reports or with the help of data 

mining approaches, depending on data availability [21]. Nevertheless, exploitation of 

SCADA data for WT condition monitoring has successfully been demonstrated in 

several studies; see [4, 5, 6, 21, 23, 24 and 25]. 

2.3 Artificial Neural Networks 

Artificial neural networks (ANN) are a concept of computing inspired by the biologi-

cal structure brain. In analogy an ANN is able to acquire knowledge in a learning pro-

cess. After training it can recall the learned patterns and input/output relations. Since 

the training data presented to the ANN can be theoretical, experimental empirical or a 

combination of these, ANNs can be used for a broad range of applications [26]. More-

over, the network is able to generalize its knowledge to a certain extent and apply it to 

new input data it has never seen before. This makes it a powerful tool, well suited to 

model real world non-linear systems in engineering and science [27]. For problems, 

which are too complex for an analytical approach, ANNs can deliver an almost perfect 

approximation based on the experience drawn from the training data. However, this 

lack of analytical background comes with difficulties in explaining and judging the 

ANN’s output [26]. Even though the ANN is a black box model, it was demonstrated 

to be a useful tool in various applications [27]. The following sections give a general 

introduction into structure and functionality of ANNs based on [28]. 
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2.3.1 Building blocks of the Artificial Neural Network 

The fundamental information processing unit of an ANN is called a neuron. A neuron 

generates an output based on its input signals and consists of three basic elements: A set 

of synapses, an adder and an activation function (compare Figure 2-2). 

 

Figure 2-2: Model of a neuron [4] 

Synapses are characterized by a weight or strength, which is determined during model 

training. A neuron’s input signal    at synapse j is multiplied with the synaptic weight 

  . Subsequently, it is added to all other weighted input signals and a fixed bias value   

by a linear combiner (compare equation 2-5). This sum    is input for the activation 

function   which determines the neuron’s output then (compare equation 2-6). 

       
 
                (2-5) 

                  (2-6) 

There are two different types of activation functions: Threshold and sigmoid functions. 

A threshold function is discontinuous and can assume a value of either 0 or 1 whereas a 

sigmoid function can assume any value between 0 and 1. Sigmoid functions are well 

balanced between linear and nonlinear behavior and the most common activation func-

tions used in neural networks. Their shape can be influenced by variation of the slope 

parameter  . Note that the sigmoid function becomes a threshold function for an infinite 

  (compare equation 2-7). Figure 2-7 shows the corresponding graph for different shape 

parameters. 

      
 

                 (2-7) 
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Figure 2-7: The sigmoid function plotted with varying shaping parameters 

Neurons can be arranged in different architectures depending on the network’s purpose. 

A single-layer network, as the name suggests, consists of only one single layer of neu-

rons which directly connect inputs and outputs. Multi-layer networks on the other hand 

contain one or more hidden layers. Outputs of the previous layer are used as input for 

the next layer. The elements of those layers, the hidden neurons, cannot be directly seen 

from either input or output of the network. Through hidden layers the network is able to 

model the higher order non-linearity in the input output relationship. 

In general, feed-forward and recurrent networks can be distinguished. In contrary to a 

feed-forward network a recurrent network has at least one feedback loop. Through 

feedback loops, non-linear dynamic behavior can be implemented and the performance 

of a network can be improved significantly. Figure 2-8 shows examples of different 

network structures. 

 

Figure 2-8: Examples for different ANN architectures [4] 
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Neural network design is a challenging task, because of the lack of well-developed the-

ory for network optimization. An architecture which is able to predict with accuracy 

must be found through experimental studies for a specific case. Two approaches are 

common to find the optimal network structure. The first option is to start with an over-

sized network and remove synapses or entire neurons, if they are not active or carry 

only little weight. Starting with a small network and increasing the number of neurons 

until satisfactory solutions are achieved is the second option. Both approaches include a 

trial and error to find the network, which suits the application best. However, when 

modelling real world non-linear relationships generally two hidden layers lead to suffi-

cient results [4]. 

2.3.2 Network Training Methods 

ANNs are intelligent systems, which are able to learn from their environment. 

Knowledge about input/output relations is acquired through a learning process and 

stored in form of a network’s synaptic weights. After a successful training the ANN is 

able to use this information to interpret and predict parameters in consistence with the 

outside world. Depending on the network’s purpose, it can be trained for different tasks, 

such as pattern association, pattern recognition, function approximation or control pur-

poses. There are two conceptual different learning methods for ANN training: super-

vised and unsupervised learning. 

Supervised Learning 

In supervised learning input/output examples are presented to the network. The training 

data contains labeled data sets. Input parameters represent different environmental con-

ditions and output parameters their desired network responses. A vector of input varia-

bles is presented to the network and its actual response is compared with the optimal 

response of the training data set. In an iterative process, the difference between actual 

and desired response is minimized by adjusting the synaptic weights. Through this pro-

cess of error-correction learning, knowledge which was previously stored in the pre-

defined training data is transferred to the network. A scheme of supervised learning is 

displayed in Figure 2-3. 

Within supervised learning two classes of training methods are distinguished: batch and 

online learning, in batch learning all training data samples are presented to the network 

simultaneously, what is called an epoch. Multiple epochs are generated through random 

shuffling for feedforward networks and through splitting for recurrent networks to also 

train the weight of the feedback-synapsis. Once the performance shows no further im-

provement, the training is finished. Through this parallel learning process, batch learn-

ing is fast and ensures convergence to a local minimum. However, achievement of a 

global minimum is not guaranteed. Online learning on the other hand optimizes the syn-
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aptic weights sample by sample. Once all samples have been presented to the network, 

one epoch is completed. Here the number of training epochs is also based on the per-

formance improvement from epoch to epoch. Online learning is slower than batch learn-

ing but simpler to implement and more responsive to redundancies. 

 

Figure 2-3: Scheme of supervised learning [4] 

Unsupervised Learning 

In case no labeled examples of the function to be learned by the network are available, 

unsupervised learning can be conducted. During the learning process a task independent 

measure of the desired network quality is optimized using competitive learning rules to 

adjust the synaptic weights. Consequently the network becomes tuned due to statistical 

regularities of the input data. 

Levenberg-Marquardt Algorithm 

There are multiple algorithms available to optimize the synaptic weights during model 

training. Within this thesis the Levenberg-Marquardt training algorithm (LMA) was 

used due to the fact that it is Matlab’s fastest and at the same time most accurate algo-

rithm for networks of up to a few 100 weights [29]. The LMA updates the synaptic 

weights according to equation 2-8. 

                     (2-8) 

The regularization parameter   is used to combine Newton’s method (for      and 

Gradient descent method (for    overpowering    for a fast convergence. H is the ap-

proximated Hessian matrix,   the identity matrix with the same dimensions and   the 

gradient vector of the cost function      (compare equations 2.9 – 2.11). 

     
      

    
 

 
  

          

  

 
      

          

  
      (2-9) 



  19 

 

  
    

  
           (2-10) 

     
 

  
                   

          (2-11) 

              
  is the training sample and the approximating function           repre-

sents the network. For additional information about optimization algorithms for network 

training refer to [28]. 

2.3.3 Application of Artificial Neural Networks in Wind Turbines 

ANNs have the ability to model very complex non-linear relations and are therefore 

well suited for applications in WTs. They are mainly used to analyze the large sets of 

measurements from CM-sensors or the SCADA system. Also, they are applied to pre-

dict or optimize the power output and give information about turbine or component 

condition. Some of these approaches are highlighted in the following paragraphs. 

An approach for optimizing the power factor and production of a WT was presented 

by [30]. A control approach based on different data mining algorithms was generated 

to optimize settings of the blade pitch and yaw angle. ANNs with different configura-

tions were tested against a classification and regression tree as well as a support vector 

machine regression. The ANN based model showed the best results and it was shown 

that information drawn from historical SCADA data can significantly improve a tur-

bine’s power output. 

A methodology analyzing SCADA data with four data mining algorithms to predict 

turbine failures was presented in [31]. Here the turbine’s power curve was modelled 

by each of algorithm and used to determine turbine health. Failures were classified by 

occurrence, severity and the specific fault. The model was able to detect failures in 

advance and the approach using ANNs was identified as the best. A similar team con-

secutively used ANN’s for normal behavior modelling of bearing temperatures in WT 

[32]. 

An intelligent system for predictive maintenance for WT monitoring was subject of 

[33]. Within this framework multilayer perceptron ANNs were used to create normal 

behavior models for failure detection. This knowledge captured by the networks was 

then combined with a fuzzy expert system for fault diagnosis and maintenance optimi-

zation for WTs. Based on this, an on-line health condition monitoring tool, called 

SIMAP was developed and its application was presented for WT gearbox monitoring. 

Following a similar method, an ANN based normal behavior model for gearbox- and 

generator bearing temperatures was developed and presented in [21]. Gearbox bearing 

temperature and generator winding temperature were predicted and used for fault de-

tection.  
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A comparative analysis of neural network and regression based condition monitoring 

approaches for WT fault detection is conducted in [22]. The developed models are 

applied to five real measured faults. The comparison between the approaches reveal 

that ANN based models are best suited for failure detection, because they give earlier 

and clearer indication of damages. Moreover, it was realized, that the investigated 

bearing failures were easier to detect than the stator anomalies. The same authors de-

scribe the development and application of a method combining ANN based normal 

behavior models and fuzzy logic in [23] and [34]. Such an adaptive neuro fuzzy infer-

ence system allows implementation of expert knowledge in addition to ANN data 

analysis. A large number of normal behavior models is developed using 33 SCADA 

standard signals. The comparison with an ANN model shows that the selected ap-

proach has advantages in model training speed and fault diagnosis can be conducted 

using the fuzzy interference system. 

2.3.4 Neural Networks in MATLAB 

Within this thesis, the numerical computing environment MATLAB was used for data 

processing and the ANN based analysis. Therefore, the WT data, which was extracted 

from the SCADA-system in the txt-format, was converted into csv-files and then im-

ported into the MATLAB environment for processing and analysis. The following sec-

tions give a quick overview of the features and inbuilt functions used within this thesis. 

MATLAB offers a so called Neural Network Toolbox, which contains functions and 

apps for ANN-modelling and application. The program provides a graphical user inter-

face which facilitates model design and training through visualization and predefined 

figures. However, all implemented functions can also be manually called and modified 

within a MATLAB-script. 

The toolbox supports different supervised and unsupervised network architectures, 

ranging from relatively simple feedforward networks to complex dynamic or pattern 

recognition networks and thus allows choosing the most suitable configuration for the 

specific application. Also, several training algorithms are implemented, including gradi-

ent descent methods, conjugate gradient methods and the LMA. Moreover, the toolbox 

features various pre- and post-processing tools [35]. 

Throughout the thesis the software was found to be a useful tool for data processing 

and neural network analysis. The wide range of implemented functions facilitates the 

application of complex mathematical concepts significantly. However, using these 

pre-defined functions for a complex analysis still requires a complete understanding of 

the theoretical background, to be able to appropriately assess and judge the corre-

sponding outcomes. The current and the following chapter should be seen in this con-

text. 
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2.4 Statistical Background 

Statistics helps us to understand and learn from data with the ultimate goal to translate 

data into knowledge [36].Within this thesis, large data sets are analyzed with the help of 

statistical tools to gain knowledge about the condition of technical components of a 

WT. The statistical tools which are hereby applied will be introduced in the following 

sections. 

2.4.1 Basic Statistical Measures 

The following paragraphs give a short introduction of the statistical standard measures 

which are used in this thesis either directly or as an input for more advanced analysis. If 

not referenced otherwise, the explanations are based on [36]. 

Mean Absolute and Mean Square Error 

For model performance evaluation two measures are used in this thesis: the mean abso-

lute error (MAE) and the mean squared error (MSE); both are commonly reported num-

bers in the evaluation of time series prediction [37]. The MAE is calculated as the aver-

age deviation of the predicted variable from the target value without taking their direc-

tion into account (compare equation 2-12) and it provides a vivid indication of the mod-

els quality. The MSE, however, is the most common performance function used to train 

neural networks [29] and calculated as shown in equation 2-13. Both equations are used 

for model assessment where fi represents the model’s output and yi the actual target 

measurement for the time step i for a total number of n time steps. 

    
 

 
        

 
     (2-12)  and      

 

 
        

  
     (2-13) 

Variance and Standard Deviation 

When the variability of a parameter is analyzed it is usually reported as a deviation from 

the mean. Hereby the average of the squared deviation from the mean is called variance 

  (compare equation 2-14). Since the variance uses squared units it is much easier to 

interpret its square root, the standard deviation (compare equation 2-15). 

  
 

   
          

      (2-14)  and      
        

  
    

   
  (2-15) 

In both equations n represents the number of points and    is the mean of the sample x. 

Looking at equation 2-15, it is obvious, that the larger the standard deviation, the higher 

is the variance. 
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Covariance and Correlation 

Also, the association between variables is of interest, especially when explanatory vari-

ables are required in modelling. The so called covariance and the correlation describe 

the strength of the linear association between two quantitative variables. The covariance 

can be calculated with equation 2-16. For multidimensional parameter associations, the 

covariance matrix is a helpful tool, where matrix element of position m,n is c         . 

           
              

 

 
          (2-16) 

N represents the number of points and    and    are the means of the samples x and y. 

The indicator commonly used to assess parameter relations is the correlation coefficient 

 , which is the normalized covariance. The correlation coefficient can be calculated by 

equation 2-17. 

  
 

   
 

      

  

      

  

 
             (2-17) 

Here,   is the total number of elements, and    and    are the standard deviations and    

and    the means of the samples x and y. The correlation coefficient shows the following 

properties: 

 r is always in the range of -1 to +1 and the stronger the linear association, the 

closer it is to the absolute value of 1. 

 A negative r indicates a negative and a positive r a positive association. 

 r has no unit and is identical, not matter which one is the explanatory and which 

the response variable. 

In case two signals are strongly associated but shifted relatively to each other, caused by 

a delay for example, a simple correlation analysis might not be able to detect the rela-

tion. Therefore, the correlation between two signals is calculated while one signal is 

shifted step-by-step relative to the other. This so called cross-correlation analysis allows 

identifying correlations even if the signals are shifted and is widely used in signal anal-

ysis. 

2.4.2 Distributions 

When analyzing the outcome of a model not only the absolute values, but also the fre-

quency of occurrence of these values can be important. A variable’s probability distri-

bution gives answers to both questions. This information can be used to separate more 

frequent regular outcomes from rare irregular ones, for example by defining a threshold 
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based on a value’s frequency of occurrence. The theoretical background of distributions 

used within this thesis is explained in the following sections based on [38] and [36]. 

The probability distribution of a variable is typically specified by a probability density 

function (PDF), which determines the probability that a variate takes the value x (com-

pare equation 2-18). It is practical to normalize the PDF with the total area under the 

curve. Then the area under the curve above any particular interval corresponds to the 

intervals probability of occurrence and total area below the curve equals a probability of 

1. The integration of the PDF results in the cumulative distribution function (CDF) 

(compare equation 2-19). The CDF represents the probability that the variable takes a 

value less than or equal to x. 

                     (2-18) 

                     (2-19) 

Visualization of a variable’s distribution can be done with the help of histograms or by 

an approximated continuous distribution functions. Within this thesis the normal distri-

bution and a two parameter Weibull distribution were used. 

Normal Distribution 

The normal distribution is the most important distribution in statistics, partially because 

many variables appear to be normally distributed by nature but mainly because of the 

central limit theorem. It says that the sampling distribution of the mean becomes ap-

proximately normal even if the original variable was not normally distributed. The nor-

mal distribution is characterized by a symmetric, bell-shaped curve and can be de-

scribed with two parameters – the mean µ and the standard deviation σ (compare equa-

tion 2-20). 

        
 
      

                  (2-20) 

 

Figure 2-9: Normal distribution with different parameter configurations 
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One of its important characteristics is that the probability of occurrence within any 

number of standard deviations from the mean is identical for all normal distributions. 

Also, it describes the distribution of continuous, random variables. Therefore, the error 

is often assumed to be normally distributed in modelling applications. 

Weibull Distribution 

Another widely applicable distribution is the Weibull-distribution. It plays an important 

role in reliability and it is also used to describe site wind resources. The Weibull is a 

flexible distribution and its shape can be influenced by the shape parameter γ, its loca-

tion parameter μ and its scale parameter   (compare equation 2-21) [38]. In case the 

location parameter equals zero (μ=0) it results in the two parameter Weibull distribution 

used in this thesis (compare  

Figure 2-10). Also, it includes the Extreme Value Distribution (    and    ) as 

well as the Rayleigh distribution (    and    ) as special cases [38]. 

     
 

 
 

   

 
 
     

    
   

 
                     (2-21) 

The CDF for the two parameter Weibull distribution can be calculated following equa-

tion 2-22. 

                                   (2-22) 

Within this thesis the parameters of the Weibull distribution function are estimated us-

ing the MATLAB inbuilt function wblfit, which uses the maximum likelihood method 

for approximation. The parameters are then inputs for the MATLAB function wblcdf, 

which calculates the CDF function based on the PDF-parameters. 

 

Figure 2-10: Weibull distribution with different parameter configurations 
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2.4.3 Mahalanobis Distance 

The anomaly detection methodology applied in this thesis is based on the MHD and a 

good comprehension of the measure is therefore useful (based on [39]). The MHD is a 

unit less, multidimensional distance. It is calculated similarly to the better known Eu-

clidean distance but takes the covariance of its values into account which allows captur-

ing the correlation between the variables (compare equation 2-23). 

                
              for i=1 to n    (2-23) 

Here,                is the i
th

 vector from a total of n observations and    is the 

vector of its means. 

The graphical interpretation of the MHD in a two-dimensional variable space shows 

elliptic lines representing equivalent MHDs from the sample center. The shape of the 

ellipses is influenced by the correlation between the variables (compare Figure 2-11) 

 

Figure 2-11: Mahalanobis distances based on a sample (white) with its center (red) 

Figure 2-11 shows relative MHDs based on a basis sample (white data points). It can be 

observed, that the distance measure reacts much more sensitive to data points which are 

not ‘in line’ with the basis sample. This feature makes the MHD useful for outlier detec-

tion, where it was successfully applied in many fields. 
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2.5 Gearbox Condition Monitoring Approach 

Successful condition monitoring using normal behavior models consist of two main 

parts. Firstly, a model is required that is able to predict the target variable with high ac-

curacy. And then an approach has to be developed which is able to reliably distinguish 

model inaccuracies and abnormal conditions. Among others, a promising approach for 

condition monitoring based on SCADA data was presented in [4] (compare 2.3.3). Be-

cause the present thesis aims to further develop and apply this approach, it will be 

introduced more detailed in the following sections. 

2.5.1 Gearbox Model 

The present approach uses a NARX ANN to model the normal behavior of gearbox 

bearing temperatures. The ANN contains 20 neurons with sigmoid activation functions 

in the hidden and one neuron with a threshold function in the output layer. The tempera-

ture of the monitored bearing is modelled using the five input parameters displayed in 

Table 2-2. 

Table 2-2: Specification of the present gearbox model 

ANN Type NARX 

Layer Hidden Output 

Neurons 20 1 

Activation Function Sigmoid Threshold 

Inputs 

Power 
Rotor RPM 

Nacelle Temperature 

Gear Oil Temperature 
LSS Bearing Temperature 

Outputs HSS Bearing Temperature 

 

Also an automated approach for training data selection is presented in [4] to prevent 

over fitting and speed up the training process. This training data selection procedure, 

however, was not followed in this thesis, as over fitting did not occur and moderate 

training times were achieved. Moreover, a basic pre-filtering was conducted, which 

was found to be crucial to prevent false network training and thus was extended in the 

present work. 

2.5.2 Anomaly Detection Approach 

One of the challenges in the application of ANNs for condition monitoring is the appro-

priate judgement of model output. When is a prediction error due to inaccurate model-

ling and when does a deviation from the measured value indicate a component failure? 

As the ANN lacks of physical understanding of the modelled component, this questions, 
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has to be answered with the help of statistical tools. Therefore, the RMSE and the 

Mahalanobis distance were compared in [4], in which the latter was found to be the 

more robust and thus the more adequate measure to detect malfunctions in WT com-

ponents. 

For calculating the MHD during condition monitoring stage the data set containing the 

SCADA-measurements of the target variables and the corresponding model errors are 

combined (compare equation 2-24). Afterwards their MHD values are calculated using 

equation 2-25, where      is the mean error during training and      is the covariance 

matrix for the healthy data during model training. 

                             (2-24) 

                      
                   (2-25) 

Threshold Definition 

To decide whether a data point is reflecting abnormal behavior, an appropriate thresh-

old value has to be defined. As a prerequisite, the training data of the normal behavior 

model has to be free of failures and represents the healthy component condition. Un-

der that assumption it can be concluded that errors during model training are due to 

inaccuracies of the ANN model. This information is taken into account, when decid-

ing the threshold value for anomaly detection. That’s why the threshold value is calcu-

lated based on the model errors during training stage and data points in monitoring 

stage which show a high MHD compared to the MHDs obtained during training stage 

can be labeled as outliers 

The MHD values during the healthy turbine state, namely during network training, is 

calculated using equation 2-26 and 2-27.         represents the model’s training 

errors and          the SCADA measurements of the target parameter during the 

trining period. 

                              (2-26) 

                        
             

       (2-27) 

                         (2-28) 

The distribution of the MHD values during training was found to be accuratley 

represented by a two-parameter Weibull probability distribution function (compare 

2.4.2). Hence any data point during condition monitoring stage is defined as an outlier, 
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if the occurance of its MHD in a healthy turbine is less than 1% (comopare equation 2-

12) [4]. In addition, gearbox-related SCADA alarms where taken into account, to judge 

the turbine condition. 

2.5.3 Anomaly Detection Application 

The presented approach was applied to a turbine with a gearbox bearing failure in [4] 

which was detected several days before the vibration monitoring alarm which lead to 

an inspection where the failure was discovered. For anomaly detection the MHD was 

averaged over three days and then compared to the calculated threshold, since the 

MHD reacts much more sensitive to outliers than for example the RMSE. The averag-

ing ensured that the threshold is only violated in case of high MHD-values over a 

longer period and thus it can be concluded that the health of the monitored component 

is seriously affected. Therefore, false alarms are based on model errors are excluded 

which increases the robustness of the approach. Figure 2-12 shows the development of 

the averaged MHD-measure and the threshold value in a successful failure detection 

case presented in [4]. 

 

Figure 2-12: The averaged MHD violates the threshold several days in advance to a 

gearbox bearing failure in [4] 
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3 Model Development 

Against the presented background this thesis aims to further develop and apply the 

anomaly detection methodology introduced in chapter 2.5. Therefore, the following 

chapters describe the general model development process followed within this thesis 

and explain its subtasks. Within the chapters 4 and 5 the described approach is applied 

for CM of WTs. 

3.1 Model Development Process 

The process of developing an ANN based normal behavior model can be divided into 

multiple subtasks which together represent an iterative development process. Before a 

first model training the input and output parameters have to be selected according to the 

desired application. Moreover, a suitable ANN architecture has to be specified. Lastly, a 

data pre-processing approach has to be developed, to enable appropriate model training. 

After completing these tasks the model can be trained and the result should be verified 

during a testing and validation process, where the model is applied to healthy and faulty 

WTs. When developing an ANN, it can be difficult to find the optimal network configu-

ration for a specific application, since the performance depends on all the previously 

described factors and processes. Thus, finding a suitable ANN for an engineering appli-

cation is always an iterative process, where the pre-training configurations are varied 

until a sufficient result is achieved (compare Figure 3-1) [26]. The following sections 

describe the general approaches followed by this thesis in the development of the ANN 

based normal behavior models. 

 

Figure 3-1: Schematic flow chart of the iterative model development process 
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3.2 Parameter selection 

The selection of appropriate input and output parameters is an essential part of ANN 

development. In a first step the target parameter has to be selected. Potential component 

failures should manifest themselves in the chosen measurement, to enable failure detec-

tion. This shows the importance of target parameter selection for successful anomaly 

detection. In many cases there is only little choice because of the limited availability of 

measurements addressing the malfunction. In fact, the applicability of the approach of-

ten depends on the availability of potential target measurements. 

The selection of input parameters, on the other hand, is more complex. Relevant input 

parameters have to be chosen in a way, so that the model is able to predict the target 

parameter under normal operating conditions with sufficient accuracy. This ensures a 

detectable deviation between the model output and the actual parameter measurement 

during a malfunction in the corresponding component. In contrast to the target parame-

ter selection there usually is a big number of potential input measurements to choose 

from. Here, the physical relations between the turbine components which result in cor-

relations between the corresponding parameters play a key role. However, only few 

works have considered correlations between parameters of the SCADA system at the 

stage of parameter selection [24]. In this thesis a comprehensive study of the correla-

tions between component related parameters has been conducted. Figure 3-2 shows the 

correlation coefficients between selected parameters. Data representing almost 10 WT 

years has been analyzed and the results have been taken into account when selecting the 

model inputs. 

 

Figure 3-2: Correlation matrix between different SCADA-parameters 

1 2 3 4 5 6 7 8 9 10 11

WTG19_Generator Bearing Temp. Avg. (1)

WTG19_Generator Phase1 Temp. Avg. (2)

WTG19_Generator RPM Avg. (3)

WTG19_Hydraulic Oil Temp. Avg. (4)

WTG19_Gear Bearing Temp. Avg. (5)

WTG19_Gear Oil Temp. Avg. (6)

WTG19_Nacelle Temp. Avg. (7)

WTG19_Rotor RPM Avg. (9)

WTG19_Ambient Temp. Avg. (9)

WTG19_Ambient WindSpeed Avg. (10)

WTG19_Grid Production Power Avg. (11)
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When choosing the model inputs and outputs, two main objectives were considered. 

Firstly, the performance of the normal behavior model was optimized to achieve a suffi-

cient accuracy and secondly, the model has to correctly indicate failures as well as pre-

vent false alarms during the application stage. Both conditions were evaluated in the 

validation process described in chapter 3.6. 

It has been realized that the choice of input parameters should not be based on statistics 

only. Even though an input parameter with a high correlation to the target parameter 

will probably result in a performance improvement, it can lead to problems in anomaly 

detection. This is especially critical if two parameters show high correlation and similar 

behavior in case of a component failure. Due to the high correlation the input parameter 

is likely to get highly weighted during model training. Thus the parameter will have a 

big influence on the model output and improve the model’s performance significantly, 

since it gives a clear indication of target parameter. In case of a failure however, this 

results in a ‘correct‘ prediction of the abnormal target parameter behavior, which is then 

labels as ‘normal’. Figure 3-3 gives an example of such a case. Hence, the turbine’s 

physical system relations have to be taken into account during the selection process to 

avoid such model behavior. 

 

Figure 3-3: Example for ‘correct’ prediction of abnormally high bearing temperature 

by normal behavior model due to incorrect choice of input parameters 

3.3 Model Architecture 

As mentioned earlier, there is no established standard method for neural network design 

and thus a suitable and stable network has to be found in a trial and error process (com-

pare 2.3.1). After defining the input and output parameters, which in engineering appli-

cations are often defined by the technical problem itself, a network topology has to be 

determined [26]. Within this thesis, the model architecture was selected based on find-
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ings of related projects. In [4] a NARX network with 20 hidden neurons was success-

fully applied for detection of a gearbox failure (compare 2.5.1). The same configura-

tion was found to be sufficient in [40] where parametric studies were carried out to find 

the best model architecture for modelling the power output of a turbine. This is why 

this configuration was chosen for both models presented later within this thesis. Table 

3-1 sums up the selected ANN topology. 

Table 3-1: ANN architecture specification for all developed models 

ANN Type NARX 

Layer Hidden Output 

Neurons 20 1 

Activation Function Sigmoid Threshold 

 

3.4 Data Pre-Processing 

After successful determination of model architecture and parameters, the network needs 

to be trained. To build a functioning normal behavior model, the training data presented 

to the ANN has to represent normal operating conditions of the turbine. This is especial-

ly important since the synaptic weights are decided solely based on the training data, 

without any physical understanding of the system. If a model has been trained with er-

roneous data, it might not be able to identify abnormal behavior as such and thus fail its 

purpose. 

Unfortunately, data extracted from SCADA system is usually not ‘clean’. Malfunctions 

in the SCADA communication system, sensor or signal processing errors and standstill 

during maintenance and repair actions lead to missing and faulty data points, hidden in 

the large data sets. Also it cannot be guaranteed, that the complete data set selected for 

training does not contain any traces of minor errors during this period. To make sure 

that the ANN training is not distorted by such measurements, faulty data is removed 

from the training data set by applying an initial data screening and filtering process. 

In general, it was realized that SCADA systems form different manufacturers report the 

measurements with variable reliability. Some systems reported more than 95 % of the 

yearly operational data points correctly, whereas in others only around 50 % of the data 

sets were complete. This also depends on the recording philosophy. Some systems keep 

recording measurements, when the turbine is out of operation, others do not. However, 

sufficient model training was found to be possible also in cases with only half of the 

training subsets available, provided that the training data set covers the whole range of 

normal operation throughout the application period. 
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Since the data pre-processing is model specific, it is described in the corresponding 

model sections (compare chapter 4.1.2 and 5.1.2). 

3.5 Model Training 

Model training is a crucial factor for the successful application of ANN based normal 

behavior models, since the application performance highly relies on the training data 

presented to the net. The data pre-processing ensures that unhealthy data is removed 

from the training sets. However, it is not guaranteed that the training data covers the full 

range of normal operating conditions. This is particularly important because at presence 

ANNs are not good at extrapolating information beyond the training domain [26]. On 

the other hand, too much training data leads to extensive training times and overfitting, 

which again results in a decrease of the models application performance. This is why it 

is important to select appropriate training periods. 

3.5.1 Training Period and Turbine Individual Networks 

For sufficient model training, it is very important, that the training data presented to the 

network covers the complete scope of the relevant parameters as well as their combina-

tions and patterns for healthy turbine behavior. For the turbines located in Sweden, dis-

tinctive seasonal variations of operating parameters, especially temperatures, were ob-

served (compare Figure 3-4). Consequently, training data representing the period of a 

whole year was used to train the networks, if available. 70 % out of this data is used for 

model training, 15 % for testing and 15 % for an initial validation. 

 

Figure 3-4: Turbine specific behavior profile of gear bearing temperatures throughout 

a year [4] 

Figure 3-4 also explains why it was decided to train one individual model for each tur-

bine instead of developing one general model which can be applied to several turbines. 
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It can be observed that the same parameter, in this case a gear bearing temperature, 

shows significantly different behavior from turbine to turbine, even though all of them 

are located in the same geographical area and are facing similar environmental condi-

tions. Therefore, individual models can approximate the selected operational parameters 

more precisely and thus are better suited for accurate normal behavior modelling. Indi-

vidual turbine behavior can be modelled with the help of ANNs by training the network 

with data from a particular turbine, resulting in a unique, turbine specific model. 

3.5.2 ANN Training 

The LMA, which is used within this thesis to train the ANNs, starts model training with 

a random initialization of synaptic weights, which are then optimized (compare chapter 

2.3.2). This means that networks which are exposed to the same training data sets get 

slightly different synaptic weights assigned during the training process. In general, this 

is not a problem, since the differences are marginal, but it is possible that the training 

process gets stuck in a local minimum which leads to a relatively bad performing mod-

el. In order to prevent this, n-number of ANNs are trained with the same input data and 

the model with the best performance is consecutively chosen. This ensures that the 

model, which will later be applied for anomaly detection does not show particularly bad 

performance. Within this thesis, the number of trainings to choose the best ANN from 

was arbitrarily chosen as three. However, a larger number can be chosen but at cost of 

computation time. 

3.5.3 Inconsistencies in ANN Training 

The random initialization of the synaptic weights at the beginning of the training pro-

cess leads to a unique ANN at the end of each training session. The best-of-three-

trainings practice, described in the previous paragraph, excludes the possibility of an 

unusually bad training result. It has been observed that different trainings lead to net-

works which model the target parameter with only small variations, if the application 

input is in the range the network has been trained for (compare top chart Figure 3-5). 

Nevertheless, the random synaptic weight initialization can cause problems in anomaly 

detection stage. In case data is presented to the network it has not seen during training, 

which is a plausible scenario in case of a malfunction, since the network has been 

trained with healthy turbine data only, the ANNs might have weaknesses in extrapolat-

ing beyond the training domain. That can lead to model responses, which differ signifi-

cantly from training to training in case of a malfunction (compare bottom chart Figure 

3-5). 
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Figure 3-5:  Bearing temperature measured and modelled with different trainings for 

healthy (top) and faulty (bottom) turbine 

This behavior can lead to inconsistent results in anomaly detection, since the model’s 

response to unknown data can vary. Especially the dates of first alarms ahead to a fail-

ure can vary for different model trainings. Since time of failure detection is an important 

criterion for successful CM, a more steady approach was developed, which allows re-

producible results. In the training-process 100 ANNs, instead of one, are trained with 

identical data. Later on during the application process, all these 100 ANNs are used for 

the anomaly detection and the average MHD of all 100 models is calculated to judge the 

component condition. This approach for the model structure is visualized in Figure 3-6. 

 

Figure 3-6: Structure of Model Training and Application 
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Following this methodology, model training becomes a computationally intensive task. 

300 network trainings, 100 times the best of three, have to be conducted before the ap-

plication. The approach resulted in training times of several hours for the ANNs applied 

in this thesis. Nevertheless, it was decided to be worth the effort, due to the increased 

model quality and the fact that this is a nonrecurring process, which has to be performed 

only once, before model application. 

3.5.4 Lag and Normalization Consideration 

Signals in WTs have usually different time constants to respond to certain operational 

events. A ramp up of the wind speed, for example, results in an increased power pro-

duction as well as a higher loading of mechanical components, such as bearings and 

gears. These increase in loading leads to higher temperatures within these components, 

which are detected by the corresponding SCADA-sensors. However, the temperature 

rise will follow the production increase with a certain delay; due to the component’s 

thermal inertia [25]. When using feed-forward networks to model normal behavior this 

has to be taken into account by implementing appropriate time lags between the input 

signals. These lags can be identified by analyzing the cross-correlation between the in-

put parameters. This analysis has been conducted for the present models but did not 

result in an improvement of the model’s performance. It is concluded, that the recurrent 

network used in this study is able to account for delays through the implemented feed-

back loop. 

Moreover, [26] points out that normalization of data presented to the network can sig-

nificantly increase the training speed. Therefore, training was conducted with all param-

eters normalized to values between 0 and 1 using equation 3-1: 

      
             

                 
        (3-1) 

With parameter normalization indeed higher training speeds were achieved. However, 

due to the decrease in performance the ANN is trained and applied to absolute values. 

3.6 Model Evaluation and Validation 

Within the iterative development process the model is tested and evaluated after each 

ANN training to judge the effects of the previously conducted adjustments. During 

training, the model errors have been minimized for the training data set and the outputs 

are usually close to the measured values of the target parameter. However, the net-

work’s generalization abilities have to be tested by applying it to data never seen before 

[26]. Therefore, each model is applied to a healthy turbine data set to assess the model 

performance under normal operating conditions. Furthermore, it is also applied to a 

faulty turbine data set, to test the failure detection ability. Only if both validations where 
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conducted with sufficient results, the model is applied to study cases with this configu-

ration. 

3.6.1 Training Evaluation 

The training data set itself is divided into three subsets. 70 % of the data was used for 

actual model training, meaning optimizing the synaptic weights of the ANN. The se-

cond subset, representing 15 % of the training data, is called validation subset. Its error 

is monitored during the training process and once the performance decreases the model 

training is stopped. The remaining 15 % of the data is the so called test data set. Since 

the ANN hasn’t seen this data during training, it can be used to judge the networks gen-

eralization abilities [29]. 

During ANN training a problem called overfitting can occur. The network memorizes 

the training examples and the training error is driven to a very small value. However, 

the ANN is not able to generalize well which leads to bad performance in case it is pre-

sented to new data. If the test error increases significantly before the validation error 

during training, overfitting might have occurred. Therefore, the errors are monitored to 

ensure that no overfitting occurs [29]. 

Also, the training errors and their distribution have been analyzed. In case a model fits 

the data correctly, a random and therefore normal distribution of the model errors can be 

observed. Hence, it can be concluded that the model fits the data well if the errors are 

normally distributed [38]. Therefore, histograms of the training errors are plotted and 

evaluated. 

3.6.2 Healthy Turbine Application 

There are two main reasons for applying the trained model to a completely healthy tur-

bine. The first one is to test its generalization abilities, when it is exposed to data it has 

not seen before and the second one is, to ensure that the anomaly detection approach 

does not cause false alarms. 

The trained model is applied to a healthy turbine for a full year, consecutive to the train-

ing period. Filtering processes are conducted for training as well as the application data 

to ensure failure free data sets. Afterwards the trained ANN is applied to the unseen 

data set, which consists of only healthy data. Several conclusions can be drawn from the 

results. Firstly, the model performance is evaluated by calculating the MSE and the 

RME over a full year of application. The errors give an indication of how precise the 

model is able to predict the target parameter. The relative changes of errors were used to 

evaluate the impact of a model modification. 
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Secondly, the model is tuned to avoid false alarms. Therefore, the anomaly detection 

approach is applied to the healthy turbine (compare 2.5.3). The MHD-measure is sensi-

tive to outliers and is therefore well suited for their detection. However, it is desired to 

prevent false alarms caused by inaccurate model prediction instead of a component 

fault. This is why the MHD-measure is averaged over a certain time period, which will 

damp the absolute MHD value in case the high MHD measure was caused by inaccurate 

modelling. However, if the high MHD-value was caused by a component malfunction 

the MHD will show high values over the whole period and thus indicate a failure de-

spite the averaging. The model presented in [4] averaged the MHD over a period of 

three days (compare 2.5.3). Since the models presented in this thesis predict the target 

parameter with a higher accuracy, an averaging period of only one day has been found 

to be sufficient. This higher resolution provides comparable model robustness but al-

lows earlier alarms compared to the three day average. Moreover, it was decided to ne-

glect days where there is, in total, less than 6 hours of measurements available, since 

this was considered to be insufficient information to judge the turbine condition. 

3.6.3 Faulty Turbine Application 

It has to be noted, that it is not always the most accurate model which delivers the best 

results for anomaly detection. A model with a great performance and causing no false 

alarms is worth nothing if it cannot detect component failures as desired. That’s why the 

model application to a faulty WT data during validation is the most sensitive part. Pro-

vided the model was successfully validated with the healthy turbine, it can be used for 

failure detection in case the failure is detected ahead of its occurrence. 
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4 Gearbox Model 

As shown in chapter 2, gearboxes are among turbine’s most critical components in 

terms of reliability. Therefore, successful gearbox condition monitoring can be benefi-

cial for turbine operators. The existing model presented in chapter 2.5.1 was able to 

predict a gearbox bearing failure in advance. However, this model was not directly ap-

plicable to the turbines of Stena Renewables because input parameters are required, 

which were not available in their SCADA-data system. Thus the current model was 

modified and further developed accordingly. Its development and the application are 

presented in the following sections. 

4.1 Model Development and Training 

In the previous chapter (compare chapter 3) the general model development process, 

which is followed in the development of all subsequently presented models, was intro-

duced. In order to correctly interpret the results of the case studies presented later on, it 

is necessary to specify the individual model configurations, which is the subject of the 

following subchapters. Firstly, the selected input and target parameters will be dis-

cussed. Then, the conducted data processing will be described in detail. Finally, after 

presenting its validation results, the developed gearbox model will be applied to differ-

ent study cases in chapter 4.3. 

4.1.1 Parameter Selection 

The selection of input and output parameters plays a crucial role in the development of 

the ANN as well as the anomaly detection approach. As a first step the available 

SCADA-data sets where screened to get an overview of the available parameters. It was 

realized that not all parameters used in the presented gearbox model (compare chapter 

2.5) were available and thus a new input/output selection process had to be conducted. 

Here, the correlations between the parameters as well as their technical relations were 

taken into account (compare chapter 3.2). The aim of the iterative selection process was 

to achieve high model accuracy in combination with the models capability to success-

fully detect gearbox failures. These requirements lead to the final parameter configura-

tion, which can be seen in Figure 4-1. Moreover, the following subsections describe the 

development process in detail. 
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Figure 4-1: Visualization of final gearbox model parameter configuration with inputs 

(blue) and targets (violet) 

Target Parameters 

When monitoring the condition of a gearbox, it is an effective way to monitor its bear-

ings since the majority of gearbox failures actually come along bearing problems [8]. 

Even if the failure is not caused by the bearing itself, malfunctions in other gearbox 

components often manifest themselves as bearing damages and thus can be detected 

indirectly [9]. 

The gear oil acts as lubricant and cooling medium for gears and bearings. This means 

that malfunctions which are causing an increased friction between the gear wheels or 

the bearings will affect the gear oil temperature. Thus, selecting this parameter as a tar-

get is well suited for gearbox condition monitoring. This is why the gear oil temperature 

is typically recorded and automatically compared to a preset threshold within the 

SCADA alarm system. The advanced monitoring method developed within this thesis 

aims to expand the potential of this approach. 

The SCADA data sets of the WTs owned and operated by Stena Renewables contain 

two gearbox related parameters and both were selected as input parameters: The tem-

perature of the high speed shaft bearing and the gear oil temperature each averaged over 

10 minute intervals with a resolution of 1 °C steps. 

Input Parameters 

The study on which parameters mainly influence the selected target parameters has re-

vealed that high power output and rpm are likely to come with high bearing tempera-
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tures. Figure 4-2 visualizes this relationship. Analogue behavior can be observed for the 

gear oil temperature. 

 

Figure 4-2: Gear bearing temperature depending on power output and rotor rpm 

The correlation analysis shows that there is indeed a high correlation between rotor rpm 

as well as power production and the target temperatures (compare Figure 4-3). The rotor 

rpm correlation, averaged over more than 10 turbine years, was higher than 0.8 for both 

target parameters and higher than 0.75 for the power output. Considering this fact, it 

was concluded that these are good indicators for the mechanical loading of the gearbox. 

For that reason they were selected as input parameters for both models. 

 

Figure 4-3: Gearbox related parameter correlations averaged over more than 10 

healthy turbine years 
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Figure 4-3 also shows that both target parameters are highly correlated. This suggests 

that using one as an input to model the other might improve the models quality, since 

the gear oil temperature gives a clear indication of the bearing temperature and vice 

versa. A parameter study, where different input configurations were investigated con-

firmed that. Figure 4-4 shows the relative performance of the gear bearing model aver-

aged over 20 model trainings for different input configurations. 

 

Figure 4-4: Relative performance gear bearing model based on the MSE for different 

model input configurations and indication of the model’s anomaly detection ability. 

However, it is not necessarily the most accurate model that is best suited for failure de-

tection, as Figure 4-4 shows. Even though the configuration including both gear-related 

parameters shows by far the best performance, it is not able to detect a gearbox failure. 

Through their high correlation the parameters are getting highly weighted during model 

training and therefore strongly influence the model output. In case of a failure both tem-

peratures increase resulting in a 'correct' prediction of the abnormally high target tem-

perature. Due to this behavior, the parameters cannot be used as inputs for one and an-

other. 

For the selection of the remaining input parameters the physical system behind the sta-

tistical numbers was taken into account. Nacelle and ambient temperature correlate only 

little with the target parameters (compare Figure 4-3), which might lead to the conclu-

sion that they are not important for successful model application. Indeed, they seem not 

to contribute very much to the model’s accuracy but anyway they are of big importance 

for anomaly detection. Successful failure detection was possible only if both tempera-

tures were used as model inputs (compare Figure 4-4). The reason is that all four tem-
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peratures, gear bearing, gear oil, nacelle and ambient temperature are coupled via heat 

exchangers and cooling fans. In addition, nacelle and ambient temperature are highly 

correlated (compare Figure 4-3). Therefore, a failure, which results in an increased fric-

tion within the gearbox, does not necessarily cause extreme temperatures within the 

gearbox. The cooling mechanisms can keep the temperatures in the regular range, but 

this will then disturb the normal association between nacelle and ambient temperature. 

It was found to be essential to include both measurements as inputs into the model. 

Since the gear bearing and the gear oil temperature are closely related, the respective 

analysis for the gear oil model showed qualitatively identical results. Thus, the input 

configuration marked in Figure 4-4 was chosen for both models. 

4.1.2 Data Pre-Processing 

After parameter selection the data pre-processing is net next step to discuss. Several 

filter methods have been developed for the gearbox model to remove erroneous data 

form the training set and prevent false alarms due to signal errors during application 

stage. During the filtering process approximately 20-25 % of the data points are deleted 

from the selected training data set. Most of the data loss is normally caused by the gen-

eral boundary filter (GBF). The GBF is responsible for removing abnormally high and 

low values caused by communication errors as well the data sets recorded during tur-

bine standstill, when the turbine is not in operation. Table 4-1 gives an overview of the 

filters and their application. 

Table 4-1: Overview of filters of the gearbox model 

Filter Purpose 
Data  

Losses 

Application 

TR Set APP Set 

General Missing Filter Filter missing values ~ 1-5 % x x 

General Boundary Filter 
Filter high/low values 

and standstill data 
~ 10-20 % x x 

General Cluster Filter 
Removes abnormal data 

from training set 
2.5 % x - 

Skip Filter Filter values after missing ~ 1-2 % x x 

 

Figure 2-1 visualizes their impact on the training data set. Looking at Figure 2-1 it has 

to be noted that the skip filter does not cause a gap in the low range of the power curve. 

This is just a visual impression since the filter data points were added to the plot after 

the remaining data point and thus partially cover them. In the following paragraphs the 

purpose, conditions and results of the individual filters are explained in detail. 
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Figure 4-5: Visualization of the different filters applied within the gearbox model 

General Missing Filter 

Since the model cannot be either trained or applied with incomplete data sets, the data 

points had to be neglected whenever one of the parameters used by the model was miss-

ing. Therefore, the general missing filter screens the subsets    consisting of all relevant 

input and target parameters    of all time steps   for missing values and deletes the 

whole subset from the training or application data set if one of the parameters is not 

recorded (compare equation 4-1). 

                                            (4-1) 

General Boundary Filter 

SCADA communication problems and sensor malfunctions can lead to unreasonable 

values reported by the SCADA system. The GBF aims to exclude these values from the 

training data set as well as from the application data set, since wrongly reported parame-

ters should not lead to an alarm of the normal behavior model. Therefore, the relevant 

parameters are filtered in case they exceed the operational boundaries specified in the 

manufacturer’s technical documentation (compare equation 4-2). 

                                                                    (4-2) 

Furthermore, the filtering of data subsets with a turbine production below zero guaran-

tees that only data sets which represent the turbine during operation are taken into ac-

count. The GBF typically excludes around 10 to 20 % of the initial data values, most of 

them based on the power filtering. The boundaries applied within this thesis are pre-

sented in in Table 4-2 and Figure 4-6 visualizes its application to a data set. It can be 

seen that mainly data points with a negative production are filtered. 
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Table 4-2: GBF-boundaries for parameters of the gearbox model 

Gearbox Parameters Rated  
Value 

Lower  
Bound 

Upper  
Bound 

Grid Production Power Avg. [kW] 2000 0 2000 

Rotor RPM Avg. [rpm] 16.7 0 17 

Gear Bearing Temp. Avg. [°C] - -20 90 

Gear Oil Temp. Avg. [°C] - -20 80 

Nacelle Temp. Avg. [°C] - -20 70 

Ambient Temp. Avg. [°C] - -20 40 

 

 

Figure 4-6: Visualization of the General Boundary Filter 

General Cluster Filter 

The training data sets for the normal behavior models consist of large spreadsheets con-

taining operational data records of multiple months. Even though there was no failure 

documented for a specific turbine, it cannot be excluded that minor malfunctions have 

left their traces in the SCADA data. Since these data points do not represent normal 

behavior, they should be excluded from the training data. Removing these outliers from 

the training set can improve a model significantly, if the data is not characteristic for the 

problem domain [26]. Therefore, a filtering method introduced in [40] was applied in 

this thesis. There, outliers in the training data set are found and filtered by clustering the 

input data and using the MHD to define outliers. 

Firstly, every training data subset is assigned to one of the clusters based on its average 

wind speed, ambient temperature and pitch angle (compare Table 4-3). This is conduct-

ed using MATLAB’s clusterdata function, which bundles data points based on their 
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relative Euclidean distance. Afterwards the multidimensional MHD of each subset from 

the cluster center is calculated (compare 2.4.3). The eight parameters taken into account 

can be found in Table 4-3 and Figure 4-7 visualizes the effect of the cluster based filter-

ing. 

Table 4-3: Specification of parameters for clustering of data set and parameters used 

for filtering with MHD 

Cluster Parameters Filtering Parameters 

 Power output avg./std. 

Wind speed avg. Wind speed avg./std. 

Ambient temperature avg. Pitch angle avg./std. 

Pitch angle avg. Rotor RPM avg. 

 Ambient temperature avg. 

 

 

Figure 4-7: Visualization of the General Cluster Filter 

 

In some of the data sets the pitch angle information was incomplete. In that case these 

values were not taken into account in the filtering approach and the number of clusters 

was reduced to 12 following the logic of [40]. Sufficient filtering results were achieved. 

Finally, the distances of all data points from their cluster centers are compared and the 

subsets which show the top 2.5 % MHDs are considered to be outliers and are conse-

quently removed from the data set. The condition for deleting a subset     is presented 

in equation 4-3, where MHDxt represents the MHD of the subset from the cluster center 
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and CDFMHDxt the clusters cumulative distribution function of the MHDs, assuming a 

log logistic distribution. 

                                           (4-3) 

With the help of this method abnormal data points hidden in the large training data set 

can effectively be identified and removed which leads to an improvement of model per-

formance.  

Skip Filter 

When evaluating the ANN’s abilities to model the target temperatures, it has been ob-

served that comparably big prediction errors occurred after periods where data is miss-

ing for a longer time. These data gaps can be caused either by turbine downtimes or by 

data filtering. However, during the first few measurements after these periods the model 

usually overestimated the target temperatures (compare Figure 4-8) resulting in false 

alarms during the application stage. 

 

Figure 4-8: Temperature overestimation after large data gaps  

The explanation for this phenomenon is based on the fact that all data is presented to the 

ANN as continuous measurements and the ANN has no indicator for the data interrup-

tions. During the times where data is missing, the turbine is most likely out of operation 

and the gearbox substructures cool down over time. The turbine power output and RPM 

as input parameters are the model’s only indicators for the gearbox loading. In case pro-

duction ramps up, the consequent temperature increase in gearbox components will fol-

low with a delay, due to the thermal inertia of the gearbox subsystems. This has two 

negative effects on the model. Since the training algorithm tries to fit the training targets 
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as good as possible, the combination of these low temperatures and high loading indica-

tors lead to a performance decrease in form of a slight temperature underestimation dur-

ing regular operation. Moreover, the model is still not able to predict the low tempera-

tures after turbine standstill and thus it overestimates the temperatures after these inac-

tive periods. 

As a solution to this problem a dual approach has been followed. On one hand, the TSF 

has been developed, which excludes the after downtime data from training and applica-

tion process. This results in a better performing ANN and prevents false alarms during 

application stage. The filter was tuned due to analysis of the model output, which re-

vealed that the ANN had difficulties to model the target temperatures correctly mainly 

during the hour following a long downtime (see Figure 4-8). Afterwards the tempera-

tures reached the normal operation range again and the model error returned to a tolera-

ble level. Moreover, it was decided to apply the filter only in case there was not a single 

measurement for a period of at least three consecutive hours. Figure 4-9 visualizes the 

effect of the TSF. The application resulted in a significant overall performance increase 

(compare Figure 4-10). 

 

Figure 4-9: Visualization of the Skip Filter 

On the other hand, an indicator for discontinuous input data has been introduced and the 

performance of the ANN model has been optimized in an iterative study. The general 

idea is to introduce an additional input signal to the ANN model. This value of the input 

signal is dependent on the length of missing data before the current data point. This is 

conducted for both the training and the application data set. For the optimization differ-

ent configurations were run for ten times each and the performance was documented 

(compare Figure 4-10). 
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Figure 4-10:  Performance for different configurations for the skip filter and parameter 

The best average and most consistent performance were achieved with the following 

skip parameter configuration. The parameter was chosen to be: 

 zero, if there is no gap and the previous data point is available 

 one, if only the previous data point is missing which corresponds to a gap of 10 

minutes 

 two in case that previous to the data point there was a gap of at least three con-

secutive hours without an available measurement 

The output analysis as well as the skip parameter optimization came to qualitatively 

identical results for both target parameters. This is why the both methods are applied 

with the same configuration to the gear bearing temperature as well as the gear oil tem-

perature model. 

4.2 Validation and Comparison 

Healthy Turbine 

For model development and verification the model with its presented configurations 

was applied to one year of operational data from a turbine without any reported failures. 

Figure 4-11 shows the model output in comparison to the measured values for a period 

of three days. It can be observed that both models are able to predict the temperatures 

accurately. 
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Figure 4-11: Measured versus modelled temperatures for a healthy turbine 

The ANNs were able to model the gear bearing temperature with an average MSE/MAE 

of 0.732/0.556 and the gear oil temperature with an average MSE/MAE of 0.956/0.580, 

all measures in °C. Thus, a higher model accuracy was achieved than in comparable 

studies, where bearing temperatures in WTs where modelled using ANNs (compare 

Table 4-4). The reasons for the increased accuracy lay mainly the data pre-processing 

and the data quality. 

Table 4-4: Model performance for healthy turbine application averaged over 20 ANNs 

in comparison with literature values. 

Model Description MAE MSE Source 

Gear Bearing Model 
Thesis 

model with presented con-
figuration 

0.56 0.73 - 

Gear Oil Model 
Thesis 

model with presented con-
figuration 

0.58 0.99 - 

Gear Bearing Model 
Zaher 

ANN based gear bearing 
temperature modelling 

- 1.51* [21] 

Gear Oil Model 
Zaher 

ANN based gear oil tempera-
ture modelling 

- 4.88* [21] 

Generator Bearing 
Kusiak 

ANN based generator bear-
ing temperature modelling 

0.69 - [32] 
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 *calculated from RMSE 

Moreover, the histogram of Figure 4-12 shows that the errors during model training are 

normally distributed. Hence, it was concluded, that the errors are truly random and do 

not show a trend or are shifted by a functional shortcoming of the model itself. Thus, 

the model was found to be functionally adequate. Also, the comparison between the 

error during model training for the training, test and validation set do not show signifi-

cant differences and therefore it can be deduced that no overfitting occurred and the 

model shows satisfactory generalization abilities. 

 

Figure 4-12: Training error histogram (100 bins) for the bearing temperature (left) and 

the gear oil temperature (right) model 

 

Figure 4-13: Gear bearing anomaly detection for healthy turbine 

The last and from an anomaly detection perspective most important condition was met 

as well: the model did not indicate any malfunctions for the applied period. The MHD-

measure never exceeds the calculated threshold value (compare Figure 4-14a/b). Hence, 

it can be concluded that alarms will be caused by abnormal turbine behavior rather than 

by model errors. Moreover, the anomaly detection approach indicates that the two gear-
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related SCADA alarms do not reflect serious gearbox damages, since there is no model 

alarm. 

 

 

Figure 4-14b: Gear oil anomaly detection for healthy turbine 

Faulty Turbine 

Furthermore, the model was applied to a turbine with reported gearbox problems to val-

idate the anomaly detection abilities. Therefore, the turbine which is presented as study 

case in [4] was selected since the cause of failure events is well documented and under-

stood. In this particular turbine a failure in the low speed shaft occurred. Temperature 

measurements for the damaged bearing, the high speed shaft bearing and the gear oil are 

available. With a slightly less aggressive filtering approach due to low data availability 

around the failure the results listed in Table 4-6 were achieved.  

Table 4-5: Results of anomaly detection for LSS-bearing failure 

LSS-Bearing 
Model 

Vibration 
CM-system 

Inspection HSS-Bearing 
Model 

Gear Oil 
Model 

Alarm 
17. Nov. 

Alarm 
23. Nov. 

Discovery 
28. Nov. 

No Alarm No Alarm 

 

The results confirm the model’s ability to detect failures in advance. The alarm was 

issued the same day the model in [4] detected the failure. Moreover, the importance of 

measurements from the damaged component itself can be seen. The models for HSS 

Bearing and Gear oil did not indicate an error, which enables one to localize the prob-

lem in the gear box. However, all three models detected the final breakdown of the 

gearbox. 
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4.3 Model Application 

This section presents the application of the proposed ANN model to data of turbines 

operated by Stena Renewables. For the selected turbines gearbox problems were rec-

orded and thus they are well suited to investigate the model’s failure detection ability. 

Table 4-6 summarizes the model configuration and training specifications used for the 

anomaly detection. 

Table 4-6: Summary of gearbox model specifications 

NARX ANN Configuration 

Layer Hidden Output 

Activation Function Sigmoid Threshold 

Neurons 20 1 

Inputs 
Power 

Rotor RPM 
Nacelle Temperature 

Ambient Temperature 

Outputs Gear HSS Bearing & Gear Oil Temperature 

Training and Data Pre-processing 

Training Algorithm Levenberg-Marquard 

Training Period 1 failure free year of data 

Filter Training Data 
Boundary Filter Cluster Filter 

Skip Filter 

Training Philosophy 100x best of 3 trainings 

Application and Anomaly Detection 

MHD Averaging Over one day 

Data Sufficiency Limit At least 6h of data over one day 

 

4.3.1 Gearbox Study Case 1 

Case Description 

In this particular turbine, which was commissioned in 2008, an IMS-bearing failure 

resulted in a complete gearbox failure and the gearbox had to be replaced consequently. 

The bearing failure was first discovered during an inspection which was conducted due 

to an alarm of the vibration system on the 25
th

 of April 2014. A crack on the inner ring 

of the IMS-bearing was discovered. Also, beginning of spalling was reported and a 

bearing replacement was recommended. However, it was decided to further operate the 

turbine, since long lead times would have caused production losses. The turbine was 

operated for more than one more month with the damaged bearing until the complete 

gearbox failed. Turbine operation was stopped on the 22
nd

 of May and the gearbox re-

placement was conducted from the 3
rd

 of June on. 
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Anomaly Detection 

In Figure 4-15 the measured temperature values versus the ANN output for the gear 

bearing and the gear oil are presented for the period previous to the failures. The meas-

ured temperature does not show abnormally high values until its steep increase immedi-

ately before the complete gearbox failure. It can be observed that both models are able 

to predict the development of the temperatures quite accurately with two exceptions 

(marked in Figure 4-15). Around the 20
th

 of March both models over-predict the tem-

peratures for a short period and the extremely high temperatures shortly before the 

gearbox failure are not modelled correctly. The temperatures deviations suggest that 

there are periods where the turbine is not operating normally. 

 

Figure 4-15: Modelled and measured temperatures before gearbox failure 

Figure 4-16 shows the MHD-measures versus the calculated threshold in the months 

ahead of the gearbox failure. It can be observed that both models trigger an alarm on the 

20
th

 March due to the overvaluation. Around the period where the IMS-problems are 

documented neither the bearing model nor the oil model triggers an alarm. The period 

of the inspection can be identified due to the missing data at the end of April. The final 

model alarm occurred on the 22
nd

 of May, the day when the turbine was taken out of 

operation. A closer look into the modelled versus the measured temperatures show, that 
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there is a sudden increase of both measured temperatures causing a significant deviation 

between the modeled and measured parameters, which manifest themselves as high 

MHD-values. That day also multiple gearbox-related SCADA-alarms were triggered, 

which was probably the reason for the turbine shutdown. 

 

Figure 4-16: Anomaly detection of both models before gearbox failure 

Initial Alarm Analysis 

The anomaly detection plots (Figure 4-16) show a clear violation of the threshold at the 

end of March. As sudden as the increase occurs on the 20
th

 of March it decreases again 

only one day later and the following period does not show any anomalies till the IMS-

bearing was discovered. To find the explanation of the high MHD value, a closer look 

on the modelled versus the measured gear bearing and gear oil temperatures is helpful. 

Figure 4-17 shows that both models overestimate the target values noticeably which 

causes the threshold violation. 
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Figure 4-17: Output versus measured temperatures during the period of model alarm 

The reason for this model behavior was found in the model Input and the SCADA rec-

ords during that period. It was discovered that the turbine showed a very volatile opera-

tion behavior. Within a period of 30 minutes the turbine shuts down very suddenly and 

then ramps up production to the rated level again (compare Figure 4-18). This behavior 

is observed multiple times. 

 

Figure 4-18: Rotor RPM and power input signals and SCADA alarms during model 

alarm 
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A look into the SCADA records revealed that there were more than ten alarms caused 

by very high temperatures in the converter, which lead to the automatic turbine shut-

downs. After a few minutes, when the temperatures returned to an acceptable level, tur-

bine operation was started again until the high temperatures occurred again. This behav-

ior was repeated every two hours until the operation was manually stopped by the oper-

ator. The models are not able to model predict their target parameters accurately under 

these circumstances, since the models weren’t trained for these abnormal input signal 

behavior. 

Therefore, it was concluded that the initial alarm was not related to the later failure of 

the IMS-bearing, even though it cannot be excluded that the volatile behavior contribut-

ed to the bearing degradation. Taking the absence of gear-related SCADA-alarms and 

the transformer alarms into account, the operator can conclude that the alarm of the 

gearbox model was not connected to the gearbox itself. In fact, the model might draw an 

operator’s attention to the turbine and the manual operation stop with an inspection 

could have been conducted earlier. 

Summary and Conclusion 

Table 4-7 summarizes the failure description and the model’s anomaly detection results: 

Table 4-7: Summary of gearbox study case 1 

Inspection Reports SC01 

Date Source Description 

25.04.2014 Vibration-System CMS-alarm 

25.04.2014 Inspection IMS-bearing damage discovered 

22.05.2014 SCADA alarm Turbine operation stopped 

03.06.2014 Maintenance Gearbox replacement 

Anomaly Detection SC01 

20.03.2014 Bearing Model Alarm caused by abnormal operation 

20.03.2014 Oil Model Alarm caused by abnormal operation 

22.05.2014 SCADA Alarm caused by high temperatures 

22.05.2014 Bearing Model Alarm caused by high temperatures 

22.05.2014 Oil Model Alarm caused by high temperatures 

 

In the presented study case the gearbox model issued an alarm due to abnormal turbine 

operation and finally before the complete breakdown of the gearbox. The IMS-bearing 

malfunction itself was not detected. It is concluded, that the bearing problems didn’t 

affect any of the monitored variables significantly enough to allow detection. However, 

the model was able to detect the severe damage of the gearbox that resulted from the 

IMS-bearing failure and gives an additional indicator to pay increased attention to the 

multiple SCADA-alarms that were triggered that day. 
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4.3.2 Gearbox Study Case 2 

Case Description 

The turbine of this study case was installed in November 2006. After 5 years of opera-

tion, from the 19
th

 November 2011 on, the turbine was standing still although high wind 

speeds were measured on site. An inspection two days later revealed that the whole 

gearbox was completely stuck and the gearbox was completely broken. The gear oil, 

which was changed only 8 days before, showed severe signs of degradation. The gear 

wheels were damaged, the rear IMS bearing crashed and debris with tooth-pieces was 

found in the gearbox. The complete gearbox had to be changed in consequence. 

Anomaly Detection 

The measured temperatures of the gear bearing and the gear oil show similar behavior 

like in the previous study case. Exceptionally high temperatures occur only right before 

the complete gearbox breakdown. However, the comparison with the output of the nor-

mal behavior models shows a difference. The model output starts deviating from the 

measurements from the mid of September on (compare Figure 4-19). Both models esti-

mate the temperatures lower than measured. The difference can be observed more clear-

ly for the gear oil model than for the gear bearing model. In addition, the very high tem-

peratures in the last two days are not modelled as normal behavior by the ANNs. 

 

Figure 4-19: Modelled and measured temperatures before gearbox failure 

The anomaly detection methodology helps to judge these deviations. A constantly in-

creasing MHD measure can be observed for both models, caused by an increasing devi-
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ation between normal behavior model output and measurement. This development indi-

cates a malfunction with a gradually increasing influence on the gearbox-system. This 

development peaks in threshold violations in both models. The gear oil model shows the 

first threshold violation on the 13
th

 of September and the gear bearing model on the 05
th

 

of October. From October on the MHD measure lay above the threshold for most of the 

days in both models. Even though there is no gear-related SCADA-alarm, such model 

results should be taken serious and a detailed inspection should be initiated. Two days 

ahead of the failures the first SCADA-alarms occur together with extremely high MHD-

measures indicating the near complete breakdown of the gearbox. However, the reasons 

for the deviation between the ANN output and the temperature measurement have to be 

analyzed before a final conclusion can be derived from the results. 

 

Figure 4-20: Anomaly detection of both models before gearbox failure in SC02 

Anomaly Detection Analysis 

One potential source for ANN errors is an insufficient range of the training data. Then 

the ANN would not be able to predict accurately for input data exceeding the range for 

which it was trained. Such a situation would result in increased errors in the model and 

subsequently a false alarm. It is important to exclude the possibility that the temperature 

under estimation presented in Figure 4-18 is not due to short comings in the ANN mod-

el. Therefore, the input signals provided to the ANN model at application stage are 

compared to the range of input signals provided during training. In Figure 4-21 all four 

input signals are plotted against their training minimums and maximums.  
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Figure 4-21: ANN input signals and their extreme values in the training data set for the 

period when the model triggered alarms 

It can be observed, that only the rotor RPM reaches values below its training minimum, 

but only for a few instances and in times when the model was actually not triggering 

alarms. Therefrom it is concluded that the training data covered a sufficient range. 

Moreover, no strange operation behavior, as for example observed in gearbox study 

case 1, occurred during the condition monitoring period. It is concluded that the model 

alarms are indeed triggered by a malfunction in the gearbox, which lead to a system 

imbalance which the model detected successfully. It is assumed that the gearbox mal-

function resulted in an increased friction and heat production in the gearbox. An in-

creased activity of the cooling system would have been able to keep the temperatures 

within the gearbox in an acceptable range but has potentially disturbed the relation be-

tween the highly correlated nacelle and ambient temperature, since the failure was only 

detectable in case both parameters were selected as ANN inputs.  

Summary and Conclusion 

In gearbox study case two a successful application of the developed gearbox-model was 

demonstrated. This information is especially valuable, since the turbine was equipped 

with a vibration CM system which was not able to detect the malfunction at all. Also, 
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the SCADA alarms were triggered only two days before the breakdown, due to the ex-

treme temperatures which occurred in the gearbox by that time. The model triggered the 

first alarm more than two months before the final gearbox collapsed, sending early sig-

nals of a malfunction. A detailed inspection at that time could have limited the failure 

propagation which resulted in the final gearbox breakdown. Table 4-7 summarizes the 

failure description and the model’s anomaly detection results: 

Table 4-8: Summary of gearbox study case two 

Inspection Reports SC02 

Date Source Description 

19.11.2014 Turbine stuck Turbine operation stopped 

22.11.2014 Inspection Gearbox replacement necessary 

Anomaly Detection SC02 

13.09.2014 Oil Model First malfunction alarm 

05.10.2014 Bearing Model First malfunction alarm 

17.11.2014 SCADA Alarms caused by high temperatures 

 

4.4 Discussion 

The development and application of an ANN based normal behavior model for gear box 

condition monitoring was presented in this chapter. In addition to the reported infor-

mation, the discussion of experiences, challenges and future work will conclude this 

chapter.  

The presented ANNs showed good performance when modelling the target parameters. 

This was achieved by selecting appropriate model input parameters, suitable training 

configuration, quality of the provided data and last but not least the developed data pre-

processing methods. The data processing can be a work intensive task, but contributes 

significantly to the models accuracy by identifying the data points which the ANN has 

problems to model and excluding them from the data set with the help of systematic 

rules. When it comes to failure detection based on ANN outputs, data pre-processing is 

a sensitive issue. Through a too aggressive approach relevant data can be deleted from 

the training set and potentially detectable data from the application set. An approach 

which is too lose, on the other hand, will have a negative impact on the models perfor-

mance and make failure detection more difficult. It has to be pointed out that it can be a 

decisive factor for failure detection with ANN based normal behavior models. 

Although efforts were made to improve the data pre-processing, not all investigated 

gearbox problem could be detected. From six available complete data sets only the two 
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presented cases showed successful failure detection. Table 4-9 gives an overview of the 

investigated failures and the results. 

Table 4-9: Overview over investigated gearbox study cases 

 

 

From Table 4-9 it can be concluded, that the model can only detect severe gearbox fail-

ures and failures in components where an actual temperature measurement is available. 

This brings us to the next decisive factor for successful failure detection - the availabil-

ity of suitable measurements. The presented gearbox model used a set of standard vari-

ables which are available in almost all SCADA systems of turbines with gearboxes. The 

model quality in terms of failure detection can be improved if more of the subcompo-

nents were covered by SCADA measurements. This is confirmed by the model verifica-

tion with a turbine with failure in the LSS bearing. In that case the HSS bearing model 

and gear oil model were not able to detect the LSS bearing failure, which however, was 

detected by the LSS bearing model (compare Table 4-9). In addition, measurements 

regarding the gearbox cooling system could improve the modelling of gearbox compo-

nent temperatures. A more detailed thermal gearbox model can be developed using in-

formation like the flow rate of cooling mediums or fan activity. With such a detailed 

model it might be possible to detect failure in other parts of the gearbox via the cooling 

medium temperature. 

On the other hand, study case two showed that the model can be very beneficial for op-

erators. A severe gearbox failure was detected approximately two months in advance 

without any additional condition monitoring equipment. Thus SCADA data analysis can 

be a cost effective way to complement existing CM methods like vibration monitoring. 
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5 Power Model 

In the previous chapters the anomaly detection methodology for SCADA-based condi-

tion monitoring in WTs was introduced and applied to the gearbox. In the gearbox 

model component-related, local variables were monitored. In this chapter the applica-

tion of the approach to a global variable, the turbines’ power production, is investigat-

ed to draw conclusions regarding system conditions. This allows a bigger spectrum of 

potentially detectable failures but comes with challenges in identification of their 

source. The model development and characteristics are described as well as the appli-

cation to different failure cases and their evaluation. Challenges and chances of the 

approach are presented. 

5.1 Model Development and Training 

Modelling the power output comes with different challenges compared to the tempera-

ture predictions. This applies to the development of the ANN as well as the anomaly 

detection approach. In contrast to the temperatures modelled in the gearbox investiga-

tion a turbines power production is a very volatile measure and the SCADA resolution 

of 10 minute average values is rather low to model such a quick changing parameter. 

This has a major impact on the input parameter selection of the ANN. 

In the development of the power model a dual approach was followed. On one hand the 

results presented in [40] were taken into account. There, ANN’s were optimized to 

model a turbines output as accurate as possible. The study achieved good results and 

within this thesis the utilization of the approach for anomaly detection is investigated. 

On the other hand, the necessary adjustments, which result from the different applica-

tion purpose, were conducted following the general model development approach de-

scribed in chapter 3. The process is described in the following sections. 

5.1.1 Parameter Selection 

As mentioned above, the target parameter of the model is the turbine’s power output. 

Input parameter selection was conducted based on [40]. The wind speed is essential 

since it defines the energy that can be converted into electricity. In addition, it was re-

ported that adding the standard deviation of the wind speed as an input improves the 

model significantly. In some data sets there was no wind speed standard deviation 

available. In those cases the wind speed minimum and maximum were used as input 

variables as a substitute. In addition, the ambient temperature was taken as an input pa-

rameter since it influences the air density and therefore the convertible energy at a cer-
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tain wind speed. Finally the nacelle direction can influence the power production 

through potential obstacles and is thus selected as last input [41]. The system frequency, 

which was also suggested as an input in [40], was not taken into account there was no 

evidence of a significant model improvement. Figure 5-1 visualizes the final parameter 

configuration of the power model. 

 

Figure 5-1: Visualization of final power model parameter configuration with inputs 

(blue) and targets (violet) 

5.1.2 Data Pre-Processing 

For the power model an appropriate data processing methodology was investigated. 

Similar approaches like for the gearbox model were found to be suitable, but most of 

them had to be modified as described in the following paragraphs. For a detailed presen-

tation of their development, please refer to chapter 4.1.2. Table 5-1 gives an overview 

of the applied filters. 

Table 5-1: Overview of filters of the power model 

Filter Purpose 
Data  

Losses 
Application 

TR Set APP Set 

General Missing Filter Filter missing values 10-50 % x x 

General Boundary Filter 
Filter high/low values 

and standstill data 
5-20 % x x 

Curtailment Filter 
Filter curtailment data form 

training set 
< 1 % x - 

Skip Filter Filter values after missing 1-5 % x x 

General Cluster Filter 
Removes abnormal data 

from training set 
2.5 % x - 
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General Missing Filter 

For the power model investigations data subsets, where one or more of the required pa-

rameters were missing, were deleted from the training and application data. Since the 

power model was applied to turbines from different manufactures the amount of data 

losses differed significantly from turbine to turbine, depending on the reliability of the 

corresponding SCADA system. Some systems reported only about half of the chosen 

period correctly. However, ANN training was conducted with sufficient results, if the 

available complete data sets covered the whole range of the application data. 

General Boundary Filter 

In analogy to the gearbox model a general boundary filter was applied to exclude 

SCADA-communication errors form the data sets as well as ensure that the power is 

only modelled for time steps where the turbine is actually in operation. The selected 

boundary values are shown in Table 5-2. 

Table 5-2: GBF-boundaries for parameters of the power model 

Gearbox Parameters Lower  
Bound 

Upper  
Bound 

Grid Production Power Avg. [kW] 0 Prated 

Wind Speed Avg. [m/s] 0 25 

Wind Speed Std. [m/s] 0 10 

Ambient Temp. Avg. [°C] -20 40 

Nacelle Direction [°] -360/-720 360/720 

 

Curtailment Filter 

The most important input parameter for the power model is the ambient wind speed. 

Based on this measure, accompanied by the other inputs, the model is able to estimate 

the turbine’s power production. In some cases, however, the turbine output is deliberate-

ly limited by the operator, for example due to grid requirements. Consequently, it is not 

the wind alone that determines the turbine’s output and a maximum value of power pro-

duction is set. Since the curtailment data-points show a power output which is below the 

normal power output they would decrease the models quality in normal operation pre-

diction and are thus removed from the training data set, using the curtailment filter. 

Consequently, curtailment data also has to be removed from the application data-set to 

avoid false model alarms (compare 5.1.3). In both cases this is done by using the cur-

tailment indicator if available. In case this data was part of the SCADA-data set, cur-

tailment data was not excluded. Figure 5-2 visualizes the data points excluded from the 

training data set with the help of the curtailment filter. 
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Figure 5-2: Curtailment data points filtered from a training set. 

Cluster Filter 

The cluster filter was originally introduced in [40] to remove data which was affected 

by minor malfunctions from the data set (compare 4.1.2). The filter has proven to in-

crease the model’s accuracy and is used for the power model as well. 

Skip Filter 

The skip filter presented in chapter 4.1.2 was originally developed to take the thermal 

inertia and therefore the slower developing temperature into account. However, it was 

realized that a modified version is able to improve the power model as well. Since the 

SCADA systems shows only 10 minute average values for the power output, the model 

had problems to predict the values in the time step before turbine operation was 

stopped, mainly due to low wind speeds or maintenance. The model has no indication at 

what time within these 10 minutes interval the turbine shut down exactly and thus these 

time steps were prone to show larger errors than usual (compare Figure 5-3). To exclude 

the possibility that these prediction error cause alarms during anomaly detection stage, 

one subset ahead to a shutdown of more than 30 minutes and one subset afterwards 

were deleted. 
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Figure 5-3: Big deviation between model output and measured power due to averaging 

before and after turbine shutdown. 

5.1.3 Data post-processing 

In contrast to the gearbox model, post processing was conducted for the power model. 

This is possible because the range of a turbine’s power output is defined much more 

clearly than component temperatures. During condition monitoring stage significant 

deviation between the ANN’s output and the actual turbine power production will lead 

to alarms of the model. But this would be the case when, for example, curtailment is 

conducted. By the definition of curtailment, the power output is deliberately limited 

even though the turbine would produce more in normal operation. Since the power 

model has no indicator of such an action it would over-estimate the power output for 

these occasions and the model would erroneously trigger alarms. Therefore, the calcu-

lated model output was set to the power limitation, which was available for some tur-

bines, in case it was exceeding this externally set limit. As a result, the output was also 

automatically set to the rated power output in case it exceeded the same which resulted 

in a performance improvement. 

5.1.4 Model Training 

The data situation for the non-gearbox turbines was less comfortable and not always 

data for 18 months (one year for training plus 6 months before failure occurrence) in 

advance to a failure was available. In those cases as much data as available ahead of the 

failure was taken for training. However, it was ensured that the training data was never 

closer than 4 months before the failure date to make sure the failure event is not part of 

the training data. 
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5.2 Validation and Comparison 

The first validation of the model with the failure free turbine which is sited in Sweden 

showed surprising results. Even though the training error was normally distributed and 

model performance was comparable to those found in literature (compare Table 5-3), 

there were multiple threshold violations observed for the anomaly detection validation. 

It was realized that all of those violations occurred during winter months. A comparison 

between the actually measured power and the model prediction showed a significant 

over-estimation during these periods. It was noticed that this behavior occurred during 

cold periods after the turbine was standing still for a while. Figure 5-4 shows an exam-

ple for this behavior. The modelled power versus the measured power for a cold period 

in February is displayed. It can be seen that there was a standstill period of more than 

24 h with temperatures between -5 °C and 0 °C. When production ramps up after this 

period, there is a clear difference between the measured and the modeled power. The 

reason for this discrepancy is shown on the right side of Figure 5-4. The black training 

data does not cover the range of the application data, although it contains the data set of 

one full year of operation. It is concluded that the relation between the wind speed and 

power produced which the model has learned during the training is disturbed due to 

icing. This disturbance leads to consequent alarms in the model. 

 

Figure 5-4: Measured versus modelled power output in February (left). Training data 

(black) and measured power (magenta), right. 

Based on these observations it was assumed that the deviation between the model output 

and the measured power was due to icing in the turbines. The investigation of all avail-

able data sets showed that this phenomenon occurred only on Swedish turbines during 

winter, which confirmed the icing-assumption. Based on these findings, the power 

curves of the Swedish turbines were analyzed and a clear difference between the sum-

mer and the winter power curve can be observed (compare Figure 5-5 left). The low 
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power production occurs only during periods with low temperatures even though low 

temperatures should come with higher production due to increased air density (compare 

Figure 5-5- right) 

 

Figure 5-5: Shift of power curve with seasons (left) towards less efficient power produc-

tion with lower temperatures (right). 

This observation has consequences for the application of the power model to turbines in 

locations with a risk of icing. It was realized that in order to construct a reliable model 

for turbine power it is important to ensure that the abnormal operating data due to icing 

is removed from the training as well as the application data set. In order to validate the 

model, it was applied for the period of summer months only, since the validation turbine 

without a failure was sited in Sweden. However, the model was trained using the data 

from one year of operation. 

Furthermore, these findings suggest that the power model is well suited for icing detec-

tion. Icing is a serious issue for wind turbines, since it can lead to significant power 

production losses and exceptionally high loads on the structure. Therefore the applica-

tion of the power model for icing detection is discussed more detailed in chapter 5.4. 

Healthy Turbine 

As justified in the previous paragraphs, the validation was conducted for a healthy tur-

bine, located in Sweden for the months April to October to avoid a distortion of the re-

sult by potential icing. The model’s output versus the measured value for a day during 

this period is shown in Figure 5-6. 
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Figure 5-6: Modelled versus measured turbine power output over one day 

The model achieved good results in comparison to similar studies (see Table 5-3). The 

relative error measures, which are normalized for a 100 kW turbine, show that the mod-

el performance is in the range of the literature values. To show the effect of the icing on 

the model performance, the error measures for the application to the whole year are 

listed in Table 5-3 as well. Also, model performance of a seasonal approach was inves-

tigated. Therefore a model was trained with summer data only and consecutively ap-

plied to summer data from the following year. Since this approach reached the best results 

among the training configurations, the development of seasonal models might be an option 

for future work in this field. 

Table 5-3: Model performance for healthy turbine application averaged over 20 ANNs 

in comparison with literature values. 

Model Description 
MAE 

unscaled 

MAE 
scaled 

MSE 
scaled 

Source 

Power Model 
Thesis 

Training whole year 
Application summer 

29.35 1.47 93.17 - 

Power Model 
Thesis 

Training whole year 
Application whole year 

45.05 2.25 286.84 - 

Power Model 
Thesis 

Training summer 
Application summer 

26.73 1.34 83.65 - 

Power Model 
Karlsson 

Best ANN-based power 
curve modelling 

32.23 1.29 64.8* [40] 

Power Model 
Schlechtingen 

Best ANN-based power 
curve modelling 

32.01 1.6 105.8* [23] 

  *calculated from scaled RMSE 

 

The model’s application to turbines with faults is discussed in the next chapter. 
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5.3 Model Application 

The model presented above is applied to different failure cases. Firstly, the application 

to the gearbox failure case 02 presented in the previous chapter is conducted. Then the 

model is applied to turbines which are not sited in Sweden and showed different prob-

lems during operation. The aim is to investigate failure detectability from a system point 

of view with the presented approach and draw conclusions for future applications. The 

specifications of the power model which was applied in the case studies are summarized 

in the table below: 

Table 5-4: Summary of power model specifications 

NARX ANN Configuration 

Layer Hidden Output 

Activation Function Sigmoid Threshold 

Neurons 20 1 

Inputs 
Wind Speed Avg. 
Wind Speed Std. 

Nacelle Direction 
Ambient Temperature 

Outputs Turbine Power Production 

Training and Data Pre-processing 

Trainings Algorithm Levenberg-Marquard 

Trainings Period data available before failure 

Filter Training Data 
Boundary Filter Cluster Filter 

Skip Filter Curtailment (if available) 

Training Philosophy best of 3 trainings / seasonal if necessary 

Application and Anomaly Detection 

MHD Averaging over one day 

Data Sufficiency Limit at least 6h of data over one day 

 

5.3.1 Power Study Case Gearbox Failure 

Case Description 

It was decided to investigate the gear failure case presented as study case two in the 

previous chapter with the power model. The turbine got stuck after five years of opera-

tion and the gearbox was found to be responsible for that breakdown (compare chapter 

4.3.2). The impact of the icing risk on the power model application can be studied in 

this case because the turbine is located in Sweden. Therefore, the model was trained 

with a full year of healthy data and then applied for the consecutive year, where the 

failure occurred in the end of November. 
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Anomaly Detection 

The familiar model application diagram shows high MHD values during the cold half of 

the year. Three threshold violations can be noted in February/March and one just before 

the gearbox breakdown in November (compare Figure 5-7). 

 

Figure 5-7: Power model application for anomaly detection in a gearbox failure case 

To be able to judge these model alarms, the predicted versus the measured power out-

puts responsible for the threshold violations are analyzed. They are shown in Figure 5-8. 

 

Figure 5-8: Modelled versus measured power for three threshold violation periods 

It can be observed that for each of the indicated malfunctions the power is predicted 

below the actual power output. Before the model was applied it was expected that a 

failure would manifest itself as a power over-estimation because it was assumed that 

energy which is converted into power under normal conditions is dissipated due to an 

increased mechanical friction in the gearbox during the failure. However, the result can 

be explained when looking at the training and the application data-set. Figure 5-9 dis-
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plays both data sets. It can be observed, that the training data set covers a larger range of 

parameters than the application data set. The reason therefore is the variable power 

curve characteristics for the Swedish turbines. Since the model was trained to fit the 

magenta input data it predicts on average lower value in comparison to the black appli-

cation data set which basically represents only the upper part of the training range. This 

is confirmed by a look on the error distribution. In comparison to the training data set it 

was shifted towards underestimation (compare Figure 5-10).  

 

Figure 5-10: Shifted errors during application 

Summary and Conclusion 

This study case illustrates the challenges that come with variable ranges of parameters 

and the limitations of ANNs. Under these conditions it is very difficult to judge whether 

an alarm is issued due to abnormal turbine behavior or due to a shift in the range of pa-

rameters. A better method needs to be created to analyze the errors due to such skewed 

input parameters, which change the distribution of the errors from the model. 

5.3.2 Power Study Case Generator Bearing Failure 

Case Description 

The second study case analyzes two turbines which showed generator bearing failures. 

Both turbines, direct drive concepts from a different manufacturer, showed both failures 

in the generator bearing in February 2014. More detailed information, such as the 

SCADA alarm records for example, were unfortunately not available. Also, there is no 

generator bearing measurement available. Hence the possibility of detecting irregulari-

ties by applying the power model is investigated. 
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The turbines come with a different SCADA system. On one hand the set of parameters 

is a bit different and instead of the standard deviation of the ambient wind speed the min 

and max values were used as a substitute. Moreover, there were many instances where 

the SCADA data was missing. Therefore, the skip filtering was done slightly less ag-

gressively, removing only the data points directly before and after standstills of more 

than three hours instead of 30 minutes. Lastly, these turbines do not report a curtailment 

parameter in their SCADA system. Thus, it was not possible to reliably exclude the cur-

tailment data from the input and target sets. Moreover, the two turbines show consistent 

power curves throughout the year. The anomaly detection results are presented next. 

Anomaly Detection 

 

Figure 5-11: MHD measure for both turbines until failure occurrence 

The anomaly detection plots look very similar for both turbines. The MHD measure 

says constantly beneath the threshold until about one month before the failure. Multiple 

MHD peaks can be observed, each resulting in a threshold violation. It looks like a clear 

failure indication and the amplitude of the peaks is surprisingly high. A closer look into 

the data behind the peaks and the measured versus the modelled power output explain 

the sudden increase of the MHD. 
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Figure 5-12: Measured values in relation to training data set and model  

On the left side of Figure 5-12, the training power curve in relation to the data points 

causing the high MHD values are shown. The location and arrangement of these data 

points immediately remind of how curtailment manifests itself in the power curve, with 

distinctly lower power output than the wind conditions would allow. On the right side of 

Figure 5-12 the real measured turbine output in comparison to the modeled output is 

presented. This behavior is observed for all the MHD peaks. It strongly suggests that the 

power output was limited by an external source. Since there is no further information or 

a curtailment indicator available, it is assumed, that the MHD peaks were caused by 

manual power limitation. 

Summary and Conclusion 

From the behavior of both turbines it can be concluded that they are located on the same 

site. The fact that the model alarms were triggered at the same dates confirms this. Since 

there is no additional information available it can only be speculated whether the near 

failure forced the operator to limit the power output, the power output limitation caused 

the bearing failures through the volatile operation mode or both events have nothing to 

do with each other. However, it is conspicuous that the failures occurred at the same 

time for both turbines after being exposed to several of those sharp limitations of the 

power output. To reliably judge these outcomes, further information, for example the 

SCADA records, are required. 

5.4 Discussion 

The results from model validation and the study cases of Swedish turbines show that the 

power approach is able to detect icing. Therefore, the training data should cover one 

whole year, preferably where only little icing occurred. The data points in the training 

set which are affected by the icing, will be filtered by the cluster filter, since they show 
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a clearly different relation between wind speed and power output. Consequently, the 

model will issue alarms in application stage if the power output deviates from the model 

output due to icing. This can be beneficial for operators, since icing is not easily detect-

able and can negatively influence a turbine’s performance and health. In fact, these re-

sults reveal that the power model is able to detect performance degradations due to 

changes in the aerodynamic profile of the blade. This could mean that major blade fail-

ures, which have a corresponding impact on the aerodynamic blade performance, could 

be potentially detected by the power model as well. However, this conclusion has to be 

verified through further investigations. 

The application of the power model in study cases has also shown that modelling a 

global variable for component monitoring comes with several challenges. In general, it 

can be said that additional information complementing the SCADA data itself is strong-

ly required for an appropriate judgement of the model output. This is also true for the 

gearbox approach, but tracking the failure origin is much more challenging for the pow-

er approach, since there are much more potential sources from different parts of the tur-

bine that can make the measured power output deviate from the modelled one. Without 

additional information it is very difficult to draw conclusions about the origin of the 

deviation. Furthermore, the application of the power model to the Swedish turbines 

showed the shortcomings of the presented method in terms of operating conditions that 

deviate from the training year. 

Also, the applied anomaly detection approach was originally developed to detect irregu-

larities in a local variable on which a failure has a relatively large impact. Consequently 

the power model is able to detect anomalies with a comparable big influence on the 

power output, such as for example icing. However, the method seems to be less suited 

for indicating malfunctions that have only a small impact on power output but could 

result in detectable energy losses over time. In other words, the power dissipated in a 

bearing or a gear failure might be too small to be detected with the current approach, 

especially when taking into consideration that the model’s mean absolute error is 

around 30 kW (compare chapter 5.2). Therefore, an approach is suggested which identi-

fies deviations in the cumulated energy production over time. 

It was shown, that the model’s error is normally distributed in the training year. This 

means that a sum over all errors will always oscillate around zero in the training year. It 

is assumed that a failure in one of the turbine components can disturb this balance, lead-

ing to a small shift of the failure distribution, which can be made visible by accumulat-

ing the errors. They would not sum up to zero but to a value below. However, it has 

been observed that such a shift can also be caused by operating conditions that deviate 

from the training year. Thus, a trend in the cumulated error could result from the operat-

ing conditions and cannot automatically be interpreted as sign of malfunction. But if 
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data from multiple turbines from the same site is available, their cumulated errors can 

be compared, provided that they were trained with data from the same year. If the com-

parison of the cumulated errors reveals that one turbine behaves differently than the 

majority it can be concluded that energy is somewhere dissipated, where it shouldn’t 

and thus an inspection can be initiated. This approach is not applicable in case the pow-

er curves of the turbines are influenced by, for example icing, as it was the case for the 

Swedish turbines. Thus, it was not able to modify this method, but the approach seems 

promising and could help to identify failures with the help the power model. 
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6 Closure 

This final chapter gives an overview of the thesis outcome, and wraps up the lessons 

learned during the master’s thesis project. Various conclusions regarding the require-

ments and the key challenges for successful SCADA-based CM can be drawn from the 

conducted analyses. They are presented and discussed in the following paragraphs. 

Moreover, the method and outcomes are critically discussed to present a complete pic-

ture of the presented approaches. Finally, ideas for future work or further development 

in the investigated field are presented. 

6.1 Summary 

To investigate the possibilities of SCADA data usage for component condition monitor-

ing in WTs, an ANN based normal behavior model was developed and applied to six 

different gearbox failure cases. Two successful cases of failure detection were present-

ed, one indicating a malfunction long before the final component breakdown. This 

shows that the analysis of SCADA data can be a helpful tool in component condition 

monitoring. 

In addition, the same methodology was applied to monitor a turbine by its performance. 

The model was applied to two direct drive turbines with generator bearing failures. 

Model alarms can be observed before failure occurrence, but more information com-

plementing the SCADA data is necessary to appropriately judge the model alarms. 

Moreover, the model was found to be an effective tool for ice-detection on turbine 

blades. 

6.2 Discussion and Conclusions 

Firstly, it has to be noted that for every investigation of SCADA data it is the data itself 

that is the most decisive factor. Through the available parameters, the available failure 

cases and additional information data determines the analysis like no other factor does. 

In addition, the success of a CM approach relies on the data handling and the correct 

application of the appropriate methods. 

Based on the available data, the developed models were successfully applied for condi-

tion monitoring of WT components. The gearbox model was able to trigger alarm long 

before the final component breakdown. This information can draw the operator’s atten-

tion to a developing malfunction and an appropriate maintenance strategy can be fol-

lowed. However, it has to be mentioned that the model was not able to issue alarms for 
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all available failure cases, but the method offers a cost effective supplement to existing 

CM systems. Also, the power model can deliver useful information about turbine condi-

tion. Especially its application in the field of icing detection was discovered. The inves-

tigations revealed challenges of the approach, but also showed promising promise po-

tentials. 

From a methodical point of view, it has been realized that the appropriate definition of 

training and application data is a crucial point of the presented CM approach. Especially 

since ANN output highly relies on the training input data. Firstly, training data has to be 

free of failures so that the model is able to emulate normal operating conditions accu-

rately. Filtering approaches can be developed to ensure failure free training data, but at 

the same time the whole range of normal operating conditions has to be covered to 

avoid false alarms. This balance can be tricky to achieve and well suited data selection 

and processing is the key. Defining the appropriate range of training data was found to 

be much easier for the local variables than for the global power output, because local 

variables are influenced by a limited amount of factors which can be overseen during 

the selection process. 

Data selection is not only critical for the training data set, but also the application data 

has to be screened for data that would cause false alarms, such as for example SCADA-

communication errors. Moreover, any normal operation data that the model was not 

trained for can be pro-actively excluded from the application set. An example would be 

excluding curtailment data from the application data set. But this requires in depth 

knowledge about the system since potential operating conditions which are not covered 

by the training data have to be identified and excluded proactively. In addition, this 

comes with the risk of excluding data that contains detectable traces of malfunctions. To 

sum it up, the strong dependence of ANNs on the training data causes challenges in the 

field of anomaly detection. 

Furthermore, the availability of potential input and target parameters was identified as a 

central point. This applies especially when modelling a local variable for component 

monitoring. In general, it can be said that the more component related parameters avail-

able, the higher the chances to detect a component failure. More parameters simply in-

crease the probability that a malfunction manifests itself detectably in one of the addi-

tional measurements. It was observed that SCADA systems are using several measure-

ments for an internal monitoring approach which generates alarms and warnings based 

on a comparison between the actual measurement and pre-set threshold. However, some 

of these parameters were not extractable from the system. The availability of these 

measurements would truly increase the possibilities for component monitoring. The 

development of SCADA-systems in recent years shows a trend towards a wider range of 

measurements which comes with new chances for SCADA based monitoring approach-
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es. In addition, technological development has made it possible to store and analyze big 

data without any major investments in the hardware infrastructure. The use of cloud 

storage and parallel computing approaches can enable the storage and analysis of in-

creased amounts of data with multiple new measurements. 

It was noticed that it is essential to have as much information as possible complement-

ing the raw data. Information about the turbine, its operating conditions and its failure 

case is crucial when developing the anomaly detection approach. A close cooperation 

with the operator is required and insights into maintenance SCADA records and 

maintenance reports are very helpful. If this information is missing, it is difficult to 

judge the model outcome and no effective feedback for a model adjustment is possible. 

The exchange with operators has shown that there is a general interest in investigating 

SCADA data for condition judgement. But generalization and commercialization of 

such approaches is challenging due to several factors. Firstly, each turbine shows indi-

vidual operational behavior and thus it is difficult to develop a general model, which 

can be applied to all turbines. Here lays the strength of the ANN application. Models 

can adapt individual turbine behavior quite easily by using the turbines data for training. 

Nevertheless, the application of one model to different turbines is still not easily possi-

ble in many cases. The work with SCADA systems from different operators has shown 

that there is no specification of a standard set of measurements recorded by every tur-

bine. As long as this is the case, the CM based on SCADA will stay a highly individual 

discipline and the development of generally applicable models is very difficult. 

However, the positive results which were achieved, especially of the gearbox model, 

show that operators can benefit from analyzing the SCADA data of their turbines. This 

analysis does not aim to replace any of the existing CM systems but it is a cost effective 

and elegant way to complement them. Further research and a parallel development of 

the SCADA systems can help to realize the potentials of this approach. Such SCADA 

analysis can definitively help operators to cope with the big amount of alarms and warn-

ings of standard SCADA systems. The models can indicate which ones to prioritize and 

which ones to ignore. At the end of the day it is the operator’s duty to decide whether to 

initiate maintenance actions or not and SCADA based models can support them. 

6.3 Future Work 

Based on the findings of this work further investigations might be interesting, including 

the following: 

 The further development of the gearbox model under consideration of additional 

thermal parameters, for example cooling specifications, could additionally in-
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crease the quality of the presented model. Then, it would be worth investigating 

the application of the model to different gearbox failure cases. 

 For successful early failure detection with the power model its anomaly detec-

tion method has to be adjusted. A possible solution could be the approach sug-

gested in chapter 5.4. The applicability then would have to be verified in differ-

ent in analyzing failures of different turbine components. 

 The implementation of the developed models in an integrated maintenance 

scheme could utilize their potential benefit for turbine operators. 

 

Hopefully the findings of this thesis can contribute to one of the suggested future fields. 
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