
Optimal design of clinical studies using
the PFIM software
Master’s Thesis in Engineering Mathematics and Computational
Science

JACOB LEANDER

Department of Mathematics & Mathematical Statistics
Chalmers University of Technology
Gothenburg, Sweden 2012





Abstract

In this thesis PFIM, a software used for evaluation and optimization of clinical studies
based on the Fisher information matrix, is investigated. The program is evaluated
using three different models, of which two are PK/PD models and the third is a model
describing glucose-insulin regulation in the absence of drug.

For an analytical PK/PD model describing therapeutic response the expected stan-
dard errors of the parameter estimates given by PFIM correspond to the empirical stan-
dard errors obtained from a large simulation in NONMEM. PFIM offers a fast and
effective way of calculating the expected standard errors for the parameter estimates
using an approximation of the Fisher information matrix. In the glucose-insulin model
it is showed that the number of measurements per patient can be decreased while main-
taining the same information criterion. The other PK/PD model describes a long-term
safety marker with turnover response where the input rate varies over time. The results
indicate that PFIM has problem with long running time if a model is specified by an
ordinary differential equation system.

In conclusion PFIM can be used to evaluate, reduce and improve designs for clinical
studies. For analytical models, the expected standard errors are appropriate. If the
model is described by an ordinary differential equation system the expected standard er-
rors obtained from PFIM are slightly lower compared to empirical standard errors. The
recommendation is to use PFIM for evaluating and comparing suggested design alter-
natives. However, the selected design should be evaluated using simulation techniques.
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Abbreviations and terms

ka Absorption rate

Cl Clearance

C50 Concentration needed to achieve half of the maximal effect

ω2 Diagonal element of Ω

D Dose

C Drug concentration

ke Elimination rate

FO First order

FOCE First order conditional estimation

β Fixed parameter vector

ξ Individual design

Emax Maximal effect

MBDD Model based drug development

V Volume of distribution

Ω Parameter covariance structure

PD Pharmacodynamics

PK Pharmacokinetics

Ξ Population design

λ Random parameter vector

Σ Residual covariance structure

SAEM Stochastic approximation expectation maximization
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1
Introduction

In medicine and other scientific disciplines there can be problem making inference from
experiments based on repeated measurements from a collection of individuals in a given
population. There are often few measurements from each individual and the data may
be sparse.

In clinical drug development data normally is collected from a limited number of
healthy subjects and patients. The data is then used to draw conclusions about the
efficacy and safety of newly discovered drugs in the target patient population.

1.1 What is a clinical study?

Generally speaking, a clinical study is an experiment used to evaluate the effectiveness
and safety of a treatment. Clinical studies are a necessary part of the drug development
process to assure that the treatment is safe and effective before a drug should reach the
market.

Pharmaceutical clinical studies are often divided into three phases. Phase I and
phase II studies often consist of a small number of healthy subjects and patients with
the purpose of exploring the treatment’s properties and possible risks. Phase III studies
involve large numbers of healthy subjects and patients with the purpose of validating
the safety and effect of the treatment in a confirmatory way before entering the market.

1.2 Design of clinical studies

Before conducting a study, there are many factors to consider. An important question
is how to design the clinical study. Design aspects can for example be the number of
patients in the study, study length, dose range and the number of measurements. The
design of a clinical study has great impact on the results and on the statistical inference
that can be drawn on the obtained data. For example, if there are too few patients
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CHAPTER 1. INTRODUCTION

involved the results obtained are associated with high uncertainty. On the other hand,
having an excessive number of patients is associated with a large cost. There can also
be a problem of recruiting enough patients to the study.

1.3 Simulation of clinical studies

By using computer aided simulations, a clinical study can be simulated prior to the real
life execution. The simulations serve as a tool to evaluate a specific study design and
investigate how the data may vary within the considered population. However, this is a
time consuming approach. A supplement to the simulation approach is to use a software
dedicated to optimal design of clinical trials. One example of such software is PFIM[1].
By using an underlying model describing the data to be collected PFIM can be used to
evaluate and optimize clinical studies in order to improve parameter estimation precision
when analyzing the generated data from the clinical study.

1.4 Thesis purpose and outline

The purpose of the thesis is to evaluate a software called PFIM used for optimal design of
clinical studies. In Chapter 2 the idea of model based drug development is first described
with focus on studies evaluating a drug’s pharmacokinetic (PK) and pharmacodynamic
(PD) properties. In Chapter 3 the mathematical theory needed for the thesis is presented.
The mathematical section is brief since the purpose of the thesis is to evaluate the
software rather then explore the underlying theory. In Chapter 4 the features and theory
of PFIM are presented. In Chapters 5-7 optimal design is applied for three different
models to investigate how current study designs perform and can be improved. The
first model is a simple PK/PD model which serves the purpose of investigating the
appropriateness of the model approximation in PFIM. The second model is a model for
glucose-insulin response where it was shown an initial suggested design can be reduced
to decrease the number of samples needed in the study. The third model tested is a
more complex PK/PD model describing the adverse neutrophil response to drugs as a
safety marker in a 6 months long clinical study. In Chapter 8 the results are discussed
and conclusions are stated.
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2
Model based drug development

In many industries, modeling and simulation are used on a regular basis. By using
computer aided simulations the underlying model describing the observed data can better
be understood and expensive real life experiments can be avoided or more efficiently
conducted. However, in drug development the use of modeling and simulation is limited.
In the article by Lalonde et al. [2] the authors argue that model based drug development
(MBDD) could improve the design of clinical trials and reduce costs.

2.1 Modeling in drug development

Drug development is a highly expensive process. Less than 10% of new compounds that
enter clinical trials ultimately make it to the market[2]. By using appropriate models and
statistical analysis the clinical trials and conclusions made from them can be improved.
This could lead to a better assessment of a drug candidate’s probability of success.
Probability of success refers to the probability that a drug actually will show the desired
effect and the Phase III study is successful. Some of the key components in MBDD are for
example pharmacokinetic and pharmacodynamic models, competitor drug comparisons
based on literature data, design considerations and quantitative decision criteria.

By having appropriate models and simulation methods, decision making can be im-
proved by combining information from different areas such as multiple response variables,
dose levels, patient populations, different drugs, across studies and clinical endpoints. A
clinical endpoint refers to the target outcome of the trial, for example the reduction in
mortality or the change in blood pressure after treatment. Using these underlying mod-
els computer aided simulations can be used for simulating studies to investigate what
would be expected in a real life study.

Two major components in model based drug development are the modeling of what
happens to the drug in the body (pharmacokinetics) and what effect (therapeutic and
adverse) the drug has over time (pharmacodynamics).
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CHAPTER 2. MODEL BASED DRUG DEVELOPMENT

2.2 Pharmacokinetics and pharmacodynamics

In many clinical trials one purpose is to estimate the pharmacokinetic and pharmaco-
dynamic properties of a drug. This include the time courses of drug concentration and
associated effects and the relationship between them.

Pharmacokinetics

Pharmacokinetics (PK) is commonly referred to as the study of what the body does to
the drug. It provides a mathematical basis to describe the propagation of the drug in
the body. The different phases after a drug is entering the body consist of absorption,
distribution, metabolism and excretion (ADME). Metabolism and excretion are often
jointly named elimination.

To model the pharmacokinetics of a drug compartmental models are often used.
These models are hypothetical structures that can describe the time course of a drug in
the body with an ordinary differential equation system.

The simplest compartmental model is a one-compartment model where the body
is modeled as a single, kinetically homogeneous unit. The model has two parameters,
volume of distribution V and clearance Cl. The volume of distribution is defined as
the theoretical volume in which the total amount of drug would need to be uniformly
distributed to produce the desired blood concentration of a drug. The clearance has
a unit of volume

time and is a measure of the volume cleared of drug every time unit. An
illustration of a one-compartment model with volume of distribution V and clearance
Cl is seen in Figure 2.1.

V -
Cl

Figure 2.1: One-compartment model with volume of distribution V and clearance Cl.

A common reparametrization of the model is to use the rate k = Cl
V , where k has unit

1
time . Consider the simplest case where the drug with initial dose D is taken up by the
body after an intravenous bolus injection at time t = 0. Bolus injection implies that the
drug is immediately taken up by the body at the admission time. The expression for the
concentration of the drug at time t is

C(t) =
D

V
e−kt.

The solution is obtained by setting up the ordinary differential equation for the system.
Let A denote the amount of drug in the compartment. Then

dA

dt
= −kA,
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CHAPTER 2. MODEL BASED DRUG DEVELOPMENT

with initial condition A(0) = D, which gives A(t) = De−kt. To obtain the concentration
the amount of drug in the compartment is scaled by the volume of distribution, which
gives

C(t) =
D

V
e−kt =

D

V
e−

Cl
V
t.

By extending the one-compartment model to a two-compartment or multi-compartment
model more complex phenomena can be modelled. A two-compartment model consists
of a central compartment (e.g. liver) and one peripheral compartment (e.g. muscles
or skin). It is important to realize that the compartments have no physiological mean-
ing. Instead each of them is a simplified model for the biological processes in the body.
In Figure 2.2 a two-compartment model with volumes of distribution V1 and V2, inter
compartmental rates k12, k21 and elimination rate ke is shown.

V1 V2
-

�

?

k12

k21
ke

Figure 2.2: A two-compartment model with the two volumes of distribution V1 and V2,
inter compartmental rates k12, k21 and elimination rate ke.

Let A1 and A2 denote the amount of drug in compartment 1 and 2. By using the mass
conversion principle the ordinary differential equation system describing the kinetics is

dA1

dt
= −keA1 − k12A1 + k21A2

dA2

dt
= k12A1 − k21A2.

The concentration in each compartment is obtained by scaling with the volumes of
distribution. For the analytic solution to the system, see [3].

By using appropriate compartmental models different drug properties can be de-
scribed, including different routes of administration and non-linearities in absorption
and/or elimination.

Pharmacodynamics

Pharmacodynamics (PD) is often referred to as what the drug does to the body. Here
the main question is what effect a certain drug has, for example on blood pressure or
tumor size, over time. The effect is dependent of the concentration of the drug. This
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CHAPTER 2. MODEL BASED DRUG DEVELOPMENT

relation is often described by a nonlinear, sigmoid-like model. The Emax model describes
the effect E as a function of dose or concentration C

E =
EmaxC

C + C50
.

Here Emax is the maximal effect and C50 is the concentration required to achieve half of
the maximal effect. An extension of the Emax model is the sigmoid Emax model where
a sigmoid factor γ has been added to the model. That is

E =
EmaxC

γ

Cγ + Cγ50

.

The Emax model is applicable to a response variable which increases with drug concen-
tration. However, there are also drugs causing a reduction in the response variable. The
model for such behavior is an inhibitory model called the Imax model

E = 1− ImaxC

C + C50
.

Here Imax is the maximal inhibitory effect and C50 is the concentration needed to reach
half of the maximal effect.

The effect can either act directly or indirectly (time delay between maximal exposure
and maximal response) on the response. One example of an indirect response model is the
so called turnover response model. In the turnover response model the drug is acting on
the production/synthesis rate kin of the response variable or on the elimination/removal
rate kout describing the response R (often a biomarker) as illustrated in Figure 2.3.

R --
koutkin

Figure 2.3: A turnover response model with rates kin and kout describing the response R.

The system is described by the ordinary differential equation dR
dt = kin−koutR. When no

drug is present the solution to the system is R(t) = kin
kout

. When a drug is present it acts
either on kin or kout, leading to a decrease or increase in input or output rate respectively
and subsequently a change in the response variable itself. For more information about
the indirect response models, see [4].

Joint PK/PD modeling

Having pharmacokinetic and pharmacodynamic models in place it is easy to combine
these into a joint PK/PD-model. Hence the PK model describes the drug concentration
over time and the PD model the response of the drug. This combined model relates dose
and exposure to the response of the drug. This type of modeling is frequently used in
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CHAPTER 2. MODEL BASED DRUG DEVELOPMENT

clinical trials where the objective can for example be to select an optimal dose. The goal
is to find a dose that is high enough to give a significant desired effect but not higher
than needed to avoid negative effects on the patient.
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3
Mathematical theory

In this chapter the mathematical theory needed for the thesis is presented. The pop-
ulation modeling approach is described and some important results in optimal design
theory is stated.

3.1 Population modeling

In clinical trials, samples are collected from patients to describe markers of drug ex-
posure and response, such as blood pressure or glucose levels. The response is time
dependent and often behaves as a nonlinear function of the model parameters. In a
population model the parameters may vary between individuals in the population to
describe different sources of variability. Examples of parameters that can vary between
individuals due covariate patient specific factors (such as body weight, sex, disease status
and concomitant medication) are the volume of distribution, clearance and the maximal
drug effect. The goal of population modeling is to describe the population parameters
and how they vary within the population. Appropriate mathematical models for such
modeling are nonlinear mixed effect models.

Nonlinear mixed effect models

The notation of [5] is used. Let yij denote the jth measurement of the response (drug
concentration or drug response) of the ith individual. The measurement is done under
condition tij and possible additional conditions which are denoted ui. Often tij denotes
time and ui is empty. Denote xij = (tij ,uij). For each individual i a vector of char-
acteristics (or covariates) ai is defined. It is assumed that the triplet (yij , ui, ai) is
independent across i. The model for the response yij is

yij = f(xij ,βi) + εij .
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CHAPTER 3. MATHEMATICAL THEORY

Here f(xij ,βi) is a function describing the behavior of the response and βi ∈ Rp is a
vector of individual parameters for individual i. The individual parameters βi is related
to the so called fixed effects (or population parameters) β by a function

βi = g(ai,β,bi)

Here bi ∼ N(0,Ω) is a vector of so called random effects of individual i. Hence the ’mixed’
term in the nonlinear mixed effect model comes from the fact that the model incorporates
both fixed (population) and random (individual) parameters. The function g(ai,β,bi)
explains how the fixed parameters β varies between individuals i = 1, . . . ,m. This is
often referred to as inter individual or between-subject variability. Often g is chosen to
be of exponential form, g(ai,β,bi) = βebi , which describes a lognormal distribution of
the population parameters. In this thesis only log-normal distributions of parameters
are considered. This is a common case in medicine, where the parameters often show a
skewed distribution[6].

The model for the errors is εij ∼ N(0,Σ) where Σ can be a general covariance struc-
ture, that may depend on values of the response. In this thesis the model is restricted
to the form

Σ = (σadd + σpropf(xij ,βi))2, (3.1)

where σadd and σprop denote the additive and proportional components of the error.
When σadd 6= 0 and σprop = 0 the error model is called a homoscedastic model, when
σadd = 0 and σprop 6= 0 the model is called heteroscedastic and when σadd 6= 0, σprop 6= 0
the variance model is a combined model. Measurements in medicine often show that the
variance varies with the response, and hence a combined error model for the errors is
used. For more general variance models, see [7].

3.2 Optimal experimental design

Optimal experimental design deals with constructing experiments in a way that is opti-
mal in some sense. One example of an experiment is a clinical study. To make correct
conclusions from the study it is important to be able to estimate the parameters of the
mathematical model used for evaluating the data with high precision. Optimal design
can be used to decrease the variance of the estimated parameters which can in turn lead
to improved decision making. That is, the design of the study should be done in such a
way that the study gives as much information as possible. The term ’information’ here
is general, and will be specified later on.

The theory outlined in this chapter is a very compact description of the theory that
is used in this thesis. For the interested reader, see [8].

Design of experiments

Optimal experimental design depends on the model for the data f(t,θ), the optimality
criterion Ψ and the the design region X . A design is a template how to conduct an
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CHAPTER 3. MATHEMATICAL THEORY

experiment. It specifies how many observations that should be collected and at which
time points. Assume that the design specifies rk observations at time point tk and let
Ntot be the total number of observations, Ntot =

∑n
k=1 rk. A design ξ is defined to be a

set of time points and weights, that is

ξ =

{
t1 t2 . . . tn

w1 w2 . . . wn

}
,

where wk = rK/Ntot. In exact design the weights wk, k = 1, . . . , N , are a ratio of
integers while in so called continuous design this requirement is dropped. Continuous
designs have an advantage since impact of N can be omitted and the methods of calculus
can be used to describe the properties of optimal designs. However, any practical design
will be exact [9].

Measuring information

In this thesis the underlying model is assumed to be a nonlinear mixed effect model. For
an introduction to linear and nonlinear models in design theory, see [8].

Moreover, the observed data is assumed to come from a probability distribution
fX(x). The key to measure information in such models is the so called Fisher information.
It is a way of measuring the amount of information that an observable random variable
X carries about an unknown parameter θ ∈ Rp upon which the probability of X depends.
When the model only contains one parameter (θ ∈ R1) the Fisher information is a scalar.
When θ ∈ Rp with p > 1, the Fisher information is a matrix defined

Mij(θ) = E

[(
∂

∂θi
ln fX(x; θ)

)(
∂

∂θj
ln fX(x; θ)

)]
, 1 ≤ i,j ≤ p

Here ln fX(x,θ) denotes the log likelihood for the random variable X. From the definition
it is clear that M is a symmetric p× p matrix. The essence of Fisher information is that
it i closely linked to the variance of an unbiased estimator by the Cramér-Rao bound
(CRB).

Theorem 1. (Cramér-Rao bound) Suppose θ ∈ Rp is an unknown deterministic pa-
rameter which is to be estimated from measurements x, distributed according to some
probability density function f(x; θ). The covariance of any unbiased estimator θ̂ of θ is
then bounded by the inverse of the Fisher information M(θ). That is, Cov(θ̂) ≥M(θ)−1.

The Cramér-Rao bound relates the covariance of the estimated parameter to the Fisher
information. Hence minimizing the variance is equivalent to maximizing the Fisher
information. An estimator for which equality is fulfilled is called a efficient estimator.

The general equivalence theorem

In continuous designs the goal is to minimize some general function of imprecision
Ψ{M(ξ)}. One example is D-optimality, which will be discussed later, where Ψ{M(ξ)} =
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CHAPTER 3. MATHEMATICAL THEORY

log |M−1(ξ)|, where M(ξ) is the information matrix for the model. The notation M(ξ)
is used to stress the fact that the information matrix depends on the underlying design.
See [8] for more information.

The most important theorem in optimal design theory is the so called General Equiv-
alence Theorem, which will be stated. It can be seen as a consequence of derivatives
being equal to zero at the minimum of a smooth function over an unconstrained region.
Let the measure ξ̄ put unit mass at the point x and define the measure ξ′ by

ξ′ = (1− α)ξ + αξ̄

Then

M(ξ′) = (1− α)M(ξ) + αM(ξ̄)

The derivative of Ψ in the direction ξ̄ is defined [8]

φ(x,ξ) = lim
α→0

1
α

(
Ψ{(1− α)M(ξ) + αM(ξ̄)} −Ψ{M(ξ)}

)
(3.2)

A major result in optimal design theory is now stated.

Theorem 2. (The General Equivalence Theorem) The following three conditions on ξ∗

are equivalent.

• The design ξ∗ minimizes Ψ{M(ξ)}.

• The design ξ∗ maximizes the minimum over X of φ(x,ξ).

• The minimum over X of φ(x,ξ∗) = 0, this minimum occurring at the points of
support of the design.

As a consequence of the third condition

• For any non-optimum design ξ the minimum over X of φ(x,ξ) < 0

Hence the theorem can provide different criteria for checking if a design is optimal.

D-optimality

In D-optimality the optimality criterion is

Ψ{M(ξ)} = log |M−1(ξ)|.

D-optimality is the most common objective in optimal design. Some of the most impor-
tant characteristics of D-optimality are stated.

Let λ1, . . . , λp denote the eigenvalues of the information matrix M(ξ). The eigenval-
ues of M−1(ξ) is then 1

λ1
, . . . , 1

λp
. D-optimality corresponds to minimizing the content

of the confidence region for the estimated parameters. The confidence region of the
estimated parameters is a ellipsoid where the eigenvalues of M−1(ξ) are proportional to
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the squares of the lengths of the axes of the confidence ellipsoid. D-optimality minimizes
the so called generalized variance of the parameters estimates.[8] That is,

min
p∏
i=1

1
λi
,

where λi denotes the ith eigenvalue of M(ξ).
By using the definition of the derivative φ(x,ξ) it can be shown that φ(x,ξ) = p −

d(x,ξ), where d(x,ξ) denotes the standardized variance d(x,ξ) = fT (x)M−1(ξ)f(x) and
f(x) is the vector of partial derivatives of the parameters. Using the third condition in
The General Equivalence Theorem it follows that for D-optimality it holds that

d(x,ξ) ≤ p,

where p denotes the number of parameters in the model.
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4
The PFIM software

A popular approach for evaluating the appropriateness of a specific study design is
by simulations. However, this can be a time consuming approach. An alternative is
provided by software for optimal design. PFIM[1] is a software for R[10] dedicated to
design evaluation and optimization using multiple response models specifically developed
for use in drug development. The program can either be obtained as a package or as an
interface tool. In this chapter the models, methods and notation in PFIM are explained.

4.1 PK/PD Models in PFIM

PFIM comes with a rich library of pharmacokinetic and pharmacodynamic models. The
pharmacokinetic models support one- two- and three compartment models with linear
elimination. The pharmacodynamic part supports the most common models, e.g. Emax,
Imax and turnover response models.[3]

PFIM supports both analytical models or models described by an ordinary differential
equation system. Besides the models in the PFIM library, the users can also define their
own models either by analytical expressions or ODE systems. The models are assumed
to be nonlinear mixed effect models where the individual parameters are either normal
or log-normal distributed. There is also an option to include inter-occasion variability,
where individual parameters are allowed to vary with time.

The error model is restricted to a combined error model, as described in Equation
(3.1), where the user has to specify the additive and proportional component.

4.2 Model definition and evaluation

Having a model for the underlying response, PFIM can be used to evaluate a specific
design based on the Fisher information matrix. However, since the model is a nonlinear
mixed effect model the Fisher information matrix has to be extended to the so called
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CHAPTER 4. THE PFIM SOFTWARE

population Fisher information matrix (the name PFIM comes from this). The notation
of [1] and [11] is used. A single response model is used, but the notation can easily be
extended to a multiple response model.

Let ξi denote the design for individual i, which is referred to as an elementary design.
A population design Ξ is composed of N individuals, where each individual have an indi-
vidual elementary design ξi. Hence the population design is a collection of N elementary
designs which is denoted

Ξ = {ξ1, . . . , ξN}.

If more than one individual has the same elementary design ξ they are said to belong to
the same group. Often a population design consists of Q groups, where each group has
an elementary design ξq, q = 1, . . . , Q.

Assuming yi is the ni-vector of observations in the ith individual (i = 1, . . . , N) the
model for response is

yi = F (βi,ξi) + εi,

where ξi is the design for individual i. Furthermore it is assumed that εi ∈ N(0,Σi),
where Σi is defined as a combined error model previously defined with parameters σadd
and σprop. βi is the vector of individual parameters which is related to the population
parameters β by a function βi = g(β,bi). Here bi is the random effects for individual i
with bi ∈ N(0,Ω). Ω is a p×p diagonal matrix where each diagonal element w2

k represents
the variance of the kth parameter. Let Ψ denote the vector of all the parameter to be
estimated. That is, ΨT = (βT ,ω2

1, . . . , ω
2
p, σadd, σprop). Let λ be the vector of variance

terms, λT = (ω2
1, . . . , ω

2
p, σadd, σslope), so that ΨT = (βT ,λT ).

The population Fisher information matrix is given by

M(Ψ,Ξ) = E
(
− ∂2L(Ψ;Y )

∂Ψ∂ΨT

)
.

Here Ξ denotes the population design and L(Ψ;Y ) the log-likelihood of the vector of all
the observations Y for the population parameters Ψ. Assuming independence among the
individuals, the population Fisher information matrix is rewritten as a sum of individual
Fisher information matrices

M(Ψ,Ξ) =
N∑
i=1

M(Ψ,ξi). (4.1)

Since F is nonlinear in the parameters, no explicit expression for the likelihood or Fisher
information matrix can be obtained. To overcome the nonlinearity problem, PFIM uses
a linearization of the nonlinear model at the expected value of the random effects bi.
This gives, see for example [12],

M(Ψ,ξi) ≈
1
2

(
A(Ei,Vi) C(Ei,Vi)

CT (Ei,Vi) B(Ei,Vi)

)
,
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where

(A(Ei,Vi))ml = 2
∂ETi
∂βm

V −1
i

∂Ei
∂βl

+ tr(
∂Vi
∂βl

V −1
i

∂Vi
∂βm

V −1
i ),

(B(Ei,Vi))ml = tr(
∂Vi
∂λm

V −1
i

∂Vi
∂λl

V −1
i ),

(C(Ei,Vi))ml = tr(
∂Vi
∂λl

V −1
i

∂Vi
∂βm

V −1
i ),

with

Ei = F (g(β,0),ξi),

Vi =
(
∂F (g(β,0),ξi)

∂bi

)
Ω
(
∂F (g(β,0),ξi)

∂bi

)
+ Σi.

Having an explicit expression of the Fisher information matrix the expected standard
errors of the estimated parameters are calculated by taking the inverse of the information
matrix.

4.3 Design optimization

There are two algorithms that can be used for optimization of designs in PFIM. The
first one is the Simplex method which is a continuous optimization method. It only
needs specifications of how many measurements should be done and the time interval of
allowed times. The second method is the so called Fedorov-Wynn method (FW), which
is the method used throughout this thesis. The reader is referred to [13] for a comparison
between the two methods.

Fedorov-Wynn algorithm

The FW algorithm is an iterative algorithm that maximizes the determinant of the Fisher
information matrix within a finite set of possible designs. Prior to the optimization the
user has to specify a set of allowed time points and how many measurements that should
be done. The user also has a specify a initial guess Ξ0. From the set of allowed times a set
ζ of so called elementary designs ξi is created. Let nΨ denote the number of parameters
in the model and φ(Ξk,ξi) the derivative defined in Equation (3.2). The algorithm relies
on the Equivalence Theorem (2) and is as follows

• Start with an initial guess Ξ0

• at step k, with the current design being Ξk, find
ξ∗ = arg maxξi in ζ φ(Ξk,ξi). If φ(Ξk,ξi) ≤ nΨ + ε terminate, where ε is a predeter-
mined tolerance.

• Otherwise, update the design to Ξk+1 = (1 − α∗)Ξk + α∗ξ∗, where α∗ ∈ [0,1] is
chosen to maximize the determinant of the current Fisher information matrix.
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The Fedorov-Wynn algorithm has many advantages. Since it requires the user to
specify which time points that are allowed, clinical constraints can easily be incorporated
in the optimization. The user can decide the number of samples per patient and whether
the total cost of the study should be measured by the number of patients or the number
of samples.

However, it should be noted that the number of elementary designs grow very fast.
If the number of allowed time points is n and the design should consist of k points where
k ≤ n the number of elementary designs is

(
n
k

)
. For all these elementary designs the

Fisher information matrix has to be calculated prior to the optimization.

4.4 Evaluating the software

In the following three chapters the PFIM software is evaluated using three different
models. In Chapter 5 a design for an analytical PK/PD model describing therapeutic
drug response is evaluated with the purpose of evaluating the appropriateness of the
linearization of the Fisher information matrix. This is done by comparing the relative
standard errors for the parameter estimates given by PFIM with those obtained from a
large simulation.

In Chapter 6 PFIM is applied to a model describing glucose-insulin response af-
ter glucose administration in absence of drug therapy. An initial design is evaluated,
optimized and reduced to decrease the number of total samples needed in the study.

The model in Chapter 7 is a more complex PK/PD model describing the adverse
neutrophil response during long term therapy with a candidate drug in development.
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5
Investigating the linearization of
the Fisher information matrix

In this chapter the appropriateness of the linearization of the Fisher information matrix
in PFIM is analyzed. Using a drug concentration-response model, the expected standard
errors given by PFIM are compared with those given by a large simulation. The model,
study design and the parameter values are predefined. No optimization of the design is
done here, instead the focus is on the differences in predicted errors for the two methods.
The outline in [12] is followed, but with a slightly different underlying model and different
parameter values.

5.1 The drug concentration-response model

The pharmacokinetic model is a one compartment model with bolus injection and first-
order linear elimination. Assuming the initial dose is equal to 1 mg, the concentration
at time t is given by

C(t) =
1
V
e−

Cl
V
t,

with clearance Cl (unit Litres/h) and volume of distribution V (unit Litres). The phar-
macodynamic model is an Emax model given by

E(t) =
EmaxC(t)
C50 + C(t)

,

with parameters Emax and C50.
The random effects are assumed to be of exponential form for both the responses.

Moreover, a proportional error model is assumed for both the responses. The vector of
parameters Ψ is then

17
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INFORMATION MATRIX

ΨT = (Cl, V,Emax, C50, ω
2
Cl, ω

2
V , ω

2
Emax

, ω2
C50

, σpropPK , σpropPD)

5.2 The initial design

The parameters used in the model are seen in Table 5.1.

Table 5.1: Parameter values used in the drug concentration-response model.

Cl (L/h) V (L) Emax C50 (mg/L) ω2
Cl

4 8 0.5 0.05 0.09

ω2
V ω2

Emax
ω2
C50

σpropPK σpropPD

0.09 0.16 0.09 0.1 0.1

The population design consists of 30 patients where all the individuals were sampled
at the same times for the two responses. That is ξPK = ξPD = (0.5,1.0,3.0,7.0,10.0,15.0),
where the values denote hours post dose. The expected PK and PD response together
with the sampling times are seen in Figure 5.1.
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Figure 5.1: Expected responses for the PK (left figure) and PD (right figure) together with
the sampling times. The plot is automatically created by PFIM.
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5.3 Standard error of parameter estimates

The expected standard errors given by PFIM were calculated using the linearization of
the Fisher information matrix as described in Chapter 4. To obtain the empirical stan-
dard errors the study was simulated a total of 500 times in the NONMEM[14] software
with population parameters estimated in each run. The algorithm used for estimation
was the SAEM algorithm, which is a stochastic version of the EM-algorithm. It uses
no approximation of the underlying model and can hence be seen as the ’real’ standard
errors. The relative standard errors (RSE), given in %, from PFIM and SAEM are seen
in Table 5.2. The relative standard error is calculated by taking the standard deviation
of the parameter estimate and divide by the parameter value.

Table 5.2: Relative standard errors (%) obtained from PFIM and SAEM in NONMEM.

Parameters

Method Cl V Emax C50 ω2
Cl ω2

V ω2
Emax

ω2
C50

σpropPK σpropPD

PFIM 3.7 3.7 4.8 4.5 28.0 27.5 29.2 36.6 7.4 7.5

SAEM 5.0 5.2 8.4 6.6 27.8 29.7 29.0 38.8 6.3 6.6

5.4 Discussion

Using the linearization of the Fisher information matrix to calculate the expected stan-
dard errors seems like an appropriate method. From Table 5.2 one can see that for most
of the parameters the RSE from PFIM was very close to the ’real’ RSE given by the
SAEM method in NONMEM. The biggest deviation from the true RSE was on the Emax
parameter, where the difference was 3.6 %.

The calculation of the standard errors in PFIM took only a few seconds while simu-
lating the study in NONMEM to obtain the empirical standard errors took a few hours.
The approximation done in PFIM seems to be appropriate for analytical PK/PD models
and offers a very efficient approach to evaluate a study design.
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6
Insulin-glucose response model

Type 2 diabetes mellitus is a chronic disease which results in a large number of abnormal-
ities in insulin dependent metabolism. There are two factors which play an important
role in the glucose disposal. Insulin sensitivity measures the capability of insulin to in-
crease glucose disposal into muscles. Glucose effectiveness measures the ability of glucose
to enhance its own disposal at basal insulin level. With any of these factors failing, one
may be in the risk zone of impaired glucose tolerance or diabetes. Bergman’s minimal
model can be used to quantatively measure these factors.[15]

In this chapter this insulin-glucose response model is used to illustrate how PFIM
can be used to evaluate and optimize a design to increase the parameter estimation
precision. The initial design is also reduced to allow fewer measurement per patient
while maintaining the information in the study. Insulin-glucose regulation models have
been the topic of two previous master’s thesis at AstraZeneca. The interested reader is
referred to [16] and [17].

6.1 The model

In Figure 6.1 the underlying compartment model describing the insulin-glucose dynamics
is shown.
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Figure 6.1: Compartment model of Bergman’s minimal model describing the dynamics
between insulin and glucose.

In an intravenous glucose tolerance test each patient is given an intravenous glucose
injection which forces the pancreas β-cells to secrete insulin. This leads to an increase
in plasma insulin which increases the uptake of glucose into muscles and tissue. The
glucose uptake depends on insulin levels in a second so called remote compartment,
describing the time delay in the system. When glucose is taken up by the muscles and
tissue the glucose concentration in plasma decreases, which leads to a decrease in β-cell
insulin secretion. This implies that there is a feedback effect in the system.[15] The
glucose-insulin relationship is described by the system

dG

dt
= SgGb − (Sg +X(t))G(t), G(0) = G0

dX

dt
= −p2(X(t)− Si(I(t)− Ib)), X(0) = 0

dI

dt
= −n(I(t)− Ib) + γ(G(t)− h)+t, I(0) = I0,

where G(t) is the glucose concentration in plasma, X(t) is remote insulin in action and
I(t) is the insulin concentration in plasma. The parameters in the model are described
in Table 6.1.
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Table 6.1: Parameters in Bergman’s minimal model.

Sg: Glucose effectiveness (min−1).

Gb: The baseline preinjection level of glucose (mg/dl).

Ib: The baseline preinjection level of insulin (U/dl).

p2: Rate of decrease in tissue glucose uptake ability (min−1).

Si: Insulin sensitivity (min−1(U/ml)−1).

n: First order decay rate for insulin in plasma (min−1).

h: Threshold value of glucose above which the pancreatic cells secrete insulin (mg/dl).

γ: Rate of pancreatic cells release rate of insulin (U/ml min−2(mg/dl)−1).

G0: The glucose concentration in plasma at time 0 (mg/dl).

I0: The glucose concentration in plasma at time 0 (mg/dl).

The parameter values and the variance components are taken from the thesis by Braukovic[17]
and are seen in Table 6.2.

Table 6.2: Population parameters used in the model.

Sg p2 Si n h γ G0 I0

0.026 0.025 0.0005 0.27 83 0.001 280 360

Gb Ib ω2
Sg

ω2
Si

ω2
η ω2

γ ω2
G0

ω2
I0

92 11 0.25 0.25 0.09 0.09 0.01 0.01

It is assumed that Gb and Ib are fixed and are not to be estimated even though there
may be some variability also between non-diabetic patients. Furthermore, it is assumed
that the residual error is proportional with a coefficient σprop = 0.02 for both G(t) and
I(t).

6.2 The initial design

To estimate the model parameters data from an intravenous glucose tolerance test was
used. The initial design consisted of 30 patients with 13 measurements per patient. The
initial design is denoted

Ξinit = {(0, 3, 4, 5, 7, 10, 15, 20, 25, 30, 60, 115, 120), 30},

where the values denote minutes post glucose injection. Samples of G(t) and I(t) are
taken to estimate the parameters of the model. It is assumed that the two samples are
taken at the same time points. In Figure 6.2 the expected glucose and insulin response
are shown together with the initial sampling times.
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Figure 6.2: The expected glucose and insulin response together with the initial sampling
times. The plot is automatically created by PFIM.

One important question in design evaluation is the cost of the design and how to
measure the cost. In the glucose tolerance test the cost is the total number of samples
in the study (since individual rather than population level parameter estimates are of
primary interest). This allows for the possibility to reduce the number of measurements
and meanwhile increase the number of patients in the study. Using more patients in
the study can lead to better estimations of the random effects parameters in the model.
However, it can also be a problem to include a larger number of patients (cost and
logistics). Using the number of a samples as a cost the total cost of Ξinit is 780 samples.

Using PFIM the initial design can easily be evaluated. The performance of specific
design Ξ is measured by the objective

Φ(Ξ) = (detM(Ξ))1/p,

where M(Ξ) is the Fisher information matrix for the design Ξ and p is the number of
parameters in the model. As described earlier PFIM estimates the expected standard
errors of the parameters for a specific design by approximating the Fisher information
matrix. The objective for the initial design was

Φ(Ξinit) = 20848.87,

which serves as a reference value when creating new designs.

6.3 Improving the initial design

Here two ways of improving the initial design are considered. First 30 patients are
enrolled in the study and every patient is measured 13 times, just as in the initial design,
but the sampling time points are then optimized to achieve a better design. In the second
proposal fewer measurements than 13 per subject are allowed while maintaining a total
of 780 samples in the study, as in the initial design.
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Equal number of measurements per patient

By choosing different sampling points the estimation of the model parameters could
possibly be improved. It is assumed that there are a total of 20 allowed sampling points.
These are the initial 13 points from Ξinit plus an additional of 7 points, which gives the
set of allowed sampling points

T = {0, 3, 4, 5, 7, 10, 15, 20, 25, 30, 60, 70, 90, 100, 115, 120, 140, 160, 170, 180}.

From this set exactly 13 time points are chosen for each patient. Hence there are a total
of
(

20
13

)
= 77520 elementary designs. The optimal design among these time points was

obtained using the Fedorov-Wynn algorithm in PFIM and was

Ξimp,13 =

{
(0, 3, 4, 10, 15, 20, 25, 30, 60, 70, 100, 115, 120), 27

(0, 3, 4, 10, 15, 25, 30, 60, 70, 90, 100, 115, 120), 3

}
.

The design should be interpreted as 27 subjects having the sampling times (0, 3, 4, 10,
15, 20, 25, 30, 60, 70, 100, 115, 120) and 3 subjects having the sampling times (0, 3, 4,
10, 15, 25, 30, 60, 70, 90, 100, 115, 120). The criterion value for this design was

Φ(Ξimp,13) = 30637.01,

which corresponds to a 47% gain in information compared to the initial 13-point design
Ξinit. In Section 6.5 the expected relative standard errors of the design are seen.

Different number of measurements per patient

There is no restriction that each patient should be measured exactly 13 times. Here
designs are considered where the total cost is 780 samples and patients are allowed to be
measured less then 13 times. This allows the possibility of more subjects entering the
study, which could improve the estimation of the model parameters.

Assume that the allowed time points are according to the previously defined set T .
To restrict the number of possible elementary designs, a patient was allowed to have
between 5 and 8 measurements. This gives a total of

∑8
i=5

(
20
i

)
= 257754 elementary

designs. The optimal design given by the Fedorov-Wynn algorithm was

Ξimp,780 =


(0, 4, 15, 30, 60, 70, 100),33

(0, 15, 30, 60, 100),16

(0, 10, 30, 60, 70, 100),12

(0, 15, 30, 60, 70, 100),1

 ,

with corresponding criterion value

Φ(Ξimp,780) = 42385.86.
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This means that the information has increased with 103 % compared to the initial design
Ξinit and still using 780 samples with 62 patients. In Section 6.5 the expected relative
standard errors of the design are seen and the parameter precision is improved as imposed
by the Cramér-Rao bound.

6.4 Reducing the cost of the study

In this section the goal is to reduce the cost of the study. As before, the two cases with
equal and different number of measurements per patient are considered.

Equal number of measurements per patient

Let’s assume that the goal is to reduce the number of measurements from 13 to 8 per
patient, while keeping 30 subjects in the study. This gives a total of 480 samples and
corresponds to a reduced cost of about 38%.

The allowed sampling points are chosen to be the previously defined set T (20 points),
which gives

(
20
8

)
= 125970 elementary designs. The optimal design Ξred,8 (reduced 8-

point design) obtained in PFIM was

Ξred,8 = {0, 4, 15, 30, 60, 70, 100, 115},

with an objective value of

Φ(Ξred,8) = 24433.26.

The optimized 8-sample design shows a higher objective value than the initial design.
The gain in information is about 17%. In Section 6.5 the expected relative standard
errors of the design are seen and the parameter precision is maintained for the reduced
design.

Different number of measurements per patient

Assume that 480 samples are used (as in previous design) but now it is allowed with
different number of measurements per subject. Again, the allowed time points is the set
T and it is assumed that each patient has a minimum of 5 measurements and a maximum
of 8 measurements. This gives a total of

∑8
i=5

(
20
i

)
= 257754 elementary designs. The

optimal design Ξred,480 was

Ξred,480 =


(0,4,15,30,60,70,100),21

(0,15,30,60,100),9

(0,10,30,60,70,100),7

(0,15,30,60,70,100),1

 .

Hence this study contains 38 subjects with number of measurements ranging from 5 to
7, with a total of 480 samples. The objective value was
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Φ(Ξred,480) = 26083.11,

which is very similar in performance as the design having 8 measurements per patient
but the design is further reducing the sampling burden for each patient.

6.5 Standard error of parameter estimates

In Table 6.3 the different designs considered in this chapter are summarized for conve-
nient comparison.

Table 6.3: Number of subjects, cost and information criterion for the different designs
explored. Ξinit is the initial design, Ξimp,13 is the improved 13-point design, Ξimp,780 is the
improved 780-sample design, Ξred,8 is the reduced 8-point design and Ξred,480 is the reduced
480-sample design.

Design name Subjects Cost (samples) Criterion

Ξinit 30 780 20848.87

Ξimp,13 30 780 30637.01

Ξimp,780 62 780 42385.86

Ξred,8 30 480 24433.26

Ξred,480 38 480 26083.62

In Table 6.4 the expected relative standard errors for the designs given my PFIM are
seen.
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Table 6.4: Expected relative standard errors (%) of the parameters for the initial 13-point
design (Ξinit), the improved designs and the reduced designs given by PFIM.

Design Sg p2 Si n h γ G0 I0

Ξinit 3.9 8.3 3.0 0.8 0.2 1.5 1.7 1.7

Ξimp,13 3.5 7.0 1.6 0.9 0.2 1.3 1.6 1.7

Ξimp,780 3.3 6.5 1.4 1.0 0.2 1.3 1.2 1.2

Ξred,8 4.1 8.2 1.8 1.1 0.2 1.6 1.7 1.8

Ξred,480 4.1 8.3 1.7 1.3 0.2 1.6 1.6 1.6

Design ω2
Sg

ω2
Si

ω2
n ω2

γ ω2
G0

ω2
I0

σprop,G σprop,I

Ξinit 27.6 26.5 26.1 26.8 26.3 26.8 4.1 4.4

Ξimp,13 27.2 26.2 26.2 26.8 26.4 26.8 4.0 4.4

Ξimp,780 19.5 18.5 18.6 19.3 18.6 18.8 4.5 6.0

Ξred,8 27.7 26.4 26.3 27.3 26.5 27.0 5.4 6.5

Ξred,480 24.9 23.6 23.6 24.7 23.7 24.0 5.7 7.7

PFIM gives the expected standard errors by calculating the inverse of the approxi-
mated Fisher information matrix. To obtain realistic errors simulations are used. The
empirical standard errors were calculated by simulating the study 50 times and then re-
estimate the parameters with the FOCE algorithm, which is implemented in the package
nlmeODE[18] and nlme[19] in R. For information about the algorithms, see [7].

In each simulation the estimated parameters were obtained. The standard deviations
are then calculated from these 50 estimates. This was done for the initial design and
the reduced 8-point design which has similar information criterions. In Figure 6.3 the
expected relative standard errors given by PFIM are shown together with the empirical
standard errors for the initial design.
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Figure 6.3: Empirical relative standard errors obtained by simulation (black bars) and
relative standard errors given by the PFIM software (grey bars) for the initial design Ξinit.

Finally, the empirical standard errors for two different designs are compared. The
designs considered are the initial design Ξinit and the reduced design Ξred,8. In Figure
6.4 the relative standard error (in %) for the two designs are shown.

28



CHAPTER 6. INSULIN-GLUCOSE RESPONSE MODEL

Sg p2 Si n γ h G0 I0 ωSg
2 ωSi

2 ωn
2 ωγ

2 ωG0
2 ωI0

2
σG σI

R
S

E
 (%

)

0
5

10
15

20
25

30

Initial design
Reduced design

Figure 6.4: Empirical RSE for the initial 13-point design (black bars) and the reduced
8-point design (grey bars).

It should be noted that for the reduced design there was problem with convergence in
7 cases out of 50. The cases where the estimated parameters were obviously wrong
were omitted from the calculations of RSE. Also, the NLME package has no combined
error model. Instead, a exponential error model was used, which is very similar to a
proportional error model. For more information about the exponential error model, see
[7].

6.6 Discussion

From the results above the conclusion is that PFIM can be used both to find a better
design with the same cost and also reduce the cost of study while maintaining high
information. Using the Fedorov-Wynn algorithm all possible designs can be compared
given the allowed sampling times and number of measurements.
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In Table 6.4 the expected relative standard errors (RSE) for the designs explored are
shown. From the results one can conclude that the improved designs have a decrease
in RSE for almost all the parameters. When different number of measurements per
patient is allowed while including more subjects the RSE for the variance components
are decreased. For the reduced 8-point design the estimated parameter precision is
maintained while reducing the cost by 38%.

PFIM gives the expected standard error by calculating the inverse of the Fisher in-
formation matrix, as imposed by the Cramér-Rao bound. When comparing the standard
errors with the empirical standard errors given by the FOCE algorithm the conclusion
is that the empirical standard errors are generally higher then the standard errors given
by PFIM. The increase in RSE compared to PFIM may be due to the high non-linearity
of the model or problems with ODE systems in PFIM.

When the empirical standard errors for two different designs with similar information
criterion were compared the result was that the RSEs were very similar as well. Hence the
standard errors of the parameter estimates seem to be reflected by the Fisher information
as expected. This suggests that one may use PFIM to improve and reduce designs and
then evaluate the final design by simulations.
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7
PK/PD modeling of blood

neutrophil data

In this chapter PFIM is used to evaluate and improve an initially suggested design in a 6
months long study with a new drug in development. As a side effect, the drug is known
to decrease the production of neutrophils, which are the most common type of white
blood cells in mammals. Neutrophils forms an essential part of the immune system. In
this study the neutrophil level is a safety parameter which has to be monitored with
high precision.

First a PK/PD model describing the time course of neutrophils and the initial study
design are introduced. The initial design and an improved design are evaluated in PFIM.
In addition the initial design is optimized with respect to the pharmacokinetic sampling
schedule.

7.1 The underlying model

A two-compartment pharmacokinetic model with linear elimination was assumed. In
Figure 7.1 the model parameterized with volumes of distribution V1 and V2, clearance
Cl and inter compartmental clearance Q is shown.
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Figure 7.1: The pharmacokinetic model with parameters ka, V1, V2, Cl and Q.

The drug absorption is modeled as a dosing compartment from which the drug enters the
system after administration. The absorption rate is the rate by which the drug enters
the central compartment, which is an appropriate model when the drug is administrated
orally. It is assumed that the patient takes the drug with dose D every 12th hour. The
model is reparametrized using the rates k12 = Q/V1, k21 = Q/V2 and ke = Cl/V1. The
amount of drug in the three compartments are denoted A0 (dose), A1 (V1) and A2 (V2).

The pharmacodynamic model is a turnover response model as illustrated in Figure
7.2.

R --
koutkin

Figure 7.2: A turnover response model with production rate kin and elimination rate kout.

Since the underlying drug is known to decrease the production of neutrophils an Imax
model where the drug is causing a reduction of the production rate kin is used. The
differential equation describing the response R(t) is

dR

dt
= kin

(
1− ImaxC

C + C50

)
− koutR,

where C is the drug concentration in the central compartment, Imax is the maximal drug
effect and C50 is the concentration needed to reach half of the maximal effect.

To model the circadian rhythm where the rate kin varies over time a cosine function
describing the fluctuations in neutrophil levels over the day is added. Rewriting kin =
Rbasekout, the differential equation describing the response is

dR

dt
= Acos(2π(t− s)/f) + kout

(
Rbase

(
1− ImaxC

C + C50

)
−R

)
,

where A is the amplitude, s the shift and f the frequency. This leads to the ordinary
differential equation system
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dA0

dt
= −kaA1

dA1

dt
= kaA1 − keA2 − k12A2 + k21A3

dA2

dt
= k12A2 − k21A3,

dR

dt
= Acos(2π(t− s)/f) + kout

(
Rbase

(
1− ImaxA1/V1

A1/V1 + C50

)
−R

)
,

with initial conditions

A0(0) = D

A1(0) = 0
A2(0) = 0
R(0) = Rbase.

Moreover, the parameters ka, Cl, Rbase, C50, kout and s vary in the population
according to a lognormal distribution. A proportional error model with σprop = 0.1 for
both the PK and PD response was assumed. Hence there are a total of 20 parameters
in the model. The parameter values used in the model are seen in Table 7.1.

Table 7.1: Parameters values with units used in the model.

ka (1/h) Cl (L/h) V1 (L) V2 (L) Q (L/h) Rbase Imax

0.54 8 24 12 0.64 4.8 0.5

C50 (mg) kout (1/h) A s (h) f (h) ω2
ka

ω2
Cl

0.1 0.21 0.11 12 24 2.25 0.16

ω2
Rbase

ω2
C50

ω2
kout

ω2
shift σpropPK σpropPD

0.0576 1.44 0.16 0.0676 0.1 0.1

7.2 The initial study design

The suggested clinical study is a 6 month study with 450 patients to be enrolled. The
patients are divided into three groups with 150 patients in each. Each group is given a
different dose.

The patients visit the clinic a total of 10 times. On each visit the PD response is
measured just before the dose is administered. At four visits the PK response is measured
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pre-dose and at one visit three post-dose PK samples are taken. This gives a total of 10
PD samples and 7 PK samples. The pre-dose samples are taken immediately before the
drug administration and the 3 post dose samples are taken somewhere between 1-2h,
3-5h and 7-10h after drug administration. Hence there is no strict sampling schedule
but intervals.

7.3 Evaluating the initial design in PFIM

When using the full ordinary differential system with a turnover response model it was
not feasible to use the analytic option in PFIM. Instead, the user-defined model option
which allows specification of the ODE system was used. Unfortunately a model described
by an ODE system together with a multiple dose parallell group study has not yet been
implemented in PFIM. Instead the ODE system must be tweaked a little, making the
model even more complicated.

The evaluation of a specific design using the full PK/PD model took a long time
in PFIM. Since the study is a 6 month study it would been preferred to evaluate the
the study and optimize the sampling times at every time the patient visit the clinic.
However, this was not possible due to the complicated model and the need of simulating
the ODE system for a long time.

Due to the limitations of PFIM, only the initial PK/PD design and one new design
were evaluated to obtain the expected standard errors of the parameter estimates. In-
stead of simulating a study length of 6 months the samples was allocated in steady state
with 24 hours in between. A new design with the sampling points at different post-dose
times was also considered. The initial sampling times for PK and PD was

ξinitPK = (72,96,97,98,103,120,144)

ξinitPD = (0,48,72,96,120,144,168,192,216,240),

where the values denote hours after the first dose. We denote the initial population
design

Ξinit = {(ξinitPK , ξ
init
PD ), 450}

In Figure 7.3 the expected responses for the PK and PD profiles together with the
sampling points are shown. Notice that the system reaches steady-state after 3 doses.
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Figure 7.3: The expected PK (upper) and PD (lower) response together with the initial
sampling times for the three dose groups. The plot is automatically created by PFIM.

The second design Ξnew has sampling times

ξnewPK = (72,97,122,147,172,197,222)
ξnewPD = (0,48,72,97,122,147,172,197,222,247),

where the values denote hours from the first dose. This design implies that the patients
are measured at different post-dose times at every visit. The information criterions for
the two designs was

Φ(Ξinit) = 808.45
Φ(Ξnew) = 1535.31,

which implies that the new design is much more informative. In Table 7.2 the expected
relative standard errors given by PFIM for the two designs are shown, indicating an
informative initial design.
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Table 7.2: Expected relative standard error (%) for the initial design Ξinit and the new
design Ξnew given by PFIM.

Design ka Cl V1 V2 Q Rbase Imax C50 kout A

Ξinit 1.1 1.5 2.4 13.6 7.6 1.2 4.8 12.8 12.7 14.8

Ξnew 0.8 1.4 2.2 29.0 7.5 1.2 2.8 8.0 4.8 12.8

Design s f ω2
ka

ω2
Cl ω2

Rbase
ω2
C50

ω2
kout

ω2
s σpropPK σpropPD

Ξinit 12.7 0.1 7.6 7.5 8.1 21.0 227.5 173.1 2.5 1.9

Ξnew 3.8 0.3 7.5 7.4 7.9 12.2 125.6 19.9 2.1 2.0

7.4 Improving PK sampling

Due to the complicated ODE model and the limitations of PFIM when it comes to
running time only the sampling for the PK samples in steady-state is considered.

For the two compartment model there is a closed form expression for the concentra-
tion at time t after repeated doses with dose interval τ . This model is implemented in
PFIM library and it is used to find better sampling times. Note that in the real study
samples are taken at different times, for example after 1 month and after 2 months. The
steady-state model here serves as a tool to find how long after the dose administration
samples should be collected. The expression for the concentration at time t after the
drug’s administration is [3]

C(t) = D

(
Ae−αt

1− e−ατ
+

Be−βt

1− e−βτ
− (A+B)e−kat

1− e−kaτ

)
,

where

β =
1
2
(
k12 + k21 + ke −

√
(k12 + k21 + ke)2 − 4k21ke

α =
k21ke
β

A =
ka
V1

k21 − α
(ka − α)(β − α)

B =
ka
V1

k21 − β
(ka − β)(α− β)

.

The pharmacokinetic response is measured a total of seven times in steady-state.
Four of the samples are taken at the same time as the administration of the drug, that
is at t = 0. The three post-dose samples are taken somewhere between 1-2h, 3-5h and
7-10h after the drugs administration. Hence there are no strict sampling schedule since
the times are given as intervals. Using PFIM library of pharmacokinetic models the
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steady state behavior of the PK response easily can be implemented. The initial design
was set to

Ξinit =
{

(0,0,0,0,1,3,7), 450
}
,

with corresponding information criterion

Φ(Ξinit) = 385.0.

A design using PFIM with the Fedrov-Wynn algorithm was optimized. In the first
step it was assumed that 7 samples were allowed to be taken from the set of time points
{0,1, . . . ,10}. The optimized design was

Ξ1 =

{
(0,1,4,5,6,8,9), 254

(0,1,4,5,6,7,10), 196

}
,

with an information criterion of

Φ(Ξ1) = 536.3.

If all the patients are allocated to the first group or second group rep, we get designs Ξ2

and Ξ3 respectively which has information criterions of

Φ(Ξ2) = 535.6.
Φ(Ξ3) = 535.1.

By defining a larger set of allowed time points the design can be improved further.
The set of allowed time points is now set to {0, 0.5, 1, . . . ,10}. The optimized design was

Ξ4 =


(0,0.5,4.5,5,5.5,8.5,9), 46

(0,0.5,4.5,5,5.5,6,9.5), 161

(0,0.5,4,4.5,5,8.5,9), 243

 ,

with an information criterion of

Φ(Ξ4) = 571.4,

If the patients are allocated to the same groups the design Ξ5, Ξ6 and Ξ7 are obtained
with criterions

Φ(Ξ5) = 570.5
Φ(Ξ6) = 567.5
Φ(Ξ7) = 570.1

.

In Table 7.3 the expected standard errors for the different designs given by PFIM are
shown.
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Table 7.3: Expected relative standard errors (%) for the considered designs given by PFIM.

Design ka Cl V1 Q V2 ω2
ka ω2

Cl σprop

Ξinit 1.1 1.7 3.1 14.3 103.0 8.0 7.6 2.6

Ξ1 0.9 1.6 2.6 10.4 58.5 7.7 7.5 2.2

Ξ2 0.9 1.6 2.6 10.4 57.0 7.7 7.4 2.2

Ξ3 0.9 1.6 2.6 10.4 61.1 7.7 7.5 2.2

Ξ4 0.8 1.6 2.5 10.0 54.6 7.6 7.4 2.2

Ξ5 0.8 1.6 2.5 9.9 53.2 7.6 7.4 2.2

Ξ6 0.8 1.6 2.6 10.2 60.4 7.7 7.5 2.2

Ξ7 0.8 1.5 2.5 9.9 52.2 7.6 7.4 2.2

7.5 Discussion

The PK/PD model considered in this chapter combined with a long study reveals a
major drawback of PFIM. When a need for a long study arises, the evaluation in PFIM
takes a very long time. No optimization seems feasible for such models unless using a
high performance computational cluster.

In the first section the initial design and a new design was evaluated in PFIM. The
initial design showed a very high RSE on the parameters ω2

kout
and ω2

s although the design
was informative when looking at the other parameters. When changing the sampling
points to all be taken at different post-dose times the RSE was reduced but a high RSE
on ω2

kout
was still noticed. The RSE on V2 was increased for the new design.

When optimizing the PK sampling in steady state some interesting results were
noticed. The results in Table 7.3 show that that the different designs exhibit a large
difference in RSE for the peripheral volume of distribution. The initial design had a
RSE of 103 % while the improved designs had a RSE ranging from 52.2-61.1% for that
specific parameter. For the other parameters the RSE was low, ranging from 1.1-14.3
%. From the results the conclusion is that an improvement of the PK sampling in the
study could be done by taking samples at 7 different post-dose times. There is still high
uncertainty for the peripheral volume of distribution.

Note that when modeling PK and PD response simultaneously the parameter pre-
cision for the peripheral volume was decreased due to the relationship between the two
responses.
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Final discussion and conclusions

For scientific and ethical reasons it is most important clinical experiments are sufficiently
designed to answer the pre-specified questions of interest. There should not be too
few individuals recruited to reach inconclusive results and a study should not be over
dimensioned and expose an excess of individuals at risk. In this thesis the PFIM software
used for optimal design of clinical studies has been evaluated. The purpose of PFIM is
to improve the information from clinical studies by maximizing the Fisher information
which in turn can improve the precision of estimated parameters.

PFIM has been evaluated using three different nonlinear mixed effect models. The
first model was a simple analytical PK/PD model where the goal was to compare the
expected standard errors given by PFIM with those from a large simulation in NON-
MEM. The results showed that the RSE were very similar and hence PFIM can be an
appropriate alternative when it comes to the evaluation of a specific design. It offers a
fast way of calculating the expected standard errors (a few seconds) compared to the
simulation method (a few hours).

The second model was Bergman’s model for glucose-insulin response, which was
described by an ordinary differential equation system. Here an initial 13-point design was
reduced to a 8-point design while maintaining the information in the study. Simulation
results showed that the standard errors given by PFIM were slightly underestimated
compared to the empirical standard errors. When comparing the initial and the reduced
design, with similar information criteria, the empirical standard errors were very similar.
This is an interesting result which can have great impact on the cost of future studies
and the wellbeing of the patients included in them. Instead of having to be sampled at
13 times the patient can be sampled 8 times.

The final example included a PK/PD model describing a safety endpoint in a 6
month long study. When applying this model in PFIM some major drawbacks were
noticed. When the model was described by an ordinary differential equation system the
evaluation of a specific design took a very long time in PFIM, so no optimization of the
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suggested design study was feasible. Two different designs were evaluated using PFIM
and the results showed that the RSE could be reduced by taking samples at different
post-dose times every visit. The results also showed that the suggested design was
sufficiently informative giving confidence in the suggested study design. When optimizing
the PK sampling at steady state, a major reduction in RSE for the peripheral volume
of distribution was obtained.

During the work with PFIM some limitations of the software have been noticed.
It only offers the optimality criterion to be D-optimality. When there is a need for
estimating some parameters better than others one would like to be able to choose a
subset of parameters to estimate, so called Ds-optimality. For example, there is often
a need for more precise estimation of the parameters Cl and Emax than for ka and
kout where the former does not impact overall drug exposure and the latter is a disease
rather than a drug specific system parameter which may be known from the literature.
The model also has to be pre-specified and all the parameters must be known prior to
the optimization. There is no option where one could specify uncertainty in the prior
estimates, as implemented in so called Bayesian designs where a distribution can be
specified for the parameters.

There is a number of other programs used for optimal design of clinical studies.
The software PopED[20] has been evaluated in the thesis by Dosne[16] and offers a
wider range of optimality criteria, including Ds-optimality. The user can also specify
an uncertainty in the prior parameter estimates (ED-optimality). PopED also offers a
wide range of approximation types, including the First Order, First Order Conditional
and First Order Conditional Interaction. Comparing this to the methods in PFIM, the
conclusion is that PFIM has a very limited range of options, since it only incorporates
the First Order approximation and D-optimality.

For future work, it would be interesting to investigate how improved parameter esti-
mation affects the decision making in clinical trials. Ultimately a clinical trial translates
to making the correct decision, for example choosing the right dose. By taking this work
one step further one would like to investigate the impact of study designs in decision
making. Another type of optimality criteria which could be suitable for such purposes
is V -optimality, which seeks to minimize the average prediction variance.

Finally, the conclusion is that PFIM can be used to evaluate, optimize or reduce
clinical study designs. For a model specified by an ordinary differential equation system,
great care has to be applied to the results given by PFIM. The suggestion is that one
always should evaluate a final design by simulations, for example in the NONMEM
software.
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