
Multi-agent pathfinding with discrete speeds

and its application for vehicle road networks

Master’s thesis in Computer science and engineering

Johan Gerdin

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020





Master’s thesis 2020

Multi-agent pathfinding with discrete speeds

and its application for vehicle road networks

Johan Gerdin

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020



Multi-agent pathfinding with discrete speeds
and its application for vehicle road networks
Johan Gerdin

© Johan Gerdin, 2020.

Supervisor: Elad Michael Schiller, Department of Computer Science and Engineering
Examiner: Nir Piterman, Department of Computer Science and Engineering.

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2020

iii



Multi-agent pathfinding with discrete speeds
and its application for vehicle road networks
Johan Gerdin
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This work contributes to the multi-agent path-finding problem (MAPF) by extending existing algorithms
with optimal and efficient routing for roads with multiple lanes and intersections. It also considers the
continuous case, where agents are forbidden from performing actions during a non-discrete interval of time.
Further, a method to plan for the speed of agents is introduced. In order to create a strong base for this
problem, rigorous mathematical models are defined and proved to have properties of both completeness and
optimality. Experiments are used to validate the abstract models.
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1 Introduction
Optimal route planning for autonomous agents, called a Multi-agent path-finding problem (MAPF), is an NP-
hard problem [15]. This means that, in general, problem instances can take exponential time to compute. If
during execution there are deviations to the plan, agents might need to halt for a long time while recomputing
their paths. Existing attempts to mitigate the risk of recomputation during the planning phase considers,
for example, unexpected yet bounded delays [3].

We consider the problem of routing vehicles in a road network. The network is represented by a graph,
consisting of straight two-lane roads and intersections. A MAPF solver will create an optimal plan for the
vehicles that schedules them to move without colliding with each other. The solvers described in this project
are based on conflict based search (CBS) by Sharon et al. [14]. It plans for agents by focusing on eliminating
conflicts in the form of collisions, where two agents occupy the same space at the same time.

This algorithm is the basis for a framework, consisting of three models in sections 2, 3 and 4 respectively.
Each model adds to or changes the previous, bringing in more kinematic details such as time and speed.
A way to translate from the target system of road networks into the model and back will be presented in
Section 5. The third model described in Section 4 is one of the novelties of this project. It focuses on
planning for the speeds of agents under continuous time intervals. During refinement in Section 5, the other
two models will be brought closer to this third model. This is another novelty, refining all models in the
framework to consider speeds of agents. A preliminary evaluation was done of the framework. The evaluation
shows evidence of gains in execution time performance from considering the speeds of agents.

An example of previous work in the field of vehicle routing is the work of Petig et al. [12]. Their work
provides a polynomial-time algorithm for planning lane changes on a highway. They provide a way to reason
about the movement of vehicles in a road but it does not account for the kinematics of the vehicles, which
this thesis is attempting to do. Another example is Ekenstedt et al. [4], which involves a protocol for how
vehicles should behave in intersections. Her work focuses on coordinating vehicles in a running system, while
this thesis focuses on the planning phase. Ma et al. [11] presents a sub-optimal algorithm allowing for both
rescheduling and encoding kinematic constraints for disk-shaped agents operating on a grid. This algorithm
could potentially be extended to road networks, but due to its restriction to grids and agents of one shape,
is not immediately suited for road networks.

1.1 Problem description
We model the problem of routing vehicles (agents) in a road network as an instance of a multi-agent path-
finding problem. The road network is represented by a graph consisting of vertices (locations) and edges
(intermediate positions) between each vertex. The goal is to compute a solution (also called a plan) consisting
of collision-free paths for multiple individual agents. Each agent has a start and goal state, which consists of
a vertex in the graph, and in the case of the CTDS model also a start and goal speed. Paths in a solution
are called collision-free if they do not schedule agents to occupy, at the same time, the same location (or
concurrently move between locations in a way the violates safety conditions).

This thesis considers different models, some of which, such as the target system (TS) consider all the
kinematic constraints that the agents must satisfy when running in the environment (e.g. road network)
in which the vehicles are planned to operate in. These constraints include detailed descriptions regarding
continuous positions, velocities and acceleration. The other modeling approaches in this thesis, vary from the
most basic that do not consider any kinematic constraints to ones that consider more of these constraints.
The goal, in all of these models, is to find optimal collision-free paths for all agents.

Since some of our models consider several layers of abstractions, post-processing of the set of planned
paths is required to properly account for the kinematics of the agents and environment [10]. By considering
several models, we can select to include the right level of details about the environment and agents and
balance the trade-offs between computation costs of the MAPF algorithms vs. the execution time when the
agent follows the plan in the target system.
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1.2 Models

Figure 1.1: Overview of transformation from and to the target system.

Discrete Continuous
Time Speeds Positions Time Speeds Positions Geometry

Discrete-time (DT) x x
Continuous-time (CT) x x x

CT with discrete speeds (CTDS) x x x x
Target system x x x x

Table 1.1: Summary of what kinematic constraints are considered in the three models.

The models differ in the manner in which they define safety conditions. One of the most basic ways
to define this condition is by requiring no two agents to be present simultaneously at the same vertex or
edge. Sharon et al. [14] follow this approach and assume that time can be divided in a discrete man-
ner. A solution in this discrete-time (DT) model considers a set of paths, such that each path is the
itinerary {location1, . . . , locationn}, which lists locations and times an agent is scheduled to go through.
The safety conditions of the DT model are easy to verify. For example, consider one agent with path
{location1, location3} and another agent with path {location2, location3}. In this example, both agents are
scheduled to reside in location3 at time 2, and thus the solution is not valid. Sharon et al. [14] use the
DT model for capturing inherent scheduling conflicts, such as the one in the example above. Sharon et
al. demonstrated the existence of an attractive MAPF algorithm that offers valid and optimal solutions for
many relevant cases.

Since the DT model does not consider any kinematic constraints, Hönig et al. [10] proposed a transfor-
mation of Sharon et al.’s solutions from the DT model to the one of the target system by encoding the
missing kinematic constraints. We note, however, that there are many optimal solutions that are safe at the
target system but are considered not valid by the DT model. Consider Figure 1.2, where two agents have
paths that cross. Figure 1.2a illustrates how the agents will collide if they start to move at the same time.
This can be resolved by letting one of the agents wait in its starting location before moving. An example
of this can be seen in Figure 1.2b, where the agent moving from start1 to goal1 waited in start1 before
moving. A solution to this in the DT model would either be represented as by paths {start1, start1, goal1}
and {start2, goal2} or {start1, goal1} and {start2, start2, goal2}. Both paths represent one agent waiting
until the other agent is completely done moving before moving itself. This is sub-optimal if we consider time
as non-discrete. A non-discrete solution is Figure 1.2b, where the agent moving from start1 to goal1 waited
for a continuous-time interval before moving.
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(a) The two agents collided during movement. (b) One of the agents waited before moving, allowing
the ohter to pass.

Figure 1.2: A graph consisting of four locations and two agents with crossing paths.

With this as a motivating example, Andreychuk et al. [1] refine the safety conditions used by Sharon et al.
by treating time as continuous. Agents are now represented as objects with a given size and shape, moving
and colliding at any point in time. A path in a continuous-time (CT) model includes a time-point (positive
real number) along with each location: {(location1, time1), . . . , (locationn, timen)}. This allows a solver in
this model to create paths in an environment with locations placed at a non-uniform distance from each
other and for agents with different maximum speed, size and shape. Consider Figure 1.2, where instead of
waiting for the other agent to completely finish its move, the agent waits until it can move without colliding.
The interval of time the agent waits can be a smaller interval of time than the duration of the other agents
movement. It could, for example, be based on the collision interval as seen in Figure 1.3. However, they
make one important assumption; that an agent has infinite acceleration and will reach maximum speed from
zero speed instantly and vice versa. Agents in a target system will require time to reach their target speeds.
Further, there is a solution for the agents in Figure 1.2 where both start to move at the same time, but at
different speeds. This solution would result in both agents reaching their locations and target speeds earlier
than if one agent stalls until the other is done moving.

Figure 1.3: Example of how a collision interval might be computed.

The continuous-time with discrete speeds (CTDS) model in Section 4 is an attempt to remedy this. It
extends the CT model by refining the concept of speeds. Assuming constant acceleration, agents can travel
by a set of speeds. This treatment of speeds can gain performance by catching opportunities of not coming
to a complete stop to avoid a collision. Also, agents in the target system are subject to safety conditions
(friction on the road, forces upon the vehicle, etc) that can be better captured here. An action by an agent
in the CTDS model will take a different amount of time and is validated based on the speed and distance
traveled. This is achieved by providing both a time-point and a speed along with each location in a path:
{(location1, time1, speed1), . . . , (locationn, timen, speedn)}. A solver can now encode that an agent is not
able to go from top speed to zero in too short of a distance or that going from 1 m/s to 3 m/s takes longer
than going from 2 m/s to 3 m/s for example.

The three models and target system are summarized in Table 1.1. The table gives an overview of the
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search-space of each model and how each model builds on the next, bringing it closer to the target system. A
solution that has accounted for all kinematics of the target system would have to search in both continuous-
time, speed and position. In general, approaches that account for all the details do not scale very well with
larger input sets. So, as is apparent in the table, no model explores the space of continuous speed and
position. An abstraction made by all models is that positions are discrete points in the geography of the
target system.

An overview of transformation from and to the target system is given in Figure 1.1. The transformation
and refinement of each model into the target system of a road network is described in Section 5. The general
procedure is as follows:

1. The input in the target system is transformed into a graph in either the DT, CT or CTDS model.
2. Graph and to a small extent algorithms are refined with information relevant to the choosen abstract

model.
3. A solution is created based on the refined graph.
4. The solution is post-processed based on the work of Hönig et al. [10] in order to solve for continuous

speeds.

1.3 Research questions
The purpose of this work is to investigate how to provide an optimal and safe plan for many vehicles in a
target system, i.e., the road. One solution to this is to plan for the target system directly, using a detailed
physical simulation. This can be very expensive, however, and another approach is use a high-level model of
the problem. In order to decrease running time, these models try to capture properties of the target system
without doing a full simulation. This work attempts to answer what properties of the target system we
model and how we model them. Moreover, there is a trade-off of how detailed these properties should be.
For example, how fine-grained should the set of speeds be that an agent can travel by? Lastly, the studied
algorithms should be suitable for a large number of agents. The aim is to answer this by seeing how runtime
is affected by having larger sets of agents.

This can be summarized as the following research questions:
• How to provide an optimal and safe plan for many vehicles on the target system, i.e., the road?
• How to consider the details of the target system when modeling the problem?
• How to balance the running time trade-off between the studied model and the target system?
• How well do the studied solutions scale in the number of agents

1.4 Our contribution
We contribute to the field of MAPF by describing a novel model and algorithms for planning for the speeds
of agents. This work is based on two previous contributions, conflict-based search (CBS) [14] and continuous
conflict-based search (CCBS) [1]. Both of these are modeled in this text. Moreover, we give a novel approach
to solve for the target system of road networks for all three models.

1.5 Applications
This thesis focuses on the specific application of road networks. The network is separated into two compo-
nents: a two-lane road and a small intersection with four entrances and four exits. All models and solutions
presented are intended to be general however, and can be adapted to many fields such as video games or
warehouses [2].
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2 Discrete-time (DT) model
Paths are computed in a given graph, where an agent traversing the graph represents, for example, a robot
operating on a grid. The agent use actions to traverse the graph. Each action can let an agent either stand
still or move from one location to another. More generally, these actions transition the agent from one state
to another state, where a state in the DT model refers to the agent’s current location. Each transition has
an associated cost, which in the DT model is uniform for all actions. Agents are assumed to perform actions
simultaneously. The notion of time refers to an integer that is used when representing conflicts between
agents. In the DT model, a conflict between two agents exists if they are scheduled to reside at the same
location at the same (discrete) time. For a given solution in the DT model, the costs related to time is the
maximum number of state transitions any agent has to go through until the end of its path, i.e., makespan.
The cost related to the total amount of work can be defined as the sum of all individual costs, which is the
sum of the lengths of all individual paths in a given solution. Next, we provide a more detailed version of
these definitions.

2.1 Definition
The model considers a set of k agents A = {a1, . . . , ak} and a directed non-weighted graph G(V,E). Each
agent ai ∈ A traverse the graph by transitioning from one state st to another state st′, representing e.g.
changing the location of the agent.
Definition 2.1 (State). A state{v ∈ V} is defined to consist of

• A vertex state.v ∈ V representing the location of the agent.
The transition from state st to state st′ has an associated cost tranCost(st, st′). This is used in Section 2.2

to define what the cost of a path is.
Definition 2.2 (State transition cost). A state transition cost tranCost(st, st′) from state st to st′ is defined
to be equal to 1.

Further, each agent ai ∈ A starts at location vstart
i ∈ V and it needs to traverse the graph to reach location

vgoal
i ∈ V, via a series of actions.
Definition 2.3 (Action). An action is defined to be either:

• STOP(st): Remain in the same state st.
• MOVE(st, st′): Move to a new state st′ from st, such that (st.v, st′.v) ∈ E.
In other words, agent ai moves from vstart

i to vgoal
i along the path pi = (state{vstart

i }, . . . , st, st′, . . . , state{vgoal
i }),

where the move that ai takes in state st is MOVE(st, st′) when st.v 6= st′.v and STOP(st) otherwise.
This model treats time as discrete, meaning that agents perform actions simultaneously. Therefore, time

can be represented as follows:
Definition 2.4 (Time). The timed representation of a path pi is pi = (st1, st2, . . . , stt, . . . , st`), where stt.v
is the location of agent ai at time t and ` is the path length.

We say, in this paper, that s = {p1, p2, ..., pk} is a solution, consisting of the individual paths of all agents,
to the problem of Multi-Agent Path-Finding (MAPF) if it satisfies the safety condition of no conflicts.
Definition 2.5 (Conflict). A conflict between two agents ai and aj in states sti and stj at time t is one of
two types:

• (Vertex conflict) (ai, aj , v, t) where agents ai and aj plan to occupy the same vertex v = sti.v = stj .v
at the same time step t.

• (Edge conflict) (ai, aj , (v, v′), t) where agents ai and aj plan to occupy the same edge. That is, at time
step t ai plans to move from v = sti.v to v′ and aj plans to move from v′ = stj .v to v.

To the end of finding a conflict-free solution, Sharon et al. [14] propose to use a constraint tree (CT).
Given a solution s that has a conflict, one can refine s by allowing ai to keep its current plan with state sti
at time t while forbidding the aj from transitioning to state stj at time t. Each node in a CT refines the
solution by adding constraints.

5



Definition 2.6 (Constraint). A constraint for an agent ai is one of two types:
• (Vertex constraint) Given a vertex conflict (ai, aj , v, t), (ai, v, t) is a constraint where agent ai is for-

bidden from occupying vertex v at time-step t.
• (Edge constraint) Given an edge conflict (ai, aj , (v, v′), t). (ai, (v, v′), t) is a constraint where agent ai

is forbidden from traversing edge (v, v′) by being at v at time t and then at v′ at time t+ 1. Similarly,
(aj , (v′, v), t) is a constraint for agent aj .

Consider a conflict between two agents ai and aj , a CT considers both the constraint (ai, v, t) or (ai, (v, v′), t)
and (aj , v, t) or (aj , (v′, v), t). Specifically, starting from a the CT root, which includes no constraints, each
node encodes a different list of constraints that refines the solution. That is, the list of any non-root node is
the result of appending a constraint to the list of its parent.

A path pi ∈ s is called consistent if it satisfies all constraints for agent ai and a solution is called consistent
if all single-agent paths in the solution are consistent. The solution in a CT node is always consistent with
its constraint list and a CT node is called a goal node when the solution has no conflicts. Therefore, we say
that goal nodes provide valid solutions.

2.2 Cost function for MAPF
A solution s to a MAPF problem instance is called optimal, in this text, if it is a minimum of the multi-agent
objective function cost(s). All three models will use this function to order potential solutions, processing ones
with the lowest cost first. cost(s) is computed using a composite value of a single-agent objective function,
considering each agent in the solution. The single-agent objective function computes the optimal cost of an
agent moving from its starting location to its goal location.

2.2.1 Single-agent objective function

A single-agent objective function, h(v), computes the optimal cost of a single agent moving from v ∈ V to
a goal vertex g ∈ V. Computing h(v), however, might be expensive in that many graph vertices must be
processed. To the end of reducing the computation cost, the heuristic function ĥ(v) is used. The aim of ĥ(v)
is to estimate the cost of h(v). It can be implemented in many ways, for example: The euclidean distance
from v to g or the time it would take to travel in a straight line from v to g at a certain speed. If ĥ(v) is
an admissible heuristic it has the property: ∀v∈Vĥ(v) ≤ h(v). Meaning, ĥ(v) never overestimates the cost
of moving from v to goal vertex g. The path-finding algorithms in this work also considers a constraint set
C. To this end, we introduce hC(v) as the true cost of moving from v to a goal vertex g while respecting
constraint set C. We now prove that, given a set of constraints C, an admissible heuristic for hC(v) still
exists.
Theorem 2.1. Let C be a set of constraints and hC(v) an individual objective function. Suppose that h∅(v)
has an admissible heuristic ĥ(v). Then, hC(v) has an admissible heuristic ĥ′(v) also for the general case in
which C = ∅ may not hold.
Proof: Let G(V,E) be a graph, g ∈ V be a goal vertex and C a constraint set. We argue that ∀v∈Vh∅(v) ≤
hC(v), which gives us that ∀v∈Vĥ(v) ≤ h∅(v) ≤ hC(v), meaning ĥ(v) is actually an admissible heuristic for
hC(v). By definition of h∅(v), it is true that h∅(v) always computes the optimal cost of moving from v to
g. Since h∅(v) considers no constraints, the path that hC(v) computes the cost of is a possible candidate for
h∅(v) as well. This means that it can never be the fact that h∅(v) > hC(v) for any v ∈ V. �
Corollary 2.1. If there exists an algorithm that computes h∅(v) using an admissible heuristic ĥ(v) then
the same algorithm can use ĥ(v) to compute hC(v).

2.2.2 Multi-agent objective function

We are now ready to define a cost function for multiple agents. Let cost(s) be a function that takes a
solution, s, and computes the cost of s via a composite value of the costs of the cost of individual paths in
s = {p1, . . . , pk}. Note that we consider a discrete set of costs in this work. Further, we require cost(s) to
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satisfy Property 2.1. The definition of Property 2.1 considers a constraint set C and the minimal cost[C] of
function cost(s) for a solution s that satisfies constraint set C.
Property 2.1. Let cost(s) be a cost function, then ∀C,C′C ⊆ C ′ we have that cost[C] ≤ cost[C ′].

Examples of cost(s) are the sum of individual costs (SIC) and the Makespan. Let s be a solution and the
cost of a path p ∈ s be

pathCost(p) =
∑

sti,sti+1∈p

tranCost(sti, sti+1)

The SIC given a solution s is:

SIC(s) =
∑
pi∈s

pathCost(pi) (2.1)

Then, SIC optimality is defined as: SIC∗C =
∑

ai∈A hC(vstart
i ) is the optimal SIC for agents A in a given

MAPF problem instance. If a solution s satisfies constraint set C and has a cost SIC(s) = SIC∗C , then s is
called optimal w.r.t. SIC and the constraint set C.

The Makespan given a solution s is:

Makespan(s = {p1, . . . , pk}) = max(pathCost(p1), . . . , pathCost(pk)) (2.2)

Then, Makespan optimality is defined as: Makespan∗C = maxai∈A(hC(vstart
1 ), . . . , hC(vstart

k )) is the opti-
mal Makespan for agents A in a given MAPF problem instance. If a solution s satisfies constraint set C and
has a cost Makespan(s) = Makespan∗C , then s is called optimal w.r.t. Makespan and the constraint set C.

The fact that the SIC and Makespan satisfy Property 2.1 follows trivially from that the set of solutions
that satisfy C ′ also satisfy the constraint set C.

2.3 Single-agent path-finding: Constrained-A*
A very common path-finding algorithm, when computing a path for a single agent, is A* [8, 9]. The algorithm
is a best-first search. It explores the state-space by ordering states from low to high cost. The cost of a state
is based on both the time it takes to get to that state and also the estimated future cost of moving from that
state to the goal state. Constrained-A* is a modified version of A* that also takes as input a constraint set
C. When computing successors to a node in the search tree, the successor must be valid under constraints
C.

Constrained-A* can be formulated using the discrete-time model. The pseudo-code can be seen in Algo-
rithm 1. Solvers described in the two other models in this text will be seen using this structure as well, but
adding to the functionalities of the algorithm. The procedure Constrained-A*(vstart

i , vgoal
i ,G(V,E), C) takes

a starting vertex vstart
i , a goal vertex vgoal

i , a graph G(V,E) and a constraint set C (line 1). Let v be the vertex
of a node explored by Constrained-A* and ĥ(v) is the heuristic function defined in Section 2.2.1. Then, g(v)
is the current minimum cost of moving to v from vstart

i and f(v) = g(v) + ĥ(v). We observe that if ĥ(v) = 0
for all v ∈ V, the algorithm is not guided by ĥ anymore and becomes a regular best-first search. g(vstart

i )
and f(vstart

i ) are initialized on lines 2 and 3. Then, the root node is created and inserted into the priority
queue OPEN on lines 4- 6. The main iteration loop starts on line 7 and continues until either OPEN is
empty (line 7), meaning no solution was found, or that the current node explored is found to be the goal
node on line 9 and a solution is returned. The iteration begins by finding the node with the lowest f -value on
line 8, and proceeds by calling getSuccessors(N,C) on line 11. getSuccessors(N,C) are all reachable nodes
N ′ where (N.vertex,N ′.vertex) ∈ E and the same node N representing waiting in place. Each successor
must be valid under constraint set C. How successors are computed will be the key modification to this
procedure in later sections. For each successor N ′, f(N ′.vertex) is set to ∞ if it has not been explored yet
(lines 13- 14). In order to compute the cost of transitioning to a neighbour, N and N ′ are mapped to states
and passed to the state transition function as tranCost(state{N.vertex}, state{N ′.vertex}). If the cost of
moving to N ′.vertex from N.vertex is better than previous route (line 15), g(N ′.vertex) and f(N ′.vertex)
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are updated accordingly and N ′ is inserted into open on lines 16-18.

Algorithm 1: A high-level description of Constrained-A*, identical to A* by Hart et al. [9] except for how
successors are computed.

1 function Constrained-A*(vstart
i , vgoal

i ,G(V,E), C)
2 g(vstart

i ) = 0;
3 f(vstart

i ) = ĥ(start);
4 OPEN = ∅;
5 Root.vertex = vstart

i ;
6 insert Root into OPEN ;
7 while notEmpty(OPEN) do
8 N = node with lowest f(N.vertex) in OPEN ;
9 if N.vertex ≡ vgoal

i then
10 return reconstructPath(N);
11 successors = getSuccessors(N,C);
12 foreach N ′ ∈ successors do
13 if notV isited(N ′) then
14 f(N ′.vertex) = g(N ′.vertex) =∞;
15 if g(N ′.vertex) > g(N.vertex) + tranCost(state{N.vertex}, state{N ′.vertex}) then
16 g(N ′.vertex) = g(N.vertex) + tranCost(state{N.vertex}, state{N ′.vertex});
17 f(N ′.vertex) = g(N ′.vertex) + ĥ(N ′.vertex);
18 insert N ′ into OPEN ;

19 return no solution;

2.3.1 Validity and optimality

Hart et al. [8, 9, Section 2, Subsection C, Theorem 1] prove the optimality of A* to be true as long as ĥ is
an admissible heuristic. Constrained-A* operates exactly like A* except for how successors are computed.
Given an empty constraint set C = ∅, Constrained-A* behaves exactly like A* and will compute h∅(v) for
any given v ∈ V. As shown in Corollary 2.1, an admissible heuristic ĥ(v) for Constrained-A* will then
also be an admissible heuristic given a constraint set C 6= ∅. Lastly, since a successor must be legal under
constraints C for a path to be consistent under constraints C, excluding successors is the only way to get a
path that is both consistent and optimal.
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2.4 Multi-agent solution: Conflict based search

Figure 2.1: Architecture of CBS.

Sharon et al. [14]’s algorithm solves a MAPF problem instance and is called conflict based search (CBS).
CBS is divided into two levels. One level called the High-Level builds the CT by using a Dijkstra et al. [5]
best-first search using the cost of solutions in the nodes. The other level, called the Low-Level, uses A* with
constraints (Constrained-A*) to compute individual paths for all agents given the constraints in a node. The
algorithm repeatedly interleaves these two levels until a conflict-free solution is found. The architecture and
interaction between the two levels are illustrated in the example in Figure 2.2.

2.4.1 Low-Level

Given a set of constraints C and an individual agent ai, the Low-Level uses Constrained-A* to compute the
optimal path of ai. The Low-Level procedure is defined as LowLevel(vstart

i , vgoal
i ,G(V,E), C), where G(V,E)

is a graph, vstart
i ∈ V and vgoal

i ∈ V and C is a set of constraints. It outputs a path for ai, that is consistent
with constraints C. Note that, the procedure does not consider other agents in the MAPF instance that
the High-Level solves. If no solution can be found it outputs a signal to the caller.

2.4.2 High-Level

The High-Level takes parameters corresponding to a MAPF problem instance as input on line 2. These are
defined as follows:

agents : set of agents {a1, . . . , ak}
G(V,E) : a graph
start : start vertices {vstart

1 , . . . , vstart
k } ⊆ V of agents

end : goal vertices {vgoal
1 , . . . , vgoal

k } ⊆ V of agents

It then proceeds to build a binary constraint tree for the rest of the algorithm (lines 3 to 22). Each
node N in the tree consists of a set of constraints N.constraints and a solution N.solution (consistent with
N.constraints).

The High-Level processes nodes by adding to and popping from a processing queue called OPEN . OPEN
is initialized to {Root} on lines 6 and 7 where Root is a node initialized on lines 3 to 5 to have no constraints.
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The algorithm then proceeds popping the best node from OPEN on line 9, using a best-first approach of
processing nodes. Nodes are ordered by their costs cost(N.solution).

Processing a node N means first validating N.solution. If N.solution is determined to be valid on line 11
by having been assigned an empty set of conflicts on line 10, it is returned on line 12. Otherwise, the first
found conflict c = (ai, aj , v, t) or c = (ai, aj , (v, v′), t) on line 13 is considered, where v and possibly v′ are
vertices in the paths of the agents and t is the time at which when the conflict happened. For both agents
ai and aj in c new nodes Ni and Nj are created in the for-loop on lines 14 to 22. An example of a solved
MAPF problem instance is presented in Figure 2.2.

There are ways to improve this algorithm, some of which are discussed in Appendix A which deals with
delays during execution and Appendix B which introduces a modified version of CBS.
Algorithm 2: A high-level description of conflict based search by Sharon et al. [14]

1 required function cost(s) returns a real number, which is the cost of s, e.g. SIC or Makespan

2 function CBS(agents, start, goal,G(V,E))
3 Root.constraints = ∅;
4 foreach agent ak ∈ agents do
5 Root.solution[k] = LowLevel(vstart

k ∈ start, vgoal
k ∈ goal,G(V,E), Root.constraints);

6 OPEN = ∅;
7 insert Root to OPEN ;
8 while OPEN not empty do
9 N = OPEN .popMin(cost);

10 conflicts = FindConflicts(N.solution);
11 if conflicts = ∅ then
12 return N.solution;
13 c = first conflict in conflicts;
14 foreach agent ak ∈ c do
15 N ′ = new node;
16 if c ≡ (ai, aj , v, t) then
17 N ′.constraints = N.constraints ∪ {(ak, v, t)};
18 else if c ≡ (ai, aj , (v, v′), t) then
19 N ′.constraints = N.constraints ∪ {(ak, (v, v′), t)};
20 N ′.solution[k] = LowLevel(vstart

k ∈ start, vgoal
k ∈ goal,G(V,E), N ′.constraints);

21 if LowLevel found a solution then
22 insert N ′ to OPEN ;
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(a) An example of a MAPF problem instance and its
initial non-valid solution.

(b) Solution to the example in Figure2.2a.

Figure 2.2: Example of the Low-Level and High-Level interacting to create a solution.

2.4.3 Validity and optimality

CBS is proven optimal in [14, Section 5] and completeness of CBS is proven in [14, Section 5.2]. Their proof
includes two claims: (a) That CBS will find a solution if there exists one and (b) that CBS will identify an
unsolvable problem. (a) is shown as a formal proof in [14, Section 5.2.1] while (b) does not hold for CBS
in the general case. They propose to use another algorithm by Yu and Rus [16] as a pre-processing step, to
detect an unsolvable instance.

3 Continuous-time (CT) model
Based on the work of Andreychuk et al. [1] we refine the previous DT model into a continuous-time (CT)
model. In this model, a point in time is represented by a real number instead of a discrete time-step.

The problem considers a set of k agents A = {a1, . . . , ak} and a directed weighted graph G(V,E). Each
agent ai ∈ A traverse the graph by transitioning from one state st to another state st′. A state st is refined
to also encode the time t (positive real number) an agent is present in location st.v. This lets the solver
produce a plan for actions that take varying amounts of time.
Definition 3.1 (State). A state{v ∈ V, t ∈ R} is defined to consist of

• A vertex state.v ∈ V representing the location of the agent.
• A time state.t ∈ R representing the time when the agent is in the state.
The transition from state st to state st′ has an associated cost tranCost(st, st′). This is used in Section 2.2

to define what the cost of a path is. This cost can now be computed with the relative time an agent is in
present state st and previous state st′.
Definition 3.2 (State transition cost). A state transition cost tranCost(st, st′) ∈ R from state st to st′ is
defined to be st′.t− st.t.

Further, each agent ai ∈ A starts at location vstart
i ∈ V and it needs to traverse the graph to reach location

vgoal
i ∈ V, via a series of actions. Since actions take place during transitions between states, the previous
definition of an action is refined to also consist of a time interval.
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Definition 3.3 (Action). An action taken during interval [action.tstart, action.tend] is defined to be either:
• STOP(st, [st.t, tub]): Remain in the same state st during time interval [action.tstart, action.tend] =

[st.t, tub], where tub is the time the next action takes place from st.v.
• MOVE(st, st′, [st.t, st′.t]): Move to a new state st′ from st, such that (st.v, st′.v) ∈ E during time

interval [action.tstart, action.tend] = [st.t, st′.t].
In other words, agent ai moves from vstart

i to vgoal
i along the path pi = (state{vstart

i , 0}, . . . , st, st′, . . . , state{vgoal
i , tgoal}),

where the action that ai takes in state st is MOVE(st, st′, [st.t, st′.t]) when st.v 6= st′.v and STOP(st, [st.t, tub])
otherwise. Time is now directly correlated to the time parameter st.t of a state st in the path.
Definition 3.4 (Time). The timed representation of a path pi is pi = (st1, . . . , st`), where stj .v is the
location of agent ai at time stj .t and ` is the path length.

We say, in this paper, that s = {p1, p2, ..., pk} is a solution, consisting of the individual paths of all agents,
to the problem of Multi-Agent Path-Finding (MAPF) if it satisfies the safety condition of no conflicts. To the
end of finding a conflict-free solution considering continuous time, Andreychuk et al. [1] extends the notions
proposed by Sharon et al. [14]. This model consider agents moving continuously, and actions made by agents
can conflict during any interval of time. For example, an agent can collide in the middle of traversing an
edge. Therefore, conflicts and corresponding constraints are now defined with respect to actions instead of
states.
Definition 3.5 (Conflict). A continuous conflict which would result in a collision between two agents ai

and aj taking actions actioni and actionj is defined as (actioni, actionj).
Given a solution s that has a conflict, one can refine s by allowing ai to keep its current plan while forbid-

ding the aj from taking actionj during the unsafe interval of time [actionj .tstart, t) ⊂ [actionj .tstart, actionj .tend]
when it is not safe to perform actionj . Each node explored by the solver refines the solution by adding con-
straints.
Definition 3.6 (Constraint). A constraint for an agent ai is defined as: (ai, actioni, t), where agent ai

is forbidden from executing action actioni during time interval [actioni.tstart, t). [actioni.tstart, t) is the
interval of time that if ai executes actioni during this interval, ai will collide with another agent.

For example, consider the conflict in Figure 1.3, the length of [actioni.tstart, t) would be the same as the
length of the collision interval. The upper bound t in the unsafe interval [actioni.tstart, t) can be computed
using any collision-interval-detection algorithm. Andreychunk et al. uses an algorithm by Guy et al. [6] in
their experiments, which detects collisions between disk-shaped agents.

Note that both (ai, actioni, t
′) and (aj , actionj , t

′′) are explored, i.e., one constraint for each agent in a
conflict (actioni, actionj). As in the DT model, starting from the root node, which includes no constraints,
each node encodes a different list of constraints that refines the solution. That is, the list of any non-root
node is the result of appending a constraint to the list of its parent.

A path pi ∈ s is called consistent if it satisfies all constraints for agent ai and a solution is called consistent
if all single-agent paths in the solution are consistent. The solution in a CT node is always consistent with
its constraint list and a CT node is called a goal node when the solution has no conflicts. Therefore, we say
that goal nodes provide valid solutions.

A multi-agent objective function cost(s) and an individual objective function h(v) for a vertex v ∈ V are
defined in Section 2.2.

3.1 Single-agent path-finding: Safe interval path planning
Safe Interval Path Planning (SIPP) is an algorithm for solving a continuous path-finding problem with
dynamic obstacles for a single agent. SIPP was developed by Phillips et al. [13], and works like A* but
considers continuous-time and obstacle collision.

To avoid collisions, SIPP uses safe intervals for each vertex in the graph. A safe interval can be looked
up during path-finding and gives the solver information about when or if an action is possible or not in the
graph.

For example, consider Figure 3.1, where agent a1 is trying to get from cell (4, 2) to (1, 2). a2 is an obstacle
that is moving from (3, 1) to (3, 4). During an interval of time [tenter, texit], a2 will occupy (3, 2). If a1
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enters cell (3, 2) at any point between tenter and texit, it runs the risk of colliding with a2. To counter
this, we include the intervals [0, tenter) and [texit,∞) as safe intervals for cell (3, 2). This means that during
path-finding, SIPP will know that it cannot let a2 enter (3, 2) during [tenter, texit).

Figure 3.1: An example of a path-finding problem on a 4x4 grid.

With that introductory example in mind, we define the path-finding algorithm and safe intervals. Let
[tlbi , tub

i )v be a safe interval for vertex v where tlbi is the lower bound and tub
i is the upper bound on when

it is safe to be positioned in v. Given a vertex v ∈ V, safeIntervals(v) is a lookup-function that returns a
set {[tlb1 , tub

1 )v, . . . , [tlbn , tub
n )v} of n safe intervals for v. The lower and upper bound of an interval i are also

referred to as i.start and i.end.
Recall from Section 2.2.1 the definition of an admissible heuristic ĥ(v). SIPP explores the search space

in a best-first fashion, guided by the estimate ĥ(v) of the true continuous-time h(v) it will take to reach the
goal vertex. This can, for example, be the time it would take to travel the euclidean distance from v to goal.
Just like A*, SIPP keeps track of g(v) as well. g(v) is the current best continuous time at which v can be
reached from the start vertex. Combining these is a mapping f(v) = g(v) + ĥ(v), which is used to sort the
priority queue containing nodes to be explored in the search space.

The pseudo-code for the algorithm can be seen in Algorithm 3 and is close to identical to Algorithm 1
with a few differences. Lines 2-7 initialize the OPEN priority queue with the Root node. Then, as long as
we either have more nodes to explore (line 8) and the goal node have not been reached (line 10), we iterate,
popping nodes of of OPEN based on f(N.vertex) (line 9). On lines 13-19, each successor N ′ is checked
and if it is determined to create a path of lower cost, f(N ′.vertex) and g(N ′.vertex) are updated and the
successor N ′ is added to OPEN . Note that, just like in Constrained-A* N and N ′ are mapped into states
and passed as tranCost(state{N.vertex,N.t}, state{N ′.vertex,N ′.t}). Difference being that tranCost is
defined differently in the continuous-time model.

The part that makes SIPP different is how successors are computed for a vertex (line 12). Instead of just
considering what vertices are connected to the current vertex, SIPP also checks if the arrival time falls within
a safe interval. This procedure can be seen in Algorithm 4. The safeIntervals(v) discussed above can be
seen as "required" on line 1. Initially, successors is set to be empty on line 4. Then, we iterate over each
possible maneuver m that can be performed from N (line 5). A maneuver is another vertex m.vertex, such
that edge (N.vertex,m.vertex) ∈ E which has an edge cost of m.timeToExecute. An earliestArrivalT ime
and latestArrivalT ime are computed on lines 6 and 7 respectively. earliestArrivalT ime is the earliest time
at which the agent can arrive at m.vertex and latestArrivalT ime is the latest time at which the agent must
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leave N.vertex (as to not violate the safe interval N.interval). Then, for each safe interval i (line 8) in the
neighbouring vertex m.vertex we check to see if we can perform the maneuver during i on line 9. Now, if
an arrival time t is found on line 10, a new successor is initialized on lines 12 to 16.
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Algorithm 3: A high-level description of safe interval path planning by Philips et al. [13]
1 function SIPP(vstart

i , vgoal
i ,G(V,E))

2 g(vstart
i ) = 0;

3 f(vstart
i ) = ĥ(vstart

i );
4 OPEN = ∅;
5 Root.vertex = vstart

i ;
6 Root.t = 0;
7 insert Root into OPEN ;
8 while notEmpty(OPEN) do
9 N = node with lowest f(N.vertex) in OPEN ;

10 if N.vertex ≡ vgoal
i then

11 return reconstructPath(N);
12 successors = getSuccessors(N);
13 foreach N ′ ∈ successors do
14 if notV isited(N ′) then
15 f(N ′.vertex) = g(N ′.vertex) =∞;
16 if g(N ′.vertex) > g(N.vertex) + tranCost(state{N.vertex,N.t}, state{N ′.vertex,N ′.t}) then
17 g(N ′.vertex) = g(N.vertex) + tranCost(state{N.vertex,N.t}, state{N ′.vertex,N ′.t});
18 f(N ′.vertex) = g(N ′.vertex) + ĥ(N ′.vertex);
19 insert N ′ into OPEN ;

20 return no solution;

Algorithm 4: Function that returns possible and safe maneuvers to take from N

1 required function safeIntervals(v) returns a set of intervals during which it is safe to occupy vertex v.
2 required function possibleManeuevers(N) returns a set of maneuvers that can be performed starting

from N.vertex.
3 function getSuccessors(N)
4 successors = ∅;
5 foreach m ∈ possibleManeuevers(N) do

/* A manuever m from a node N is defined as */
/* m.vertex ∈ V and (N.vertex,m.vertex) ∈ E */
/* m.timeToExecute ∈ R */

6 earliestArrivalT ime = N.arrivalT ime+m.timeToExecute;
7 latestArrivalT ime = N.interval.end+m.timeToExecute;
8 foreach i ∈ safeIntervals(m.vertex) do
9 if i.start ≤ latestArrivalT ime and earliestArrivalT ime ≤ i.end then

10 t = earliest arrival time at m.vertex during interval i;
11 if t exists then
12 N ′ = new node;
13 N ′.vertex = m.vertex;
14 N ′.arrivalT ime = t;
15 N ′.interval = [t, i.end];
16 insert N ′ into successors;

17 return successors;
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3.1.1 Validity and optimality

Phillips et al. prove that SIPP is complete in [13, Section 3, Subsection B, Theorem 1]. The theorem states
that arriving in a state at the earliest time yields the largest set of successors. Using this, they prove that
SIPP is optimal.

3.2 Multi-agent solution: Continuous conflict based search
Andreychuk et al. [1] solves a MAPF problem instance with a modified version of CBS called Continuous
conflict based search (CCBS). They use SIPP as a Low-Level solver instead of Constrained-A*. To illustrate
how their algorithm works, we reiterate the example in Figure 3.1 used to explain SIPP.

As explained in the SIPP example, a1 and a2 would collide if they start to move at the same time. Let t = 1
second be the time that it takes to move from one cell to the next for each agent. Both moving at the same
time would lead CCBS to detect a conflict (actioni, actionj) where actioni = MOVE({v(4,2), 0}, {v(3,2), 1}, [0, 1])
and actionj = MOVE({v(3,1), 0}, {v(3,2), 1}, [0, 1]). This conflict can, for example, be resolved by first com-
puting the collision interval between the agents. Then, this interval is used to create two unsafe intervals
[actioni.tstart, t) and [actionj .tstart, t), where actioni.tstart = actionj .tstart = 0 and t is the upper-bound
derived from the collision interval such that 0 ≤ t ≤ 1. These unsafe intervals are used to create two con-
straints: (ai, actioni, t) and (aj , actionj , t), which are both explored in the constraint tree. Next we explain
the concepts in this example in more detail.

To detect conflicts, CCBS uses a geometry-aware collision detection mechanism. They use an algorithm
by Guy et al. [6] in their experiments. CCBS applies the collision detection several times with a given ∆ > 0
to compute a collision interval from the time point when the collision was first detected, and ends when no
collision is detected anymore. This collision interval is then used to derive the upper bound t in an unsafe
interval [action.tstart, t).

Let (ai, actioni, t) be a constraint and [actioni.tstart, t) its corresponding unsafe interval. They resolve
the constraint differently if it the action part of the constraint is MOVE or STOP.

If actioni is STOP(st, [st.t, tub]) they they forbid ai from waiting at st.v during interval [st.t, t) by removing
this interval from the safe intervals associated with st.v. For example, if st.v is associated with a single safe
interval [0,∞), this interval is split into two safe intervals [0, st.t] and [t,∞).

They modify SIPP so that it will never schedule a MOVE action for agent ai such that it is executed
during [actioni.tstart, t). Let v be the source vertex and v′ the target vertex, instead of scheduling the MOVE
action between v and v′ during [actioni.tstart, t), they add a STOP action, which has ai waiting in v until t
and then move to v′.

Given the current constraint set and the procedures explained above, CCBS uses SIPP to compute the
optimal single-agent paths. In the paper made by Andreychuk et al. [1] there is no pseudo-code supplied.
Algorithm 5 attempts to illustrate the main procedure by highlighting the lines changed in Algorithm 2.
The MAPF input instance is defined the same as for CBS but under the new definitions in the CT model.

16



Algorithm 5: CCBS by Andreychuk et al. [1].
1 required function cost(s) returns a real number, which is the cost of s, e.g. SIC or Makespan

2 function CCBS(agents, start, goal,G(V,E))
3 Root.constraints = ∅;
4 foreach agent ak ∈ agents do
5 Create safe intervals using Root.constraints;
6 Root.solution[k] = SIPP(vstart

k ∈ start, vgoal
k ∈ goal,G(V,E), Root.constraints);

7 OPEN = ∅;
8 insert Root to OPEN ;
9 while OPEN not empty do

10 N = OPEN .popMin(cost);
11 conflicts = FindConflicts(N.solution);
12 if conflicts = ∅ then
13 return N.solution;
14 C = first conflict (actioni, actionj) in conflicts;
15 foreach agent ak ∈ C do
16 N ′ = new node;
17 Compute [actionk.tstart, t) for actionk w.r.t. the other action;
18 N ′.constraints = N.constraints ∪ {(ak, actionk, t)};
19 Create safe intervals using N ′.constraints;
20 N ′.solution[k] = SIPP(vstart

k ∈ start, vgoal
k ∈ goal,G(V,E), N ′.constraints);

21 if SIPP found a solution then
22 insert N ′ to OPEN ;

3.2.1 Validity and optimality

Andreychuk et al. [1, Section 3.2, Theorem 1] prove optimality and completeness for CCBS using the notion
of a sound pair of constraints defined by Atzmon et al. [3]. In [1, Section 3.2, Lemma 2] they provide a
lemma proving that the pair of continuous constraints created by CCBS is a sound pair of constraints. With
this, they prove both optimality and completeness of CCBS.
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4 Continuous-time with discrete speeds (CTDS)
This model is one of the main contributions of this project. The previous models in Sections 2 and 3 made an
important assumption that agents can always stop and come to full speed instantly. Constrained-A* always
has the option to add a WAIT action, unless a constraint forbids it. In the case of SIPP, Phillips et al.
specifically states that "Inertial constraints (acceleration/deceleration) are negligible. The planner assumes
the robot can stop and accelerate instantaneously." [13]. This model is an attempt to relax this assumption
and will consider agents moving at many speeds and accelerating between them.

The problem considers a set of k agents A = {a1, . . . , ak} and a directed graph G(V,E). Each v ∈ V encodes
a position pos = (x1, . . . , xp) of p dimensions referred as v.pos and a set of v.speeds = {speedmin, . . . , speedmax}.
This gives the solver information it can use to determine the distance between vertices and if a speed change
is possible within a certain distance for example. Each agent ai ∈ A traverse the graph by transitioning from
one state st to another state st′. A state st is further refined to encode the speed st.speed the agent was
traveling at location st.v at time st.t.
Definition 4.1 (State). A state{v ∈ V, t ∈ R, speed ∈ v.speeds} is defined to consist of

• A vertex state.v ∈ V representing the position of the agent.
• A time state.t ∈ R representing the time when the agent is in the state.
• A time state.speed ∈ speedsst.v representing the speed the agent is traveling by.
The transition from state st to state st′ has an associated cost tranCost(st, st′). This is used in Section 2.2

to define what the cost of a path is. This cost is the relative time between states based on the speed in the
first and second state.
Definition 4.2 (State transition cost). A state transition cost tranCost(st, st′) ∈ R from state st to st′ is
defined to be st′.t− st.t.

The start and goal location of an agent is refined to also include a start and goal speed. That is, each
agent ai ∈ A starts at location vstart

i ∈ V with speed speedstart
i ∈ vstart

i .speeds and it needs to traverse the
graph to reach location vgoal

i ∈ V at speed speedgoal
i ∈ vgoal

i .speeds, via a series of actions. Keeping speed
or changing speed is signified by adding a source and target speed for all MOVE actions.
Definition 4.3 (Action). An action taken during interval [action.tstart, action.tend] is defined to be either:

• STOP(st, [st.t, t]): Remain in the same state st during time interval [action.tstart, action.tend] = [st.t, t],
where t is the time the next action takes place from st.v. This action implies that the speed of the
agent is 0 and is only possible if speedmin = 0 ∈ st.v.speeds.

• MOVE(st, st.speed, st′, st′.speed, [st.t, st′.t]): Move to a new state st′ from st, such that (st.v, st′.v) ∈ E
during time interval [action.tstart, action.tend] = [st.t, st′.t]. If st.speed 6= st′.speed, then this implies
that the agent changes its speed between locations st.v and st′.v. Otherwise if st.speed = st′.speed,
then the agent keeps its speed when moving from st.v to st.v′.

In other words, agent ai starts at speed speedstart
i from vstart

i and ends up in speed speedgoal
i at vgoal

i ,
along the path pi = (state{vstart

i , 0, speedstart
i }, . . . , st, st′, . . . , state{vgoal

i , tgoal, speed
goal
i }). An action that

ai takes in state st is MOVE(st, st′, [st.t, st′.t]) when st.v 6= st′.v and STOP(st, [st.t, t]) otherwise. Time is
as before directly correlated to the time parameter st.t of a state st in the path.
Definition 4.4 (Time). The timed representation of a path pi is pi = (st1, . . . , st`), where stj .v is the
location and stj .speed is the speed of agent ai at time stj .t and ` is the path length.

We say, in this paper, that s = {p1, p2, ..., pk} is a solution, consisting of the individual paths of all agents,
to the problem of Multi-Agent Path-Finding (MAPF) if it satisfies the safety condition of no conflicts. In the
CTDS model, collisions are allowed to occur at different speeds. However, conflicts and constraints can be
defined in the same way as the CT model. The only difference is how the unsafe interval [t, t′) is computed,
which now has to be computed while taking different speeds into account.
Definition 4.5 (Conflict). A continuous conflict which would result in a collision between two agents ai

and aj taking actions actioni and actionj is defined as (actioni, actionj).
Given a solution s that has a conflict, one can refine s by allowing ai to keep its current plan while forbid-

ding the aj from taking actionj during the unsafe interval of time [actionj .tstart, t) ⊂ [actionj .tstart, actionj .tend]
when it is not safe to perform actionj . Each node explored by the solver refines the solution by adding con-
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straints.
Definition 4.6 (Constraint). A constraint for an agent ai is defined as: (ai, actioni, t), where agent ai

is forbidden from executing action actioni during time interval [actioni.tstart, t). [actioni.tstart, t) is the
interval of time that if ai executes actioni during this interval, ai will collide with another agent.

For example, consider the conflict in Figure 1.3, the length of [actioni.tstart, t) would be the same as the
length of the collision interval. The upper bound t in the unsafe interval [actioni.tstart, t) can be computed
using any collision-interval-detection algorithm. Andreychunk et al. uses an algorithm by Guy et al. [6] in
their experiments, which detects collisions between disk-shaped agents.

Note that both (ai, actioni, t
′) and (aj , actionj , t

′′) are explored, i.e., one constraint for each agent in a
conflict (actioni, actionj). As in the DT model, starting from the root node, which includes no constraints,
each node encodes a different list of constraints that refines the solution. That is, the list of any non-root
node is the result of appending a constraint to the list of its parent.

A path pi ∈ s is called consistent if it satisfies all constraints for agent ai and a solution is called consistent
if all single-agent paths in the solution are consistent. The solution in a CT node is always consistent with
its constraint list and a CT node is called a goal node when the solution has no conflicts. Therefore, we say
that goal nodes provide valid solutions.

A multi-agent objective function cost(s) and an individual objective function h(v) for a vertex v ∈ V are
defined in Section 2.2.

4.1 Single-agent solution: Discrete-speed SIPP
Discrete-speed SIPP (DS-SIPP) is a modification of SIPP that also computes the optimal path for one agent.
The main contribution to SIPP is to relax the assumption that agents can start and stop instantly. DS-SIPP
considers a set of one or more speeds = {0, . . . , speedmax} that agents can travel by. This lets an agent slow
down to avoid a collision instead of stopping. The hope is to gain performance at the target system, where
stopping is more expensive than slowing down. Moreover, DS-SIPP can encode that an action is possible or
not.

DS-SIPP uses a function actionT ime(v, speed, vnext, speednext) to compute the time of an action. Assum-
ing constant acceleration, this function returns the time it takes to move from a vertex v at speed to another
vertex vnext ending up in speednext. For example, if we let t = actionT ime(v, speed, vnext, speednext), then
t can be described by the kinematic equation:

distance(v, vnext) = t ∗ (speed+ speednext)/2
t = 2 ∗ distance(v, vnext)/(speednext + speed)

A function actionPossible determines if an action is possible w.r.t. movement and speed. Given a
previous vertex vprev, a current vertex v and speed, actionPossible(vprev, v, speed, vnext, speednext) returns
true if vnext can be reached at speednext and false otherwise. This function allows DS-SIPP to know more
about constraints in the target system. For example, consider a U-turn in an intersection modeled as (v1, v2)
and (v2, v3), where v1 is the entry point, v2 is the "peak" of the turn and v3 the exit. A vehicle would have
to keep its speed low enough to perform the maneuver. Then, actionPossible can encode this by returning
false for combinations of speed and speed3 that are too high.

The computation of safe intervals are extended to two functions: safeIntervalsV ertex(v) and safeIntervalsEdge(v, v′).
safeIntervalsV ertex(v) is identical to safeIntervals(v) as described in Section 3.1. safeIntervalsEdge(v, v′)
is similar, but returns the safe continuous time intervals for which it is safe to move from vertex v to v′. A
safe interval for and edge (v, v′) is identical to the constraint of a MOVE action. It is formally described
as [tlbi , tub

i )(v,v′) where tlbi is the lower bound and tub
i is the upper bound on when it is safe to move from

v to v′. Then, safeIntervalsEdge(v) is a lookup-function that, given an edge (v, v′) ∈ E, returns a set
{[tlb1 , tub

1 )(v,v′), . . . , [tlbn , tub
n )(v,v′)} of n safe intervals for (v, v′).

The main procedure of DS-SIPP operates exactly like SIPP seen in Algorithm 3, but with the explored
nodes storing more information:

• Nodes store a speed as N.speed.
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• Nodes store its parent node as N.parent.
• Check both if in the goal vertex and speed on line 9.
• On line 15 the mapping of N and N ′ into states is updated according to the new definition.
The key difference is the getSuccessors function. getSuccessors for DS-SIPP is presented in Algorithm 7.

DS-SIPP iterates over manuevers m created by possibleManuevers(N) on line 6. Let (N.vertex, v) ∈ E and
speed ∈ speedsv, then a manueverm is possible if actionPossible(N.parent.vertex,N.vertex,N.speed, v, speed)
returns true. m.timeToExecute is computed using actionT ime(N.vertex,N.speed, v, speed).

For each maneuver m iterated over on line 6, the earliest and latest departure and arrival times are
computed on lines 7 to 13. If speed is 0 (line 7), the earliest time to depart for the agent is N.arrivalT ime.
The latest time to depart is N.interval.end, since an agent cannot stay in N.vertex past the end of the safe
interval in N.vertex. If speed is larger than 0 (line 10), the agent has a single departure time N.arrivalT ime
since it is not allowed to wait in the vertex due to currently being in motion. The earliest time to arrive and
the latest time to arrive are both defined in terms of the respective departure times on lines 12 and 13.

Then, we iterate over each safe interval i for m.vertex (line 14) and each j for edge (N.vertex,m.vertex)
(line 15). We check if the intersection between intervals i, j and [earliestArrivalT ime, latestArrivalT ime]
and the intersection between j and [earliestDepartureT ime, latestDepartureT ime] exists (line 18), meaning
that we can move and arrive without collision from N.vertex to m.vertex. The intersection x = a ∩ b of
two intervals a and b is computed as x = [max(a.start, b.start),min(a.end, b.end)] such that x.start ∈ a,
x.start ∈ b, x.end ∈ a and x.end ∈ b, otherwise x does not exist. Then, we compute the two possible earliest
arrival times arrivalT ime1 and arrivalT ime2 on lines 19 and 20. This is done such that we depart from
N.vertex during safeDepartureI and arrive during safeArrivalI in m.vertex.

If either arrivalT ime1 (line 21) or arrivalT ime2 (line 23) exist, a successor is created in identical fashion
to SIPP on lines 28- 32, with the exception that the speed m.speed is stored on line 32 and parent N on
line 33.
Algorithm 6: A high-level description of discrete-speed safe interval path planning.

1 function DS-SIPP(vstart
i , speedstart

i , vgoal
i , speedgoal

i ,G(V,E))
2 g(vstart

i ) = 0;
3 f(vstart

i ) = ĥ(vstart
i );

4 OPEN = ∅;
5 Create Root node for vertex vstart

i and speed speedstart
i ;

6 insert Root into OPEN ;
7 while notEmpty(OPEN) do
8 N = node with lowest f(N.vertex) in OPEN ;
9 if N.vertex ≡ vgoal

i and N.speed ≡ speedgoal
i then

10 return reconstructPath(N);
11 successors = getSuccessors(N);
12 foreach N ′ ∈ successors do
13 if notV isited(N ′) then
14 f(N ′.vertex) = g(N ′.vertex) =∞;
15 cost = tranCost(state{N.vertex,N.t,N.speed}, state{N ′.vertex,N ′.t, N ′.speed});
16 if g(N ′.vertex) > g(N.vertex) + cost then
17 g(N ′.vertex) = g(N.vertex) + cost;
18 f(N ′.vertex) = g(N ′.vertex) + ĥ(N ′.vertex);
19 insert N ′ into OPEN ;

20 return no solution;
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Algorithm 7: Function that returns possible and safe maneuvers to take from N

1 required function safeIntervalsV ertex(v) returns a set of intervals during which it is safe to occupy
vertex v.

2 required function safeIntervalsEdge(v, v′) returns a set of intervals during which it is safe to occupy
edge (v, v′).

3 required function possibleManeuevers(N) returns a set of maneuvers that can be performed starting
from N.vertex at speed N.speed.

4 function getSuccessors(N)
5 successors = ∅;
6 foreach m ∈ possibleManeuevers(N) do

/* A manuever m from a node N is defined as */
/* m.vertex ∈ V and (N.vertex,m.vertex) ∈ E. */
/* m.speed ∈ {0, . . . , speedmax} ⊆ speedsm.vertex. */
/* m.timeToExecute is the time it takes to perform m. */

7 if N.speed ≡ 0 then
/* If speed is 0, move can be executed during interval. */

8 earliestDepartureT ime = N.arrivalT ime;
9 latestDepartureT ime = N.interval.end;

10 else
/* If speed is not 0, move can only be executed at time N.arrivalT ime. */

11 earliestDepartureT ime = latestDepartureT ime = N.arrivalT ime;
12 earliestArrivalT ime = earliestDepartureT ime+m.timeToExecute;
13 latestArrivalT ime = latestDepartureT ime+m.timeToExecute;
14 foreach i ∈ safeIntervalsV ertex(m.vertex) do
15 foreach j ∈ safeIntervalsEdge(N.vertex,m.vertex) do
16 safeArrivalI = [earliestArrivalT ime, latestArrivalT ime] ∩ i ∩ j;
17 safeDepartureI = [earliestDepartureT ime, latestDepartureT ime] ∩ j;
18 if safeArrivalI exists and safeDepartureI exists then
19 arrivalT ime1 = safeDepartureI.start+m.timeToExecute;
20 arrivalT ime2 = safeArrivalI.start;
21 if arrivalT ime1 ∈ safeArrivalI then
22 arrivalT ime = arrivalT ime1;
23 else if arrivalT ime2 −m.timeToExecute ∈ safeDepartureI then
24 arrivalT ime = arrivalT ime2;
25 else
26 arrivalT ime does not exist;
27 if arrivalT ime exists then
28 N ′ = new node;
29 N ′.vertex = m.vertex;
30 N ′.arrivalT ime = arrivalT ime;
31 N ′.interval = [arrivalT ime, i.end];
32 N ′.speed = m.speed;
33 N ′.parent = N ;
34 insert N ′ into successors;

35 return successors;
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4.1.1 Proof of validity and optimality

To prove optimality and completeness of DS-SIPP, we must first show that getSuccessors(N) called on
line 11 returns all valid successors with the earliest arrival time. We do this by showing that, for each safe
vertex and edge interval, we pick the earliest arrival time if and only if it exists. This will prove Theorem
1 [13, Section 3.B, Theorem 1] by Phillips et al. for DS-SIPP, leading to completeness. Theorem 2 [13,
Section 3.B, Theorem 2] by Phillips et al. will then be true for DS-SIPP as well. This proves both optimality
and completeness of DS-SIPP.
Proof:

First of all, if the agent cannot arrive in the safe interval safeArrivalI (checked on line 18) there is no
possible time to safely arrive in m.vertex. Likewise, if the agent cannot depart during safeDepartureI
(checked on line 18) there is no possible time to safely arrive in m.vertex either.

Now, given that safeArrivalI and safeDepartureI are determined to exist, we show that the earliest ar-
rival time is either arrivalT ime1 = safeDepartureI.start+m.timeToExecute on line 19 or arrivalT ime2 =
safeArrivalI.start on line 20, otherwise no arrival time exists.

LetmoveInterval1 = [safeDepartureI.start, safeDepartureI.start+m.timeToExecute] andmoveInterval2 =
[safeArrivalI.start − m.timeToExecute, safeArrivalI.start]. These are the two intervals of time that
moves the agent from N.vertex and has it arrive in m.vertex in arrivalT ime1 or arrivalT ime2 respec-
tively. We now prove that these are the only two possible intervals of time that has the agent both ar-
riving safely and as early as possible. This is done by proof of contradiction. We assume that another
interval moveInterval3 = [tdeparture, tarrival], where tarrival − tdeparture = m.timeToExecute, tdeparture ∈
safeDepartureI and tarrival ∈ safeArrivalI. This interval is both valid and has the agent arriving earlier
at m.vertex than either moveInterval1 and moveInterval2, whether they are valid or not.

In the cases where moveInterval1 or moveInterval2 are valid, it must be true that moveInterval3 has
the agent departing earlier than moveInterval1.start or moveInterval2.start. This leads to a contradic-
tion in assuming that tdeparture ∈ safeDepartureI and tarrival ∈ safeArrivalI, since either tdeparture <
safeDepartureI.start due tomoveInterval1.start = safeDepartureI.start or tarrival < safeArrivalI.start
due to moveInterval2.start = safeArrivalI.start−m.timeToExecute.

In the case where both moveInterval1 and moveInterval2 are invalid, meaning that for moveInterval1
we have that either

safeDepartureI.start+m.timeToExecute > safeArrivalI.end (4.1)

or
safeDepartureI.start+m.timeToExecute < safeArrivalI.start (4.2)

and for moveInterval2 we have that either

safeArrivalI.start−m.timeToExecute > safeDepartureI.end (4.3)

or
safeArrivalI.start−m.timeToExecute < safeDepartureI.start (4.4)

In cases 4.1 and 4.3 it is impossible to construct moveInterval3, since any tdeparture > safeDepartureI.end
and tarrival > safeArrivalI.end. In case 4.2 it must be that tdeparture = safeArrivalI.start−m.timeToExecute
since this is the earliest time larger than safeDepartureI.start+m.timeToExecute that has the agent ar-
riving in safeArrivalI. However, this contradicts the fact that moveInterval2 is invalid. Case 4.4 is
analogous for tarrival = safeDepartureI.start + m.timeToExecute and the earliest departure time being
safeDepartureI.start, which contradicts the fact that moveInterval1 is invalid.

�

4.2 Multi-agent solution: Continuous conflict based search
We propose to use Continuous conflict based search (CCBS) described in Section 3.2 with DS-SIPP as the
Low-Level to solve a MAPF problem instance. This will produce a solution that has planned for agents both
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moving in continuous time and at one or more speeds. We also refine the MAPF input to pass speeds in the
start and goal sets of agents.

agents : set of agents {a1, . . . , ak}
G(V,E) : an undirected graph

start : start vertices and speeds{(vstart
1 , speedstart

1 ) . . . , (vstart
k , speedgoal

k )} of agents

end : goal vertices and speeds{(vgoal
1 , speedgoal

1 ), . . . , (vgoal
k , speedgoal

k )} ⊆ V of agents

Algorithm 8: Highlighted usage of DS-SIPP instead of SIPP in CCBS.
1 required function cost(s) returns a real number, which is the cost of s, e.g. SIC or Makespan

2 function CCBS(agents, start, goal,G(V,E))
3 Root.constraints = ∅;
4 foreach agent ak ∈ agents do
5 Create safe intervals using Root.constraints;
6 Root.solution[k] = DS-SIPP(ak, v

start
k , speedstart

k , vgoal
k , speedgoal

k , G(V,E)), where
(vstart

k , speedstart
k ) ∈ start and (vgoal

k , speedgoal
k ) ∈ goal;

7 OPEN = ∅;
8 insert Root to OPEN ;
9 while OPEN not empty do

10 N = OPEN .popMin(cost);
11 conflicts = FindConflicts(N.solution);
12 if conflicts = ∅ then
13 return N.solution;
14 C = first conflict (actioni, actionj) in conflicts;
15 foreach agent ak ∈ C do
16 N ′ = new node;
17 Compute [actionk.tstart, t) for actionk w.r.t. the other action;
18 N ′.constraints = N.constraints ∪ {(ak, actionk, t)};
19 Create safe intervals using N ′.constraints;
20 N ′.solution[k] = DS-SIPP(ak, v

start
k , speedstart

k , vgoal
k , speedgoal

k , G(V,E)), where
(vstart

k , speedstart
k ) ∈ start and (vgoal

k , speedgoal
k ) ∈ goal;

21 if DS-SIPP found a solution then
22 insert N ′ to OPEN ;

4.2.1 Proof of validity and optimality

Andreychuk et al. [1] proves the optimality and validity of CCBS in their paper. However, in this section,
we provide a reformulated proof of optimality and validity of CCBS. It was made to be easy to extend and
modify if the model or algorithms were to change and inspired by the proof made by Sharon et al. for CBS.

For a given constraint tree, T , and its node N ∈ T , the set CV (N) includes all the valid solutions that
satisfy N.constraints. Note that the solutions in CV (N) are not necessarily found in a descendant of N in
T . We say that N permits solution s, if s ∈ CV (N). Note that the root has no constraints, and thus, it
permits all (valid) solutions.

Denote by minCost(CV (N)) the minimum cost(s) of all solutions s ∈ CV (N).
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Lemma 4.1. For a given constraint tree, T , and its node N ∈ T , if cost(s) has Property 2.1 then
cost(N.solution) ≤ minCost(CV (N)).
Proof: Looking at Algorithm 8, we observe that N.solution stores a solution that is consistent with
N.constraints (lines 6 and 20). Moreover, the algorithm constructs tree T in such a way that for any
node N ′ that is descendant of N , it holds that N.constraints ⊆ N ′.constraints (since only lines 3 and 18
make an assignment to N.constraints). Therefore, we can prove the lemma by showing that the cost of the
solution encoded in N.solution is smaller or equal to any (valid) solution that satisfies the set of constraints
C ′ = N.constraints∪C, where C is any set of constraints (possibly empty). This proves the lemma according
to the definitions of the functions minCost() and CV ().

The rest of the proof is followed by cost(s) having Property 2.1, which says that adding constraints never
lowers the value of cost(s). �

In Lemma 4.2 the fact that the root permits all valid solutions is used and the set of all valid solutions is
denoted as CV (Root).
Lemma 4.2. ∀s∈CV (Root) ∃N∈OP EN s ∈ CV (N). That is, all valid solutions are permitted by at least one
node in OPEN.
Proof: We prove this by induction on the number of iterations of the while-loop (line 10 to 22). Specifically,
we prove that predicate P (n) = ∀s∈CV (Root) ∃N∈OP ENn

s ∈ CV (N) holds, where n is the n-th iteration and
OPENn is the value of the variable OPEN on the n-th time that the algorithm executes line 22.
Base case: P (1) = ∀s∈CV (Root) ∃N∈OP EN1={Root} s ∈ CV (N) is trivially true because the only node in
OPEN1 is the root node which permits all valid solutions. This is because before the first execution of the
while-loop (line 10 to 22), lines 7 and 22 are the only lines in the code that sets the value of the variable
OPEN .
Induction Hypothesis: We assume that Equation 4.5 is correct.

P (n− 1) = ∀s∈CV (Root) ∃N∈OP ENn−1 s ∈ CV (N) (4.5)

Induction step: We show that Equation 4.6 is correct.

P (n) = ∀s∈CV (Root) ∃N∈OP ENn
s ∈ CV (N) (4.6)

We show that if all valid solutions are permitted by the nodes in OPENn−1 (Equation 4.5) then all valid
solutions are also permitted by the nodes in OPENn (Equation 4.6).

In iteration n − 1, N ′ ∈ OPENn−1 was popped from OPENn−1 at line 10 and conflicts were found on
line 11. For each conflict (actioni, actionj) considered on line 14, the algorithm creates two new nodes N ′i
and N ′j in the for-loop on lines 16-22. These new nodes where constraints

N ′i .constraints = N ′.constraints ∪ {(ai, actioni, t
′)}

and
N ′j .constraints = N ′.constraints ∪ {(aj , actionj , t

′′))}
were modified on line 18. The rest of the proof is implied by Claim 4.1, because in iteration n, the value of
OPENn is {N ′i , N ′j} ∪OPENn−1 \ {N ′} on line 10.
Claim 4.1. Let N ∈ T be a node on a constraint tree that the algorithm expands into Ni and Nj due to
the conflict (actioni, actionj), then CV (Ni) ∪ CV (Nj) = CV (N).
Proof: Let SC be the set of all solutions, possibly not valid, that satisfy C. Moreover, conf (actioni, actionj)
is the set of all solutions, valid or not, that schedule both ai to take actioni during time interval [actioni.tstart, t

′)
and aj to take actionj during time interval [actionj .tstart, t

′′). We show that SNi.constraints ∪ SNj .constraints

includes all the solutions in SN.constraints expect the ones in conf (actioni, actionj).
Equation 4.7 is true since the algorithm added the constraints (ai, actioni, t

′) and (aj , actionj , t
′′) to Ni,

and respectively, Nj when creating these nodes (lines 16-22).

SNi.constraints ∪ SNj .constraints =
SN.constraints∪{(ai,actioni,t′)} ∪ SN.constraints∪{(aj ,actionj ,t′′))} (4.7)
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Note that SN.constraints∪{(ai,actioni,t′)} ∪ SN.constraints∪{(aj ,actionj ,t′′))} contains all solutions consistent
with N.constraints and do not schedule both ai to take actioni during time interval [actioni.tstart, t

′)
and aj to take actionj during time interval [actionj .tstart, t

′′) (because of constraints (ai, actioni, t
′) and

(aj , actionj , t
′′))).

Then, equations 4.8 and 4.9 are equal because the conflict (actioni, actionj) can only be resolved by
respecting either constraint (ai, actioni, t

′) or (aj , actionj , t
′′).

SNi.constraints ∪ SNj .constraints = SN.constraints∪{(ai,actioni,t′)} ∪ SN.constraints∪{(aj ,actionj ,t′′)} (4.8)
= SN.constraints \ conf (actioni, actionj) (4.9)

Which is what we wanted to show. Next, we prove the claim by using the fact that SNi.constraints ∪
SNj .constraints = SN.constraints \ conf (actioni, actionj). Note that CV (N) is the set of all valid solu-
tions in SN.constraints. Furthermore, CV (N) is also the set all the valid solutions in SN.constraints \
conf (actioni, actionj) since no valid solution can include the conflict (actioni, actionj). This means that
CV (N) is also the set of all valid solutions in SNi.constraints∪SNj .constraints = SN.constraints\conf (actioni, actionj).
The set of all valid solutions in SNi.constraints are CV (Ni) and SNj .constraints are CV (Nj). This gives us the
equality CV (Ni) ∪ CV (Nj) = CV (N). �

�
Theorem 4.1. If CCBS finds a valid solution G.solution for a goal node G, it will be optimal in terms of
cost(G.solution) if cost(s) has Property 2.1.
Proof: If a goal node G is chosen for expansion on line 10, all valid solutions are permitted by at least one
node in OPEN as shown in Lemma 4.2. Since the High-Level search explores nodes in a best-first manner
w.r.t. cost we have that ∀N∈OP EN G.cost ≤ N.cost. Since cost(s) has Property 2.1, Lemma 4.1 gives us that,
∀N∈OP EN N.cost ≤ minCost(CV (N)). So we get that ∀N∈OP EN G.cost ≤ N.cost ≤ minCost(CV (N)).
I.e. G.cost is the lower bound for all nodes in OPEN . Since G is a goal node it will hold a valid solution, and
given the above it is also the optimal solution. This means the algorithm, since G.solution has no conflicts,
will pass the check on line 12 and will return G.solution on line 13. �
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5 Target system: Model of a road network
In this text, a road network is modeled as graph G(V,E) that consist of a combination of connected road
components and intersection components. Each v ∈ V encodes a position in the road network pos = (x, y)
referred as v.pos. Using this position an edge length (i.e., distance between positions) can be deduced. Each
edge (v, v′) ∈ E has an associated distance(v.pos, v′.pos), being for example

√
(x− x′)2 + (y − y′)2 if the

edge is a straight trajectory.
When solving for an optimal solution, path-finding might consider Road and Intersection components a

bit differently. However, the resulting solution will still consist of contiguous paths in G(V,E). Construction
of a component consists of mapping the real-world road network into the parameters of vertices and edges
that form G(V,E). Road components focus on the ability for vehicles to be safely position in the road and
switch lanes in order to reach the target exit in the road. Intersection components are created to allow
vehicles to wait safely for passing obstacles (other vehicles).

5.1 Road component
A road component RoadComponenti(Vi

road,Ei
road) ⊆ G(V,E) consists of two lanes Left (L) and Right (R).

Vertices v ∈ Vi
road encodes, in addition to a position, a lane vlane where lane ∈ {Left(L), Right(R)}. Vi

road

contains two entrance vertices vL
entrance and vR

entrance and two exit vertices vL
exit and vR

exit. Both joined by
a set of lane vertices. The two lanes are labeled Left (L) and Right (R). For a given road component a set
of possible speeds {speed0, . . . , speedmax} are defined for all v ∈ Vi

road, where speedmax is the speed limit.
Each lane vertex is connected by an edge to the two next lane vertices, where an edge to the next vertex on
(1) the same lane is called a forward edge and (2) the other lane is called a switch edge. Note that a switch
edge can connect not only to the next vertex, but any succeeding vertex on the other lane. The entrance
vertices connect to the first lane vertices by forward edges, likewise the last lane vertices connect to the exit
vertices by forward edges.

An example of an instantiated road component can be seen in Figure 5.1. Here vL
entrance (abbreviated to

vL
entr) and vR

entrance (abbreviated to vR
entr) are the entrance vertices and vL

exit and vR
exit are the exit vertices

and the other five are lane vertices. The forward edges feed from one lane vertex on the same lane to the
next (e.g. vL

1 to vL
2 ) and the switch edges feed from one lane vertex to the next vertex on the opposite lane

(e.g. vR
2 to vL

3 ).

Figure 5.1: Modeling of a straight road with three location on each lane.

When creating a road component, the following factors are important to consider:
• Length of the road and dimensions of vehicles, that translate into positions in vertices.
• Speed limit of the road, translating to possible speeds {speed0, . . . , speedmax} where speedmax would

be the speed limit.

5.2 Intersection component
An intersection component IntersectionComponenti(Vi

intersection,Ei
intersection) ⊆ G(V,E) consists of four

entrances and four exits. Each entrance is a pair of in-vertices. For the i-th entrance, vi,L
in is the left in-

26



vertex and vi,R
in is the right in-vertex. These represent traffic entering the intersection. Each exit is a pair of

out-vertices. For the i-th exit, vi,L
out is the left in-vertex and vi,R

out is the right out-vertex. These represent traffic
leaving the intersection. Connecting the in- and out-vertices are auxiliary vertices, which encode positions
inside the intersection. For a given intersection component a set of possible speeds {speed0, . . . , speedmax}
are defined for all v ∈ Vi

intersection, where speedmax is the speed limit.
An example of an instance of an intersection component can be seen in Figures 5.2a and 5.2b. The four

pairs of entrance vertices can be seen as v1,L
in and v1,R

in to v4,L
in and v4,R

in . Similarly, the four pairs of exit
vertices can be seen as v1,L

out and v1,R
out to v4,L

out and v4,R
out . In Figure 5.2b, auxilliary vertices are shown to encode

locations in the intersection. Agents moving through the intersection will be able to stop at these vertices
to allow other agents to pass.

(a) Modeling of an intersection. (b) Modeling of an intersection with auxiliary vertices.

Figure 5.2: Illustration of the graph representation of an intersection.

5.3 Solution: Multi-agent path-finding with kinematic constraints

Figure 5.3: Graph used as an example.

The target system will execute a solution that has been post-processed according to the work of Hönig et
al. [10]. They describe a procedure called MAPF-POST that encodes kinematic constraints for a solution.
What this does in the context of this work is to relax the assumption that only a discrete set of speeds is
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used. MAPF-POST will optimize for a continuous interval of possible speeds, based on the planned speeds
in the models. Further research into this area showed limitations related to the work in this thesis, which
are discussed in Section 5.3.1.

As a running example, consider Figure 5.3 and a solution in that graph consisting of paths {v1, v2, v3, v4}
for Agent1 and {v2, v3, v5, v3} for Agent2. The distance between locations in this graph is uniform and equal
to 1 m. This example will be processed by this procedure, which is as follows:

Given a solution s, create a temporal plan graph (TPG) that model the dependencies of each path pi ∈ s.
Edges that connect the vertices in the path of one agent are called Type 1 edges. The length of such edges
is l(e = (v, v′)). The edges that connect from one path to the other are special edges called Type 2 edges,
which have 0 length. All edges in this graph encode that the earlier action must take place before the later
action. To illustrate this, consider the TPG in Figure 5.4 for the solution in our running example. The Type
2 edge between v2 for Agent2 and v2 for Agent1 models that Agent2 must leave v2 before Agent1 enters it.

The TPG also stores the maximum and minimum speed for each Type 1 edge. The maximum speed is
denoted as vmax(e) and the minimum as vmin(e). Agent1 in our example has vmax(e) = 1/4 m/s for all its
Type 1 edges and Agent2 has vmax(e) = 1/16 for all its Type 1 edges. Neither agent has a minimum speed
and can always come to a complete stop.

Figure 5.4: A temporal plan graph (TPG).

Next, the TPG is augmented to include auxiliary vertices called safety markers. These indicate that an
agent has reached an intermediate location δ > 0 distance before or after a vertex. δ is only valid if the
length of every edge is greater than 2 ∗ δ. The length of the new edges in this augmented graph are either
l(e)− 2 ∗ δ or δ. Type 2 edges that previously connected two vertices v and v′, now connect from the safety
marker after v to the marker before v′.

The TPG for our running example is augmented in Figure 5.5. All vertices are replaced by a path from
a pre-vertex to the vertex which then connects to a post-vertex. All incoming edges are diverted to the
pre-vertex and all outgoing edges are diverted from the post-vertex. An example of how type 2 edges change
can be observed for the edge between v2 for Agent2 and v2 for Agent1. This models that Agent2 must leave
the safety marker after v2 before Agent1 enters the safety marker before v2.

Figure 5.5: An augmented TPG.
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A simple temporal network (STN) is created from this augmented TPG by assigning continuous time
intervals to each edge e = (v, v′). These consist of a lower and upper bound [LB(e), UB(e)], where LB(e) =
l(e)/vmax(e) and UB(e) = l(e)/vmin(e). The bounds indicate that event v must be scheduled between
[LB(e), UB(e)] time units before event v′.

An STN is created for our running example in Figure 5.6, with δ = 0.25 m. An example of a dependency
in this graph is that Agent1 must be scheduled to be at v2 between [0.25/(1/4) = 1,∞] time units after
being at its second safety marker. Note that UB(e) =∞, since both agents have no minimum speed.

Figure 5.6: A simple temporal network (STN)

The next step is to compute the minimum flow-time through this graph with either a linear program or
a graph-based optimization algorithm. Let t(v) be the time at the last location in a path, E′ be the set of
edges of the augmented graph. Then the linear program looks as follows:

Minimize
K∑

j=1
t(vj)

such that t(XS) = 0
and, for all e = (v, v′) ∈ E′,

t(v′)− t(v) ≥ LB(e)
t(v′)− t(v) ≤ UB(e)

This creates a solution that has each agent arriving as early as possible at its goal location. Furthermore,
the solution will respect the kinematic constraints in the STN.

5.3.1 Limitations and possible solutions

The MAPF-POST algorithm only models dependencies between locations in the graph. This means that
conflicts where two agents collide during movement are not encoded in the final STN. As an example, consider
Figure 5.7, where two agents have crossing edges. A solver will create a solution for both agents where one
waits for the other before moving. When this solution is passed to the MAPF-POST algorithm, a TPG such
as in Figure 5.8 will be created. Here we see that the dependency (wait for the other agent) is not present
and the two agents might be scheduled to collide. To solve this, the TPG must be modified to encode such
information.
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Figure 5.7: Example of crossing which is not modeled as a dependency in basic MAPF-POST.

Figure 5.8: Resulting TPG of Figure 5.7

We suggest to solve this by adding vertex at the crossing point to the solution. The time at which the
agent passes through this vertex can be inferred from the given solution. This would then be modeled as
the TPG in Figure 5.9. The MAPF-POST algorithm can then be used as described in this section.

Figure 5.9: Resulting TPG of Figure 5.7 when a vertex representing the crossing is added.

5.4 DT refinement into target system
Here we describe how to create a solution for the target system of road networks in the DT model. Given an
input graph G(V,E) that models a road network, we create a transformed graph in the DT model. In this
refinement we treat road and intersection components the same. The transformed graph models the possible
speeds in the road network as discrete time-steps. Moreover, a few modifications are needed to make the
Low- and High-Level produce a solution that encodes speed. This solution is then post-processed with the
procedure in Section 5.3.

The input graph encodes the possible speeds in each given vertex. A slow speed translates into more
vertices and a fast speed into fewer vertices. The procedure to transform the input graph is as follows:

1. Replace all vertices v with new vertices Vv = {v0, . . . , vmax}v for each speed in {speed0, . . . , speedmax}.
2. Replace all edges e = (v, v′), for each speed ∈ {speed0, . . . , speedmax}, with n connected intermediate

vertices Ie,speed = {i1, . . . , in}e,speed. The number of intermediate vertices should be more for a slow
speed and less for a fast speed. Also, the number of vertices must scale to correctly model differences
between speeds in the target system. For example, 50 km/h would be represented by twice as many
intermediate vertices as 100 km/h.

3. For each possible speed transition, in ∈ Ie,speed then connect to the new vertices Vv′ = {v′0, . . . , v′max}v′

that replace v′.
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Figure 5.10 illustrates this procedure for two locations v1 and 2 with possible speeds {0, 1, 2, 3}. Here
speeds scale in power of two, meaning going one speed faster is twice as fast.

Figure 5.10: Detailed view of how speeds are treated given given two vertices v1 and v2.

CBS only checks for conflicts in single vertices and edges for two agents. After the transformation of
the input graph, two agents can be in the same location at once. Using the example above, one agent in
v0 ∈ Vv1 and v1 ∈ Vv1 would be ok given the definition of a conflict in Section 2. To solve this, we modify
this definition:
Definition 5.1 (Conflict). A conflict between two agents ai and aj in states sti and stj at time t is one of
two types:

• (Vertex conflict) (ai, aj , v, t) where agents ai and aj plan to occupy the same vertex set Vv∪ I(v,v′),speed

at the same time step t.
• (Edge conflict) (ai, aj , (v, v′), t) where agents ai and aj plan to occupy the same edge. That is, at time

step t ai plans to move from v = sti.v to v′ and aj plans to move from v′ = stj .v to v.
This means, for example, that an agent cannot enter v0 ∈ Vv if another agent is present in any of the

vertices in Vv or I(v,v′),speed.
In the target system, an agent moving at a speed larger than 0 will need time to come to a complete stop.

To enforce this, we modify Constrained-A* so that a path can only include a WAIT action in a vertex that
encodes speed 0.

A solution of the transformed input is then transformed back into the target system by using the procedure
described in Section 5.3. To simplify this procedure, intermediate vertices are removed from the solution.
The resulting solution will still encode the speed an agent has in each location. For a given MOVE action
from vi ∈ Vv to v′i′ ∈ Vv′ , we say that e = (vi, v′i′). We assign vmin(e) and vmax(e), such that vmin(e) ≤
min(speedi, speedi′) and vmax(e) ≥ max(speedi, speedi′). This allows post-processing to compensate for
the fact that the solver only considers discrete speeds. It can optimize for a continuous speed interval
[vmin(e), vmax(e)] instead.

5.5 CT refinement into target system
The procedure to create a solution for the target system is similar to the CT model. It takes an input graph
G(V,E) and transforms it into the CT model. Road and intersection components are treated the same in this
refinement as well. The same modification made to Constrained-A* is made to SIPP. The solution produced
by CCBS is then post-processed using the procedure in Section 5.3.

We represent speeds as the cost of edges. A high cost is equal to more time and a slow speed. A low cost
is equal to less time and a fast speed. The procedure to transform the target system into the CT model is
as follows:

1. Replace all vertices v with new vertices Vv = {v0, . . . , vmax}v for each speed in {speed0, . . . , speedmax}.
2. Replace all edges e = (v, v′) with new edges that represent maintaining speed or changing speed

between v and v′. For each speedi, speedi′ ∈ {speed0, . . . , speedmax} and possible speed change, create
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new edges with costs that represent an agent moving from v at speedi to v′ at speedi′ . The cost of
each edge should be based on how long this takes in the target system.

Figure 5.11 illustrates this for two locations v1 and 2 with possible speeds {0, 1, 2, 3}.

Figure 5.11: Converting an edge with speeds.

Collision-checking in CCBS now needs to account for the fact that all vertices in Vv represent the same
location. This means that if two agents are present in any vi ∈ Vv and vj ∈ Vv respectively at the same
time, they will collide. SIPP is modified so that the path of a single agent can only include a WAIT action
in a vertex encoding 0 speed.

As in the DT refinement, a solution of the transformed input is then transformed back into the target
system by using the procedure described in Section 5.3. For a given MOVE action from vi ∈ Vv to v′i′ ∈ Vv′ ,
we say that e = (vi, v′i′). We assign vmin(e) and vmax(e), such that vmin(e) ≤ min(speedi, speedi′) and
vmax(e) ≥ max(speedi, speedi′). Again, this allows post-processing to compensate for the fact that the solver
only considers discrete speeds.

5.6 CTDS refinement into target system
The CTDS model can create a solution for the target system by defining the functions actionT ime and
actionPossible for the input graph G(V,E). actionT ime is created for each pair of vertices and possible
speeds. actionPossible is created based on conditions of the road and/or specification of the vehicles. Note
that we treat road and intersection components the same again.

Then, CCBS and DS-SIPP can create a solution without modification. The solution is then, just as in the
case of the DT and CT model, post-processed by the procedure in Section 5.3. For a given MOVE action
from v at speedv to v′ at speedv′ , we assign vmin(e) and vmax(e), such that vmin(e) ≤ min(speedv, speedv′)
and vmax(e) ≥ max(speedv, speedv′). As before, this compensates for the fact that the solver only considers
discrete speeds.
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6 Evaluation
We made a preliminary evaluation to investigate if having more than two speeds (including 0) would prove
beneficial on a two-lane road. Our running hypothesis was that more speeds would not increase performance.
This was also what we found. However, we did find evidence of small performance gains.

The evaluation was made on an Intel NUC7i7BNH that uses an i7-7567U processor. Only the CTDS
model was implemented and tested. The metric used for the performance of a solution was the makespan.
We considered a finite segment of an infinite straight two-lane road. Figure 5.1 is an example of such a
segment. Since we did not investigate queuing behavior, agents were assumed to disappear from the segment
when reaching an exit vertex. A segment had a random number of lane vertices. The vertices were placed
at a uniform distance from each other. Agents were placed at random start vertices and assigned a random
exit vertex (on the left or right lane). Parameters for the experiment were:

• Number of speeds ranging from 2 to 10 including speed 0.
• Number of agents ranging from 3 to 25.
• Number of vertex pairs, called locations, ranging from 5 to 48.
The results show that very little can be gained from having more than two speeds. The average makespan

is close to identical for all speeds, seen in Table 6.1. The execution time also gets worse when considering
more speeds, which can be seen in Figure 6.2.

Figure 6.1: Average makespan for each speed over all trials.
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Figure 6.2: Average execution time for each speed over all trials.

There is evidence for some small performance gain, however. Table 6.1 lists the average makespan for each
number of speeds 1 to 9 and agent count ranging 3-5, 5-10, 10-15, 15-20 to 20-25. As before, it is evident
that the difference in makespan is very small but there seem to be some consistent small gains with having
more than two speeds. The red area in Figure 6.3 plots the difference between the best makespan for a given
agent count and the average makespan when only using two speeds (including speed 0). The blue area is the
difference between the best makespan for a given agent count and the worst makespan out of all speed sets.
The values are plotted based on Table 6.1. For example, the average makespan using two speeds (row 1) for
agent count 3-5 (column 1) is 5.57. The best makespan for 3-5 agents was found to be 5.37 using the set of
three speeds (row 2). This is plotted as 5.57−5.37 = 0.2 in Figure 6.3. Even though the loss in performance
is very small, it appears that only considering two speeds is almost always the option that yields the worst
makespan.

Agent count
3-5 5-10 10-15 15-20 20-25

2 5.57 10.67 18.16 25.97 33.81
3 5.37 10.45 18.16 25.81 33.65
4 5.48 10.47 18.04 25.43 33.33
5 5.48 10.63 18.03 25.77 33.10
6 5.46 10.62 18.11 25.60 33.15
7 5.49 10.72 17.91 25.72 33.58
8 5.55 10.57 17.84 25.42 33.46
9 5.53 10.60 18.00 25.56 33.49
10 5.57 10.61 18.17 25.64 33.41

Table 6.1: Average makespan aggregated over each speed and agent count.
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Figure 6.3: Comparison of difference in makespan for Table 6.1

In summary, vehicles traveling on two-lane straight roads do not gain much in performance from having
more speeds to choose from. However, even in this simple example, more speeds show consistent performance
gains. This implies that if another problem instance was used, the performance gain would be larger.
Examples of such instances are highway-entrances, where vehicles need to adapt their speeds to cars already
on the highway. Another example is a queue that is dense enough to make going at full speed impossible.
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7 Conclusion
This project dealt with an extensive literature review of the field of conflict-based path-finding algorithms.
Using this review, we defined a novel model for planning for the speeds in a multi-agent path-finding set-
ting. A novel approach of transforming and then solving a path-planning problem in a road network for a
framework of three models was described. We showed empirically that a gap between existing models and
best performance at the target system of road networks existed.

In conclusion, this report has described how to use abstract models for solving problems for the target
system of road networks. We showed three different models that considered a different level of detail. Each
model refined the previous, adding or changing definitions and algorithms. For each model, a single-agent
solution was described together with a multi-agent solution that used the single-agent solution. We presented
a proof of optimality and validity for each algorithm, either a new one or an existing one.

A novel CTDS model, along with single- and multi-agent path-planning algorithms, was introduced. The
model and algorithms were modifications to previous work, resulting in a new model and algorithms for
solving for the speed of multiple agents. The two algorithms developed were a modified version of safe
interval path-planning (SIPP) called discrete-speeds SIPP (DS-SIPP) and a version of continuous conflict-
based search (CCBS) that uses DS-SIPP. DS-SIPP contributes with a method of planning for a discrete set
of speeds of an agent. Functions were described that encode the time and possibility of movement of agents
given location and speed. CCBS using DS-SIPP can create a multi-agent solution where agents move at
many speeds without colliding.

Another contribution of this work was a novel method of creating a solution for the target system in all
three models. This was achieved by a transformation of an input graph from the target system into each
model. Solvers in two of the models were modified to handle speed. Each model could then produce a
solution that could be transformed back into the target system via post-processing.

Future work for this project would include refining the models to solve for other target systems. This
can, for example, be path-finding in three dimensions, while considering drones in open air or spacecrafts.
Aspects of how to model movement and conflicts in such higher dimension problems would be interesting
to explore. In regards of road networks, adding more traffic rules and dynamics would move the solution
further towards real-world traffic.
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A Stalling
Work has been done in the past to improve CBS in the DT model. If delays should arise during the
execution of a solution agents might run the risk of colliding with each other. Therefore, Gyllenskepp and
Nordenhög [7] developed a method to resolve delays in a live environment called stalling. Given an agent
ai that is delayed by a number of time-steps δ, stop all other agents for δ time-steps. This method can be
refined into component stalling which only stalls agents with paths affected by the delay, defined as:

1. Agents crossing the path of ai at some time-step ±bound the delay. We call these agents affected by
the delay.

2. Agents crossing the path of an agent affected by the delay at some time-step ±bound. Meaning agents
not directly crossing the path of ai can also be affected by the delay.

B Improvement of CBS: MA-CBS
Here we describe an improvement to basic CBS by Sharon et al., which might also be applied to the
other algorithms in this text. Experiments made by Sharon et al. [14] shows that basic CBS performs
poorly for strongly coupled agents i.e., agents with high rate of conflicts between them. They solve this
by modifying CBS into a new algorithm called meta-agent CBS (MA-CBS) that identifies strongly coupled
agents. Strongly coupled agents are merged into what is called a meta-agent. The Low-Level will solve a
separate MAPF problem instance if the meta-agent consist of several merged agents. Otherwise, an algorithm
such as Constrained-A* is used. The choice of multi-agent Low-Level procedure must be an algorithm that
detects an unsolvable problem. So CBS cannot be used directly without the pre-processing step discussed
in Section 2.4.3.

MA-CBS adds lines 14 to 24 to the original algorithm and the new input to MA-CBS is a MAPF problem
instance instance defined as:
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MAPF = {A : set of meta-agents {MA1 = {a1}, . . . ,MAk = {ak}},
G(V,E) : graph G(V,E),
start(MAi) : start vertices of meta-agent i,
end(MAi) : end vertices of meta-agent i, }

The set of constraints that were added due to conflicts between agents in meta-agent MAi and MAj are
denoted as internal(i, j).

Algorithm 9: A high-level description of meta-agent conflict-based search by Sharon et al. [14]
1 required function cost(s) returns a real number, which is the cost of s, e.g. SIC or Makespan
2 Function MA-CBS(MAPF )
3 Root.constraints = ∅;
4 foreach meta-agent MAk ∈MAPF.A do
5 Root.solution[k] = LowLevel(start(MAk), goal(MAk),G(V,E), Root.constraints);
6 OPEN = ∅;
7 insert Root to OPEN ;
8 while OPEN not empty do
9 N = OPEN .popMin(cost);

10 conflicts = FindConflicts(N.solution);
11 if conflicts = ∅ then
12 return N.solution;
13 C = first conflict (ax, ay, v, t) in conflicts;
14 if shouldMerge(ax, ay) then
15 MAi = MAi ∈MAPF.A, such that ax ∈MAi;
16 MAj = MAj ∈MAPF.A, such that ay ∈MAj ;
17 MAi,j = MAi ∪MAj ;
18 MAPF.A = (MAPF.A ∪ {MAi,j}) \ {MAi,MAj};
19 N.constraints = N.constraints \ internal(i, j);
20 mergedSolution = LowLevel(start(MAi,j), goal(MAi,j),G(V,E), N.constraints);
21 for agent ak ∈MAi,j do
22 N.solution[k] = mergedSolution[k];
23 if cost(N.solution) <∞ then
24 Insert N into OPEN ;

25 else
26 foreach agent ak ∈ C do
27 N ′ = new node;
28 N ′.constraints = N.constraints ∪ {(ak, v, t)};
29 N ′.solution[k] = LowLevel(start(MAk), goal(MAk),G(V,E), N ′.constraints);
30 if LowLevel found a solution then
31 insert N ′ to OPEN ;
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