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Approximation of non-stationary fractional Gaussian random fields
Kasper Bågmark
Mathematical Sciences
Chalmers University of Technology

Abstract
Numerical approximations of fractional and multifractional Brownian fields are stud-
ied by measuring the numerical convergence order. In order to construct these non-
stationary fields a study of Gaussian fields, fractal analysis and self-similarity is
conducted. The random fields are defined through their covariance function. Simu-
lations are constructed through the Cholesky method, which builds on the Cholesky
decomposition of the covariance matrix in order to accurately simulate the non-
stationary field. The strong error in L2(Ω;L2(T ;R)) is measured for the fractional
Brownian motion defined by the fixed Hurst parameter H. It is shown numerically
that the convergence rate α satisfies α > H for H ∈ (0, 0.6). Furthermore the con-
vergence rates are measured for multifractional Brownian motions defined by Hurst
functions h : T → (0, 1) of varying form.

Keywords: Multifractional Brownian motion, non-stationary random fields, Cholesky
method, numerical strong convergence rate
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1
Introduction

The study of numerical approximations has been an area with enormous growth in
the last decades. This accounts for both the methods developed but perhaps even
more the actual implementations that now can be assessed in a reasonable fashion.
It is now possible to examine how efficient a method is to numerically approximate
its target, for example by evaluating the order of convergence for the method. In
this thesis we will study the approximation of non-stationary fractional Gaussian
random fields. What this comes down to is essentially twofold. First, we consider
fractional fields, a fundamental example is the fractional Brownian motion. Com-
monly denoted BH the fractional Brownian motion is an extension to the famous
Brownian motion for which H = 1/2. This H ∈ (0, 1) denotes the Hurst parameter,
or Hölder-exponent, of the process and directly dictates the fractal dimension of
the process to be 2 −H. Secondly we consider this non-stationarity by letting the
Hurst parameter H vary over the domain and hence we lose the stationarity of the
increments of the field.

Fractional Brownian motion was rigorously defined by the "fractalist" Mandelbrot
in 1968 but had already been implicitly used earlier, e.g. Kolmogorov [13]. Man-
delbrot examined multiple fractal geometries in his days, both from a theoretical
framework but also physical phenomenon [14],[15]. One of the many contributions
from Mandelbrot was regarding self-similarity. Fractional Brownian motion exhibits
this property and is one of the reasons this process has many applications in finance,
telecommunication, physical phenomenon and medicine.

One such application is covered in [17] where it is explained how multifractal anal-
ysis is used to analyze X-ray images of breast tissue. This is used when looking
for anomalies that could be early stages of breast cancer. The tissue does exhibit
self-similarity with regard to a local Hurst parameter and then the anomalies can
be found by looking for irregularities of the Hurst parameter in local patches.

Multifractional Brownian fields are the generalization of fractional Brownian fields
which consider a Hurst parameter H ∈ (0, 1) that can vary in the domain. We define
this by a function h : T → (0, 1) where T ⊂ Rd. The theoretical background of this
family of fields is explained and thoroughly defined in [4]. In this thesis we want to
extend their study and numerically investigate methods of approximation that are
presented in their final chapter. We will thus consider their framework and adapt to

1



1. Introduction

a setting with an implementation such that we can construct methods of measuring
the numerical convergence.

For this purpose we will consider the Cholesky method, based on Cholesky decom-
position since this is an exact method and thus appropriate to measure the strong
convergence rate of a field. Although other methods have been shown to generate
fields with a high accuracy [3], these methods deem not appropriate for a numer-
ical convergence study which this thesis aims to handle. Based on the covariance
function of a centered multifractional Brownian motion,

E [Bh(x)Bh(y)] = D(h(x), h(y))
(
‖x‖h(x)+h(y) + ‖y‖h(x)+h(y) − ‖x− y‖h(x)+h(y)

)
(1.1)

where

D(s, t) =

√
Γ(2s+ 1)Γ(2t+ 1) sin(πs) sin(πt)Γ( s+t+1

2 )
2Γ(s+ t+ 1) sin(π(s+ t))Γ( s+t+d2 )

, (1.2)

we can construct a covariance matrix on the discretized domain V h which is vital
to the Cholesky method.

Although we do not show any analytical results of the convergence order, we are
successful in showing a linear relation between the Hurst parameter of a fractional
Brownian motion and the order of convergence. That is, for H ∈ (0, 0.6) we can
show that α > H, where α is the order of the strong convergence. The error is
measured in the space of L2(Ω;L2(T ;R)) and is defined as

E
[∥∥∥X − X̂h

∥∥∥2

L2(T )

]1/2
= E

[∫
T
|X(t)− X̂h(t)|2 dt

]1/2
, (1.3)

where T = [0, 1]. This domain accurately catches the properties of the process since
it is a self-similar process. Furthermore we measure the convergence of multifrac-
tional Brownian motions defined by different functions h that define the process.
For these we obtain higher convergence order than before, primarily for processes
that are defined by a strictly increasing Hurst parameter.

This thesis is divided into three parts that aim to cover the theoretical background,
the approximation and finally the numerical convergence. In Chapter 2, we cover
the basics of stochastic analysis where we generalize the concept of stochastic pro-
cesses to higher dimensions. We emphasize on the properties of Gaussian fields and
stationarity before defining the Hausdorff dimension. To finally define fractional
Brownian field we explain the concept of self-similarity and then illustrate example
paths of these fields. In the last part we define multifractional Brownian fields which
concludes the theoretical framework.

Chapter 3 covers the approximation of the fields. We explain and define the strong
convergence, how this is discretized and adjusted to a Monte Carlo sampling. Al-
though the Cholesky method is the one opted for we make arguments why and what

2



1. Introduction

the obvious drawbacks of this decision are. Other methods mentioned include the
random midpoint displacement and the FieldSim algorithm which both are defined
and why they deem unsuitable for this study. Finally the chapter concludes with
the implemented algorithm to measure the strong error.

In Chapter 4 we present the numerical results of the convergence study. We start
by recalling the examples of the fractional Brownian motion and evaluate the or-
der of convergence of these processes. Next, we investigate the convergence order
of a fBm defined by all H ∈ (0, 1). Furthermore, we evaluate the convergence for
multifractional Brownian motion. We consider different sorts of Hurst functions:
increasing, decreasing, sinusoids and discontinuous. The corresponding convergence
rates are measured for all of these and are illustrated with a short discussion about
their relation to the Hurst function h.

3
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2
Theory

The general idea when constructing a Gaussian field is to consider the covariance
function of the field. This chapter will aim to show and explain the concepts and
definitions that are required to define the covariance function of a multifractional
Brownian field. As we progress further into the theory we will present examples of
explicit processes and fields that will follow us through the rest of this thesis. The
reader is assumed to possess some general knowledge regarding probability distri-
butions, measure theory and functional analysis.

Section-wise we will begin by defining the generalization of stochastic processes
to a general dimension d. In the second section we briefly relate how fractals and
the Hausdorff dimension relate to the Hurst exponent. Finally in the third and
fourth section we will define fractional Brownian fields and multifractional Brow-
nian fields, respectively. Most of this chapter is covered in [4] and hence a more
detailed background can be found there.

2.1 Stochastic fields
This first section covers the basics of stochastic fields, which particular includes the
Gaussian distribution and the property of stationarity which is stressed. Here we
will early present the famous Brownian motion as one of the important examples.
The section is divided into four parts: definitions, Gaussian fields, Gaussian random
measure and stationary fields.

2.1.1 Definitions
Definition 2.1.1. Let T be a set and (E, E) a measurable space. A stochastic field
(X(t), t ∈ T ) taking values in (E, E) is a collection of measurable maps X(t) from
a probability space (Ω,A,P) to (E, E).

In the context of this report T will be Rd or a subset thereof and approximation-
wise d = 1, 2 will be used. The measurable space (E, E) will be (R,B(R)), where
B denotes the Borel σ-algebra. If the domain T is of one dimension we call X a
stochastic process.

Definition 2.1.2. The finite dimensional distributions of a stochastic field (X(t), t ∈
T ) are defined by the random vector (X(t1), . . . , X(tn)) for every n ≥ 1 and t1, . . . , tn ∈

5



2. Theory

T . Two stochastic fields are said to be versions of each other if they have the same
finite dimensional distributions for each n and (t1, . . . , tn) ∈ T n.

These distributions are relevant in understanding a stochastic field. However, pri-
marily it is through its characteristic function.

Definition 2.1.3. Let (X(t), t ∈ T ) be a stochastic field. The distribution of the
random vector (X(t1), . . . , X(tn)), n ≥ 1, (t1, . . . , tn) ∈ T n is represented by its
characteristic function ϕ. It is defined for (λ1, . . . , λn) ∈ Rn as

ϕt1,...,tn(λ1, . . . , λn) = E

exp
i n∑

j=1
λjX(tj)

 .
An important theorem that ensures the existence of a stochastic field given a col-
lection of consistent characteristic functions is Kolmogorov’s consistency theorem.

Theorem 2.1.1 (Kolmogorov’s consistency theorem). Let (ϕt1,...,tn, n ≥ 1,
(t1, . . . , tn) ∈ T n) be a collection of characteristic functions. Now if for any permu-
tation (σ(1), . . . , σ(n)) of (1, . . . , n) and for m ≤ n the following two conditions are
fulfilled

ϕt1,...,tn(λ1, . . . , λn) = ϕtσ(1),...,tσ(n)(λσ(1), . . . , λσ(n)),
ϕt1,...,tm(λ1, . . . , λm) = ϕt1,...,tn(λ1, . . . , λm, 0, . . . , 0),

then the finite dimensional distributions associated to these characteristic functions
are called consistent. If the collection of characteristic functions is consistent then
there exists a stochastic field (X(t), t ∈ T ) s.t. for any n ≥ 1, (t1, . . . , tn) ∈ T n,

ϕt1,...,tn(λ1, . . . , λn) = E

exp
i n∑

j=1
λjX(tj)

 .
Definition 2.1.4. Let (X(t), t ∈ T ) be a stochastic field s.t. E [|X(t)|2] <∞, t ∈ T .
The mean value of X is then the function t 7→ m(t) = E [X(t)]. If m(t) = 0 for all
t ∈ T then the field is called a centered field. The covariance function is defined as
the function R : T × T → R

(t, s) 7→ R(t, s) = E [(X(t)−m(t))(X(s)−m(s))] .

With the definition of the covariance function in mind we want to consider what
sort of functions that are a covariance function, and reverse, which properties a
covariance function must have.

Definition 2.1.5. A symmetric function ψ : T × T → R : (t, s) 7→ ψ(t, s) is a
non-negative definite function if for every n ≥ 1, (λ1, . . . , λn) ∈ Rn, (t1, . . . , tn) ∈ T n
it holds that

n∑
i,j=1

λiλjψ(ti, tj) ≥ 0.

6



2. Theory

Proposition 2.1.1. Let ψ be a non-negative definite function. Then for all t, s ∈ T ,
it holds that

ψ(t, t) ≥ 0,
ψ(t, t)ψ(s, s) ≥ ψ(t, s)2.

Proposition 2.1.2. The covariance function R : T × T → R of a stochastic field is
a non-negative definite function.

Next we give a definition of non-negative definite with regard to the distance between
two elements in T .

Definition 2.1.6. A function f : T → R is called non-negative definite if the
function (t, s) 7→ f(t − s) is non-negative definite in the sense of the previous def-
inition. More precisely this converts to that for every n ≥ 1, (λ1, . . . , λn) ∈ Rn,
(t1, . . . , tn) ∈ T n it holds that

n∑
i,j=1

λiλjf(ti − tj) ≥ 0

f(−t) = f(t).

Theorem 2.1.2 (Bochner’s theorem). Among the continuous real valued functions,
the non-negative definite functions on T = Rd are those functions which are the
Fourier transforms of finite symmetric measures.

Definition 2.1.7. A real valued symmetric function (t, s) 7→ φ(t, s) with s, t ∈ T ,
is a function of negative type if for every n ≥ 1, (λ1, . . . , λn) ∈ Rn s.t. ∑n

i=1 λi = 0,
(t1, . . . , tn) ∈ T n it holds that

n∑
i,j=1

λiλjφ(ti, tj) ≤ 0.

Theorem 2.1.3 (Schoenberg’s theorem). Let (t, s) 7→ φ(t, s), s, t ∈ T , be a real
valued symmetric continuous function with φ(t, t) = 0.

1. Fix t0 ∈ T . Define ψ by

ψ(t, s) = φ(t0, t) + φ(t0, s)− φ(t, s)
ψ(s, t) = φ(t0, s) + φ(t0, t)− φ(s, t) = ψ(t, s).

Then φ is a function of negative type if and only if ψ is a real valued non-
negative definite function.

2. φ is a function of negative type if and only if e−λφ is a non-negative definite
function for all λ ≥ 0.

This theorem yields an important corollary which will be relevant later with regard
to the Hurst exponent.

7



2. Theory

Corollary 2.1.1.

• Functions (t, s) 7→ ‖t‖2H + ‖s‖2H − ‖t− s‖2H , t, s ∈ Rn are non-negative
definite functions if and only if 0 < H ≤ 1.

• Functions t 7→ e−|t|
α, t ∈ R are characteristic functions if and only if

0 < α ≤ 2.

Following the proof of [4] we show this vital property.

Proof. First we note that the mapping (t, s) 7→ ‖t− s‖2 is of negative type, that is
take ∑n

i λi = 0.
n∑

i,j=1
λiλj ‖ti − tj‖2 =

n∑
i,j=1

λiλj
(
‖ti‖2 + ‖tj‖2 − 2 〈ti, tj〉

)

=
n∑
j=1

λj︸ ︷︷ ︸
=0

n∑
i=1

λi ‖ti‖2 +
n∑
i=1

λi︸ ︷︷ ︸
=0

n∑
j=1

λj ‖tj‖2 − 2
n∑

i,j=1
〈λiti, λjtj〉

= −2
〈

n∑
i=1

λiti,
n∑
j=1

λjtj

〉

= −2
∥∥∥∥∥
n∑
i=1

λiti

∥∥∥∥∥
2

≤ 0.

By applying the first part of Schoenberg’s theorem 2.1.3 with t0 = 0 we have shown
the case with H = 1. Next we use the following property which holds for 0 < H < 1
and non-negative x,

xH = CH

∫ ∞
0

e−λx − 1
λ1+H dλ.

We can find C−1
H 6= 0 and show that this holds by change of variables, u = λx

CH

∫ ∞
0

e−λx − 1
λ1+H dλ = CH

∫ ∞
0

e−u − 1(
u
x

)1+H
du
x

= CHx
H
∫ ∞

0

e−u − 1
u1+H du,

which in turn implies that if we set

C−1
H =

∫ ∞
0

e−u − 1
u1+H du,

we are done. Now inserting this into the previous function we get the modified
version

n∑
i,j=1

λiλj ‖ti − tj‖2H = CH

∫ ∞
0

∑n
i,j=1 λiλje

−λ‖ti−tj‖2

λ1+H dλ.
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2. Theory

Next we apply the second part of Schoenberg’s theorem 2.1.3.2, which says that∑n
i,j=1 λiλje

−λ‖ti−tj‖2 is non-negative definite since ‖ti − tj‖2 is of negative type.
However since CH < 0 we have that the mapping (t, s) → ‖t− s‖2H is of nega-
tive type for 0 < H < 1. Now it is easy to verify with the first part of Schoenberg’s
theorem 2.1.3.1 that the function (t, s)→ ‖t‖2H+‖s‖2H−‖t− s‖2H is a non-negative
definite function by inserting t0 = 0.

To show that H > 1 cannot hold we provide a simple example with three points in
R s.t. |t3 − t2| = |t2 − t1| = 1 and |t3 − t1| = 2. Let λ1 = λ3 = −1 and λ2 = 2 then

3∑
i,j=1

λiλj|ti − tj|2H = −8 + 22H+1 > 0

thus not of negative type and hence we are done.

2.1.2 Gaussian fields
This part covers Gaussian distributed fields and brings light to some of their unique
properties.

Definition 2.1.8. A random vector X = (X1, . . . , Xd) is called a Gaussian random
vector if any finite linear combination of its coordinates ∑d

j=1 λjXj, λj ∈ R is a
Gaussian random variable.

Definition 2.1.9. A random field Y is a modification of X if for every t ∈ T ,
P(X(t) = Y (t)) = 1.

Definition 2.1.10. A process (B(t))t≥0 satisfying the following conditions

1. B(0) = 0,
2. B has a modification B̃ that has almost surely continuous trajectories,
3. for all s ≤ t, the increment B(t)−B(s) is independent of (B(u), u ≤ s),
4. B(t)−B(s) ∼ N (0, |t− s|)

is called a standard Brownian motion.

Example 2.1.1. In Figure 2.1 we have simulated a sample path of the standard
Brownian motion on the domain [0, 1] and at a later stage we will evaluate the
convergence rate of this process given a numerical scheme. We will later come to
see that this is just a special case of the more general fractional Brownian motion.
The covariance function of the Brownian motion satisfies R(t, s) = E [B(t)B(s)] =
min(t, s).

Definition 2.1.11. A stochastic field (X(t), t ∈ T ) is a Gaussian field, if and only if,
for all n ≥ 1, (t1, . . . , tn) ∈ T n, the random vector (X(t1), . . . , X(tn)) is a Gaussian
random vector.

Theorem 2.1.4. Let m : T → R be a function and R : T×T → R be a non-negative
definite function. If a stochastic field (X(t), t ∈ T ) satisfies the following equality,

9
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Figure 2.1: A simulated path of a Brownian motion on the domain T = [0, 1]

for n ≥ 1, (λ1, . . . , λn) ∈ Rn, (t1, . . . , tn) ∈ T n,

E

exp
i n∑

j=1
λjX(tj)

 = exp
i n∑

j=1
λjm(tj)


× exp

−1
2

n∑
i,j=1

λiλjR(ti, tj)
 ,

the field has a unique real valued Gaussian distribution, with mean value function
m and covariance function is R.

Definition 2.1.12. A vector space G of centered Gaussian random variables, which
is a closed subspace of L2(Ω,A, P ) is called a Gaussian space. The Hilbert space
L2(Ω,A, P ) is equipped with the inner product and the corresponding induced norm

〈X, Y 〉L2 = E [XY ] ,

‖X‖L2 =
√
〈X,X〉L2 .

Example of a Gaussian space is

G =
{

d∑
i=1

λiXi, (λ1, . . . , λd) ∈ Rd

}
,

where (X1, . . . , Xd) is a Gaussian random vector.

Definition 2.1.13. Let (X(t), t ∈ T ) be a centered Gaussian field. The subspace
of L2(Ω,A, P ) of the linear span of (X(t), t ∈ T ) and of their limits in L2 is denoted

10
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by

LX =
{
Z s.t. ∃n ∈ N, ∃λi ∈ R, i = 1, . . . , n with Z =

n∑
i=1

λiX(ti)
}L2

.

Next, the space

KX = {hZ : T → R s.t. ∃Z ∈ LX and hZ(t) = E [ZX(t)]}

equipped with the symmetric form 〈hZ1 , hZ2〉KX := E [Z1Z2] is called the Reproduc-
ing Kernel Hilbert Space (RKHS) of the Gaussian field X.

Proposition 2.1.3. The map h : LX → KX defined by Z 7→ hZ is an injective
linear map s.t. ‖hZ‖KX = ‖Z‖LX .

From this it directly follows that for a Gaussian field X we have with the definitions
above that

hX(t)(s) = E [X(t)X(s)] = R(t, s)

which tells us that finite linear combinations of the covariance function are dense in
KX . This can be seen by the fact that every hZ ∈ KX corresponds to a Z ∈ LX ,
for which there is some n ∈ N, (λ1, . . . , λn) ∈ Rn and (t1, . . . , tn) ∈ T n s.t. Xn ∈ LX
has the L2 limit Z,

‖hXn − hZ‖KX = ‖Xn − Z‖LX → 0 as n→∞.

Next we also have two more properties which give reason to the name of reproducing.
For a hZ ∈ KX we have

〈hZ , R(t, ·)〉KX = E [ZX(t)] = hZ(t),
〈R(t, ·), R(s, ·)〉KX = R(t, s).

With this in mind and the fact that the covariance function of the Gaussian random
field (X(t), t ∈ T ) is continuous, it can be shown that KX is a separable Hilbert
space if we also assume that X is separable. This definition is covered in [1], where
the surrounding details are covered including how h, from Proposition 2.1.3, is an
isomorphism. Now with KX separable we can take an orthonormal basis of KX

which leads us to Theorem 2.1.5.

Theorem 2.1.5. Let X be a centered Gaussian field and (en)n∈N an orthonormal
basis of KX and recall h from Proposition 2.1.3. Next, denote by ηn = h−1(en)
a random variable in LX . Then the variables (ηn)n∈N are i.i.d. Gaussian random
variables and constitute an orthonormal basis of LX . Also for t ∈ T , we have

X(t) =
∞∑
n=0

ηnen(t)

with convergence in L2(Ω) and

R(t, ·) =
∞∑
n=0

en(·)en(t)

with convergence in KX .

11
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Definition 2.1.14. Two probability measures P and Q defined on the same proba-
bility space (Ω,A) are equivalent if and only if for all A ∈ A it holds that P(A) = 0
if and only if Q(A) = 0. On the other hand P and Q are orthogonal if there exists
A ∈ A such that P(A) = 0 and Q(A) = 1.

Given this definition we can state the following theorem.

Theorem 2.1.6. The distributions of two Gaussian processes are either equivalent
or orthogonal.

The distribution of a Gaussian process is a Gaussian measure, a term which will
be avoided to not confuse with what later will be defined as a Gaussian random
measure.

Lemma 2.1.1. The vector space defined ash : T → R s.t., ∃(an) with h(t) =
∑
n≥0

anλnϕn(t),
∑
n≥0

a2
n <∞, λn ∈ R+


equipped with the inner product (h, g)KX = ∑

n≥0 anbn where g = ∑
n≥0 bnλnϕn(t),

and (λnϕn)n∈N is an orthonormal basis of KX , is exactly the RKHS of X, KX .

2.1.3 Gaussian random measures
Gaussian random measures are important when we later will define a multifractional
Brownian field (mBf), hence we start with a formal definition.

Definition 2.1.15. A Gaussian random measure on a measure space (M,M, µ) is
an isometry I from the Hilbert space L2(M,M, µ) onto a Gaussian space included
in some L2(Ω,A,P).

Definition 2.1.16. A random measure I on a measure space (M,M, µ) is called
independently scattered if and only if for a sequence of measurable sets (An)n∈N ⊂M
s.t. µ(∪n∈NAn) < ∞ then the random variables I(An) are independent if (An)n∈N
are mutually disjoint.

It can be shown that any Gaussian random measure satisfies this property.

Definition 2.1.17. Following Definition 2.1.15 and set M = Rd, M = B(Rd) and
µ(ds) = ds

(2π)d/2 , then I is called a real valued Brownian random measure and will
be denoted W (ds) onwards.

Proposition 2.1.4. The following is true for a Brownian random measure W . For
any f, g ∈ L2(Rd) the random variable

∫
Rd f(s)W (ds) is a centered Gaussian variable

with variance and covariance

E
[(∫

Rd
f(s)W (ds)

)2
]

=
∫
Rd
f(s)2 ds

(2π)d/2 ,

E
[∫

Rd
f(s)W (ds)

∫
Rd
g(s)W (ds)

]
=
∫
Rd
f(s)g(s) ds

(2π)d/2 .

12
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In other words, the last equality says that if f and g are orthogonal w.r.t. to the
inner product of L2(Rd) then the random variables

∫
Rd f(s)W (ds) and

∫
Rd g(s)W (ds)

are independent.

Note that for a convergent series ∑n∈N fn in L2(Rd) we have by Fubini–Tonelli∫
Rd

∑
n∈N

fn(s)W (ds) =
∑
n∈N

∫
Rd
fn(s)W (ds).

Implicitly we can construct a Brownian random measure by considering an orthonor-
mal basis (en)n∈N of L2(Rd) and a sequence (ηn)n∈N of i.i.d. N (0, 1) r.v., then let

W (ds) =
∑
n∈N

ηnen(s) ds
(2π)d/2 . (2.1)

This implies that ∫
Rd
f(s)W (ds) =

∑
n∈N
〈f, en〉L2(Rd) ηn

holds for all f ∈ L2(Rd), where

〈f, en〉L2(Rd) =
∫
Rd
f(s)en(s) ds

(2π)d/2 .

Definition 2.1.18. Let W (ds) be a real valued Brownian random measure, F be
the space of complex valued functions f ∈ L2(Rd,C) with f(−ξ) = f(ξ). Then for
every f ∈ F we define the Fourier transform of W (ds), denoted Ŵ (dξ), by∫

Rd
f(ξ)Ŵ (dξ) :=

∫
Rd
f̂(s)W (ds).

Now for a Brownian random measure of the form (2.1) the above definition yields a
way to find the corresponding Fourier transform Ŵ (dξ) explicitly∫

Rd
f(ξ)Ŵ (dξ) =

∫
Rd
f̂(s)W (ds)

=
∑
n∈N

〈
f̂ , en

〉
L2(Rd)

ηn

=
∑
n∈N
〈f, ên〉L2(Rd) ηn

=
∑
n∈N

∫
Rd
f(ξ)ên(ξ) dξ

(2π)d/2ηn

where we use that 〈
f̂ , en

〉
L2(Rd)

=
∫
Rd
f̂(s)en(s) ds

=
∫
Rd
f(ξ)ên(ξ) dξ

= 〈f, ên〉L2(Rd) .
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Now with Fubini–Tonelli we have

Ŵ (dξ) =
∑
n∈N

ηnên(ξ) dξ
(2π)d/2 . (2.2)

Another important property which follows from Definition 2.1.18 and Proposition
2.1.4 is that for f, g ∈ F

E
[∫

Rd
f(ξ)Ŵ (dξ)

∫
Rd
g(ξ)Ŵ (dξ)

]
= E

[∫
Rd
f̂(ξ)W (dξ)

∫
Rd
ĝ(ξ)W (dξ)

]
=
∫
Rd
f̂(s)ĝ(s) ds

(2π)d/2
(2.3)

2.1.4 Stationary fields
Definition 2.1.19. A field X = (X(t), t ∈ T ) s.t. E [|X(t)|2] <∞, t ∈ T is called
weakly stationary if the mean value is constant and if there exists a function r s.t. the
covariance R(t, s) = r(t−s). This function r is called the autocovariance function of
X. The field X is called strictly (or strongly) stationary if it holds that for all h ∈ T
the distribution of (X(t), t ∈ T ) and (X(t + s), t ∈ T ) is equal, this is denoted in
the following way

(X(t+ s))t∈T
(d)= (X(t))t∈T .

It can be shown that a strictly stationary field with finite first and second moment
is weakly stationary. Another property for Gaussian fields is that the field is strictly
stationary if and only if it is weakly stationary.

Definition 2.1.20. For a weakly stationary field (X(t), t ∈ T ) the autocovari-
ance function r(t − s) = R(t, s) is a non-negative definite function in the sense of
Definition 2.1.6. If r is continuous then by Bochner’s theorem 2.1.2 there exists a
symmetric measure µ on Rd s.t.

r(t) =
∫
Rd
eitξµ(dξ).

This measure is called the spectral measure of the field X. If µ admits a density with
respect to the Lebesgue measure dξ then this density is called the spectral density
of X.

Remark. Consider a centered stationary Gaussian field (X(t), t ∈ T ) with covari-
ance r(h) = E [X(t+ h)X(t)]. Assume that r is a continuous function with the
corresponding spectral measure µ(dξ) = f(ξ) dξ. Observe that r(h) = r(−h) and
by Definition 2.1.20 we have that

r(h) =
∫
Rd
eihξf(ξ) dξ.

This must then imply f(ξ) = f(−ξ) and that f is a non-negative definite function.
Next construct

Y (t) = (2π)d/4
∫
Rd

√
f(ξ)eitξŴ (dξ), (2.4)

14



2. Theory

with W a real Brownian random measure. From Proposition 2.1.4 Y is a centered
Gaussian field and its covariance function can be calculated with the isometry prop-
erty defined above (2.3) and Parseval’s formula [7],

E [Y (t)Y (s)] =
∫
Rd
f(ξ)ei(t−s)ξ dξ = r(t− s).

This shows that X and Y have the same mean and covariance, now since they are
Gaussian this shows that they have the same distribution. The representation of Y
is called the spectral representation of X.

Recall Example 2.1.1 of the Brownian motion. This process is not stationary since
for example the variance is not the same over time. However often one might discuss
stationarity of a field and not explicitly mean the field itself but its increments, such
a field is called a field with stationary increments.

Definition 2.1.21. A field (X(t), t ∈ T ) s.t.

(X(t+ h)−X(s+ h))t∈T
(d)= (X(t)−X(s))t∈T

for all s, h ∈ T = Rd is called a field with stationary increments.

Previously the spectral representation of the covariance of a stationary field was
shown and now the corresponding representation for fields with stationary incre-
ments will be defined. Let (X(t), t ∈ T ) be a centered field with stationary in-
crements with finite variance, X(0) = 0 a.s. and continuous covariance. Following
the steps in [4] with this setting it can be shown that the spectral representation
for a Gaussian field with stationary increments, given a spectral density f , is the
following

X(t) (d)= (2π)d/4
∫
Rd

(eitξ − 1)
√
f(ξ)Ŵ (dξ) + t>N,

where N is a centered Gaussian random vector with covariance Σ, which is indepen-
dent of the integral representation for all t ∈ Rd. Both t and N are column vectors
and the dot product of the vectors in Rd is defined as t>N = ∑d

i=1 tiNi.

2.1.5 Regularity
Another important part of this background chapter is to understand the regularity
of the fields.

Definition 2.1.22. Let f : Rd → R be a function s.t. there exists a constant C > 0
and 0 < H < 1 such that

|f(t)− f(s)| ≤ C ‖t− s‖H ,

for t, s ∈ Rd. A function that fulfills this property is called H-Hölder continuous.
The set of such functions on [0, 1]d is denoted by CH .

Definition 2.1.23. Let f : Rd → R be a function s.t. on every compact set K ⊂ Rd

there exists a C(K) > 0 and 0 < H < 1 such that

|f(t)− f(s)| ≤ C(K) ‖t− s‖H ,

for t, s ∈ K. Then f is called locally H-Hölder continuous.
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Both these definitions yield the inclusion that if H ′ < H, then H-Hölder continuous
functions are also H ′-Hölder continuous. This Hölder exponent will be referred to
as both Hölder exponent as well as the Hurst parameter.

Definition 2.1.24. A real valued function f defined in a neighbourhood of t has a
pointwise Hölder exponent H if

H(t) = sup
{
H ′ : lim

‖h‖→0

f(t+ h)− f(t)
‖h‖H′

= 0
}

(2.5)

Theorem 2.1.7 (Kolmogorov–Chentsov’s theorem). Let (X(t), t ∈ [A,B]d) be a
random field on a probability space (Ω,A,P). If there exist three positive constants
α, β, C s.t., for t, s ∈ [A,B]d

E [|X(t)−X(s)|α] ≤ C ‖t− s‖d+β ,

then there exists a locally γ−Hölder continuous modification X̃ of X for every γ <
β/α. That is, there exist a random variable h and a constant δ > 0 s.t.

P
(
ω : sup

‖t−s‖≤h(ω)

|X̃(t)(ω)− X̃(s)(ω)|
‖t− s‖γ

≤ δ

)
= 1.

With this theorem we can show that the Brownian motion from Example 2.1.1 is
locally γ−Hölder continuous for all γ < 1

2 − ε, ε > 0. This theorem is proved in
[11].

Theorem 2.1.8. Let (X(t), t ∈ [A,B]) be a stochastic process s.t. there exist posi-
tive constants α0, β0, C0 s.t. for t, h ∈ [A,B] such that t+ h ∈ [A,B]

E [|X(t+ h)−X(t)|α0 ] ≤ C0|h|1+β0 .

Assume there exist three other positive constants α1, β1 > α1, C1 s.t. for all t, h ∈
[A,B] such that t− h, t+ h ∈ [A,B] it holds that

E [|X(t+ h) +X(t− h)− 2X(t)|α1 ] ≤ C1|h|1+β1 .

Then there exists a modification of X which has almost surely continuous differen-
tiable sample paths.

The next part will cover convergence and hence we recall Definition 2.1.2 of the
finite dimensional distribution of a field.

Definition 2.1.25. Let (Xn, n ∈ N) be a sequence of random fields, then we say
that (Xn, n ∈ N) converges in distribution to the random field X for all finite
dimensional margins of the field, if, k ∈ N and (t1, . . . , tk) ∈ T k it holds that

lim
n→∞

(Xn(t1), . . . , Xn(tk))
(d)= (X(t1), . . . , X(tk)).
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Remark. Consider the space of continuous functions C0([A,B]d) onto R with the
topology induced by the uniform metric distance, that is

ρ(f, g) = sup
t∈[A,B]d

|f(t)− g(t)|.

This topology corresponds to the uniform convergence, which is central in our next
definition.

Definition 2.1.26. Let (Xn, n ∈ N) be a sequence of continuous random fields. We
say that (Xn, n ∈ N) converges in distribution to the continuous random field X
on the space of continuous functions endowed with the topology of the uniform
convergence, if, for every bounded continuous functional F : C0 → R

lim
n→∞

E [F (Xn)] = E [F (X)] .

Proposition 2.1.5. Convergence in distribution on the space of continuous func-
tions endowed with the topology of the uniform convergence implies the convergence
of finite dimensional margins.

Theorem 2.1.9. Let (Xn, n ∈ N) and X be C0-valued random fields s.t. for all k ∈
N and t1, . . . , tk ∈ [A,B]d the finite dimensional distributions of (Xn(t1), . . . , Xn(tk))
converge to (X(t1), . . . , X(tk)). If there exist three positive constants α, β, C s.t.
for t, s ∈ [A,B]d

sup
n∈N

E [|Xn(t)−Xn(s)|α] ≤ C ‖t− s‖d+β ,

then (Xn, n ∈ N) converges to the continuous field X in distribution on the space
of continuous functions with respect to the topology of the uniform convergence.

2.2 Fractal analysis

2.2.1 Fractional operators
To define fractional fields in the sense of an integral representation we must consider
fractional operators. To this end we refer the details of the derivations in [4] which
is based on Fourier analysis. This approach leads to the d-dimensional harmonizable
fractional operator ĨH : L2(Rd)→ L2(Rd) defined as

ĨH(f(t)) =
∫
Rd
f̂(ξ)(e−itξ − 1)

‖ξ‖H+d/2
dξ

(2π)d/2 . (2.6)

Clearly the operator ĨH is defined on L2(Rd) since k(ξ) = (e−itξ−1)
‖ξ‖H+d/2 ∈ L2(Rd). This is

directly related to Gaussian random measures and later the integral representation
of fractional Brownian motion. One can also with the use of Plancherel’s theorem
[7] rewrite the expression from the spectral frequency form to the so-called moving-
average fractional operator:

ĨH(f(t)) = C
∫
Rd
f(s)(‖t− s‖H−d/2 − ‖s‖H−d/2) ds

(2π)d/2 . (2.7)

Now following the steps in [6] we will define the Hausdorff measure.

17



2. Theory
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Figure 2.2: The Hausdorff measure Hs of the graph of Brownian motion

Definition 2.2.1. Let {Ui} be a countable or finite collection of sets of diameter at
most δ that covers a set F , then {Ui} is a said to be a δ-cover of F . Now suppose
F is a subset of Rd and s is a non-negative number, then define for any δ > 0 the
measure

Hs
δ(F ) = inf

{ ∞∑
i=1

diam(Ui)s : diam(Ui) < δ, F ⊂
∞⋃
i

{Ui}
}
.

Then by letting δ → 0 the s-dimensional Hausdorff measure of F is obtained,

Hs(F ) = lim
δ→0
Hs
δ(F ).

Now an important property of the Hausdorff measure is the fact that it yields either
infinity or 0 except for possibly one value of s for each set F . This value s is the
Hausdorff dimension and is defined as

dimH(F ) = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) =∞}. (2.8)

Example 2.2.1. Continuing on Example 2.1.1 with the Brownian motion it can be
shown that this process has the Hausdorff dimension dimH(B) < 3

2 . In Figure 2.2
the Hausdorff measure of the graph of B is illustrated to express how the measure
works and not in a formal sense. In Lemma 2.2.1 the Hausdorff dimension is directly
related to the Hurst parameter.

This following property relates the Hausdorff dimension to the Hurst parameter H
which will become more essential when we are defining fractional Brownian fields.

Lemma 2.2.1. For 0 < H < 1 we let f be a H-Hölder continuous function. Then
dimH{(t, f(t)) : t ∈ [0, 1]} ≤ 2−H.

Lemma 2.2.2. Let F be a Borel set in Rd. Define the s-energy of F associated with
a given probability measure µ

Is(µ) =
∫
F 2

µ(dx)µ(dy)
|x− y|s

.
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If there exists a probability measure µ on F with

Is(µ) <∞

then dimH(F ) ≥ s. If Hs(F ) > 0 then there exists a probability measure µ on F
with It(µ) <∞ for all t < s.

2.2.2 Lemarié–Meyer basis
We finish this section by doing a brief introduction of the Lemarié–Meyer basis that
will be used as an orthonormal basis for L2(R). There exists a function ψ(1) ∈ L2(R)
such that the support of its Fourier transform is included in {2π

3 < |ξ| < 8π
3 } and

such that the functions
ψ

(1)
j,k (x) = 2j/2ψ(1)(2jx− k), (2.9)

where j, k ∈ Z, constitute an orthonormal basis of L2(R). This index and index
set is denoted by λ = (j, k, l) ∈ Λ = Z × Z × {1}. You can also show that there
is another basis of L2(R) consisting of the orthonormal functions (ψ(l)

j,k)λ∈Λ+ where
Λ+ = N×Z×{1}∪{0}×Z×{0}, and ψ(0)

0,k = ψ(0)(x−k) for a function ψ(0) ∈ L2(R).

The important part of this basis is a localization property. The inverse Fourier
transform yields

ψ(1)(x) =
∫

2π
3 <|ξ|<

8π
3

e−ixξψ̂(1)(ξ) dξ
(2π)1/2 ,

which implies that ψ(1) ∈ C∞. One can also show that

|ψ(1)(x)| ≤ C(K)
1 + |x|K and

|ψλ(x)| ≤ C(K)2j/2
1 + |2jx− k|K

for all K ∈ N where ψλ(x) = ψ
(1)
j,k (x).

2.3 Fractional Brownian fields
In this part of the background chapter we will finally be able to define fractional
Brownian motion and in the case of dimension d > 1 fractional Brownian fields.
The section will begin by explaining an important property of fractional Brownian
fields, which is self-similarity. Then we will go on to the theorems that give rise to
the definition of the fractional Brownian motion.

2.3.1 Self-similarity
First, let us consider the deterministic case. The most trivial case is a straight line,
each part of the line is similar to the whole, simply by a linear scaling. Self-similarity
arises in both trivial and non-trivial cases. For example some of the more famous
fractals are self-similar. The name fractals come from the fact that the set does not
have an integer Hausdorff dimension, but a fractional Hausdorff dimension.
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Figure 2.3: The Cantor set Figure 2.4: The Sierpinski triangle in R2

Figure 2.5: The von Koch snowflake

Example 2.3.1. In Figures 2.3-2.5 we present some iterations of three different
fractals that are self-similar and commonly referred to. First we have the Cantor set
which has the Hausdorff dimension log3(2) ≈ 0.6309, second the Sierpinski triangle
with Hausdorff dimension log2(3) ≈ 1.5850 and third we have the Koch snowflake
which consists of three Koch curves of Hausdorff dimension log3(4) ≈ 1.2619.

Formally we say that a function f is self-similar if it is similar to each part of itself.
That is f(εx) = εαf(x) for every ε > 0, x ∈ Rd and some α > 0, which is called
the order of the homogeneous function f . In the multidimensional case one usually
assumes rotational invariance and hence the only self-similar function is

f(x) = C ‖x‖α .

Next we want to find the corresponding case for stochastic self-similarity. This is
usually done in a spectral analysis sense. Another result which is useful to use here
is that the Fourier transform of a homogeneous function of order α is a homogeneous
function of order −(d+ α). Hence one has for a function f that is of order α

∫
Rd
eixεξf(x) dx

(2π)d/2 = ε−d−αf̂(ξ).

If we again consider the function f defined previously, we have
∫
Rd

eixξ − 1
‖ξ‖d+α

dξ
(2π)d/2 = Cα ‖x‖α .

Definition 2.3.1. A H-self-similar field satisfies

(X(εt))t∈Rd
(d)= εH(X(t))t∈Rd (2.10)

for every ε > 0.
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2.3.2 Fractional Brownian motion

Before going to a more general dimension d we will devote some time to the one di-
mensional case. Now recalling Definition 2.1.21 of stationary increments we present
an important proposition.

Proposition 2.3.1. Let (X(t), t ∈ R) be a non-constant real valued H-self-similar
process with stationary increments. Assume that E [X(t)2] < ∞ for all t ∈ R and
also limε→0X(ε) (d)= X(0). Then 0 ≤ H ≤ 1 and X(0) a.s.= 0. Moreover the covariance
of the second order process X is determined up to a multiplicative constant by:

R(s, t) = E [X(s)X(t)]

= E [X(1)2]
2

(
|s|2H + |t|2H − |s− t|2H

)
.

Also, if 0 < H < 1 then E [X(t)] = 0 for all t, and if H = 1 then X(t) = tX(1).

Corollary 2.3.1. Let 0 < H < 1 and V > 0. Then there exists only one Gaussian
process (BH(t))t∈R which is H-self-similar with stationary increments and such that
Var(BH(1)) = V . This process is called fractional Brownian motion (denoted fBm)
and it is a centered Gaussian process with covariance function R given by:

R(s, t) = V

2
(
|s|2H + |t|2H − |s− t|2H

)
.

The spectral measure of R is V dξ
CH |ξ|2H+1(2π)1/2 , where CH =

√
π

HΓ(2H) sin(Hπ)
√

2 . Also

E
[
(BH(t)−BH(s))2

]
= V |t− s|2H .

A fractional Brownian motion is called a standard fractional Brownian motion if
V = 1.

Example 2.3.2. We are now ready to show how trajectories of a fBm look like.
This is illustrated in Figure 2.6 for Hurst parameters of 0.2 and 0.8. These are
simulated with two different discretization levels which will be discussed in the next
chapter where approximation of these processes will be investigated.
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Figure 2.6: Sample paths of two fractional Brownian motions with Hurst param-
eter H = 0.2 to the left and H = 0.8 to the right, both are simulated with two
discretizations

With this characterization of a fractional Brownian motion we can quickly deduce
that by setting H = 1

2 it becomes an ordinary Brownian motion which we defined
in Definition 2.1.10.

Corollary 2.3.2. If (s1, . . . , sn) ∈ Rn s.t. si 6= sj for i 6= j, then the matrix
(R(si, sj)) is a n× n symmetric matrix which is positive definite and
(BH(s1), . . . , BH(sn)) are linearly independent almost surely. That is for
(a1, . . . , an) ∈ Rn s.t. ∑n

i=1 aiBH(si) = 0 implies that a1 = · · · = an = 0 almost
surely.

Proposition 2.3.2. Define a one to one correspondence IH from L2(R) onto the
RKHS of fractional Brownian motion, denoted KBH , as

IH(ψ)(y) =
∫
R

e−iyξ − 1
C

1/2
H |ξ|H+1/2

ψ̂(ξ) dξ
(2π)1/2

for every ψ ∈ L2(R). The RKHS of fractional Brownian motion can then be written
as

KBH = {φ : ∃ψ ∈ L2(R) s.t. φ = IH(ψ)}.

Finally, IH is an isometry s.t.

〈IH(ψ1), IH(ψ2)〉KBH = 〈ψ1, ψ2〉L2 .

Next we want to define the integral representation of fractional Brownian motion.
Let Λ = Z× Z× {1} and Λ+ = N× Z× {1} ∪ {0} × Z× {0}.

Theorem 2.3.1. Denote by ϕλ = IH(ψλ) for λ ∈ Λ+ an orthonormal basis for
the RKHS KBH and let (ηλ)λ∈Λ+ be the corresponding sequence of i.i.d. standard
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Gaussian variables. One gets the following representation of fractional Brownian
motion

BH(t) =
∑
λ∈Λ+

ϕλ(t)ηλ.

This series representation converges in both L2(Ω) and in almost sure sense for
the uniform convergence on compact intervals. Next, if one considers the Brownian
random measure defined in (2.2) associated to the Fourier transform of the Lemarié–
Meyer basis, that is,

Ŵ+(dξ) =
∑
λ∈Λ+

ψ̂λ(ξ)ηλ dξ,

then the harmonizable representation of fractional Brownian motion becomes

BH(t) =
∫
R

e−itξ − 1
C

1/2
H |ξ|H+1/2

Ŵ+(dξ).

There is a corresponding representation where one defines an orthonormal basis of
L2(R) indexed by Λ instead. In the next theorem we introduce the moving average
representation of the fractional Brownian motion.

Theorem 2.3.2. Let Ŵ (dξ) = ∑
λ∈Λ ψ̂λ(ξ)ηλ dξ be the Brownian random measure

associated to the Fourier transform of the Lemarié–Meyer basis, then denote the
Brownian random measure by W (ds) = ∑

λ∈Λ ψλ(s)ηλ ds. Now for 0 < H < 1 it
holds that∫

R

e−itξ − 1
C

1/2
H |ξ|1/2+H

Ŵ (dξ) =D(H)
C

1/2
H

∫
R

(
|t− s|H−1/2 − |s|H−1/2

)
W (ds) a.s.,

where

D(H) = 2−HΓ(5/4−H/2)
Γ(H/2 + 1/4)|1/4−H/2| .

The interpretation of |s|0 for H = 1/2 is |s|0 := ln(1/|s|).

Theorem 2.3.3. For every H ′ < H there exists a modification of BH s.t.

P

 sup
|s−t|<ε(ω)
|s|,|t|≤1

(
BH(t)−BH(s)
|t− s|H′

)
≤ δ

 = 1

where ε is a positive random variable and δ > 0. Also the pointwise Hölder exponent
for every t ∈ R:

sup
(
H ′ : lim

ε→0

BH(t+ ε)−BH(t)
|ε|H′

= 0
)

= H.

Theorem 2.3.4. The Hausdorff dimension defined in (2.8) of the graph of a frac-
tional Brownian motion with Hurst exponent H,

{(s, BH(s)) : 0 ≤ s ≤ 1},

is 2−H.
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2.3.3 Fractional Brownian fields
Now we are ready to return to the general case of d dimensions.

Definition 2.3.2. The standard fractional Brownian field (fBf for short) is a cen-
tered Gaussian field and its covariance is given by

R(x, y) = 1
2
(
‖x‖2H + ‖y‖2H − ‖x− y‖2H

)
.

Its harmonizable representation is given by

X(x) (d)=
∫
Rd

e−ixξ − 1
C

1/2
H ‖ξ‖

H+d/2 Ŵ (dξ),

where ξ = (ξ1, . . . , ξd) and the constant CH is defined by

CH =
∫
Rd

2(1− cos(ξ1))
‖ξ‖d+2H

dξ
(2π)d/2

= π1/2Γ(H + 1/2)
2d/2HΓ(2H) sin(πH)Γ(H + d/2) ,

Finally the variance of the increments is given by
E
[
(BH(x)−BH(y))2

]
= ‖x− y‖2H .

With this setting we can also note that the isometry operator IH : L2(R) → KBH ,
defined in Proposition 2.3.2 can be extended to higher dimensions simply by replac-
ing the absolute value with the Euclidean norm raised to the power of H + d/2.

Example 2.3.3. We generalize Example 2.3.2 to the two-dimensional case on the
domain of the unit square. This is illustrated in Figure 2.7 with Hurst parameter
H = 0.2 where we see how the field can simulate the texture of a cloud by using an
appropriate color map. In Figure 2.8 we have the corresponding case for a Hurst
parameter of H = 0.8.

Figure 2.7: Two illustrations of the same generated fractional Brownian field with
Hurst parameter H = 0.2. To the left the field is viewed from the z-axis in the
direction onto the field while on the right we view it from the side

24



2. Theory

Figure 2.8: Two illustrations of the same generated fractional Brownian field with
Hurst parameter H = 0.8. To the left the field is viewed from the z-axis in the
direction onto the field while on the right we view it from the side

2.4 Multifractional Brownian fields
In this report we have so far introduced different concepts that relate to both sta-
tionarity and self-similarity. The aim is now to extend our understanding to cover
another important property, namely the non-stationarity. By considering a varying
Hurst parameter H, which controls the regularity of the field, we achieve a multi-
fractional field which in turn is non-stationary in a global setting. Let h : T → (0, 1)
be the function controlling the Hurst parameter.

2.4.1 Asymptotic self-similarity
Definition 2.4.1. A field (Y (x))x∈Rd is locally asymptotically self-similar (lass for
short) at point x if

lim
ε→0+

(
Y (x+ εu)− Y (x)

εh(x)

)
u∈Rd

(d)= (Tx(u))u∈Rd ,

where the non-degenerate field (Tx(u))u∈Rd is called the tangent field at point x of
Y and the limit is in distribution for all finite dimensional margins of the field.
Furthermore, the field is lass with multifractional function h if for x ∈ Rd, it is lass
at point x with index h(x).

Proposition 2.4.1. A H-self-similar field Y with stationary increments is lass.
More precisely for x ∈ Rd

lim
ε→0+

(
Y (x+ εu)− Y (x)

εH

)
u∈Rd

(d)= (Y (u))u∈Rd .

Definition 2.4.2. A field (Y (x))x∈Rd is strongly locally asymptotically self-similar
(slass for short) at point x if

lim
ε→0+

(
Y (x+ εu)− Y (x)

εh(x)

)
u∈Rd

(d)= (Tx(u))u∈Rd ,
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where the non-degenerate field (Tx(u))u∈Rd is called the tangent field at point x of
Y and the limit is in distribution on the space of continuous functions endowed with
the topology of the uniform convergence on every compact. Furthermore, the field
is strongly lass with multifractional function h if for all x ∈ Rd, it is strongly lass at
the point x with index h(x).

The only difference between the definitions of lass and slass is in the sense of con-
vergence of the limit. Recall Proposition 2.1.5 which states the hierarchy of the two
types of convergence, for these definitions slass implies lass.

Definition 2.4.3. A field (Y (x))x∈Rd is H-asymptotically self-similar (∞-ass) at
infinity if

lim
R→∞

(
Y (Ru)
RH

)
u∈Rd

(d)= (T (u))u∈Rd ,

where the non-degenerate field (T (u))u∈Rd is called the tangent field at infinity of Y
and the limit is in distribution for all finite dimensional margins of the field.

2.4.2 Fields
Definition 2.4.4. A field (Y (x))x∈Rd is called a filtered white noise (fwn for short),
if it admits the harmonizable representation

Y (x) (d)=
∫
Rd

(e−ixξ − 1)g(x, ξ) d̂ξ,

where for x ∈ Rd we have (e−ixξ − 1)g(x, ξ) ∈ L2(Rd) and

g(x, ξ) = a(x)
‖ξ‖H+d/2 + r(x, ξ),

with 0 < H < 1. It is also required that a(x) 6= 0 is a real valued C2 function and
that r ∈ C2 with r(x, ξ) = r(x,−ξ). The final condition is that for m,n ∈ {0, 1, 2},
there exists a C > 0 and a η > H s.t.∣∣∣∣∣ ∂m+n

∂xm∂ξn
r(x, ξ)

∣∣∣∣∣ ≤ C

‖ξ‖η+n+d/2 ,

for all ξ, x ∈ Rd.

Proposition 2.4.2. A filtered white noise (Y (x))x∈Rd is strongly locally self-similar
with a multifractional function constantly equal to H. More precisely, for x ∈ Rd

lim
ε→0+

(
Y (x+ εu)− Y (x)

εH

)
u∈Rd

(d)= C
1/2
H a(x)(BH(u))u∈Rd ,

where the limit is in distribution on the space of continuous functions endowed with
the topology of the uniform convergence on every compact.

Finally we reach the most desired definition, which our thesis relies on, namely that
of the multifractional Brownian field.
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Definition 2.4.5. Let h : Rd 7→ (0, 1) be a measurable function. A real valued
field is called a multifractional Brownian field (mBf for short) with multifractional
function h, if it admits the harmonizable representation

Bh(x) (d)= 1
(C(h(x)))1/2

∫
Rd

e−ixξ − 1
‖ξ‖d/2+h(x) Ŵ (dξ),

where the normalization function C is defined as

C(s) =
∫
Rd

2(1− cos(ξ1))
‖ξ‖d+2s

dξ
(2π)d/2 = π1/2Γ(s+ 1/2)

2d/2sΓ(2s) sin(πs)Γ(s+ d/2) .

Worth noting is that for a constant function h(x) = H we obtain the ordinary fBf.

Proposition 2.4.3. Let Bh be a multifractional Brownian motion (mBm for short)
with multifractional function h. Then,

E [Bh(x)Bh(y)] = D(h(x), h(y))
(
‖x‖h(x)+h(y) + ‖y‖h(x)+h(y) − ‖x− y‖h(x)+h(y)

)
(2.11)

where

D(s, t) =

√
Γ(2s+ 1)Γ(2t+ 1) sin(πs) sin(πt)Γ( s+t+1

2 )
2Γ(s+ t+ 1) sin(π(s+ t))Γ( s+t+d2 )

,

for t, s ∈ (0, 1).

With the covariance function for a mBm defined we are now in a setting where it is
possible to model simulations, this will be further explained in the next chapter.

Example 2.4.1. In Chapter 4 where we cover the numerical examples we will
present a numerical study for different functions h and find the corresponding con-
vergence order. This framework will be explained in Chapter 3. One of these func-
tions is h(t) = t defined on the one-dimensional domain T = [0, 1]. This function
together with a trajectory is presented in Figure 2.9. Next we also present these
in the two-dimensional unit square with corresponding Hurst function h(x, y) = x,
this is illustrated in Figure 2.10.

Now recall the functions ψλ from the Lemarié–Meyer basis (2.9).

Definition 2.4.6. For λ ∈ Λ, x ∈ R, y ∈ (0, 1) we define

χλ(x, y) =
∫
R

e−ixξ − 1
|ξ|y+1/2 ψ̂λ(ξ)

dξ
(2π)1/2 .

Worth mentioning here is that we have seen this function before with set parameters
in Theorem 2.3.1 for fractional Brownian motion, that is χλ(t,H) = IH(ψλ).

Theorem 2.4.1. Let
Ŵ+(dξ) =

∑
λ∈Λ

ψ̂λ(ξ)ηλ dξ
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Figure 2.9: On the left is the function h(t) = t in the domain and on the right is
a generated sample path of the mBm with corresponding Hurst parameter to the
function h

Figure 2.10: On the left is the function h(x, y) = x in the domain and on the right
is a generated sample path of the mBf Bh with corresponding Hurst parameter to
the function h
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be a Brownian random measure and the functions χλ defined as in Definition 2.4.6,
then one gets the following series representation of the multifractional Brownian
motion

Bh(t) = 1
(C(h(t)))1/2

∑
λ∈Λ+

χλ(t, h(t))ηλ.

This convergence is in L2(Ω) and if h is locally Hölder continuous with exponent β,
the series converges a.s. for the uniform convergence on compact interval.

Proposition 2.4.4. Let h : Rd → (0, 1) be a β-Hölder continuous multifractional
function and Bh be the corresponding multifractional Brownian field. Next assume
β > supx∈Rd h(x), then

lim
ε→0+

E [(Bh(x+ εu1)−Bh(x+ εu2))2]
ε2h(x) = ‖u1 − u2‖2h(x)

for all u1, u2 ∈ Rd. Moreover the limit is uniform if u1, u2 ∈ K for a compact space
K ⊂ Rd.

With these results we have now covered the random fields of interest and we are
thus ready to go into the main part of this thesis, namely that of the approximation
of the multifractional fields.
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3
Approximation of multifractional

Brownian fields

In order to numerically approximate the stochastic fields defined in chapter 2 we
need to define a framework. To this end we will in this chapter cover how fractional
and multifractional Brownian fields can be constructed in a way such that the con-
vergence order of the scheme can be measured. We want to consider methods that
can be implemented in a reasonable fashion, i.e. not focused on efficiency and instead
a focus on generating fields with the correct distribution. First, to even consider
methods that can be evaluated, we need to define the error we are measuring with
respect to.

3.1 Convergence
This thesis mainly concerns the strong error which is a path-dependent error.

3.1.1 Strong error
The strong error compares sample-wise the field and its approximation. That is,
we are trying to approximate the field (X(t), t ∈ T ) with (Xh(t), t ∈ Th) which
depends on some discretization Th where h usually refers to the largest discretization
step.

Definition 3.1.1. For a stochastic field (X(t), t ∈ T ) in the space L2(Ω;E) and
a given numerical scheme depending on a discretization Th, the numerical approxi-
mations (Xh, h > 0) converge strongly to X if

lim
h→0

E [‖X −Xh‖E] = 0,

for a normed space (E, ‖·‖). Next if it exists a C > 0 and h0 > 0 s.t. for all h ≤ h0

E [‖X −Xh‖E] ≤ Chα,

then the numerical scheme converges strongly with order α > 0.

In this study we will consider the space L2(Ω;L2(T ;R)) with the following norm

E
[
‖X −Xh‖2

L2(T )

]1/2
= E

[∫
T
|X(t)−Xh(t)|2 dt

]1/2
,
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and the space L2(Ω;C(T ;R)) which has the following norm

E
[
‖X −Xh‖2

L∞(T )

]1/2
= E

[
ess sup
t∈T

|X(t)−Xh(t)|2
]1/2

.

Note that these norms, which will define how we calculate the error of the scheme,
depend on the exact continuous sample path X(t) for all t ∈ T .

3.2 Simulation methods
Now with the errors defined we will explain how we aim to simulate the sample paths.
In the literature one can find multiple methods of simulating fractional Brownian
fields ([5], [12], [3]). The most important and difficult task with our approach is
simulating the field such that the stationarity of the increments is kept. In this
section some simulation methods will be mentioned and explained.

3.2.1 Random midpoint displacement
The first method considered is the random midpoint displacement method which
can accurately generate a trajectory of a Brownian motion which is shown in Ex-
ample 3.2.1. However, when one wants to construct the process with a fractional
parameter, one loses the stationarity of the increments and hence this method is not
ideal for the purposes of this thesis.

There is a new modification to this method called the conditionalized random mid-
point displacement (RDMnm) which was originally introduced in [16]. This method
tries to lower the computational complexity and hence becomes a more viable op-
tion compared to the original method which is fairly computationally heavy. RDM
is later explored in [5]. In this paper the author reaches the conclusion that this
might be one of the better options for simulating fractional Brownian motion with
regards to the time component. However it still lacks the property of producing
stationary fields which is an essential problem. Even though this method might be
useful in many cases, in this scenario where we want to do a convergence study with
respect to the mesh it will not be of much use unfortunately.

Example 3.2.1. Let us recall example 2.1.1 of the ordinary Brownian motion on
the domain of the unit interval. We will briefly demonstrate how one would use the
random midpoint displacement to generate an accurate sample path of this process
on T = [0, 1]. This is done similarly to [4].

Begin by setting B(0) = 0 and commence by generating B(1) as a centered Gaussian
random variable with variance 1. Next we construct the midpoint B(1/2) by gen-
erating a Gaussian random variable with mean B(1)/2 and variance 1/2. This pro-
cedure continues by constructing B(1/4) as a Gaussian random variable with mean
B(1/2)/2 and variance 1/4. B(3/4) is constructed similarly. This is iterated for 2k
nodes and the i:th node will be generated with mean (B((i+1)/2k)−B((i−1)/2k))/2
and variance 2−k.
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3.2.2 Cholesky method
The second procedure considered to simulate and numerically find convergence rates
for fractional and multifractional Brownian fields are through a method using the
Cholesky decomposition, henceforth this method will be called the Cholesky method.

This method consists in constructing a covariance matrix (Ri,j)i,j which aims to ap-
proximate the covariance function R(s, t) = E [X(s)X(t)] for the centered Gaussian
field X. To simulate the desired field with this approach we follow a few simple
steps.

• First we consider a mesh of elements {Mi}i∈I in our domain D ⊂ Rd.

• Next we construct the covariance matrix R = (R(Mi,Mj)i,j∈I).

• Then we do a Cholesky decomposition of R into R = LLT , where L is a lower
triangular matrix. This is possible since R fulfills Proposition 2.1.2.

• Finally by simulating a standard normal random vector Z of dimension |I| the
field X = LZ will have the desired covariance structure of R. This is enough
since any Gaussian distribution is uniquely defined by its first two moments.

Computation-wise, the most heavy part of this procedure is the decomposition of
the covariance matrix, this part can be shown to have a complexity of O(N3) [8].
The remaining part however, which is important as well for each simulation of the
field, will have a numerical complexity of O(N2). Since we only need to evaluate the
matrix L once for each discretization, the only remaining difficulty is how to handle
the generated random numbers. This will be discussed closer in the next chapter.
Assuming we are interested in a finite number of points this method is exact in the
sense that we have no errors due to approximation of the distribution, but simply
errors due to the discretization.

3.2.3 FieldSim
In [4] and [12] another method is introduced which is based on the two previous men-
tioned algorithms. This method is developed on the basis of the Cholesky method
and the RMDmethod. This will be demonstrated by a more concrete example below,
after the method is explained. The main idea is fairly simple. First one simulates
the field with the Cholesky method in N1 nodes of the domain. In the next step one
uses a so-called fast step to simulate the field in the remaining N2 = N −N1 nodes,
assuming one wants an accuracy of N nodes. Depending on the relation between
N1 and N2 one can control the accuracy and computational time to some extent.
For larger N1 it takes on a higher accuracy for the price of a longer computational
time.

Example 3.2.2. Let us assume we want to simulate a Gaussian process on [0, 1]
with covariance function R. Then we decide we want to simulate the field X in
N = 10 nodes of the domain, see Figure 3.1a. Next we pick N1, e.g. 4, and do
exactly the procedure described in the Cholesky method. Thus we have X(ti) for
ti ∈ I1 = {0, 1

N1−1 , . . . , 1}, see Figure 3.1b.
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(b) Simulating X(ti) for ti ∈ I1, illustrated in the red circles
0/9 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 9/9

(c) Simulating X(tj) for tj ∈ I2 based on the closest nodes in ti ∈ I1. The tj ∈ I2
nodes are illustrated by the blue circles

Figure 3.1: Example of FieldSim procedure

Second step we want to simulate the remaining N2 values of X, that is X(ti) for
ti ∈ I2 = { 1

N−1 ,
2

N−1 ,
4

N−1 , . . . ,
N−2
N−1}, see Figure 3.1c. Now this method consists of

taking advantage of the already simulated values, which are assumed to be exact, and
use the orthogonal projection, denotedXXj of those to approximateX(tj) for tj ∈ I2.
This is done by simulating a Gaussian random variable with a specific variance, the
details of this are explained in [12]. Finally we have simulated (X(ti), ti ∈ I1 ∪ I2),
seen in Figure 3.2.
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X
(t

)

X(ti), i ∈ I1
X(ti), i ∈ I1 ∪ I2

Figure 3.2: Generated Gaussian process from Example 3.2.2

One of the drawbacks of this simulation is just as in the previous method of the
RMD we lose some accuracy in this second step and thus are only approximating
the covariance R. The main disadvantage of this algorithm is with respect to the
random numbers. It would be very technical, if possible, to use the same generated
Gaussian random numbers when comparing two discretizations.

3.3 Implementation
These simulation techniques have different advantages and while the Cholesky ap-
proach is not the one with lowest numerical complexity it compensates with accuracy.
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3. Approximation of multifractional Brownian fields

In this section we will describe how the previous examples of processes have been
simulated and also how we evaluate the error introduced in Section 3.1. First, the
different conditions for the mesh and dimensions will be considered. Second, the
chosen method, the Cholesky method will be explained closer and how we aim to
compare the errors between different mesh sizes.

3.3.1 Discretization
Recall the property of self-similarity in Definition 2.3.1 and that all the processes
we are considering are either H-self-similar or lass. The processes on the domain
T = [0, 1] ⊂ R will thus have the same distribution as in the whole domain of R up
to a constant. This first assumption should not effect as much as the next, which is
that of an equidistant mesh which will be the first to be considered.

Let Vk be the equidistant discretized mesh of Ω. To simplify even more, we will
consider meshes of twice the distance between mesh points compared to the finer
one. That is for the most coarse discretization V1 = V 1

N0
the distance between two

mesh points is 1
N0

and for the second most coarse discretization the distance is 1
2N0

.
This procedure is repeated for K iterations.

V1 = V 1
N0

=
{

0, 1
N0

,
2
N0

, . . . , 1
}
,

V2 = V 1
2N0

=
{

0, 1
2N0

,
2

2N0
, . . . , 1

}
,

...

VK = V 1
2K−1N0

=
{

0, 1
2K−1N0

,
2

2K−1N0
, . . . , 1

}
.

By this construction the discretizations will contain |Vk| =
∣∣∣∣V 1

2k−1N0

∣∣∣∣ = 2k−1N0 + 1
mesh points. In the next part we will refer to each mesh point in Vk as tki = i

2k−1N0

3.3.1.1 Adaptive mesh

In the next chapter we will show convergence results for different multifractional
functions and in these cases there are functions that vary more in certain parts
than others. For this reason it would be of interest to consider an adaptive mesh as
well. For example concentrating more nodes close to neighbourhoods where

∣∣∣dh(x)
dx

∣∣∣
is large. One way of constructing such a mesh is in the following way: Assume∫ 1

0

∣∣∣∣∣dh(x)
dx

∣∣∣∣∣ dx = C > 0

and define

φ(x) = 1
C

∫ x

0

∣∣∣∣∣dh(y)
dy

∣∣∣∣∣ dy.
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3. Approximation of multifractional Brownian fields

Next since φ is clearly continuous and φ(0) = 0 and φ(1) = 1 we can define points
{xi, i = 0, . . . , N} s.t. φ(xi) = i

N
. These points {xi} would be the mesh of a given

size of N + 1 mesh points. This way of constructing an adaptive mesh is done in [2].

3.3.2 Cholesky method simulation
Assuming the equidistant discretizations V1, . . . , VK , we want to evaluate the simu-
lations, trajectories of the processes. This will be done in the following steps.

• Calculate the covariance matrix R given each discretization V1, . . . , VK :

Rk =


R(tk0, tk0) . . . R(tk0, tk2k−1N0

)
... . . . ...

R(tk2k−1N0
, tk0) . . . R(tk2k−1N0

, tk2k−1N0
)


with the use of the chosen covariance function R(s, t) belonging to the corre-
sponding field (X(t), t ∈ [0, 1]).

• Given every Rk we do the Cholesky decomposition into the lower triangular
matrix Lk s.t. LLT = R.

• Next we want to generate appropriate random numbers that should correspond
to the same centered Gaussian vector Z. This is done with regard to the finest
mesh first and then onto the coarser meshes. By first simulating a Gaussian
random vector ZK of length 2K−1N0 + 1 and then summing up the values in
the following way:

ZK =


Z0
Z1
...

Z2K−1N0


︸ ︷︷ ︸
(2K−1N0+1)×1

where Zi ∼ N (0, 1),

ZK−1 = 1√
2


√

2Z0
Z1 + Z2

...
Z2K−1N0−1 + Z2K−1N0


︸ ︷︷ ︸

(2K−2N0+1)×1

,

...

Z1 = 1√
2K−1



√
2K−1Z0∑2K−1

m=1 Zm
...∑2K−1N0

m=2K−1(N0−1)+1 Zm


︸ ︷︷ ︸

(N0+1)×1

,

then every random vector will have the desired N (0, 1) distribution.
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• Finally we have the desired approximated field Xk = LkZk for k = 1, . . . , K
with the covariance of Rk.

Next step is to evaluate the error between Xk(t) and X(t) with the use of interpo-
lation.

3.3.3 Error analysis
Given the desired fields Xk from above we want to define exactly how each error
is evaluated. Since we do not have the exact solution X we will use a reference
solution, that is the finest approximated field XK .

Now since the processes are generated upon different mesh sizes we need to do
an interpolation for the more coarse processes such that they contain the same
number of mesh points as the finest one. In this report we opt for ordinary linear
interpolation:

Xk(t) =
(

1− t− ti
ti+1 − ti

)
Xk(ti) + t− ti

ti+1 − ti
Xk(ti+1),

for t ∈ (ti, ti+1]. Next with these new interpolated values every approximated process
{X1, . . . , XK} has values in 2K−1N0 + 1 mesh points. To ease notation we define
this variable as N := 2K−1N0 + 1, which is not to be confused with N0 which is only
the number of nodes in the coarsest discretization.

The next step is to simply calculate the error we are interested in. Recall from
Section 3.1 where we defined the L2- and L∞-norms:

E
[
‖X −Xh‖2

L2(T )

]1/2
= E

[∫
T
|X(t)−Xh(t)|2 dt

]1/2
,

E
[
‖X −Xh‖2

L∞(T )

]1/2
= E

[
ess sup
t∈T

|X(t)−Xh(t)|2
]1/2

.

We approximate these inner norms in the following way for each simulation:

‖X −Xh‖2
L2(T ) ≈

1
N − 1

N∑
n=1

∣∣∣XK(tn)−Xk(tn)
∣∣∣2 ,

‖X −Xh‖2
L∞(T ) ≈ max

tn∈V K

∣∣∣XK(tn)−Xk(tn)
∣∣∣2 .

3.3.4 Monte Carlo sampling
To evaluate these expectations numerically we do Monte Carlo samples, that is we
approximate the expectation in the following way:

E
[
‖X −Xh‖2

L2(T )

]1/2
≈

√√√√ 1
M

M∑
m=1

∥∥∥X(m) −X(m)
h

∥∥∥2

L2(T )
,

E
[
‖X −Xh‖2

L∞(T )

]1/2
≈

√√√√ 1
M

M∑
m=1

∥∥∥X(m) −X(m)
h

∥∥∥2

L∞(T )
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where (X(m),m ∈ N) is a sequence of i.i.d. samples of the process X.

This together with the discretized approximation yields the following form:

E
[
‖X −Xh‖2

L2(T )

]1/2
≈

√√√√ 1
M

M∑
m=1

1
N − 1

N∑
n=1
|XK,m(tn)−Xk,m(tn)|2,

E
[
‖X −Xh‖2

L∞(T )

]1/2
≈

√√√√ 1
M

M∑
m=1

max
tn∈V K

|XK,m(tn)−Xk,m(tn)|2.

Now it is important to note that we have two types of errors here, both a statistical
one that is due to the Monte Carlo sampling which depends on M and a discretiza-
tion which is because of the chosen step sizes h. Since we are investigating the strong
error we are interested in controlling the statistical error and to let the discretization
error be the critical one that we will measure. This is done by setting M > h−2 for
the finest hK = 1

N−1 . Analysis behind Monte Carlo sampling of this kind can be
found in [9] where it is covered in more detail.

3.3.5 Algorithm
This section will simply contain the algorithm to make the procedure clear how it
is intended to work. Implementation-wise the Cholesky method was implemented
into Matlab which can be found in Appendix A, while the FieldSim algorithm is
in open source R-code [3].

Algorithm 1: Cholesky Method
1 initialize K,M,N0;
2 ErrorL2 = zeros(K,1);
3 ErrorL∞ = zeros(K,1);
4 for k=1:K do
5 initialize V k;
6 calculate Rk(V k);
7 Cholesky decompose LLT = Rk;
8 end
9 for m=1:M do

10 ZK = randn(0, 1);
11 XK = LKZK ;
12 for k=1:K-1 do
13 Zk = resum(ZK , 2k−1N0);
14 Xk = LkZk;
15 Xk = interpolate(Xk, 2K−1N0 + 1);
16 ErrorL2(k) = ErrorL2(k) + L2norm(XK −Xk);
17 ErrorL∞(k) =ErrorL∞(k) + L∞norm(XK −Xk);
18 end
19 end
20 ErrorL2 =

√
1
M
ErrorL2 ;

21 ErrorL∞ =
√

1
M
ErrorL∞ ;
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4
Numerical results

In this chapter we reach the main interest of this report, namely the actual results
of the implementation. First, we will examine the standard fractional Brownian
motion from Corollary 2.3.1 and Example 2.3.2 before moving on to more unique
processes which depend on some multifractional function.

The primary objective is to examine the convergence rate with regard to the dis-
cretization and how this might relate to different Hurst functions h. This is done by
first illustrating the Hurst function h and in some cases also trajectories of different
discretizations. However, focus will lie on the convergence order of the process and
hence this will be calculated by fitting a linear polynomial to the error-vectors. In
Matlab this is calculated with the polyfit function. We will show loglog plots
of some of the processes to demonstrate how the more general figures are con-
structed that illustrate multiple convergence orders. These results are generated by
the Cholesky method which was introduced in Section 3.2.2. It is important to note
that to the best of our knowledge we are not aware of any theoretical convergence
orders for any of these processes and thus have nothing to compare to.

4.1 Fractional Brownian motion
Fractional Brownian motion was introduced in Chapter 2 where we mentioned some
of its basic properties. However if we recall Example 2.3.2 we can observe the reg-
ularity which will become important when investigating convergence orders. The
increments of the process are negatively correlated for H < 0.5 and they are pos-
itively correlated for H > 0.5. This can be observed in the trajectories from the
example. Another important property that has been of interest for the research
community is the long-range dependency [10]. This is conditioned on the following
sum,

∞∑
n=1

E [BH(1)(BH(n+ 1)−BH(n))] .

The process is said to exhibit long-range dependency if the sum does not converge.
This is the case for fBm with H > 0.5. Next with the understanding of how these
processes alter for different Hurst parameters we present in Figure 4.1 loglog plots
of the two processes over a Monte Carlo sample. This is done with 6 different
discretization sizes. We can see that the convergence rate is different for the two in
both norms. Overall the error is smaller for the fBm with a Hurst parameter of 0.8.
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Figure 4.1: loglog-plots of the two errors for two fBm processes over increasing
number of time steps N

Next we are interested in examining this for allH ∈ (0, 1). In Figure 4.2 we illustrate
the convergence orders for H ∈ (0, 1). This is simulated with N0 = 16, K = 6 and
M = 2N2. Clearly there is an almost linear dependency between the convergence
order in both norms and the Hurst parameter on the interval H ∈ (0, 0.6). However,
after this interval we see that it goes down. Although the errors seem to become
smaller (seen in Figure 4.1) we do not exhibit the same order of convergence.
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Figure 4.2: Convergence orders for fractional Brownian motion on the y-axis and
the corresponding Hurst parameter H on the x-axis. Each tick corresponds to one
convergence order for one fixed Hurst parameter. The y-axis also represents the
domain [0, 1] with regard to the mean-coordinate graph, this simply refers to where
in the domain the maximal error occurs depending on which Hurst parameter that
is in effect
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4.2 Multifractional Brownian motion
The processes of interest in this section are different multifractional Brownian mo-
tions. That is, the aim is to examine the convergence order for different Hurst
functions h that will vary over the domain T = [0, 1]. Functions of the following
forms will be examined: increasing, decreasing, sinusoids and discontinuous func-
tions.

4.2.1 Increasing Hurst functions
We will begin by examining mBm’s with a strictly growing Hurst function. Recall
Example 2.4.1 where we saw the Hurst function h(t) = t and a generated path of
this process. This function belongs to the first family of functions we examine.

4.2.1.1 Linear

Define functions of the form hZ(t) = Z + (1 − Z)t. Each of these functions for
every Z ∈ (0, 1) is a function that will grow from Z up to 1 at the final time (or
the right boundary) of the domain T = [0, 1]. In Figure 4.3 a few variations of this
function are illustrated. It becomes evident that this last version h1(t) = 1 is simply
a fractional Brownian motion with Hurst parameter 1 and should yield the same
convergence order as shown in the previous section.
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Figure 4.3: Six chosen examples of the functions hZ = Z + (1 − Z)t over the
domain [0, 1]

These functions, particularly for small Z, start of with high oscillations and go on
to become almost linear towards the end of the interval. This can be viewed in
perspective of the Hausdorff dimension from (2.8) and Lemma 2.2.1, where the pro-
cesses will exhibit a dimension of almost 2 at the beginning and dimension of 1 at
the end. Recall the previous result in Figure 4.1 from fBm’s where we found that
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the error in both norms were larger for a smaller value of the Hurst parameter H.
Based on that observation we would assume the errors for these processes would be
greater in the left part of the domain given a small initial value of Z.

In Figure 4.4 the convergence order with regard to parameter Z is presented. There
are a few interesting aspects to note here, especially compared to the orders of the
ordinary fBm. First we can clearly observe the substantially higher convergence
orders for parameter Z ∈ [0.4, 0.7] in L2 and Z ∈ [0.4, 0.9] with regard to the max-
norm. Secondly there is even more offset of the max-error curve from the L2-error
curve compared to the small offset for fBm’s which can be observed in Figure 4.2.
Finally we can confirm the fact that the maximal-error does on average occur early
in the domain for values of Z < 0.3.
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Figure 4.4: Convergence orders for the mBm defined by the Hurst functions
hZ(t) = Z + (1 − Z)t. The x-axis represent the parameter Z and the y-axis is
the corresponding convergence order for the errors

4.2.1.2 Non-linear

The previous result did in some way increase mesh-dependency when the Hurst
parameter linearly increased. The convergence order was higher when the process
started with a Hurst parameter of Z and linearly increased to 1 compared to the
ordinary fBm. Now a similar study is presented but for a function that increases
in a non-linear fashion, hZ(t) = Z + (1 − Z)t1/4. In Figure 4.5 we present a few
alterations of these Hurst functions.

Once again we measure the convergence order of the mBm’s defined by this family
of functions. This is illustrated in Figure 4.6 where we can observe even higher
convergence orders than previously. So far these results have indicated that an
increased mesh-dependency on h has yielded higher convergence orders.
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Figure 4.5: The graph of a subset of the family of Hurst functions defined on the
form hZ(t) = Z + (1− Z)t1/4 over the domain [0, 1]
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Figure 4.6: Convergence orders for the mBm defined by the functions hZ(t) =
Z + (1− Z)t1/4

4.2.2 Decreasing Hurst functions
We will now try to examine functions that are decreasing but also symmetric to
our previous increasing functions. Consider the family of functions on the form
hZ(t) = 1− (1− Z)t with Z ∈ (0, 1). They are defined to all start in 1 and linearly
decrease to Z over the domain T = [0, 1]. In Figure 4.7 we illustrate a few elements
from this set of functions.

By construction these functions are symmetrical on the domain [0, 1] in the x = 0.5
axis to the functions defined in 4.2.1.1. We are once again interested in evaluating the
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Figure 4.7: Illustration of some Hurst functions from the family of functions on
the form hZ(t) = 1− (1− Z)t

corresponding convergence orders. This is an indirect way of evaluating if ordinary
norms, like the L1- and L2-norm, of h have a relation to the convergence order.
That is, if this evaluation yields the same convergence order as previously we could
suspect that this is the case. In Figure 4.8 the convergence orders are evaluated for
each function corresponding to one value of Z ∈ (0, 1). We can clearly see that this
yields much lower convergence orders and as the functions become more flat and
closer to the case of a fixed Hurst parameter H = 1 the order goes down.
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Figure 4.8: Convergence orders for the mBm defined by the Hurst function hZ(t) =
1− (1− Z)t
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4.2.3 Sinusoids
In this part we will cover a sinusoid function. That is a smooth function that varies
over the domain in periods. We choose functions defined as

hZ(t) =

Z + 0.8Z sin(4πt) Z ∈ (0, 1/2)
Z + 0.8(1− Z) sin(4πt) Z ∈ [1/2, 1),

with 2 periods in the domain T = [0, 1]. This family of functions is illustrated in
Figure 4.9.
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Figure 4.9: Illustration of a few chosen Hurst functions from the family of functions
defined by hZ(t) = Z + 0.8Z sin(4πt) for Z ∈ (0, 1/2) and hZ(t) = Z + 0.8(1 −
Z) sin(4πt) for Z ∈ [1/2, 1)

To understand how these functions affect the mBm we illustrate in Figure 4.10 paths
of mBm with respect to two values of Z.
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Figure 4.10: Paths of two mBm defined by the Hurst function hZ(t) = Z+0.8(1−
Z) sin(4πt) for Z = 0.5 to the left and Z = 0.7 to the right
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Furthermore, a convergence study on these functions is shown in Figure 4.11. The
orders are almost constant except for on the interval (0.6, 0.8) where they are reach-
ing a peak with regard to both norms. For Z = 0.7 this is the periodic function
oscillating between 0.46 and 0.94 which yields convergence orders of about 0.75 in the
L2-norm and 0.5 in the Max-norm. This interval of values on the Hurst parameter
could for example be compared to the strictly increasing function h(t) = 0.5 + 0.5t
illustrated in Figure 4.3. That process yields convergence orders in L2-norm of 0.9
and in Max-norm of 0.8 which is clearly higher than for this process with a periodic
Hurst function.
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Figure 4.11: Convergence orders for the mBm defined by the Hurst function
hZ(t) = Z + 0.8Z sin(4πt) for Z ∈ (0, 1/2) and hZ(t) = Z + 0.8(1 − Z) sin(4πt)
for Z ∈ [1/2, 1)

4.2.4 Discontinuous
In this section we will consider a discontinuous function to illustrate the role conti-
nuity plays with regard to the numerical approximation. Let the set of functions be
defined in the following way

hZ(t) =

0.5 t ∈ [0, Z)
0.8 t ∈ [Z, 1],

where Z ∈ (0, 1). We illustrate these in Figure 4.12. This setting of course implies
that when Z is close to 0 or 1 we are left with an ordinary fractional Brownian
motion BH(t) for H = 0.8 and H = 0.5 respectively.

In the final convergence plot seen in Figure 4.13 we present the convergence orders
for the discontinuous mBm. We can observe that the convergence orders here are
very small and we would suspect large errors due to the jump.
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Figure 4.12: Illustration of a few chosen Hurst functions from the family of func-
tions defined by hZ(t) = 0.5 for t ∈ [0, Z) and hZ(t) = 0.8 for t ∈ [Z, 1]
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Figure 4.13: Convergence orders for the mBm defined by the Hurst function
hZ(t) = 0.5 for t ∈ [0, Z) and hZ(t) = 0.8 for t ∈ [Z, 1]

4.2.5 Discussion
Finally we are ready to summarize what has been accomplished and what remains for
future work. We aimed at finding good ways to numerically simulate multifractional
Gaussian processes. Further we wanted to measure how well we could simulate
these processes. This thesis manages to numerically approximate fractional and
multifractional Brownian motion. The primarily result concerns the convergence
order for the fractional Brownian motion. With the Cholesky method we find that
the convergence order in L2 is strictly greater than the Hurst parameter in the
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interval of [0, 0.6] and might suggest a linear dependency between the two. After
this interval we start to lose convergence rate, and in this thesis we do not manage
to answer why that is. Something that is observed and not fully shown is that
trajectories in the interval of [0.7, 1] have a strange behaviour where it does not
appear that they always converge with the current implementation. This is mostly
speculations and should not be viewed as more than potential research directions
for the future.

Next we did experiments with a number of different Hurst functions to find different
properties. The main interest being of course how the convergence rate relates to
the Hurst function of a multifractional Brownian motion. What was interesting to
note is how the convergence rate was clearly above that of a fractional Brownian
motion for a few different Hurst functions. Especially some of those that were
strictly growing functions did exhibit a much higher convergence rate, some were
above order one.

Something that was interesting to see as well was that we observed how the conver-
gence rate depends on if the function was increasing or decreasing. This was done
to see if we could find a relation between the Hurst function and the convergence
order. More specifically if a Hurst function symmetrical to another function would
yield the same convergence order. We could see that this was not the case and the
decreasing functions exhibited lower convergence orders.

To the best of our knowledge there are no theoretical results available regarding the
relation between the convergence order and the Hurst function. It now remains for
future work to theoretically confirm the obtained results. Furthermore, it would
be interesting to find a mathematical relation between the Hurst function and the
order of convergence.
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A
Appendix

A.1 Matlab code
In this appendix we have the Matlab code which implements the Cholesky method.
It begins by evaluating the covariance matrix with the corresponding help functions.
These help functions can be found after the initial code. Next it evaluates sample
paths and calculating the corresponding error between the reference solution and
the approximation.

MATLAB code
1 X = 1; % length of domain
2 eps = 10^( -32); % small value
3 K = 6; % number of discretizations
4 dim = 1; % choose between dimension 1 and 2
5 Hurst = 0.6;
6
7 count = zeros ( length (Hurst) ,1);
8 index_of_error = zeros ( length (Hurst) ,1);
9

10 N_vector = zeros (K ,1); % will contain number of time steps
in each discretization

11 N_vector (1) = 16; % number of time steps in the most
coarse discretization

12 for i=1:K -1
13 N_vector (i+1) = 2* N_vector (i);
14 end
15
16
17 error_L2 = zeros (K ,1);
18 error_max = zeros (K ,1);
19
20
21 % mesh for the reference solution
22 N_finest = 2* N_vector (end);
23 mesh_finest = zeros ( N_finest +1 ,1);
24 for i=1: N_finest +1
25 mesh_finest (i) = eps+X*(i -1) /( N_finest );
26 end
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27
28 % capital Z in the thesis , defining the parameter for the

hurst function H below , set to a constant for a
fractional Brownian motion

29 z = 0.6;
30 H = @(x)(z+0.999*(1 -z)*x);
31 % use help function covMat_mbm with corresponding Hurst

function H, mesh and dimension
32 [cov_finest , R_finest ] = covMat_mBm (H, mesh_finest ,dim);
33
34
35
36
37
38
39 % calculate the discretized meshes as well as their

corresponding covariance matrix R and lower triangular
matrix cov w.r.t. to given parameters

40
41 mesh = cell(K, 1);
42 cov = cell(K, 1);
43 R = cell(K, 1);
44
45 for k=1:K
46 N = N_vector (k);
47 mesh{k} = zeros (N+1 ,1);
48 for i=1:N+1
49 mesh{k}(i) = eps+X*(i -1) /(N);
50 end
51 [cov{k},R{k}] = covMat_mBm (H,mesh{k},dim);
52 end
53
54 % number of Monte Carlo samples
55 M = N_vector (end)^2;
56 for j=1:M
57 % generating the Gaussian random vector
58 Z_finest = randn (( N_finest +1) ,1);
59 % evaluating the sample path
60 BM_finest = cov_finest * Z_finest ;
61
62
63 for k=1:K
64 % evaluating the sample paths for the more coarse

discretizations by summarizing the random
numbers accordingly

65 N = N_vector (k);
66 l = N_finest /N;
67 Z = zeros (N+1 ,1);
68 for m=1:N

II



A. Appendix

69 for p=1:l
70 Z(1+m) = Z(1+m) +

Z_finest (1+(m -1)*l+p)/sqrt(l);
71 end
72 end
73 Z(1) = Z_finest (1);
74
75 BM = cov{k}*Z;
76
77 % calling the help function norm_LERP to evaluate

the max -error "e_max" and the L2 -error "e_L2"
78 % also returning ind_x which contains the

coordinate of where the max -error occurs
79 [e_max , ind_x , e_L2] =

maxnorm_LERP ( BM_finest (2: end),BM (2: end),dim);
80
81 error_L2 (k) = error_L2 (k)+e_L2;
82 error_max (k) = error_max (k)+e_max;
83
84 index_of_error = index_of_error + ind_x;
85
86
87 end
88 end
89
90 % taking the sample mean for each discretization
91 for k=1:K
92 error_L2 (k) = error_L2 (k)/M;
93 error_max (k) = error_max (k)/M;
94 end
95
96 % convergence order
97 h_L2 = polyfit (log( N_vector ),log(sqrt( error_L2 )) ,1);
98 h_max = polyfit (log( N_vector ),log(sqrt( error_max )) ,1);
99

100 % A function evaluating the covariance matrix R with a
given Hurst function

101 % H. Returns this matrix as well as the lower triangular
matrix L from

102 % doing a cholesky decomposition . Calling the help function
cov_fBm which

103 % evalutes the covariance of the Gaussian field desired .
104 function [L,R] = covMat_mBm (H,mesh ,dim)
105
106 if (dim == 1)
107 N = length (mesh) -1;
108 cov = zeros (N+1,N+1);
109 for i=1:N+1
110 H_x = H(mesh(i));
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111 for j=1:i
112 H_y = H(( mesh(j)));
113 cov(i,j) = cov_fBm (mesh(i),mesh(j),H_x ,H_y ,dim);
114 cov(j,i) = cov(i,j);
115 end
116 end
117 L = chol(cov ,’lower ’);
118 R = cov;
119 end
120
121 if (dim == 2)
122 N = length (mesh);
123
124 for i=1:N
125 H_x = H(mesh (1,i),mesh (2,i));
126 for j=1:i
127 H_y = H(mesh (1,j),mesh (2,j));
128 cov(i,j) =

cov_fBm (mesh (:,i),mesh (:,j),H_x ,H_y ,dim);
129 cov(j,i) = cov(i,j);
130 end
131 end
132 L = chol(cov ,’lower ’);
133 R = cov;
134 end
135 end
136
137 % A function taking in the values of the Hurst function in

the desired
138 % coordinates as well as the coordinates and the dimension

of the domain .
139 % It returns the covariance .
140
141 function [cov ,D_h] = cov_fBm (x,y,H_x ,H_y ,dim)
142 if (dim == 1)
143 C_h = @(h)(pi ^(1/2+1/2) * gamma (h+1/2) /(h*sin(pi*h)...
144 * gamma (2*h)*gamma (h+1/2))) ^(1/2) ;
145
146 D_h = C_h (( H_x+H_y)/2) ^2 /(2*( C_h(H_x))*( C_h(H_y)));
147
148 cov = D_h * (abs(x)^( H_x+H_y)+abs(y)^( H_x+H_y) -...
149 abs(x-y)^( H_x+H_y));
150 end
151 if (dim == 2)
152 C_h = @(h)(pi ^( dim /2+1/2) *gamma (h+1/2) /(h*sin(pi*h)...
153 * gamma (2*h)*gamma (h+dim /2))) ^(1/2) ;
154
155 D_h = (C_h (( H_x+H_y)/2))^2 /(2*( C_h(H_x))*( C_h(H_y)));
156
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157 cov = D_h * (( sqrt(x(1) ^2 +
x(2) ^2))^( H_x+H_y)+( sqrt(y(1) ^2 +
y(2) ^2))^( H_x+H_y)...

158 -(sqrt ((x(1) -y(1))^2 + (x(2) -y(2))^2))^( H_x+H_y));
159 end
160
161 end
162
163 %% Assuming input is of size (n+1 ,1)
164 % Uses a linear interpolation on the form (1-j/N)*X_i + j/N

* X_(i+1) for
165 % nodes lieing between X_i and X_(i+1). Evalutes the max

error and L2 error
166 % between the two vectors . Also returns the average

coordinate of where the
167 % maximal error occurs .
168
169
170 function [val_max , ind_x , val_mean ] =

maxnorm_LERP (BM1 ,BM2 ,dim)
171
172 if dim == 1
173 N1 = length (BM1);
174 N2 = length (BM2);
175
176 if (N1 == N2)
177 l = 1;
178 k = 0;
179 else if (N1 > N2)
180 l = (N1)/(N2);
181 k = 1;
182 else if (N1 < N2)
183 l = (N2)/(N1);
184 k = 2;
185 end
186 end
187 end
188 e = 0;
189 if k == 0
190 e = (abs(BM1 - BM2).^2);
191 [val_max ,ind_x] = max(e);
192 val_mean = mean(e);
193 end
194
195 if k == 1
196 e = size(N1 +1 ,1);
197 BM2 = [0 ; BM2 ];
198 BM1 = [0 ; BM1 ];
199 for i=1: N1
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200 j = floor ((i -1)/l)+1;
201 intpol =

BM2(j)*(j-(i -1)/l)+BM2(j+1) *((i -1)/l-j+1);
202 e(i) = abs(BM1(i)-intpol )^2;
203
204 end
205 e(N1 +1) = abs(BM1(end)-BM2(end)).^2;
206 [val_max ,ind_x] = max(e);
207 val_mean = mean(e);
208 end
209
210 if k == 2
211 e = size(N2 +1 ,1);
212 BM1 = [0; BM1 ];
213 BM2 = [0 ; BM2 ];
214 for i=1: N2
215 j = floor ((i -1)/l)+1;
216 intpol =

BM1(j)*(j-(i -1)/l)+BM1(j+1) *((i -1)/l-j+1);
217 e(i) = abs(BM2(i)-intpol )^2;
218 end
219 e(N2 +1) = abs(BM1(end)-BM2(end))^2;
220 err = max(e);
221 [val_max ,ind_x] = max(e);
222 val_mean = mean(e);
223 end
224
225 ind_x = ind_x/max(N1+1,N2 +1);
226 end
227
228 if dim == 2
229 N1 = sqrt( length (BM1)) -1;
230 N2 = sqrt( length (BM2)) -1;
231
232 if (N1 == N2)
233 l = 1;
234 k = 0;
235 else if (N1 > N2)
236 l = (N1)/(N2);
237 k = 1;
238 else if (N1 < N2)
239 l = (N2)/(N1);
240 k = 2;
241 end
242 end
243 end
244
245 if k == 0
246 e = (abs(BM1 - BM2).^2);
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247 val_max = max(e);
248 val_mean = max(e);
249 end
250
251 if k == 1
252 e = zeros ((N1 +1) *(N1 +1) ,1);
253 en = zeros ((N1 +1) *(N1 +1) ,1);
254
255 % Calculating the rows where we use a linear

interpolation between
256 % two points
257 for row =1: N2+1
258 for col =1: N2
259 for j=1:l
260 intpol =

BM2 ((N2 +1) *(row -1)+col)*(1 -(j -1)/l)
+ ...

261 BM2 ((N2 +1) *(row -1)+col +1) *((j -1)/l);
262 e(l*(row -1) *(N1 +1) +(col -1)*l+j) = ...
263 abs(BM1(l*(row -1) *(N1 +1) +...
264 (col -1)*l+j)-intpol )^2;
265 end
266 end
267 e(l*(row -1) *(N1 +1)+N1 +1) = ...
268 abs(BM1(l*(row -1) *(N1 +1)+N1 +1) -...
269 BM2 ((N2 +1) *(row -1)+N2 +1))^2;
270 end
271 % Calculating the columns where we use a linear

interpolation
272 % between two points
273 for col =1: N2+1
274 for row =1: N2
275 for j=1:l
276 intpol =

BM2 ((row -1) *(N2 +1)+col)*(1 -(j -1)/l)
+ ...

277 BM2 (( row)*(N2 +1)+col)*((j -1)/l);
278 e(l*(row -1) *(N1 +1) +1+...
279 (col -1)*l+(j -1) *(N1 +1)) = ...
280 abs(BM1(l*(row -1) *(N1 +1) +1+...
281 (col -1)*l+(j -1) *(N1 +1))-intpol )^2;
282
283 end
284 end
285 end
286
287 % Calculating the remaing "inner points ", that is

mesh -nodes that
288 % doesn ’t have any row or column that interferes

VII



A. Appendix

with the rougher
289 % mesh , and hence we will do a weighted linear

interpolation
290 % between 4 mesh - points .
291
292 for row =1: N2
293 for col =1: N2
294 for j=l-1
295 for i=l-1
296 intpol

=(1-i/l)*(1-j/l)*BM2 ((row -1) *(N2 +1)+col)+...
297 (i/l)*(1-j/l)*BM2 ((row -1) *(N2 +1)+col +1) +...
298 (1-i/l)*(j/l)*BM2(row *(N2 +1)+col)+...
299 (i/l)*(j/l)*BM2(row *(N2 +1)+col +1);
300
301 e(i+(j -1) *(N1 +1) +(row -1)*l*(N1 +1) +...
302 (col -1)*l+1+ N1 +1) = abs(BM1(i+(j -1) *(N1 +1) ...
303 +(row -1)*l*(N1 +1) +(col -1)*l+1+ N1 +1) -intpol )^2;
304 end
305 end
306 end
307 end
308 val_max = max(e);
309 val_mean = mean(e);
310
311 end
312 if k == 2
313 e = zeros ((N2 +1) *(N2 +1) ,1);
314 en = zeros ((N2 +1) *(N2 +1) ,1);
315
316 % Calculating the rows where we use a linear

interpolation between
317 % two points
318 for row =1: N1+1
319 for col =1: N1
320 for j=1:l
321 intpol =

BM1 ((N1 +1) *(row -1)+col)*(1 -(j -1)/l)...
322 + BM1 ((N1 +1) *(row -1)+col +1) *...
323 ((j -1)/l);
324 e(l*(row -1) *(N2 +1) +(col -1)*l+j) = ...
325 abs(BM2(l*(row -1) *(N2 +1) +...
326 (col -1)*l+j)-intpol )^2;
327 end
328 end
329 e(l*(row -1) *(N2 +1)+N2 +1) =

abs(BM2(l*(row -1) *(N2 +1)+N2 +1) -...
330 BM1 ((N1 +1) *(row -1)+N1 +1))^2;
331 end
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332 % Calculating the columns where we use a linear
interpolation

333 % between two points
334 for col =1: N1+1
335 for row =1: N1
336 for j=1:l
337 intpol =

BM1 ((row -1) *(N1 +1)+col)*(1 -(j -1)/l)
...

338 + BM1 (( row)*(N1 +1)+col)*((j -1)/l);
339 e(l*(row -1) *(N2 +1) +1+( col -1)*l+...
340 (j -1) *(N2 +1)) =

abs(BM2(l*(row -1) *(N2 +1) ...
341 +1+( col -1)*l+(j -1) *(N2 +1))-intpol )^2;
342 end
343 end
344 end
345
346 % Calculating the remaing "inner points ", that is

mesh -nodes that
347 % doesn ’t have any row or column that interferes

with the rougher
348 % mesh , and hence we will do a weighted linear

interpolation
349 % between 4 mesh - points .
350
351 for row =1: N1
352 for col =1: N1
353 for j=l-1
354 for i=l-1
355 intpol =

(1-i/l)*(1-j/l)*BM1 ((row -1) *(N1 +1)+col)+...
356 (i/l)*(1-j/l)*BM1 ((row -1) *(N1 +1)+col +1) +...
357 (1-i/l)*(j/l)*BM1(row *(N1 +1)+col)+...
358 (i/l)*(j/l)*BM1(row *(N1 +1)+col +1);
359
360 e(i+(j -1) *(N2 +1) +(row -1)*l*(N2 +1) +(col -1)*l+1...
361 +N2 +1) = abs(BM2(i+(j -1) *(N2 +1) +...
362 (row -1)*l*(N2 +1) +(col -1)*l+1+ N2 +1) -intpol )^2;
363 end
364 end
365 end
366 end
367 val_max = max(e);
368 val_mean = mean(e);
369 end
370 ind_x =1;
371 end
372 end
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