

DEPARTMENT OF MECHANICS AND MARITIME SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2021

www.chalmers.se

Lean DevOps for automotive
OEMs
Master’s thesis in Quality and operations management

Antonio Juric

MASTER’S THESIS IN QUALITY AND OPERATIONS MANAGEMENT

Lean DevOps for automotive OEMs

Antonio Juric

Department of Mechanics and Maritime Sciences

CHALMERS UNIVERSITY OF TECHNOLOGY

 Göteborg, Sweden 2021

Lean DevOps for automotive OEMs

Antonio Juric

© Antonio Juric, 2021-06-09

Supervisor and examiner: Ola Benderius

Master’s Thesis 2021:63

Department of Mechanics and Maritime Sciences

Chalmers University of Technology

SE-412 96 Göteborg

Sweden

Telephone: + 46 (0)31-772 1000

Department of Mechanics and Maritime Sciences

Göteborg, Sweden 2021-06-09

Lean DevOps for automotive OEMs

Master’s thesis in Quality and operations management

Antonio Juric

Department of Mechanics and Maritime Sciences

Chalmers University of Technology

Abstract

The accelerated software development has forced researchers and industries to

reorginaze in terms of the software development process. One such recent philosophy

in software development is DevOps. DevOps focuses on collaboration, continuous

integration and continuous deployment amongst other things, with the intention to

increase the cycle speed between feedback from end-user to an updated software. The

intention with this research has been to investigate how a DevOps implementation can

be achieved at an automotive OEM and what potential challenges and consequences

there are of such implementation. The current software development process, from

requirement to development was mapped with the help of three interviews with people

that have a long background within the automotive industry. Based on the interviews,

a approximated model was created to illustrate the challenges with the current

centralized approach in the industry. The results show how such an approach is slow

with little collaboration and the consequences are costly adjustments, slower speed to

market and less customer satisfaction. With DevOps and OTA updates however, this

process changes into being more responsive whilst additional functions can be added

after the release of the car. Many OEMs in the automotive industry are dependent on

their suppliers and to achieve a DevOps implementation, the OEMs must somehow

integrate together with the suppliers in a CI/CD pipeline where the developers are

located at different suppliers, and the OEM has an operations team that monitors the

different car fleets and decides when a new release is going to happen.

The challenges that come with an integration of DevOps is how this re-organization can

happen practically since the automotive industry is highly centralized and someone with

enough power must be convinced that this is the right decision. Furhermore, with this

integration and closer collaboration between suppliers and OEM, a new culture will

emerge. Having a cross-border culture regarding DevOps and having another internal

culture within the own borders can be challenging. Finally, there must also be a way to

protect the different IP that belong to the suppliers. The IP is usually different

algorithms in the software that is compiled and delivered to the OEM. If this protection

is not achieved in the CI/CD pipeline, it will be difficult to persuade the suppliers to

agree to this kind of integration. There are certainly many challenges in terms of

organization but with software being the future of automotive, there should definitely

be a push for increasing the software development speed. That is however only one part

of the whole infrastructure and supply chain since there are other challenges outside of

this research concerning more technical detail regarding the CI/CD pipeline and what

is required from the servers and cars for this to be released OTA.

Key words: DevOps, automotive, software development, continuous integration,

continuous deployment

Acknowledgements

I would like to thank everyone that has contributed to this research by finding

interviewee candidates, participating in interviews or by sharing knowledge as well as

experience. Through this work in this relatively new field, the research contributes to

a better holistic view of what it takes for automotive OEMs to adapt DevOps and

what to expect in the near future.

I would also like to thank my supervisor and examiner, Ola Benderius, who has been

guiding me in the right direction and contributed with his long experience and

expertise in this field.

Göteborg June 2021-06-09

Antonio Juric

Contents
1 Introduction.. 1

1.1 A brief history of software development approaches 2

1.2 What is DevOps? ... 3

1.3 Research questions and problem formulation.. 5

1.4 Limitations .. 5

1.5 Report structure ... 5

2 Background ... 6

2.1 How is DevOps used? .. 6

2.1.1 Benefits from DevOps adoption ... 7

2.1.2 Challenges with DevOps adoption .. 8

2.2 What is currently happening in the automotive industry? 9

3 Method ..11

3.1 Model ...11

3.2 Idealistic model ...11

3.3 Interviews ...11

3.4 Generalization ..11

3.5 Validity and reliability ..12

3.5.1 Validity ...12

3.5.2 Reliability ..12

4 Results ..13

4.1 Key takeaways from interviews ...13

4.2 Model of the current software development approach14

5 Discussion ...16

5.1 The current approach of software development for automotive OEM’s 16

5.2 What advantages does DevOps bring to an automotive OEM?17

5.2.1 Model with DevOps ...17

5.2.2 Improved user experience and well-being of workers19

5.2.3 No expensive recalls anymore ..19

5.2.4 Data collection and improved software development process19

5.2.5 The integration of suppliers and OEM ...20

5.3 Challenges with DevOps adoption at an OEM ...20

5.3.1 Centralized decision-making ...20

5.3.2 Integration of suppliers and OEM ...21

5.3.3 Culture change ..22

6 Conclusion and future research ..23

7 References ...24

8 Appendix ..27

8.1 Questions that were used for the interviews...27

1

1 Introduction

Ever since the Ford Model T was launched, automotive manufacturers have been

striving to make mechanical and hardware improvements to their newly released cars.

Henry Ford himself stated that "Any customer can have a car painted any colour that

he wants so long as it is black” [1], showing no intent of changing anything since it

was already a successful and highly standardized concept. Ever since then, the market

has showed off a vast variety of color on cars, as well as extensive hardware

improvements. Furthermore, the highly competitive environment has led to shrunk

life-cycles of cars while variety has increased [2]. This implies a fast-paced reality

where consumers are becoming more selective, changing correspondingly to the

market meaning that the successful concept of yesterday may not be successful today.

This is ongoing in the current market where there have been several shifts lately that

original equipment manufacturers (OEMs) are challenged with. Different regulations

urge OEMs to decrease the CO2 emissions [3], which is to a high extent being done

by increasing the amount of electrical vehicles produced while reducing new

production of ICE cars [4]. Another shift along with the electrification of vehicles is

towards a higher software focus. The car industry is currently approaching an

environment where autonomous vehicles are possible to some extent [5] and the

software in cars is an essential part of it. As autonomous vehicles become more

advanced, the amount of software increases as well as the level of complexity. A

majority of the OEMs are not ready for this transition now when the software

development is being accelerated and cars become more software dependent.

The first car with a software was launched in 1977 by General Motos (GM) in one of

the Oldsmobile models [6]. With the increase of software in cars since then, OEMs

have been outsourcing the software engineering process to companies with more

expertise in this area, while focusing on processes like manufacturing and selling cars.

It is now becoming more and more important that OEMs understand the software

better, since it is now possible to work with over-the-air updates (OTA) on cars, to

make improvements or solve deficiencies. In the end, the need for a better

understanding of the complexity of the software’s interaction with the car is only

increasing. This means that there is an increased need of understanding the

complexity and how the software interacts with the car, therefore to rely solely on a

code to execute a specific task is not enough. To illustrate the importance, a report by

Counterpoint estimates that 75% of all cars shipped worldwide 2020-2025 are going

to have the capacity to connect to the internet [7]. Therefore, it is easy to see that the

industry, which has been focusing on physical and mechanical engineering for the

past 100 years, need to be updated.

As mentioned earlier, a lot of the software that has been used in cars throughout the

years has been outsourced to suppliers, where the OEMs are to a large extent kept in

the dark of what is happening in the development process. Now, as the importance of

software is growing and the complexity is increasing, many OEMs cannot cope with it

since there is no apparent clear strategy. With the advent of electrification,

autonomous and shared vehicles, this will need to change. The number of

heterogeneous systems in cars will only grow, and software development will need to

speed up. Indeed, to build any sort of autonomous system, an OEM must at the very

least be able to do frequent software updates over-the-air for large numbers of cars

and gather data on how these vehicles behave in real-world situations all over the

world. In software engineering terms, a DevOps chain can be used to make this

2

effective. A DevOps chain which is a way to to break down the walls and narrow the

gap between the development and operations departments, with the goal to accelerate

the software development.

1.1 A brief history of software development approaches

Before describing DevOps further, there is a need to take a step back and briefly

review how the software development processes have developed over the years.

During the 1970s, software was treated as any other product development project,

which meant that the the stage-gate model (waterfall model) was applied. This means

that the project goes through each stage getting different requirement before being

approved for the next stage. This was due to the assumptions that the requirements

were not going to change over time (e.g. like physically designed parts). Different

approaches similar to the stage-gate model were used up until the 21st century when

the so called agile development was introduced through the agile manifesto [8]. The

agile manifesto was a set of principles with the goal to accelereate the software

development and get away from the stage-gate approach [9]. Here, the perhaps most

important principle was “responding to change over following a plan”, since software

is very dynamic and in constant change, meaning that it is difficult to plan for a

release far in the future.

Figure 1: Different project management approaches towards software development throughout the years [8].

As the agile methods were intended for small businesses and enterprises, the so called

lean software development came into the picture. The lean methodology emerged

within manufacturing but has also been successfully applied in several other fields.

The lean software development helped to scale the agile methods so they could be

applied in larger organizations. However, nowadays lean software development is not

only used to scale the agile methods, but also as it has been used traditionally. This

means utilizing waste elimination and and improving processes through e.g. value

stream mapping. Quality is increased by testing as soon as possible, fast deliveries are

done by small batches, which also reduces the work in progress (doing small task at a

time) and learning is created through fast feedback [8].

3

1.2 What is DevOps?

The word “DevOps” is a combination of development and operations. The goal with

DevOps is to accelerate the software development process and reduce the time to

market by breaking down ‘silos’ within organizations and utilizing cross-functional

teams [10]. The concept was introduced 2009, making it relatively new, however

many of the challenges it deals with have already been identified [11]. DevOps is

applied through several stages and a so called “DevOps” chain, where each phase has

several tools to apply to reach the goals for that specific phase. The phases in Figure 3

illustrate how development and operations are combined into cross-functionality.

DevOps is used to eliminate the gap between development and operations. Even

though the purpose is clear, it has been rather difficult ot thoroughly define it [12].

DevOps is a relatively new concept, based on agile and lean principles, but there is

still a difference between them. The lean principles are about eliminating waste and

shortening the delivery time of new software. Eliminating waste could also be to shift

to the left in the toolchain, meaning that tests are done earlier in the development

process to keep the costs of change down. However, it is also encouraged to use value

stream mapping to get an overview of the development process and in order to

eliminate waste [13]. The agile principles on the other hand puts the development

team closer to the customer, while DevOps looks for cross-functionality between

operations and development. DevOps also brings a systematic and holistic overview

over the whole development process, while agile software development might only be

working with a few parts of the DevOps chain. Despite this, both agile and DevOps

have the goal to quickly develop software, gather information in order to make

frequent releases. Agile principles are shown to be required for a successful adoption

of DevOps [10]. Prior the agile era, the development and the deployment was

scheduled at specific dates and operations knew when the software would be ready for

testing and could plan for that. What the agile software development has contributed

with is an increased speed in software development. However, the speed of testing has

remained the same, creating a bottleneck in the system due to sub-optimization.

Continuous integration has been achieved and daily sent to the operations team, but

they could not cope with the pace since the continuous deployment was missing and

the testing was not automated [13].

Figure 2: DevOps toolchain with all phases during software
development [29].

4

Figure 3: History of software development and illustration of how the collaborations has extended throughout
the years, reaching the operations engineers [8].

Continuous integration and delivery is only a part of the DevOps philosophy.

According to Meera R (2018), CI/CD are often mixed up with DevOps, where

organizations are doing some CI and CD but believe that they are doing DevOps since

everyone else claim that they are doing it. Allegedly, the development and operations

teams are not even communicating with each other [14]. This would be equal to a

company claiming they are utilizing lean production while they are only using 5S,

which is only a small portion of the lean production philosophy. Instead, a literature

study studying 30 articles suggests several conceptual elements that DevOps consists

of. The research was conducted by studying the frequency of how often the elements

were mentioned among the studied articles. The following concepts are reported

(along with their frequency):

- Communication and collaboration (23%)

- Continuous delivery (21%)

- Automated pipeline (15%)

- Quality assurance (13%)

- Continuous feedback (10%)

- Continuous deployment (8%)

- Continuous planning (5%)

- Roll back code (5%)

Communication and collaboration along with automation and CD are the most

frequent mentioned concepts of DevOps. As argued, DevOps is a philosophy of how

to work with software development rather than only using some of these concepts and

thinking that DevOps has been adopted [15]. Furthermore, these concepts are only a

hint of what DevOps involves and the concepts that seem to be the most important

part, but they could also include more, as DevOps expands. It is important to note that

the concepts presented are not further explained as how to implement the practices,

which means that each DevOps adoption might find a different way of implementing

quality assurance.

5

1.3 Research questions and problem formulation

As presented, software has become substantial within the automotive industry and the

importance will probably increase with autonomous vehicles. With the emergence of

DevOps, there is a new alternative way to increase the speed of software development

and releases. There is a need to study the DevOps concept in a setting at an

automotive OEM to see if there is a possibility to implement it, as well as what kind

of advantages and challenges it brings to the industry. Therefore, this project was

based on the following questions.

Research question 1: What are the minimum requirements on a vehicle OEM to

support a full DevOps process, including OTA and process monitoring?

Research question 2: What are the main problems for traditional OEMs to fully

adapt to a full DevOps process, and are there any potential conflicts related to

technical challenges or the automotive oligopolistic structures?

1.4 Limitations

The limitations of the research is that many of the used sources are secondary sources

which means that the results relies and depends on other researchs and articles.

Furthermore, DevOps is a relatively new concept that has only recently started and the

research within the field is limited. This means several things. The field is dynamic

and developing fast where new information and facts are successively agreed upon,

thus some of the presented facts in this report migh change. It also means that there

are not many books nor chapter written where DevOps and the dynamics are

explained in-depth. The available sources for gathering different kind of information

might be scarce, or written by the same researchers, risking similar approaches and

results. Also, how companies apply DevOps might not be fully mature which might

have resulted in limitations in other researches due to them not covering e.g. all

benefits and drawbacks. Another limitation will be the results of the research since it

is impossible to tell whether the OEMs plan on a transition to DevOps or how far they

are in this transition. Therefore, the results will be generalized without taking any

specific OEM into account. The research considers only OEMs as organizations,

technical details of how an exact CI/CD pipeline might look like, or how the

heterogenous systems in the car will look like are not included.

1.5 Report structure

The report starts with an introduction into the software and automotive field. The

background and problem description is presented together with the research questions.

The next chapter presents the approach the research had and how each research

question will be answered. After the the results will be presented and followed up

with a discussion. Finally, the report ends with a chapter of conclusions and

recommendations for further research.

6

2 Background

2.1 How is DevOps used?

Some of the challenges and results with using DevOps are presented in DevOps in

practice: A multiple case study of five companies, where five different case studies

have been conducted. The insight of these case studies is used as an example to give a

more detailed picture of how the implementation might look like. The case study

largely shows how the development team and operations team have connected and

integrated tasks which have allowed for elimination of the old bureaucracy that

delayed tasks for a very long time. Also, it seems to be common that there are

conflicting and competing metrics in terms of key performance indicators (KPIs) that

exist beforehand between development and operations. During a DevOps adoption,

those KPIs aligned so both teams could together focus on a common goal. In majority

of the cases, the transition to DevOps was a bottom-up approach, where initiatives

were taken and implemented by developers that many times had experience with

DevOps since before. This naturally resulted in a change of culture towards a more

supportive and knowledge-sharing one since the DevOps concept itself is relatively

new. The change in culture has also shown to increase transparency where the

everyone gain a higher understanding of what is happening with the developed

software and how their tasks contribute to the development. The process itself can

usually be like the following explained. Different tickes of small tasks are picked

from a Kanban board and completed to a feature branch in GitHub which are later

merged to a master branch. In this specific case, the development team acted both as a

development team and as an operational one, which means that tasks could be both of

development and operational nature. A continuous integration (CI) server track the

changes to the master branch and builds a docker image base. These changes are later

tested and reviewed in an development server by another developer. Finally, the

product owner does his own tests of the implemented tickets and manually releases

the code. In some cases, there are beta releases to only serve a several amount of

customers to see whether there are some major issues before releasing it to everyone.

This type of procedure is slightly different from case to case (Figure 7), however they

all emphasize the importance of a collaboration between the development- and

operations team to increase the responsiveness and decrease the time to market [11].

7

Figure 4: The DevOps process in five different cases [11].

2.1.1 Benefits from DevOps adoption

As for the case studies, the most perceived benefits of DevOps was a significantly

higher speed of delivery. In some cases, the speed went from several months down to

a few days. With shorter release cycles, the reaction speed to the customer needs is

shortened. The pace of the whole iterative process of develop, test, release and get

feedback is increased which usually means a higher customer satisfaction. When the

speed of this iteration is increased, the quality of the software might get questioned.

Due to the tasks being so incremental and small each time, the quality issues are lower

than they were before the use of DevOps since it is easier to minimize the quality risk

with smaller updates to the software. Also, the testing is automatized to a high degree

and problems are solved on the fly, which means a higher quality assurance. Some

developers and product owners still stated that there could be a trade-off between

speed and quality, and that it was difficult to find the perfect balance between how

well made the software is going to be upon release and how fast it is going to be

released [11].

Another benefit of implementing DevOps is the breakdown of silos. The enhanced

collaboration between the two departments software development and operations is

improved due to increased communication. This eventually means that the teams

exchange experience and knowledge which boosts productivity and maximize

competences between the two teams. With such a collaboration and constant releases,

practitioners also experience that their well-being is increased since the stress

before/during/after a big release is gone. Instead they are focused on smaller day-to-

day activities [16]. As collaboration and breaking down silos is one of the core

elements of DevOps, it is important that this is seen as a benefit and contributes with

an improvement of knowledge-sharing, communication, productivity, but also of

well-being.

8

2.1.2 Challenges with DevOps adoption

There are more general challenges an organization needs to deal with when

implementing DevOps. One of the main challenges with a DevOps adoption is the

cultural shift that comes with it. Practiocioners must take on hybrid roles and different

responsibilities compared to what their initial role is, e.g. a developer might need to

have a more hybrid job description involving working with operations as well [16]. A

change in an organization is often difficult to undergo, and making changes to break

the silos and achieve DevOps might be met with opposition. Furthermore, creating

such hybrid roles can lead to an initial confusion of what kind of responsibilities

someone has. This can make the DevOps team assume that someone else has

completed a task, leaving ut uncompleted until it is too late [17]. This might only be

something that happens in the beginning of a transition before everyone are used to

their new roles, but it is important to mention that this can cause trouble initially and

delay realeases.

Another challenge is convincing senior management that DevOps is something the

organization should transition to. In many traditional industries, a top-down control is

utilized meaning that most of the decisions come from the top which involves a lot of

bureaucracy. The top of the company, where the decision-making is happening, is

many times separated from the bottom that is executing the decisions, therefore a gap

exists between those who take the decisions and those who execute them. If there is

no understanding from the senior management to why a change to DevOps is

necessary, or what capabilities it could bring, they will not be willing to change since

they perceive that it is good enough as it is [18].

DevOps is a new concept and to a high extent still consiedered a buzzword within

software development. Companies still lack clarity on how to to fully implement the

whole DevOps concept. This is because the definition is not fully clear which creates

ambiguity. Different people will have different understanding of the concept, different

goals, and therefore different approaches of reaching these goals [12]. Without a clear

vision of how the end-state is supposed to look, companies might find themselves in

positions where they are struggling to understand the whole DevOps concept, but they

are still trying to achieve it since they know what kind of benefits this gives. It is

important to make such a transition as painless as possible. If there is lot of frustration

during the transition and still no results, the developers will get tired of change

initiatives and will in the future resist such initiatives.

Finally, DevOps involves many tools and a company might find themselves in a

position where the developers and operations-team will need to learn how to use these

tools efficiently to fully utilize the DevOps. Usually, there is at least one tool to be

used for each step in the CI/CD pipeline. This means that they might have a steeper

learning curve, but also that the company needs to buy new licenses for the new tools

required. If the company already has license contracts for other software, this can get

expensive. Furthermore, not all companies have migrated to microservices and some

of them still have monolithic artchitectures where many dependencies are involved

and testing time is long. Microservices are a prerequisite to enable people work

efficiently and in parallel to make new releases [19]. This migration to microservices

might bring another challenge along with all the tools that are to be implemented,

which might be overwhelming for a business that does not have the knowledge on

how to conduct such a change.

9

2.2 What is currently happening in the automotive

industry?

The oligopolistic automotive industry has under a long time had a high entrance

barrier where only niched automakers has had some success by targeting a specific

part of the market. Current cars with ICE engines have reached a maturity where

innovation comes at a slower pace and is often minimal. The transition towards

software and electrical focus has allowed the performance of cars to increase as well

as made new features available. This has disrupted the automotive market and

allowed for new automotive manufacturers like Tesla to enter the market by offering

the disruptive technology in their cars from the beginning. The technology is an

enabler and gives cars new capabilities. A recent article by McKinsey shows that

OEMs struggle with long software development times while the complexity of

software is expected to increase exponentially, resulting in an increasing gap between

complexity and productivity. This means that not only will the OEMs struggle, but

also their first tier suppliers that are involved in development will have issues keeping

up. Furthermore, the article explains the current way of how the OEMs are developing

their software; a part of the software is made in-house by the OEM itself, while the

rest of it is outsourced to different suppliers. These suppliers do their part and send it

back. All supplied parts are eventually stitched together to become a complete

software and achieve the objective [20].

Figure 5: Evolvement of software complexity compared to software productivity [20].

The approach to software development by the OEMs is slow and complicated, with a

lot of bureaucracy, which can result in delays or faulty software. One such car is the

Volkswagen ID.3 that had a late launch with a ‘stripped down’ car with several parts

of the software missing, but also further software struggles after the launch [21] [22].

Furthermore, only recently have major OEMs started to be able to update the cars

over the air (OTA), while Tesla has had this possibility since 2012. This is another

10

major sign of the slow transition and implementation of software. The OTA function

makes it possible for owners to schedule software updates that are downloaded by the

the Wi-Fi or 4G/5G network. This would have saved significant amount of money for

the OEMs since many of cars have been recalled due to software issues, one of the

latest ones being the Golf 8 [23]. This means that the owner must visit a dealership to

complete the update, which can be unconvenient for the owner as well.

The only car-manufacturer that has managed well in the software field is Tesla, which

is primarily a tech-company and then a car-manufacturer. They have managed to

disrupt the market by having a modern and software-oriented approach, prioritizing

software development and innovation over traditional car-manufacturing with focus

on product quality and long development processes. This approach where speed and

flexibility is more important has resulted in many times a poor quality of the vehicles,

but it also seems that these quality problems are taken seriously and dealt with very

quickly [24]. Tesla has also decided to make a gigafactory in Germany, and one of the

reasons for that is the proximity to german suppliers which are a big part of a Tesla

car [25]. Even if the build quality is still not in the top, the software quality and

functions are, which is the other way around compared with other OEMs. The

software is a big part of Tesla and updating/upgrading it means that the whole car

product is constantly updated/upgraded, even after the customer has received it. Tesla

does a massive data collection when their fleets are active (driving) which they later

use to both do long-term developments of different AI systems, but also to quickly

upgrade features short-term, like driving assistance and safety. Another thing that is

quite unique is the ‘shadow mode’, where algorithms are run in the background while

the car is driving. This allows them to see what kind of decisions an algorithm would

take if it would have been implemented [26]. Speed is the capability that Tesla is

utilizing by having their software development in-house and probably a modern

approach to software development. The trade-off is the build quality, which they are

trying to resolve quickly.

11

3 Method

3.1 Model

To address the second research question, a model was created of how a traditional car

development process at an OEM might look like. A large part of the car development

process contains software, which is assumed. This model was created with the help of

three persons with long experiences and backgrounds from different OEMs. Among

their experiences is different positions at Volvo Cars, Lotus and McLaren. Currently,

they are all working as researchers at Chalmers University. The interviewees were

interviewed and based on their answers to the questions an approximated model could

be created.

3.2 Idealistic model

To address the first research question, an idealistic model of an OEM was created

which illustrates how DevOps can be organized at OEMs in an idealistic scenario. It

will answer the questions of what the minimal requirement for an OEM is to utilize

DevOps. It will also answer the questions of how the communication will flow and

what kind of communication is necessary for it to succeed. The idealistic model is

based on the regular model which is created to address the second research question.

To be able to set and support the dynamics within and between the teams in the model

created, like division of responsibilities, the background regarding DevOps will be

used.

3.3 Interviews

There were total three interviews scheduled during a two week period. The duration

of the interviews were between 30–45 minutes. Two of the interviews were conducted

in the following way; The research and intention was presented for the intervieewes

before the questions started. There was a total of eight questions that were asked one

by one and the same set of questions and order was used for each interview. The

interviews were recorded and later used to analyze the answers and create the model.

The third interview was slightly delayed and the interviewee asked to get the

questions in a document to give preliminary answers and that we could discuss them

later. This proved to be a good opportunity to give follow-up questions if there was

something that needed follow up questions from the first two interviews. The reason

why several interviews with different people were held is because one person might

not be able to answer all of the questions. Another reason is to confirm what has been

said in the other interviews and create a more accurate model. The questions that were

asked were often general and not necessarily connected to each other. This since there

was initially not a clear picture of how the model was going to look like or what it

was going to exactly contain.

3.4 Generalization

The research could be generalized to the automotive OEMs who are outsourcing a

large part of their software development. This because there is a possibility of

improving speed and deployment of the software to the car fleets, especially at OEMs

that has not come very far in this process. However, the challenges that the different

12

OEMs would face might slightly differ since all OEMs have different capabilities

which might affect the type of challenges they specifically are facing.

3.5 Validity and reliability

3.5.1 Validity

Validity indicates to which extent something is precisely measured [27]. For the

second research question, this means how well has the challenges with implementing

DevOps at an automotive OEM been identified. The validity of research question two

is considered to be high since the data collection through the interviews has led to a

illustrative model of how approximately a software development process can look like

at an OEM. By the help of it, another model where DevOps is applied has been

developed and it has been fairly easy to pinpoint the challenges by comparing both

models.

For the first research question, the validity is also considered high but it has a slightly

different approach. An idealistic model of an OEM using DevOps was created based

on the information gathered during the interviews, the first model and literature used

in the background chapter. The reason for the different approach is simply that there

must be enough understanding of the DevOps concept to be able to change the

original software development approach into a DevOps one.

3.5.2 Reliability

The reliability measures the accuracy of the method. This means that if the same

research would be repeated with the same approach, how many of the times would

yield the same result [27]. Both research questions have an interview as an approach

with a set of question that were asked different people with a background in the

automotive industry. Depending on the set of questions, how they are perceived and

the type of experience the interviewee has, the answers might vary. The reliability is

therefore not considered high since a different research would probably yield a

slightly different type of model. That is one of the reason why it is important to state

that the model created is not fully accurate, and neither is the goal to have such an

accurate model, but to rather map a simplification of how processes look like and

identify challenges.

13

4 Results

4.1 Key takeaways from interviews

When OEMs are ordering the software from suppliers, the software is always

intellectual property (IP) protected which means that an OEM does not have access to

the specific code in this software, except in the case when they are developing a part

or the full software and act as a supplier to the supplier. An OEM is however able to

tweak some of the parameters for optimizations and do security analysis, but not more

than that. In case they want software updates, they need to plan ahead and inform the

supplier that they want it in the next version of the component. This means that

suppliers of different system are a crucial part to the development of a full vehicle.

The software is rigorously tested by both supplier and OEM to avoid any unwanted

bugs or problems.

The type of software an OEM is usually developing in-house is the one that is close to

the customer experience and this could be cruise-control or an automatic brake safety

system. There are several reasons for this. An OEM wants to be first with a specific

function and therefore has to develop it in-house. This gives advantage in the end

market against other OEM competitors that perhaps have not developed anything

similar yet. Another reason is that some software developed in-house can be used as

leverage towards suppliers. If the supplier is the only one that has access to an IP

protected software that is crucial for the OEM, they can set the prices. But if there is

competition from the OEM that perhaps has developed some of this software, they

can always get a better offer from that supplier, or another supplier. The issue with the

software developed in-house is that there are usually many consultants working at an

OEM and developing a high part of it. There is no guarantee that an OEM fully

understands the software they have since it has been developed by consultants from

other companies working at the OEM for the time.

The initial car requirements are developed at a high level in the organization, and the

requirements are usually set to full-car requirements. Parts of the requirements are

taken from the database from older project but as R&D develops new technology,

those are added. The requirements are then broken down into systems and handed

further down the organization, which turns the requirements into goals and milestones

to work towards. The problem with this approach is that there is no one that is

knowledgeable enough to set the full car requirements, and the approach is slowly

changing to bottom up, where departments set the system requirements first which

eventually ends up in a full-car requirement.

Updating existing cars with new software is very expensive and only happens in rare

cases. Software is nowadays treated as something dynamic and that is constantly

changing. Giving existing cars new software updates is something that happens only

in cases where the software is faulty to such an extent that it is not safe enough to

drive that car. The cars would need to be recalled to certified services and uploaded

with new software, which is costly. The uploaded software is either created by the

OEM or a supplier that has been developing that specific system.

14

4.2 Model of the current software development approach

Figure 6: Model of the software development at an automotive OEM. Based on the input from the interviews.

The development of a car starts with product planning higher up in the organization.

This is where the requirements for the whole car are set, such as features, software,

design, etc. Some of the requirements from old projects are taken from the

requirement database and re-used, but new requirements are also added as R&D and

other departments continuously develop new solutions. The full car requirements are

then handed over to attribute leaders where their new task is to break down these

requirements into system requirements. They take decisions such as what department

will be responsible for each system and where to draw the line between the different

systems. The system requirements are then handed further down to each department.

A system contains many part that need to interact with each other, but at the same

time the system must be robust and work as intended. Based on the system

requirements, each department works with breaking down these into smaller tasks and

goals, as well as setting up new KPIs to work towards to reach these goals. Decisions

such as what to outsource and what to produce in-house are taken. The system is also

broken down further to hardware and software components. The requirements for

these components is then sent either in-house, for production, or to suppliers. When a

15

supplier is supposed to produce a part of the system, each department discuss the

component requirement together with the supplier and the purschasing department.

When agreement is reached on the expectations, deliveries, etc. the part/sub-system is

then ordered from the purschasing department. In some cases when there is software

involved, the OEM acts as an supplier to the supplier. This means that an OEM will

deliver some of its own software that the supplier uses in the system/component and

delivers it back to the OEM.

When there are on-going projects, the communication between a department and a

supplier happens in case of need. It is usually engineer to engineer communication

where some uncertainties are cleared. When the product is developed and rigorously

tested by the supplier, it is delivered back to the OEM. The software part of the

system is a so called black-box, meaning that the file is compiled and no source code

is visible. The only thing the OEM is able to do is to tweak some of the parameters of

how the software is going to behave. This is due to IP protection of algorithms or

other things existing in the source code that the supplier does not want to share. There

are also contracts in place for who is responsible in case of system/component

malfunction and it involves specifications such as maximum car weight allowed for

the brake/coil system or whatever is delivered.

All these systems and components that are delivered internally and from suppliers are

then used to make prototype cars, testing, tweaking, re-doing things and iterating until

the OEM is satisfied with the result. The prototypes are made quite late in the process

since there are simulation tools that are considered good enough to simulate real

environments, those are used earlier in the product development process in each

department. When testing is done and the results are satisfying, the car is then

officially ready for production.

When the cars are on the market and in use, problems might still occur and software

problems are not unusual. In case that happens, it is reported to the service and after-

sales. In some cases the issue is so severe that a recall of car must be done. This

happens when there is a risk of accidents, such as the auto-brake system malfunctions

during some conditions that the OEM did not test. Depending on who is responsible

of the software with issues, that supplier/department is contacted to make an updated

version of the new software system. This is then once again tested to make sure that

the problem is resolved, and compiled as a black box. The software is sent out to

certified services and the people there are educated on how to update the cars.

Whenever a customer arrives with a faulty car, they install the updated software and

the issue is considered solved.

16

5 Discussion

5.1 The current approach of software development for

automotive OEM’s

The current approach to the software development within automotive OEMs is highly

hierarchical and top-down. The decisions for how the requirements for a car are going

to look like are set high up in the organization, broken down and handed down one

step. This is done until decisions are made for all components for the cars. The

approach has several issues and many of them are regarding the knowledge of the

people setting the requirements. They do not know everything regarding the

requirements, but they use the database as help which has probably been updated by

themselves during prior projects. It is possible to use this approach but there is a high

probability that not the most suitable requirements are set and when it is pushed down

the organization, the departments will not produce the best cars due to a knowledge

gap. A lot of this is not illustrated in the model, nor was it mentioned in the

interviews, but setting the requirements is probably an iterative process that is sent

between different departments and people, then checked, updated and iterated again.

When everything is pushed down to the departments, they start setting goals to work

accordingly for their own system. The problem that can arise is that the different

departments end up with sub-optimization where each department works towards

optimizing their system and making it as good as possible. The systems must later be

integrated with each other in a car and work together as well. One such case is when

algorithms are developed but must then be translated to be able to run in an ECU in

the car. Another point that was made during the interviews is that some of these

people are from other consultancy firms but work for the OEM. They can produce

software but the OEM might not have the knowledge to actually understand what kind

of software it is and how to fully utilize it, so when a consultant leaves that

knowledge is lost since no one made sure it transfers into the organization.

The step when the suppliers are involved is usually when decisions regarding a

system is taken. This means that the supplier along with the purschasing department

are involved to make a requirement of what the supplier is supposed to deliver. Since

the requirement specification for the whole car comes from the top, there must be

several compromises made here since the probability of the suppliers being able to

meet all those initial requirements is not high. When there is something that is

ordered, the occasional communication between egineers from OEM and suppliers is

supposed to clear things up when there are additional questions. The case is probably

many times the opposite due to missunderstandings, unclear communication, and

where not all engineers are fully aware of the parts that are being developed by

suppliers. When the hardware and software is later delivered by a supplier, the

software is delivered as a black-box due to IP protection. This means that the software

delivered by the supplier is already flashed onto the hardware, preventing any

changed by the OEM except for parameter tweaking or security analysis. This

becomes another issue if there is a new version of software available since the only

way to get access to the new software is by ordering hardware with the new software

version. There is no other way to implement new versions and improve

functionalities. The hassle of this method is that it takes time to make the changes

since they have to go through all types of bureaucracy before all specifications are

17

changed to the new part. If there is an option to update such things OTA, there would

only be an update during the next release.

Similar to the prior example, a software issue that requires a recall of cars will also be

treated in a similar way. Either a supplier or the OEM needs to update the software

containing bugs or other issues. The process of updating is bureaucratic as well since

software needs to be tested, sent out to certified services, people need to be educated

and then there must be a time when every customer is supposed to get their update.

The response between reported problem and updated software is probably quite long-

In many cases, customers need to adapt to when there is an available spot to get the

specific update for their car. This can as well be seen as a burden or something

negative.

5.2 What advantages does DevOps bring to an automotive

OEM?

There are several things that an implementation of DevOps can contribute with at an

automotive OEM. To illustrate this, an idealistic model was made similar to the first

model, but with parts of it re-organized and changed so a DevOps philosophy can take

place. The model was based on the original model, the interviews and the DevOps

concept that is explained in the background.

5.2.1 Model with DevOps

There are two main differences in this model when compared to the current software

development approach. The first big difference is in the approach of how car

requirements are set. The different departments are supposed to collaborate and set

the requirements for each system as their knowledge of the different system is

probably the highest. This hopefully means that the knowledge gap that probably

exists between the product design team and the different departments will be

narrowed. The process of setting requirements is also probably less iterative as each

department consist of people that are knowledgeable in their area and can therefore

set ‘better’ requirements initially.

The second large change to the initial model is how the software development

approach is done. The DevOps model contains a CI/CD pipeline as well as constant

communication between the operations team at the OEM and all developers involved

in different projects. This means both developer teams from suppliers and from the in-

house software department. The idea with this approach is to accelerate software

releases to cars that improve functions and fix existing issue through OTA updates,

cutting out the prior process involving bureaucracy. There will be constant

committing of software through the pipeline and then testing when it reaches the

operations team. The operations team takes decisions as when to release it and how.

This probably means that how the car and different hardware parts in the car handles

software must be redesigned.

18

Figure 7: Idealistic model of minimal requirements of how DevOps can be implemented at an OEM. Based on
the input from the interviews as well as the DevOps concept.

19

5.2.2 Improved user experience and well-being of workers

A car that is sold to a customer is rarely perfect in terms of software. Engineers

always find new solutions/functions to add to the already existing ones. Generally,

due to this kind of over-engineering, sometimes products get delayed. With DevOps

in place, engineers will no longer be stressed to implement all kinds of functions

before release, but only the necessary ones. The customer will get used to using the

functions that come with the car, which will gradually improve. Apart from those

functions, new functions will also be new added. This means that the customer

experience will probably improve if the car is made more comfortable, safer or easier

to use. As an example, one of the first OTA updates from Tesla added functions such

as customizable seat options for each driver that is driving the car. Those could be

easily changed from the computer in the car. The loop between the monitoring and

software development is substantially shorter with DevOps which means that these

updates will happen at a high pace. The reaction to customer demands is shorter

which eventually means satisfied customers. Without the possibility to do OTA

updates, the reactions to customer demands could as fastest only happen when a new

model was released.

Furthermore, when there is an option to update cars over the air and add functions as

explained, there will probably be an improvement in workers well-being since they do

not have to work towards strict deadlines risking a delay in release or long over-time

hours. Naturally, there will be less stress and tensions within teams working with

software implementation.

5.2.3 No expensive recalls anymore

To recall cars to certified services, make new software and implement it with a

manual approach is very expensive. In the last 10 years, the average recall of a car has

had a cost of $500, including both software and hardware updates [28]. With larger

fleets being recalled, it can soon get very expensive for the OEM. But the cost of a

recall is many times more than just replacement of parts and software updates, the

speed and quality might be equally important for customer satisfaction which is

difficult to measure in money. Another such variable to consider is the brand

perception by current and potential customers. Recalls eventually means a worse

reputation which might discourage potential buyers from buying a car from that

brand.

5.2.4 Data collection and improved software development process

As algorithms for different systems run in the car, the OEM can similarly to Tesla

collect data of the decisions algorithms make when they run in the car, or in the

background. This can further improve the software development process as many

decisions are based on certain data, and data is easier to collect when there are many

cars that are being used in a real environment where all kinds of situations exist.

However, there is a large difference between how data is collected in the EU

compared to US. Due to the GDPR law, citizens of EU must opt-in if they wish their

data to be collected by someone. The US has an opt-out approach, meaning that data

is collected by default as long as the user does not change the specific setting. This

means that there will probably be less data from the EU roads to rely upon for OEMs

and that they have to be careful with how they use the data and how well it is

protected.

20

5.2.5 The integration of suppliers and OEM

A B2B supply chain integration has many advantages since no business can

standalone produce everything that is required for the end-product. This means that an

OEM needs to rely on its suppliers to effectively execute what is required of them.

Through a digital integration between suppliers and OEMs, which is common within

supply chain management, tasks can be executed automatically with no need of

human interference. Similar to this, an integration between development teams at

suppliers and the operations team at an OEM is required to reach a state of DevOps.

The borders between two organizations need to be broken down through

communication and collaboration, which might be more challenging than breaking

down silos within organizations. This approach is supposed to enable a CI/CD

pipeline where the different development teams are suppliers but the operations teams

are at an OEM. The reason for this approach would be that the OEM is responsible for

the monitoring and feedback of the car fleets, but also of the deployment of new

software. The development teams that work for different suppliers are there to

improve and develop new functions that are related to their specific field.

The most OEMs have during a long time relied on their suppliers to develop software

for them, which has resulted in a situation where OEMs cannot develop software

without suppliers (except for Tesla and similar actors). It is impossible in short-term

to bring the software development in-house and start learning the necessary

capabilities to develop this kind of software and algorithms, therefore the best

solution is to let the suppliers do it since they have the capabilities and knowledge.

There is a lot of potential in this kind of approach and collaboration past the CI/CD

pipeline. Additional services that are not initially there can be developed and sold to

the customers. Another alternative is to sell extra packages that the customer perhaps

decide they did not need initially. One such thing could be that the driveline of a car

has a certain amount of horsepowers, but if the customer decides they want a stronger

car, they can buy such an upgrade through the OEM’s homepage and update the car

OTA.

5.3 Challenges with DevOps adoption at an OEM

As there are advantages with a DevOps adoption at an automotive OEM, there are

challenges as well.

5.3.1 Centralized decision-making

The automotive industry has a history of being conservative in the way it is managed.

Many decisions are centralized, a top-down approach is used and the organization is

built for efficiency. Efficiency is many times necessary when competing on price

because this keeps the margins high enough to make profit. The trade-off with this

kind of approach is that it does not cultivate innovation as much as less centralized

approaches. Historically, many organizations with a long history has been

conservative in their way of organizing without embracing change to fit the dynamic

environment that has come with the modern world. Many of these organizations have

gone bankrupt, been bought or lost a substantial part of the business to disruption. A

report by Mckinsey shows that in the end of the 70’s, the average tenure of a company

on the S&P500 list was 35 years. The average tenure for a company on the same list

was down to 20 years by 2019.

21

There is currently an on-going transformation in the automotive industry which is

necessary. The reason is that software and innovation is becoming a larger part of cars

and automotive organizations built only for efficiency will likely struggle. The

DevOps transformation is in many cases a bottom-up transformation and if the

organization does not allow for this kind of initiatives, the likelihood of it never being

implemented is high. As an example of the transformation, it was said during the

interview that the requirement specification for each car project is changing from a

top-down approach to bottom-up. In that case, each department creates their own

requirements which are coordinated before eventually ending up in a full-car

requirement. The same approach must be used in the case with DevOps, which would

allow for a bottom-up change. The other option is to prove the value that DevOps

creates and hope that it is persuasive enough for someone who can take the final

decision. It can seem to be an easy decision to take since DevOps brings advantages

but it is only when DevOps is considered exclusively without taking anything else

into consideration. In an organization there are already contracts for existing software

that are probably tied for several years, there are already existing software

development processes that must be compared to DevOps, there is a change that must

happen which costs money and finally the people must be able to adopt and perhaps

get new responsibilities. There is always an alternative cost for decisions like these

and to consider whether such a change will have a higher long-term positive effect

than the current development process.

5.3.2 Integration of suppliers and OEM

As much as an integration of suppliers can be advantageous, they can also be

disadvantageous and create unwanted friction. The kind of integration and

communication must be created and based on new kind of culture that neither of the

organizations is used to. The operations team at the OEM and the different

development teams at the different suppliers will have two different cultures to

alternate between, the culture within the organization and the culture that is based on

this collaboration. There is no guarantee that this will work in all type of cases, or that

the collaboration will be smooth as they wish it to be. Unfortunately, all of the

DevOps studies found and used for this report only focus on DevOps as within a

single organization. It is difficult to draw any conclusion of whether a cross-border

DevOps would work as efficiently as DevOps within the organization.

Another issue is the way decision-making and bureaucracy exists within the

automotive industry. DevOps is supposed to remove a lot of this, and it is possible

when it happens in a single organization. But when using cross-border DevOps there

might be higher entry barriers such as trust issues. Therefore each project given to the

development team at a supplier would probably have to be confirmed by someone on

a higher level, and this project would probably contain a specification of what the

supplier is supposed to develop. This kind of specification for specific projects proved

to be counterproductive since every time there was a new idea of how something is

going to be programmed, it was necessary from the issuer of the project to confirm it

by changing the specification. A solution to this problem could be to set overall goals

of what functions to develop and how to improve existing software without

necessarily having strict requirement lists. But then again if things are not specified

enough, both parties might be disappointed by how things turn out and dissatisfied by

the amount of work that is being done which would not favour any of them.

22

Finally, there must be a CI/CD pipeline that both the development and operations

teams are using to code, test and deploy everything. There is usually a tool for each

step in the pipeline and it is easy to organize this on the operations side since the

whole team will belong to the OEM. Suppliers might want to work with different

softwares when coding, depending on their preferences, experience, etc. This makes it

more difficult to standardize the tools within the pipeline, at least the development

part as well as someone needs to pay for the subscriptions of the different softwares.

There will also be a need from the supplier side to protect the source code from the

OEM as it is considered IP that belongs to the specific supplier. This might add

further problems as practitioners of DevOps many times need to take hybrid roles

with both development and operations tasks. The operations team will be testing the

developed software without access to code, if that is possible. This will add an

additional level of bureaucracy by sending it back to the developers at the supplier to

re-do the code. It makes it probably even more difficult to find the exact issue if the

operations team does not have access to the source code. This is perhaps only a trade-

off with cross-border DevOps, but there might exist more advanced solutions to this

problem.

5.3.3 Culture change

One of the most difficult and important transformations regarding DevOps is the

culture. Without a culture where borders between development and operations are

brought down and people take new responsibilites, there will be difficulties with

implementation. As mentioned earlier, collaboration is one of the main essences of

DevOps and this cross-border DevOps between organizations requires a new type of

culture. The culture that will emerge between supplier development teams and

operations team at OEM will probably be unique and difficult to maintain. They are

different organization with their limits of what information they are allowed to share

and how much, meaning that this new culture will contain many restriction. But they

must still work together as a team to offer customer value and quickly bring new

updates to software. Furthermore, depending on how the operations team is set up,

and with what supplier they are collaborating with, the culture might be slightly

different for each collaboration. As an example, one development team at supplier #1

might use specific tools to develop the specific software they are responsible for and

then hand it over to operations team #1. This relationship will probably have a

specific culture dependent on prior contact, type of collaboration and tools used. Then

there will be another development at supplier #2, using different tools and processes

to develop their specific software, but they will still collaborate with operations team

#1 at the OEM, as each supplier will probably not be assigned an operations team.

Another thing to consider is how the internal culture will change between the

development team and operations, since these team members can use DevOps’s full

potential with hybrid roles. This means that they can share all information, source

codes, etc. But then this kind of approach will be different to the approach that is

being used with each supplier. Once again it adds more complexity while the purpose

with DevOps is based on standardization, lean and agile principles.

23

6 Conclusion and future research

The accelerated pace of software development has introduced DevOps as a

philosophy, emphasizing collaboration and CI/CD withing software development.

Despite DevOps being a relatively new term, it is clear that it has its benefits as

increased speed of software releases, OTA updates and quality assurance. Despite the

challenges that exist within the automotive indsutry such as cross-border DevOps and

a highly centralized decision making, the belief is that DevOps can still be utilized

within the industry. For this to happen, all parts that are involved must work towards

enabling a state of such collaboration by actively working to change the current

environment and processes when software is being developed. Such changes will

amongst others involve the integration of suppliers and a culture change towards a

DevOps philosophy. There must be a certain way of collaboration between the

borders since this does not affect only the OEM, but also the suppliers. This change is

perhaps not necessary to make, nor are the all other possible changes a business can

make. However, an implementation of DevOps should be given more consideration

than an average change since the future of automotive clearly lies within software,

and an automotive manufacturer that does not wish to exceed in this field will

probably struggle to gain on the competitors in the future.

There can be made several recommendations for future research. One of them is to

evaluate how an organizational implementation of DevOps is to be enabled in terms

of supply chain. This practically implies to in more detail study how a cross-border

DevOps can be enabled with respect to the IPs that exist at different suppliers as well

as taking the tools and different pipelines into consideration. Furthermore, how will

the culture change affect all involved stakeholders since the ones involved with

DevOps will have one culture while maintaining the other culture within the walls of

the company. Another recommendation is to evaluate the supply chain in terms of

cars and technology. This means how the different cars can be redesigned to enable a

CI/CD pipeline with continuous OTA releases that update the car in a specific way

but also what is required from different servers. Many of the cars have currently parts

that have installed software directly on them. This means that an update of that

specific part is not possible and the only way is changing the hardware. This must be

redesigned depending on what kind of updates the OTA releases will contain.

24

7 References

[1] H. Ford and S. Crowther, My life and work, Cornstalk publishing company,
1924.

[2] G. Fedorko, V. Molnár and D. Sabadka, “Shortening of life cycle and
complexity impact on the automotive industry,” TEM journal, vol. 8, no. 4,
pp. 1295-1301, 2019.

[3] Euroean comission, “CO2 emission performance standards for cars and
vans (2020 onwards),” 06 11 2017. [Online]. Available:
https://ec.europa.eu/clima/policies/transport/vehicles/regulation_en.
[Accessed 25 02 2021].

[4] D. Carrington, “Global sales of electric cars accelerate fast in 2020 despite
pandemic,” The Guardian, 20 1 2021. [Online]. Available:
https://www.theguardian.com/environment/2021/jan/19/global-sales-
of-electric-cars-accelerate-fast-in-2020-despite-covid-pandemic. [Accessed
25 02 2021].

[5] D. Faggella, “The self-driving car timeline - predictions from the top 11
global automakers.,” 14 03 2020. [Online]. Available: https://emerj.com/ai-
adoption-timelines/self-driving-car-timeline-themselves-top-11-
automakers/. [Accessed 25 02 2021].

[6] J. Madden, “How much software is in your car? From the 1977 Toronado to
the Tesla P85D,” 1 04 2015. [Online]. Available:
https://www.qsm.com/blog/2015/how-much-software-your-car-1977-
toronado-tesla-p85d. [Accessed 25 02 2021].

[7] A. Madhok, “Three quarters of all new cars to be connected in five years.,”
Counterpoint research, 20 11 2020. [Online]. Available:
https://www.counterpointresearch.com/three-quarters-new-cars-
connected-five-years/. [Accessed 25 02 2021].

[8] P. Kuvaja, L. E. Lwakatare, O. Markku, M. Mäntyä, P. Rodríguez och P.
Seppänen, ”Advances in using agile and lean processes for software
development,” Advances in computers, vol. 113, p. 358, 2019.

[9] K. Beck, M. Beedle, A. Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, M. Robert, S.
Mellor, K. Schwaber, J. Sutherland och D. Thomas, ”Agile manifesto,” 2001.
[Online]. Available: https://agilemanifesto.org/. [Använd 31 03 2021].

[10] P. Kuvaja, L. E. Lwakatare and M. Oivo, “Relationship of DevOps to agile,
lean and continuous deployment.,” in International conference on product-
focused software process improvement, 2016.

[11] L. E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkilä, J. Itkonen, P.
Kuvaja, T. Mikkonen, M. Oivo and C. Lassenius, “DevOps in practice: A
multiple case study of five companies,” Information and software
technology, vol. 114, pp. 217-230, 2019.

[12] K. Nybom, I. Porres och J. Smeds, ”DevOps: a definition and perceived
adoption impediments,” i International conference on agile software
development, 2015.

25

[13] S. Sharma, The DevOps Adoption Playbook : A Guide to Adopting DevOps in
a Multi-Speed IT Enterprise : A Guide to Adopting DevOps in a Multi-Speed
IT Enterprise, John Wiley & Sons, 2017.

[14] S. Mansfield-Devine, ”DevOps: Finding room for security,” Network security,
vol. 2018, nr 7, pp. 15-20, 2018.

[15] G. B. Ghantous och A. Gill, ”DevOps: Concepts, Practices, Tools, Benefits and
Challenges,” i Pacific Asia Conference on Information Systems, 2017.

[16] L. E. Lwakatare, S. Mäkinen, T. Männistö, L. Riungu-Kalliosaari och J.
Tiihonen, ”DevOps Adoption Benefits and Challenges in Practice: A Case
Study,” Product-Focused Software Process Improvement, vol. 10027, pp.
590-597, 2016.

[17] J. Buchan, H. Osman och M. Senapathi, ”DevOps capabilities, practices, and
challenges: insights from a case Study,” i The 22nd international conference,
2018.

[18] M. Kamuto och J. Langerman, ”Factors inhibiting the adoption of Devops in
large organisations: South African context,” i IEEE international conference
on recente trends in electronics information & communication technology,
2017.

[19] F. Kon, L. Leite, P. Meirelles, D. Milojicic och C. Rocha, ”A Survey of DevOps
Concept and Challenges,” ACM Computing Surveys, p. Article 127, 2019.

[20] R. Fletcher, A. Mahindroo, N. Santhanam och A. Tschiesner, ”The case for an
end-to-end automotive-software platform,” McKinsey, 16 01 2020.
[Online]. Available: https://www.mckinsey.com/industries/automotive-
and-assembly/our-insights/the-case-for-an-end-to-end-automotive-
software-platform. [Använd 14 03 2021].

[21] S. O'Kane, ”VW’s first mass-market EV suffers delay thanks to software
struggles,” The Verge, 11 06 2020. [Online]. Available:
https://www.theverge.com/2020/6/11/21288572/volkswagen-id3-ev-
delay-software-vw-herbert-diess. [Använd 14 03 2021].

[22] J. Traugott, ”Volkswagen's Major ID.3 Problem Has Been Solved,” Carbuzz,
06 12 2020. [Online]. Available: https://carbuzz.com/news/volkswagens-
major-id-3-problem-has-been-solved. [Använd 14 03 2021].

[23] T. Seythal, ”Volkswagen recalls 56,000 Golf models for software update,”
Reuters, 12 1 2021. [Online]. Available:
https://www.reuters.com/article/uk-volkswagen-software-
idUSKBN29H15Q. [Använd 14 03 2021].

[24] C. Isidore, ”Elon Musk admits Tesla has quality problems,” CNN, 03 02
2021. [Online]. Available:
https://edition.cnn.com/2021/02/03/business/elon-musk-tesla-quality-
problems/index.html. [Använd 07 04 2021].

[25] J. Hofer, A. Postinett och M. Wocher, ”Tesla: German Under the Hood,”
Handelsblatt, 28 01 2016. [Online]. Available:
https://www.handelsblatt.com/english/companies/e-car-components-
tesla-german-under-the-hood/23535490.html?ticket=ST-20060-
tFO7m7Uf6Se7aHwjaRvH-ap6. [Använd 07 04 2021].

26

[26] G. Paolini, ”Tesla, the data company,” CIO, 28 08 2019. [Online]. Available:
https://www.cio.com/article/3433931/tesla-the-data-company.html.
[Använd 07 04 2021].

[27] R. Heale och A. Twycross, ”Validity and relieability in quantitative studies,”
Evidence-based nursing, 15 05 2015.

[28] C. D.-V. P. Isidore, ”CTTV,” 25 02 2021. [Online]. Available:
https://www.ctvnews.ca/autos/hyundai-s-recall-of-82-000-electric-cars-
is-one-of-the-most-expensive-in-history-1.5324265. [Använd 07 05 2021].

[29] J. Pennington, Artist, DevOps chain. [Art]. Medium, 2019.

[30] A. Lau, ”Motortrend,” 06 10 2020. [Online]. Available:
https://www.motortrend.com/news/tesla-model-y-ev-safety-quality-
issues-problems/. [Använd 10 03 2021].

[31] C. Isidore, ”CNN Business,” 03 02 2021. [Online]. Available:
https://edition.cnn.com/2021/02/03/business/elon-musk-tesla-quality-
problems/index.html. [Använd 10 03 2021].

27

8 Appendix

8.1 Questions that were used for the interviews

1. How does a car development project look like regarding requirement

specifications and communication between the departments? Where in the

organization are the requirement specifications coordinated?

2. Does every department communicate with their suppliers or does that happen

on a higher level? Can a department write contracts with suppliers by

themselves? Can a department decide what type of software version will be

included in a component?

3. How does the process between a purchasing decision and delivery look like?

How do you update the software?

4. What procedure is there when a car is recalled due to software issues?

5. What kind of responsibility does a supplier have except for delivering the

product. What happens in case the software from a supplier is faulty and needs

to be updated/replaced when it is already in the car?

6. What kind of IP protections are there regarding the suppliers’ software? Is

there any transparency so the OEM can make changes to the software? Can an

OEM do a security analysis on the software?

7. How is software made? E.g., if an OEM wants to develop something like

cruise-control. How big part of it does suppliers deliver?

8. Advanced software functions are developed in e.g., MatLab/Simulink

presumably in a department that works with ADAS. How and by whom is this

translated to a code that can be used in an ECU? How is this kind of software

updated?

DEPARTMENT OF MECHANICS AND

MARITIME SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2021

www.chalmers.se

