
Real-Time Multi-Object Tracking and
Segmentation with Generated Data
using 3D-modelling
Master’s thesis in Complex Adaptive Systems

OLLE FAGER

PHYSICS DEPARTMENT

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021

Real-Time Multi-Object Tracking and
Segmentation with Generated Data using

3D-modelling

OLLE FAGER

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2021

Real-Time Multi-Object Tracking and Segmentation with Generated Data using 3D-
modelling
OLLE FAGER

© OLLE FAGER, 2021.

Supervisor: Giovanni Volpe, Physics Department
Examiner: Giovanni Volpe, Physics Department

Master’s Thesis 2021
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Magnus Gustaver
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Real-Time Multi-Object Tracking and Segmentation with Generated Data using 3D-
modelling
OLLE FAGER
Department of Physics
Chalmers University of Technology

Abstract
Multi-Object Tracking and Segmentation (MOTS) is an important branch of com-
puter vision that has applications in many different areas. In recent developments
these methods have been able to reach favorable speed-accuracy trade-offs, mak-
ing them interesting for real-time applications. In this work different deep learning
based MOTS methods have been investigated with the purpose of extending the
DeepTrack framework with real-time MOTS capabilities. Deep learning methods
rely heavily on the data on which they are trained. The collection and annotation of
the data can however be very time-consuming. Therefor, a pipeline is developed and
investigated that automatically produces synthetic data by utilizing 3D-modelling.
The most accurate tracker achieves a MOTSA score of 94 and the tracker with the
best speed-accuracy trade-off achieves a MOTSA score of 88. It is also observed
that satisfactory results can be achieved in most situations with a quite general
data generation pipeline, indicating that the developed pipeline could be used in
different scenarios.

Keywords: deep learning, neural networks, multi-object tracking and segmentation,
synthetic data, PointTrack, SipMask.

v

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Aim . 2

2 Theory 3
2.1 Artificial neural networks . 3
2.2 Convolutional neural networks . 5
2.3 Residual neural networks . 6
2.4 ERFNet - Efficient Residual Factorized Network 7
2.5 SpatialEmbedding . 8
2.6 PointTrack . 9
2.7 SipMask . 11
2.8 Metrics . 13

2.8.1 Intersection over Union . 13
2.8.2 Average precision . 13
2.8.3 MOTSA and sMOTSA . 15

3 Method 17
3.1 Data generation . 17

3.1.1 Sausage models . 18
3.1.2 Scene environment . 19
3.1.3 Negative objects . 20
3.1.4 Image data . 20
3.1.5 Video data . 22
3.1.6 Camera and post-processing 24

3.2 Tracking methods . 25
3.2.1 PointTrack . 25
3.2.2 SipMask . 26
3.2.3 Scenario-specific robustness component 26

3.3 Testing . 27
3.3.1 Gathering test videos . 27

vii

Contents

3.3.2 Speed evaluation . 28

4 Result 29
4.1 Instance segmentation methods . 29
4.2 Tracking methods . 30
4.3 Training data . 31
4.4 Scenario-specific robustness component 35

5 Discussion 37
5.1 Instance segmentation and tracking methods 37
5.2 Training data . 38

6 Conclusion 39

viii

List of Figures

2.1 Artificial neural network architecture. Image reference: [17] 4

2.2 (a) Depiction of how a kernel processes the input image to produce
the output, the feature map, in a convolutional layer. Here the input
is a 10x10 image and the kernels receptive field a 3x3 square which
produces an 8x8 image. (b) Shows an example where the convolu-
tional layer has 4 kernels, thus producing 4 different feature maps.
Image reference: [18] . 6

2.3 Residual neural network identity skip connection. Image reference [19] 7

2.4 (a) and (b) depicts the original residual blocks proposed in [19] and
(c) the new residual block used in ERFNet. Each layer is denoted by
its kernel size a×b and w denotes the number of feature maps inputed
to the layer. Image reference [20] . 8

2.5 Architecture of SpatialEmbedding. At the base an ERFNet is used
with a split decoder, creating two branches. One branch produces
cluster margins and offset vectors. The margins sizes are shown on a
color scale, where yellow is small and blue is big. The offset vectors are
visualized by color-coding their angles. The other branch produces
seed maps for each class. Here each pixel gets a score based on how
close its offset vector is to pointing at the instance centroid. Yellow
denotes a high score and blue low. The information from the two
branches is then used to cluster pixels into masks. Image reference:
[12] . 9

2.6 Outline of PointTrack. First instance masks are produced by the
instance segmentation method. Then for each instance an embedding
is constructed through 2d point clouds. Points inside the instance are
separated from points in the surroundings and are processed in two
different branches. The results from the two branches and also an
encoded position of the instance are then combined into the final
instance embedding. Image reference: [21] 10

ix

List of Figures

2.7 (a) SipMask architecture. The input image is fed into the back-
bone consisting of a residual net with a feature pyramid network.
The output from the backbone then goes into two fully convolutional
branches. The mask-specialized regression branch outputs bounding
boxes and the basis masks. The mask-specialized classification branch
takes the bounding boxes and calculates their classification scores and
sub-region specific coefficients. (b) Here the linear combination of co-
efficients and basis masks is shown. The blue bars indicate coefficient
values. In this example the bounding box is split into a 2x2 grid
of sub-regions. Each set of coefficients is linearly combined with the
basis masks and the results are then combined to produce the final
instance mask. 12

2.8 Definition of IoU metric visualized with bounding boxes. 13

3.1 Result from automatic annotation using the bpycv package. The
different shades of grey represents different instance id’s. 17

3.2 Example of sausage model composition. A color map and a normal
map is combined with a low-poly mesh to produce the final sausage
model. 18

3.3 Examples of the HDRI’s used for lighting the scenes and as background. 19
3.4 Examples of image data created with the more general scene where

sausages are dropped onto the stage. 20
3.5 Examples of image data created with the more specific scene where

sausages are placed onto the stage in an ordered fashion. 21
3.6 Examples of sequences from the different types of videos. (a) Sausages

falling onto the stage. (b) Adding a sausage to the stage. (c) Chang-
ing HDRI strength. (d) Hand moving over the sausages. (e) Bending
sausages. 23

3.7 Demonstration of the post-processing step. On the left is the rendered
image. In the middle is the post-processed (blur and desaturation)
image. For comparison, an image from the captured videos is also
included to the right. 25

3.8 Example frames from the test videos. 28

4.1 Impact of the amount of training data. The instance segmentation
network used is PointTracks, SpatialEmbedding. The different curves
shows the result from three different mask AP metrics. The accuracy
improves up until around a dataset size of 400, where the curve flat-
tens out. 31

4.2 Impact of introducing different proportions of negative data (images
with hands and tongs) into the training data. The instance segmen-
tation network used is PointTracks, SpatialEmbedding. The different
curves shows the result from three different mask AP metrics. In-
troducing negative data increases the accuracy, but increasing the
proportion of negative data is observed to not have much effect. . . . 32

x

List of Figures

4.3 Improvement of the produced masks when introducing negative data
in two scenarios. Images to the left shows result with no negative
training data and images to the right with negative training data.
Different colors represent different instance id’s. (a) The arm goes
from being detected as a false positive to not being detected. (b) A
sausage goes from being split into two instances by the tong to being
detected as just one instance. 33

4.4 Comparison of qualitative results when training on different types of
data. For this comparison four more challenging scenarios are chosen.
The instance segmentation network used is PointTracks, SpatialEm-
bedding. In these scenarios only training on the specific data is not
sufficient. Only training on the general data however sometimes yields
comparable results to training on the complete dataset. 34

4.5 Examples of corrections made by the added tracking component.
Two examples show a situation where an id-switch occurs because
a sausage is moved in front of another sausage. A third example
shows a situation where an id-switch occurs because of a change in
lighting. 36

xi

List of Figures

xii

List of Tables

4.1 Accuracy (mask AP) of the investigated instance segmentation meth-
ods. Three different accuracy metrics are used to evaluate the meth-
ods. Pretrained versions achieve higher accuracies in all cases. Ac-
cording to AP@[50:95] all methods perform quite equally. According
to the metrics AP@50 and AP@75 however, SpatialEmbedding per-
forms the best. 29

4.2 Inference speed of the instance segmentation methods. SipMask++-
ResNet50 is the fastest while SpatialEmbedding is the slowest. 30

4.3 Accuracy of the trackers. The different methods are denoted accord-
ing to “instance segmentation method” + “tracking method”. For all
instance segmentation methods the pretrained version was used. The
best accuracy is achieved with the combination of SpatialEmbedding
and the PointTrack tracker and the worst with the SipMask tracker. . 30

4.4 Inference speed of the trackers. The different methods are denoted
according to “instance segmentation method” + “tracking method”.
The SipMask tracker is the fastest, while the combination of Spa-
tialEmbedding and the PointTrack tracker is the slowest. 31

4.5 Accuracy (mask AP) of training on different types of data. The in-
stance segmentation network used is PointTracks, SpatialEmbedding.
The complete dataset includes both the specific and the general data.
Examples of the specific data is shown in figure 3.5 and the general
data in figure 3.4. Training on the general data achieves better accu-
racy than training on the specific data, while the highest accuracy is
achieved with the complete dataset. 35

4.6 Tracking accuracy achieved when training the PointTrack tracker on
different datasets. The same instance segmentation method is used in
all cases, SpatialEmbedding trained on the complete dataset. Train-
ing solely on the specific data yields the worst result and training on
the complete dataset without negative data yields the best result. . . 35

xiii

List of Tables

xiv

1
Introduction

1.1 Background

Multi-Object Tracking (MOT) is an important branch of computer vision that deals
with the task of identifying multiple objects in a video and tracking their movement.
It is useful in many different applications such as video analysis, robotics and human-
computer interaction. For the most part existing methods track with bounding
boxes [1, 2, 3], meaning that each object is represented with a surrounding box.
However recently methods have started using segmentation of the objects, instead
representing the objects with masks on a pixel-level [4, 5, 6]. This kind of MOT is
called Multi-Object Tracking and Segmentation (MOTS). With the MOTS approach
the objects are then more finely represented. This makes it easier for the tracker
to discriminate between objects, particularly in situations where they get close to
each other or overlap. It can also be desirable in applications where visualizing the
tracking is key.

The task of producing masks for each object in an image is called instance seg-
mentation. It is this part of the MOTS task that during inference is the most
time-consuming. For a MOTS method to reach real-time speeds it is therefor im-
portant to use an efficient instance segmentation method. Instance segmentation
can be split up into two categories, two-stage and single-stage. Two-stage methods
[7, 8] usually produce object proposals in one stage and then in a second stage per-
form classification and produce the masks. One-stage methods [9, 10] however find
different ways of skipping the object proposal step, enabling them to do classifica-
tion and produce masks in one stage. Because of this difference one-stage methods
are generally much faster than two-stage methods but also lag in accuracy. In re-
cent developments however, one-stage methods have been able to reach favorable
speed-accuracy trade-offs [11, 12, 13].

A trackers performance does not just rely on the method used but also heavily
on the data on which it is trained. Therefor it is crucial to provide high quality
and abundant training data. This however poses a problem, as manual annotation
of MOTS data quickly becomes very time consuming. To combat this, various
methods for generating synthetic data can be used. One such method that has

1

1. Introduction

shown promising results utilizes 3D-modelling software [14, 15]. By recreating the
objects and the environments in 3D, different settings can automatically be varied
and the data automatically annotated. In this way large amounts of data can be
produced in a short amount of time.

1.2 Aim
This thesis has two primary aims. One is to extend the DeepTrack framework [16]
with state-of-the-art real-time MOTS capabilities. The other is to create a data
generation pipeline that as input takes 3d-models of the objects to be tracked and
produces annotated training data for these objects. Then combining these two the
aim is to end up with a quality tracker with real-time MOTS capabilities that is
also easy to train.

2

2
Theory

2.1 Artificial neural networks

As the name suggests artificial neural networks (ANN), also called just neural nets,
are inspired by the neural networks found in animal brains. Although ANN’s are
much simpler they still share some structural similarities. A biological neural net-
work is built up of four main components, neurons, axons, synapses and dendrites.
The neurons are the nodes of the neural network. Each neuron gets input, elec-
trical signals, from a large number of the other neurons via its dendrites. From
these an output is produced and sent out through the neurons axon. The axon then
branches out and ends up in many different synapses, which connect to dendrites
of other neurons. In this way the biological neural network forms a very intricate
network of electrical signals. In artificial neural networks the neurons analogously
receives input from multiple other neurons and produces a single output which is
sent out to many other neurons. The connections between neurons are however not
as complex. Although ANN’s vary in complexity in this regard the most common
structure is a layered structure where neurons in one layer only receive input from
the immediately preceding layer and only outputs to the immediately following layer,
see figure 2.1. Such networks are also called feed forward networks, stemming from
its one directional property.

The first layer of a neural net is called the input layer. This layer feeds the input data
to the network, such as an image. The last layer is called the output layer, which
outputs the final result. The most simple neural net consists of only an input layer
and an output layer. However, most commonly there are also intermediate layers
called hidden layers. One hidden layer is for example needed to solve problems that
are not linearly separable. Only one hidden layer can however for some problems
lead to a large number of neurons, making the network inefficient. In some of these
problems the number of neurons can be reduced, and thus the networks efficiency
increased, by increasing the number of hidden layers. Networks with multiple hidden
layers are also called deep neural networks.

The signals in an ANN are real numbers and analogous to the varying strength of
synaptic couplings each connection has a real valued weight. Each neurons output is

3

2. Theory

computed by first combining the input signals and then feeding the combined input
through a function called the activation function. The input signals are combined
through a weighted sum. To this, a neuron-specific threshold is also added. So, if
the output neuron is denoted by index i and the input neurons with index j the
output Oi becomes

Oi = g(bi) with bi =
∑

j

wijxj − θi

where wij is the connection weight, xj the input value, θi the threshold and g the
activation function. What activation function to use depends on the task at hand.
A common one that is biologically inspired is the ReLU activation function. It is
defined as

g(b) = max(0, b)

and is based partly on that biological neurons only activate when the input strength
reaches a certain threshold and partly on that the output strength of a biological
neuron increases as the input strength increases.

Figure 2.1: Artificial neural network architecture. Image reference: [17]

Starting at the input layer the outputs of the neurons are forwarded to the next
and eventually the output layer is reached which produces the output of the neural
net. So the final output is determined by all the wieghts wij and thresholds θi in

4

2. Theory

the network. These values are therefor the ones that are adjusted during training.
How to adjust the values is most often determined by gradient-based methods and
backpropagation. A differentiable loss function for the output is defined of which
the gradient is calculated with respect to each weight and threshold by utilizing
the chain rule. Each gradient then tells how much and in what direction to adjust
the respective weight or threshold. To control the size of the adjustments each
gradient is multiplied by a factor η called the learning rate. So for a weight wij the
corresponding adjustment δwij becomes

δwij = −η ∂H
∂wij

where H denotes the loss function. A high learning rate will speed up the training
process but might lead to missed optimal states as large steps at each iteration are
taken, thus decreasing accuracy. A low learning rate will slow down the training
process but will also increase the potential of finding optimal states, thus increasing
accuracy. The learning rate can be static for the entirety of the training process, but
different methods for varying it during training are also frequently used. One such
method is momentum, which increases the learning rate if the gradient direction has
been the same for a long time and decreases it otherwise. Using such methods can
improve the speed-accuracy trade-off of training.

2.2 Convolutional neural networks
Convolutional neural networks (CNN) are a type of ANN that are designed for
the task of image recognition. As ANN’s they are also inspired by biological neural
networks, in this case the neural networks found in the visual cortex of animal brains.
Applying a fully connected network to image data quickly becomes impractical as
the number of neurons and connections quickly increases when the size of the images
increases, leading to slow training and overfitting. By building the assumption that
the input are images into the architecture, CNN’s are able to greatly decrease the
required number of parameters needed.

A CNN consists of one or more convolutional layers. The input to and output
from a convolutional layer are images, most often 3-dimensional where the third
dimension encodes the color of the images. Each pixel of each color channel are
represented by a neuron which connect to the neurons of the convolutional layer.
Unlike a fully connected layer each neuron in a convolutional layer is only connected
to a set of neurons in the preceding layer. Also, all neurons in a convolutional layer
share the same weights. This is realised with what is called a kernel. A kernel
computes the convolution of a specific area of the image. This area is defined by
a 2-dimensional rectangular field (usually square) called the receptive field. The
kernel is then moved along the image producing outputs on its different parts which
together form the kernels feature map. Each specific area of the image that the
kernel operates on corresponds to a specific neuron in the convolutional layer and

5

2. Theory

thus defines the sets of neurons that the convolutional layer neurons are connected to.
So the kernels feature map is actually the output of the convolutional layer. This is
depicted in figure 2.2a. The weights of the connections are a part of the kernel, thus
making all neurons in the convolutional layer share the same weights. This aspect
of the convolutional layer drastically decreases the number of parameters needed
as compared to a fully connected layer. However, a convolutional layer usually has
multiple kernels, as shown in figure 2.2b, but despite this the parameter decrease is
still significant. The kernel can be viewed as a feature extractor, where its weights
define which feature of the image it will extract. The idea of using multiple kernels
is then that the different kernels will learn to detect different features of the image
which creates a better understanding of the image.

Figure 2.2: (a) Depiction of how a kernel processes the input image to produce
the output, the feature map, in a convolutional layer. Here the input is a 10x10
image and the kernels receptive field a 3x3 square which produces an 8x8 image.
(b) Shows an example where the convolutional layer has 4 kernels, thus producing
4 different feature maps. Image reference: [18]

2.3 Residual neural networks
The power of deep neural networks lies in their ability to solve complex problems.
The different layers can be thought of handling different levels of the inputs features.
Increasing the number of layers therefor enables the network to recognize more
intricate features. However, it also comes with some problems, mainly two. One is
that the deepest layers (layers closest to the input layer) might learn very slowly.
This is because of the chain rule that is used when calculating the gradients in
backpropagation. The gradients in a deep layer are effectively the products of many
gradients and when the gradients are small they get exponentially smaller with the
depth of the layer. This problem has therefor been named the vanishing gradient
problem. The other issue that has been observed with deep neural nets is that as
they are made deeper the accuracy starts to saturate and then even degrade. This
problem is however a bit surprising as added layers should be able be constructed

6

2. Theory

as identity mappings, f(x) = x, and therefor in the worst case just lead to no
improvement.

Residual neural networks (ResNet) [19], or residual nets, mitigate both of these
problems. Having a base architecture that of a feed forward network, residual nets
adds identity skip connections. These connections skip layers, usually two or three,
and do not have any weights. They are parallel identity mappings of the deeper
layers output. One such connection is shown in figure 2.3. If the mapping that the
skipped layers would fit without the skip connection is denoted H(x), they now with
the skip connection fit the residual F (x) = H(x) − x, hence the name. The idea is
that in the cases when an identity mapping is preferred, fitting the residual will be
easier as the weights of the layers can simply be driven to zero.

Figure 2.3: Residual neural network identity skip connection. Image reference [19]

Residual nets also deal with the other main problem, which is that in deeper networks
the accuracy starts to saturate and then even degrade. In the residual net paper
they propose that the problem might actually come from the fact that deep neural
nets have difficulty to learn identity mappings. So by making it easier to learn
identity mappings this problem is alleviated.

2.4 ERFNet - Efficient Residual Factorized Net-
work

The ERFNet [20] is a convolutional neural network whose design is able to improve
the speed-accuracy trade off for segmentation tasks. It does this by first implement-
ing the design strategy of residual neural networks, adding identity skip connections.
This improves the accuracy as explained in section 2.3 but the non-bottleneck and
bottleneck residual blocks proposed in [19], see figure 2.4, still has a problem. As the
network gets deeper the accuracy gains are not very large while the networks speed
is still significantly reduced. To this end the ERFNet introduces a new residual

7

2. Theory

block called non-bottleneck-1D. The non-bottleneck block consists of two 2D convo-
lutional layers, where 2D refers to the fact that the kernels are 2-dimensional. The
non-bottleneck-1D block replaces each 2d convolutional layer with a combination of
two 1D convolutional layers. This reduces the number of parameters needed and
also enables more non-linearities to be included, effectively increasing the speed of
the network while still maintaining equal accuracy to the non-bottleneck block. By
building its architecture with these blocks ERFNet is thus able to produce accurate
segmentations in real-time (over 83 FPS with a single Titan X GPU).

Figure 2.4: (a) and (b) depicts the original residual blocks proposed in [19] and (c)
the new residual block used in ERFNet. Each layer is denoted by its kernel size a×b
and w denotes the number of feature maps inputed to the layer. Image reference
[20]

2.5 SpatialEmbedding
SpatialEmbedding is a single-stage and proposal-free instance segmentation method.
It produces masks based on spatial information and is able to do so very accu-
rately due to its novel loss function. Then they couple this with a fast architecture,
the ERFNet encoder decoder architecture, enabling this method to also reach high
speeds.

The method is based on the idea of grouping pixels to each instances centroid.
To this end a 2D vector pointing towards an instance centroid is learned for each
pixel. A common way to learn these offset vectors is by using a simple regression
loss directly on them. This leaves the computation of centroids and assignment of
centroids to pixels completely to post-processing at inference time. The centroid
assignment can however be incorporated into the loss function by instead using a
hinge loss. This incorporates a fixed margin around the centroid into the loss, within
which the pixels offset vectors are forced to point. Having a fixed margin however

8

2. Theory

comes with the problem that, to be able to discern all objects, it has to be chosen
in correspondence to the smallest object. This negatively affects the ability to learn
larger objects because pixels further away from its centroid will have difficulty to
point inside the margin. Therefor, what SpatialEmbedding does is that it instead
of a fixed margin incorporates a flexible margin. So for each instance a specific
margin is learned. This improves the ability to learn instances of different sizes as
the margin should be proportional to the size of the instance. Seed maps for each
class is also produced, in which each pixel is assigned a score based on how close its
offset vector is to pointing at the instance centroid.

Figure 2.5: Architecture of SpatialEmbedding. At the base an ERFNet is used
with a split decoder, creating two branches. One branch produces cluster margins
and offset vectors. The margins sizes are shown on a color scale, where yellow is
small and blue is big. The offset vectors are visualized by color-coding their angles.
The other branch produces seed maps for each class. Here each pixel gets a score
based on how close its offset vector is to pointing at the instance centroid. Yellow
denotes a high score and blue low. The information from the two branches is then
used to cluster pixels into masks. Image reference: [12]

As seen in figure 2.5 the ERFNet decoder is split into two branches. One branch
produces the seed maps and the other the margins and the offset vectors. Then
using the extracted information the pixels are clustered into masks. This is done
separately for each class. First a centroid is sampled from the classes seed map by
choosing the pixel with the highest seed score. Then pixels are clustered to this
centroid using the corresponding margin. Finally the clustered pixels are removed
from the seed map and the process is then repeated until all seeds are masked.

2.6 PointTrack
PointTrack [21] is built on the single-stage instance segmentation method called
SpatialEmbedding [12]. The utilization of this method is what enables PointTrack to
reach near real-time tracking. The main part of this tracking framework however, lies
in the way it produces its instance embeddings. Unlike most other MOTS methods
which in different ways uses convolutional networks, PointTrack extracts instance

9

2. Theory

embeddings by representing an image with 2D point clouds and describing each point
with a number of descriptors. Given an instance with a segment and a bounding box
the bounding box is first slightly enlarged equally in all four directions to include
more of the surrounding environment. Then two point clouds are created, one
with points from inside the segment and one with points from the area surrounding
the segment. These point clouds are then processed in separate branches. This
separation of the segment and its surroundings avoids the mixing of the two that
occurs in convolution based methods, thus improving the discriminatory ability of
the embedding. Each point in the segment point cloud is described by its offset,
which is its position relative to the center of the segment point cloud, and its RGB
color. Each point in the surroundings point cloud is, beyond the descriptors of the
segment point cloud, also described by its category. The possible categories are the
segmentation classes and also a background class. In the respective branches the
points and its descriptors are then combined and their embeddings learned. Finally
the embeddings from the two branches and also an embedded position of the instance
in the image are concatenated and the instance embedding learned.

Figure 2.6: Outline of PointTrack. First instance masks are produced by the
instance segmentation method. Then for each instance an embedding is constructed
through 2d point clouds. Points inside the instance are separated from points in the
surroundings and are processed in two different branches. The results from the two
branches and also an encoded position of the instance are then combined into the
final instance embedding. Image reference: [21]

To then perform instance association between frames a similarity measure S is de-
fined. Given two segments Ci and Cj and their embeddings Mi and Mj their simi-
larity is given by

S(Ci, Cj) = D(Mi,Mj) + αU(Ci, Cj)

10

2. Theory

where D represents the euclidian distance and U the mask IOU. The similarities
between all the instances in the current frame and the last instances of a set of
saved tracks are then calculated and the Hungarian algorithm used to match the
instances to each other. Each instance id has its track and the last instance of each
track is kept in memory. If the instance id does not appear in a certain amount of
consecutive frames it is considered to have gone out of frame and is removed from
memory. There is also an association threshold that the similarity score have to be
above in order to be matched. If a certain instance is not matched a new instance
id is assigned to the instance and thereby a new track is also started.

2.7 SipMask

SipMask [13] is first and foremost an instance segmentation method but a version
adapted for the MOTS task is also available. SipMask’s instance segmentation is
single-stage, making it a fast method capable of reaching real-time inference. It
is based on the ideas of a different one-stage instance segmentation method called
YOLACT [11]. The way YOLACT works is by dividing the job into two parallel
branches. In one branch a fully convolutional network is used to create k "proto-
types" the size of the image. This is similar to semantic segmentation, however
k does not have to equal the number of classes and the loss is not calculated on
the result of this branch but on the final result. This means that the prototypes
are not directly linked to the actual instances. Exactly what they represent is not
explicitly defined. The task of the other branch is to produce a set of k mask coef-
ficients for each predicted bounding box. From these two branches the final result
is then achieved by a linear combination of the prototypes and mask coefficients.
SipMask also produces category-independent prototypes like YOLACT or as they
call them, basis masks. However, instead of just a single set of mask coefficients
for each bounding box SipMask produces multiple sets of coefficients for different
sub-regions of each bounding box. Each predicted bounding box is split into a grid
of sub-regions. To get a good trade-off between speed and accuracy SipMask uses
a 2x2 grid, resulting in 4 sets of mask coefficients per bounding box. So for every
bounding box first different parts of the mask are constructed through linear com-
bination of basis masks and mask coefficients which then are combined to produce
the final mask.

The SipMask architecture is shown in figure 2.7. It has a backbone consisting of
a residual network (ResNet) [19] with a feature pyramid network (FPN) [22]. The
output from the FPN then goes to two fully convolutional branches, the mask-
specialized classification branch and the mask-specialized regression branch. The
mask-specialized regression branch outputs the bounding boxes and the basis masks.
The mask-specialized classification branch calculates classification scores on the
bounding boxes regressed by the mask-specialized regression branch and the co-
efficients for the different sub-regions of each bounding box. The coefficients and
the basis masks are then linearly combined as described above to produce the final
result.

11

2. Theory

Figure 2.7: (a) SipMask architecture. The input image is fed into the backbone
consisting of a residual net with a feature pyramid network. The output from the
backbone then goes into two fully convolutional branches. The mask-specialized re-
gression branch outputs bounding boxes and the basis masks. The mask-specialized
classification branch takes the bounding boxes and calculates their classification
scores and sub-region specific coefficients. (b) Here the linear combination of coef-
ficients and basis masks is shown. The blue bars indicate coefficient values. In this
example the bounding box is split into a 2x2 grid of sub-regions. Each set of coeffi-
cients is linearly combined with the basis masks and the results are then combined
to produce the final instance mask.

In its adaption to MOTS SipMask adds another branch in parallel to its other two
branches. This branch is also fully convolutional and produces feature vectors for all
bounding boxes. Given a bounding box, its feature vector is created by extracting
the center most value of the bounding box from all feature maps outputted by the
convolutional network.

In the first frame all detected instances are assigned an instance id and for each
instance id a new track is started. In each following frame matching is performed
between the detected instances in the current frame and the last recorded instance
of each track. The last recorded instance of each track is always kept in memory.
The similarity measure between an instance Ic

i in the current frame with feature
vector vc

i and an instance Ip
j from the past tracks with feature vector vp

j is given by

12

2. Theory

S = log
(

exp(vc
i · vp

j)∑
j exp(vp

j)

)
+ c1Ci + c2U(Ic

i , I
p
j) + c3L(Ic

i , I
p
j) (2.1)

where Ci is the classification score of the instance in the current frame, U the
bounding box IoU and L is either 0 or 1 depending on if the instances labels match.
Each instance in the current frame is matched to the instance giving the maximum
similarity score S. If two instances match with the same instance, the one with the
highest similarity score is chosen.

2.8 Metrics

2.8.1 Intersection over Union
The Intersection over Union (IoU) is a metric used to measure the similarity of
predicted and ground truth instances. As shown in figure 2.8 the IoU of two instances
is given by the area of their intersection divided by the area of their union. In the
figure the IoU of two instances bounding boxes is shown, the IoU of two masks can
however also be calculated in the same way.

Figure 2.8: Definition of IoU metric visualized with bounding boxes.

2.8.2 Average precision
Average precision (AP) is the standard metric used for object detection tasks. How-
ever, it does not measure tracking performance but only detection performance. So,
in this case it was used to evaluate the instance segmentation parts of the trackers.
To describe this metric two more basic metrics, precision and recall, need to first
be described. These metrics combine true positives (TP), false positives (FP) and
false negatives (FN) in different ways. Precision is given by

13

2. Theory

precision = TP
TP + FP .

Thus, what precision tells us is how many of all positive detections are actually
positive. This measure penalizes false positives and is therefor useful when it is
important to avoid false positive detections. Recall is given by

recall = TP
TP + FN .

Thus, what recall tells us is how many of the actual positives are detected. It
penalizes false negatives and is therefor useful when it is important to avoid false
negatives.

Detected instances are classified as either true positives, false positives or false neg-
atives based on their mask IoU’s with the ground truth instances. In the COCO
API REF, which is used to calculate the AP scores, the classification is performed
by iterating through the set of detected instances and comparing them to all ground
truth instances. In each iteration the detected instance is matched with the previ-
ously unmatched ground truth that it has the larges IOU with, as long as the IoU is
also above a certain threshold. A matched detection is classified as a true positive
and an unmatched detection as a false positive. A ground truth instance that have
not been assigned any detection is classified as a false negative. The COCO API
provides AP metrics with three different IoU thresholds. One, denoted AP@50, is
calculated with an IoU threshold of 0.5. Another, denoted AP@75, is calculated
with an IoU threshold of 0.75. The last one, denoted AP@[50:95], is actually an
average of 10 AP metrics with IoU thresholds in the range 0.5 to 0.95.

To calculate AP the detected instances classification scores are also used. These are
the scores that tell the confidence of the detected instances class assignment. A list
is created of all the detected instances in all images sorted based on classification
score in descending order. Iterating through this list, a precision and recall pair
is calculated at each iteration. These scores are calculated based on the previous
detections in the list. So for precision the total number of positives detected is equal
to the number of previous detections in the list. Iterating through the list the recall
will never decrease because the number of actual positives does not change. The
precision will vary however, going up when a true positive is introduced and going
down when a false positive is introduced. This zig-zag pattern is then smoothed out
so that the precision never increases. Finally the AP score is obtained by sampling
101 equally spaced recall values, extracting the corresponding precision values and
calculating the average of these extracted precision values. This procedure effectively
penalises false detections with high classification score. The best possible AP score
is 1 and is achieved when all the true positives also are the detections with the
highest classification scores.

14

2. Theory

2.8.3 MOTSA and sMOTSA
To evaluate the results of the trackers two common metrics for the MOTS task are
used. These metrics are built by in different ways utilizing the more basic metrics,
true positives, false positives, false negatives and id switches (IDs). To calculate
these more basic metrics the predicted masks need to be assigned to the ground
truth masks. The MOTSA and sMOTSA metrics assumes that each pixel is assigned
only one label. Therefor a predicted mask can simply be assigned to a ground truth
mask as long as the IoU is above 0.5. So, each successful assignment is counted
as a true positive, each unassigned predicted mask is counted as a false positive
and each unassigned ground truth mask is counted as a false negative. These three
metrics however only measure the performance of the instance segmentation. To
also measure the tracking performance, id switches are included. Given two ground
truth masks in consecutive frames whose instance id’s are the same, an id switch
occurs when the instance id of the corresponding predicted masks switches.

MOTSA: MOTSA is an accuracy metric and is defined by

MOTSA = TP − FP − IDS
M

where M denotes the number of ground truth masks.

sMOTSA: The name sMOTSA stands for soft MOTSA and it comes from that
this metric uses a soft TP, T̃P. The difference between TP and T̃P is that instead
of just counting successful assignments the T̃P metric sums the actual IoU’s of the
successful assignments. The sMOTSA metric is then given by

sMOTSA = T̃P − FP − IDs
M

where M denotes the number of ground truth masks.

15

2. Theory

16

3
Method

The Multi-Object Tracking and Segmentation (MOTS) methods and the data gen-
eration pipeline were investigated on a test setup made to resemble a scenario of
sausages on a commercial grill. Being able to track the sausages in this scenario
could for example make it possible to keep track of how long the sausages have been
laying on the grill, which in turn could help avoiding sausages laying on the grill
for too long. In the following sections it is described how data for this scenario was
generated and how the different tracking methods were tested.

3.1 Data generation
The data was generated using the open-source 3D-creation suite Blender. It comes
with a powerful Python API which gives the user control of many properties related
to scene creation in the suite. Utilizing this API, the scripts for automatic scene
creation were written. The last component of the data generation pipeline was the
bpycv python package. This package enabled the automatic annotation. From a
rendered blender scene this package can produce different kinds of annotations. One
of those are mask annotations which were used in this case, see figure 3.1.

Figure 3.1: Result from automatic annotation using the bpycv package. The
different shades of grey represents different instance id’s.

17

3. Method

3.1.1 Sausage models

As a sausage has a simple shape and not a lot of different details the sausage model
was created from scratch. At the ground level a 3D-model is made up of a number
of connected polygons in 3D-space. This basic building block is called the mesh.
First a low-poly mesh, a mesh made up of a small amount of polygons, of the basic
shape of the sausage was created. Then, to add more realism some irregularities
were added to the surface through sculpting on a high-poly version of the mesh.
However, to save on rendering time the high-poly mesh was not used directly but
instead transformed into a high-resolution normal map. A normal map is an RGB-
image where each pixels RGB-value represents the 3-dimensional direction of the
surface. When the normal map is applied to the low-poly mesh the actual shape of
the model is not changed but it will tell the render engine that light should interact
with the object as if it was. To add some variation, when creating each sausage the
strength of the normal map was varied.

Next, color was added to the sausage. As sausages come in different colors and
also can change color while being cooked, variability was prioritized over realism for
this. Instead of painting a number of different color maps, an automatic generation
process was created. First a color was randomly chosen from three defined color
ranges, one with more orange, one with more pink, and one darker. This color was
then combined with a noise image to introduce some variation before being applied
to the model.

Figure 3.2: Example of sausage model composition. A color map and a normal
map is combined with a low-poly mesh to produce the final sausage model.

18

3. Method

Commonly also a roughness map is used to create the texture of the model. The
roughness map is a grayscale image where the pixel values define how sharp reflec-
tions of the surface should be. However, a sausage consists of only one “materia”
and should therefor reflect light in the same way all over its surface. So no roughness
map was used but a single roughness value was set for the whole model. This value
was however varied from one sausage to another, as different sausages can vary in
reflectiveness.

3.1.2 Scene environment
The sausages were placed on a slab with a simple flat metallic surface, see figures
3.4 and 3.5. This “stage” was chosen as to mimic the metallic counter used in the
test videos, see figure 3.8, which in turn was chosen to mimic the metallic surface
of a commercial sausage grill.

Figure 3.3: Examples of the HDRI’s used for lighting the scenes and as background.

In order to get realistic lighting of the scenes, HDRI’s were utilized. HDRI stands
for High Dynamic Range Imaging and are panoramic images that apart from color
information also contains luminance information. As good quality HDRI’s requires
specific equipment to capture, freely available HDRI’s were instead obtained from
the website HDRI Haven. More specifically, it was the HDRI’s from the Indoor
package that were used, which included 104 images. Some examples of these HDRI’s
are shown in figure 3.3. Even though some images might not exactly resemble a store,
the luminance information can still be relevant. When creating a scene an HDRI
as well as its strength was chosen at random. For most images the HDRI was not
only used for lighting the scene but also as a background. The idea was that this
introduces some negative information to the models, which should help them to not
detect background objects as sausages.

19

3. Method

3.1.3 Negative objects
In the test videos the sausages were moved around with the help of a tong, see figure
3.8. This introduced objects that had similarities with the sausages. The tong was
not very similar in color but had a similar shape, fingers could be similar in shape
and also quite similar in color and an arm could be quite similar in color but not as
much in shape. To combat the detectors detecting these objects as sausages, models
of these objects were included in some images. These objects are called negative
objects as they are not supposed to be detected.

For the hand/arm two different models were used. As a hand is quite complicated to
create from scratch, free models from the website Turbosquid was instead obtained.
These models however only included the meshes so color was added afterwards.
As these were just used as negative models they were only painted to adequately
resemble a Hand/arm. The tong was created from scratch and also in a rather
simplistic manner as to just resemble a tong.

3.1.4 Image data
Even though generating synthetic data using 3d modelling removes the need for
manual annotations, some degree of manual labor might be introduced if the scenes
are to be made to look more like the real scenario. To investigate the impact of how
general a scene is a couple of different datasets were created.

Figure 3.4: Examples of image data created with the more general scene where
sausages are dropped onto the stage.

20

3. Method

The most general scene was created by simply dropping a number of sausages onto
the stage. For this Blenders physics engine was used. Each sausage was first placed
at a set height and at a random position within a square in the xy-plane. They
were also randomly rotated from their base orientation. The sausage model was
oriented so that the long axis of the sausage was parallel with the y-axis. So, from
this orientation the sausages were then rotated a random amount around the y-axis
and the z-axis, both within 360°. With the sausages placed at their initial positions
a gravity simulation was then started where the sausages were simulated as rigid
objects. After a while the simulation was stopped and an image rendered. This
method managed to place the sausages in the scene in a realistic and very simple
way. Examples of the scene are shown in figure 3.4. However, the sausages on a grill
are usually placed in a more ordered fashion. So for this specific scenario it might
not be a sufficient method.

Figure 3.5: Examples of image data created with the more specific scene where
sausages are placed onto the stage in an ordered fashion.

To investigate this, a scene with sausages placed in a more ordered fashion was
created. Instead of dropping the sausages onto the stage they were placed at specific
positions. These positions were however still chosen randomly. A grid of predefined
positions were created, from which the sausages positions were randomly chosen.
This grid was made up of two columns of equally spaced slots. The sausages were
also only rotated along the y-axis, so that all the sausages were aligned. Examples
of this scene are shown if figure 3.5.

21

3. Method

Other versions of the ordered scene were also created. One more difficult version,
where the sausages were placed closer together and also some sausages slightly above
ground. This resulted in scenes where the sausages occlude each other in such ways
that they become quite difficult to distinguish between. Another version included
bent sausages. In this scene half of the sausages were bent by a random amount.

For both the unordered and ordered scenes, scenes with the negative objects were
also created. These were in all cases placed above the sausages at a specific height
and randomly placed in the xy-plane. Their orientation were also set at random.

3.1.5 Video data
To train the part of the models that performs the tracking, videos of the sausages
moving were needed. For this a lot could be done in terms of realism. To keep it
at a reasonable level however, rather simplistic animations were created. Sequences
from the different types of videos created and described below are shown in figure
3.6.

The main movements to replicate in the investigated scenario were the addition and
removal of sausages. These were created in two different scenes, one more general
and one more specific. In the more general scene the sausages start positions were
set by dropping the sausages onto the stage. This was done using Blenders physics
engine. Each sausage was first placed at a set height and at a random position
within a square in the xy-plane. They were also randomly rotated from their base
orientation. The sausage model was oriented so that the long axis of the sausage was
parallel with the y-axis. So, from this orientation the sausages were then rotated
a random amount around the y-axis and the z-axis, both within 360°. With the
sausages placed at their initial positions a gravity simulation was the run for a
short amount of time where the sausages were simulated as rigid objects. From
this simulation the start positions of the sausages lying on the stage were then
obtained. However, as sausages also were to be added to the stage, two sausages
were also positioned off the stage outside the field of view of the camera. Sausages
were then animated one at a time. Either one was removed from the stage or one
was added. When removing a sausage, the top most sausage was always selected to
avoid animating sausages going through each other. The animation was then made
up of two parts. First the sausage was moved only upwards a certain distance, then
it was moved in a straight line towards the camera until no longer in the cameras
field of view. When adding a sausage, the sausage was first moved in a straight line
to a random position above the other sausages. Then, to again avoid animating the
sausage going through another sausage, the sausage was dropped using a gravity
simulation.

In the more specific case, the start positions of the sausages starting on the stage
were set by placing the sausages in an ordered fashion on the stage. Instead of
dropping the sausages onto the stage they were placed at specific positions. These
positions were however still chosen randomly. A grid of predefined positions were

22

3. Method

created, from which the sausages positions were randomly chosen. This grid was
made up of two columns of equally spaced slots. The sausages were also only rotated
along the y-axis, so that all the sausages were aligned. The removal and addition
of sausages were then apart from a few differences animated in a similar way. For
the removal, as sausages in this case don’t lie on top of each other, the sausage to
remove was instead simply chosen at random. For the addition, the position to move
the sausage to was not chosen randomly within the space of the stage but instead
within the set of free slots. Also, the sausage was not dropped onto the stage but
rather placed.

Figure 3.6: Examples of sequences from the different types of videos. (a) Sausages
falling onto the stage. (b) Adding a sausage to the stage. (c) Changing HDRI
strength. (d) Hand moving over the sausages. (e) Bending sausages.

23

3. Method

These video types described above mimic the addition and removal of sausages, but
the movements are very straight and does not have a lot of variety. To introduce
some more general movements, videos of dropping the sausages onto the stage were
also created. The sausages were dropped onto the stage in much the same way as
described earlier. However for these videos the sausages were initially placed at
different heights in order to create space between the sausages as they fell onto the
stage. The videos included the sausages falling onto the stage and then also them
moving around on the stage for a while until the movement slowed down.

The aforementioned video types only concern movement. Tracking however also
includes other aspects such as color and shape. In the investigated scenario the
color of the sausages can for example change when a shadow is cast on them and
the sausages might bend slightly when being picked up, changing their shape. To
improve the trackers association ability, videos for these two described situations
were created. To replicate the sausages being shaded, sausages were placed on the
stage and kept stationary while animating the HDRI strength. To replicate the
sausages being bent, sausages were placed on the stage and then only the actual
bending of the sausages was animated.

Even if the sausages actual shape does not change, its visible shape can change by
something occluding a part of it. Such changes are to an extent already accounted
for by sausages moving in front of each other in the videos that animate sausage
movement. However, the sausages in the real scenario can of course be occluded
by other objects than the sausages themselves. So to add some more occlusion
data for the tracker to go on, videos of the hand models moving back and forth
over stationary sausages were also created. These videos were made for both the
more general case of sausages being randomly dropped onto the stage and the more
specific case of sausages being placed onto the stage in an ordered fashion.

3.1.6 Camera and post-processing

To introduce some variation in the viewing angles of the scenes the camera was
positioned randomly to an extent. The cameras position along the x-axis was fixed
while its position along the y-axis and z-axis was varied randomly. The camera
was also always rotated to point towards the stage. To get a good balance between
rendering speed and quality the images were rendered at a resolution of 640x640.

Compared to the real captured videos the rendered images were sharper and more
saturated. Therefor the rendered images were also post-processed to look more like
the captured videos. This was done partly by just desaturating the images a constant
amount and partly by adding a varying amount of gaussian blur to the images. The
amount of gaussian blur was varied because the video quality in the captured videos
varies depending on for example lighting. A comparison of a rendered image, post-
processed image and captured image is shown in figure 3.7.

24

3. Method

Figure 3.7: Demonstration of the post-processing step. On the left is the rendered
image. In the middle is the post-processed (blur and desaturation) image. For
comparison, an image from the captured videos is also included to the right.

3.2 Tracking methods

Two real-time multi object tracking and segmentation methods were investigated for
this task, PointTrack and SipMask. Apart from applying both methods separately,
combinations of the two methods were also investigated.

3.2.1 PointTrack
PointTrack consists of two separate parts, an instance segmentation network and an
embedding extractor. The instance segmentation network, SpatialEmbedding, was
trained on the image data and the embedding extractor on the video data.

SpatialEmbedding was trained for 80 epochs at a learning rate of 5 ·10−4 for the first
50 epochs and 5 ·10−5 for the last 30 epochs. The training was performed in batches
with a batch size of 6, which was the maximum size possible given the memory
capacity of the GPU. Starting the training from a version of SpatialEmbedding
pretrained on the Cityscapes dataset [23] was also investigated.

The embedding extractor was trained for 15 epochs at a learning rate of 5 · 10−4 for
the first 10 epochs and 5 · 10−5 for the last 5 epochs. The training of this network
was also performed in batches. PointTrack constructs these batches from track ids.
Each different object has its unique track id. PointTrack gathers all the track ids
from all of the training videos and then picks random track ids from this collection to
form a batch. From a specific track id a sample is taken by randomly choosing three
equally spaced frames. The spacing is randomly chosen between 1 and 5, where 1
corresponds to three consecutive frames. The loss used is margin based hard triplet
loss. This kind of loss benefits from larger batch sizes as it increases the probability
of including harder triplets. Therefor the maximum possible batch size given the
GPU memory capacity was chosen, which was 25.

25

3. Method

3.2.2 SipMask
SipMask exists in two versions, one only for instance segmentation and one adapted
for tracking. The instance segmentation version can then also be used with dif-
ferent backbone networks. Four different backbones, all residual networks, were
investigated, ResNet50, ResNet101, ResNet50-Deform and ResNet101-Deform. The
number in the names (50 and 101) denotes the depth of the network and “Deform”
stands for that deformable convolutional networks [24] are used. When the de-
formable backbone is used the method is instead called SipMask++, which apart
from a different backbone also implements a mask scoring strategy.

The instance segmentation versions was trained on the image data. The learning
rate schedule adopted by SipMask was used. This included a warm-up period, steps
and the usage of momentum. A warm-up period of 500 iterations was used, starting
at a third of the desired learning rate. The learning rate was warmed up to a value
of 10−3, stepped down to 10−4 at epoch 8 and finally stepped down again for the
last 2 epochs at epoch 11 to 10−5. The training was performed in batches with a
batch size of 6, which was the maximum size possible given the memory capacity of
the GPU.

The different backbones used were all versions pretrained on the ImageNet dataset
[25]. Versions of SipMask pretrained on the COCO dataset [26] were also available.
Starting the training from these pretrained versions of SipMask was investigated.

In the SipMask version adapted for tracking the only difference is an added parallel
branch. Therefor the learned parameters from the instance segmentation version
was first loaded and then frozen, so that only the tracker part was trained on the
video data. The tracker was trained with a similar learning rate schedule. First
the learning rate was warmed up to a value of 2 · 10−3 for 1000 iterations, starting
from 1/80 of the final value. The learning rate was then stepped down to 2 · 10−4

at epoch 8 and to 2 · 10−5 at epoch 11. The training was stopped after 12 epochs.
The training was performed in batches with a batch size of 6.

3.2.3 Scenario-specific robustness component
To increase the trackers robustness for the investigated scenario a new component
was added to the instance association part of the tracker. Specifically this component
was created to reduce the number of id switches. An id switch occurs when given
two ground truth masks in two consecutive frames whose instance id’s are the same,
the instance id of the corresponding predicted masks switches. This can happen if
for example two objects pass over each other. In such a situation it can be difficult
for the tracker to know which object is which and might thereby assign wrong ids.
However, this component can also help in situations where during an occlusion of an
object the id of that object gets wrongfully assigned to another instance, possibly
leading to the occluded object being assigned a new id when revealed again.

This component took advantage of the fact that in the investigated scenario only

26

3. Method

one object (sausage) was moved at a time. First two states that each instance of
a track could occupy were defined. These two states were moving and stationary,
and each instance could only occupy one of the states at a time. An instance was
defined to be stationary if for 5 consecutive pairs of frames the mask IOU of the
instances with the same id in each pair was larger than 0.9. For an instance to
be assigned the moving state, the change in bounding box size and bounding box
position between the instance and the instance with the same id in the previous
frame had to fulfill certain criteria. The change in bounding box width and height
had to both be below 7 pixels and the change in bounding box position (distance
between the top left corners) had to be above 6 pixels. The criteria on bounding box
size was set because otherwise size changes could be considered movement. When
the size of a bounding box changes, the positions of all points that can be used as
reference for movement such as corners and the center also changes. However, this
criteria also meant that a moving instance could be considered not moving if at
the same time its shape changed, orientation changed or parts of it were occluded.
For this scenario this did not pose much of a problem because the objects does not
change their shape or orientation significantly.

When an instance became stationary it was saved in memory. In each frame the
detected instances, after being assigned id’s, were then compared to these saved
stationary instances. If a detected instance and a saved instance had an IOU larger
than 0.5, their id’s were checked and if the id’s were different the detected instances
id was changed to the id of the saved instance. To avoid an instance moving over
one of the saved instances and thereby changing its id, the id was only changed if
the detected instance was not in the moving state. After changing the id of the
detected instance it had to be checked if any of the other detected instances had
been assigned the switched to id, i.e. if two instances switched id’s with each other.
If so was the case the former id of the first instance was assigned to that instance.

3.3 Testing

3.3.1 Gathering test videos
A test setup resembling the actual scenario was created. To resemble the sausage
grill a metallic counter was used. Sausages were then moved around in frame and
also moved in and out of frame with a tong. In an actual store the most convenient
way of mounting the camera would be to mount it on the wall behind the grill.
Therefor the camera used in the test setup was mounted on the wall behind the
counter. The videos were captured on a Nikon D3200 camera with a resolution of
1920x1080 at 25 frames per second. The video was then cropped down to exclude
as much unnecessary information as possible. Finally the cropped down video was
resized to match the resolution of the training images and videos. Some example
frames from the videos are shown in figure 3.8.

A part of one of the captured videos (500 frames) was also annotated. The annota-
tions were made in a semi-supervised manner. Masks were first created with one of

27

3. Method

the trackers and then manual refinements of the produced masks were made. This
annotated sequence was then used to evaluate the trackers performances.

Figure 3.8: Example frames from the test videos.

3.3.2 Speed evaluation
The inference speed of the trackers were measured on a single Nvidia Geforce GTX
970. A GPU can exist in different power states and when not being used it can go
into a state of lower power. Therefor, to ensure that the GPU was not in a low power
state, a warm-up of 10 iterations was performed before the actual measurements were
taken. To perform the measurements the pytorch package was used. Specifically
the function torch.cuda.synchronize() was used to synchronize the CPU with
the GPU, making sure that the timing was not stopped before the processes on the
GPU were finished.

In PointTrack the instance segmentation and the tracking is split into two separate
parts. So for this method the speeds of the separate parts were measured. SipMask
exists in two versions, one that only does instance segmentation and one that also
does tracking. Both were however measured because a method using SipMask’s
instance segmentation and PointTrack’s tracking was also investigated. The instance
segmentation methods were tested on the image data and the tracking methods on
the video data. As the inference speeds varied from one pass through the models to
another the final reported inference speed for each method is the average inference
speed over the respective datasets.

28

4
Result

4.1 Instance segmentation methods
The accuracy (mask AP) of the different investigated instance segmentation meth-
ods on the test data is shown in table 4.1. For all methods better accuracy was
observed when starting from a pretrained version and only finetuning on the syn-
thetic data compared to training from scratch on the synthetic data. According to
the AP@[50:95] metric all pretrained methods perform quite equally. Looking at
the AP@50 and AP@75 metrics however, SpatialEmbedding performs better than
all the other methods.

Table 4.1: Accuracy (mask AP) of the investigated instance segmentation meth-
ods. Three different accuracy metrics are used to evaluate the methods. Pretrained
versions achieve higher accuracies in all cases. According to AP@[50:95] all meth-
ods perform quite equally. According to the metrics AP@50 and AP@75 however,
SpatialEmbedding performs the best.

method pretraining AP@[50:95] AP@50 AP@75
SipMask-ResNet50 COCO 0.842 0.924 0.9
SipMask-ResNet50 No 0.799 0.926 0.878

SipMask-ResnNet101 COCO 0.843 0.960 0.939
SipMask-ResnNet101 No 0.736 0.963 0.785
SipMask++-ResNet50 No 0.755 0.951 0.883
SipMask++-ResNet101 No 0.718 0.960 0.824

SpatialEmbedding Cityscapes 0.839 0.979 0.969
SpatialEmbedding No 0.796 0.954 0.936

The inference speeds of both the instance segmentation methods and the trackers
were measured. In table 4.2 we can see that SpatialEmbedding was significantly
slower than all the SipMask variants with an inference speed of 224 ms/frame.
SipMask++-ResNet50 was measured to be the fastest method at an inference speed
of 85 ms/frame. SipMask-ResNet50 was however not too far away, measured to
have an inference speed of 103 ms/frame. The SipMask method with the deeper
backbone, SipMask-ResNet101, was slower than the other SipMask methods. It was

29

4. Result

however still faster than SpatialEmbedding.

Table 4.2: Inference speed of the instance segmentation methods. SipMask++-
ResNet50 is the fastest while SpatialEmbedding is the slowest.

method speed (ms/frame)
SpatialEmbedding 224
SipMask-ResNet50 103
SipMask-ResNet101 155

SipMask++-ResNet50 85
SipMask++-ResNet101 115

4.2 Tracking methods

The accuracies (MOTSA) of the trackers are shown in table 4.3. The best accuracy
is achieved with the combination of SpatialEmbedding and the PointTrack tracker
and the worst with the SipMask tracker. Out of the trackers combining SipMask
and PointTrack, the one using SipMask++-ResNet50 performs the best.

The inference speeds of the trackers are shown in table 4.4. The speed of the
tracker part of PointTrack was measured to be 40 ms/frame. To obtain the tracking
speed of the methods using PointTracks tracker, the speed of respective instance
segmentation method and the speed of PointTracks tracker were simply added. From
this we can then see that the SipMask tracker was the fastest, with an inference speed
of 100 ms/frame, and the original PointTrack tracker with SpatialEmbedding was
the slowest, with an inference speed of 264 ms/frame.

Table 4.3: Accuracy of the trackers. The different methods are denoted according
to “instance segmentation method” + “tracking method”. For all instance segmen-
tation methods the pretrained version was used. The best accuracy is achieved with
the combination of SpatialEmbedding and the PointTrack tracker and the worst
with the SipMask tracker.

method MOTSA sMOTSA TP FP IDS
SpatialEmbedding + PointTrack 94 85 1154 53 5
SipMask-ResNet50 + PointTrack 77 67 1146 243 8
SipMask-ResNet101 + PointTrack 84 74 1125 138 6

SipMask++-ResNet50 + PointTrack 88 76 1096 59 5
SipMask++-ResNet101 + PointTrack 86 71 1098 93 4

SipMask-ResNet50 + SipMask 71 62 1078 238 10

30

4. Result

Table 4.4: Inference speed of the trackers. The different methods are denoted
according to “instance segmentation method” + “tracking method”. The SipMask
tracker is the fastest, while the combination of SpatialEmbedding and the PointTrack
tracker is the slowest.

method speed (ms/frame)
SpatialEmbedding + PointTrack 264
SipMask-ResNet50 + PointTrack 143
SipMask-ResNet101 + PointTrack 195

SipMask++-ResNet50 + PointTrack 125
SipMask++-ResNet101 + PointTrack 155

SipMask-ResNet50 + SipMask 100

4.3 Training data

Below the impact of training on different kinds of data is presented. For these
investigations PoinTracks instance segmentation method, SpatialEmbedding was
used.

Figure 4.1: Impact of the amount of training data. The instance segmentation
network used is PointTracks, SpatialEmbedding. The different curves shows the
result from three different mask AP metrics. The accuracy improves up until around
a dataset size of 400, where the curve flattens out.

31

4. Result

In figure 4.1 the impact of the dataset size is shown. The dataset sizes ranged from
108 to 972. The accuracy improves quite rapidly from a datasize of 108 to a datasize
of around 400. Then it flattens out while also showing some variation.

The impact of introducing negative data (images with hands and tongs) was inves-
tigated. For this 6 datasets with different sizes were created. The datasets were
created by first taking a set of 600 images with no negative objects and then adding
different amounts of negative data. The amount of negative data ranged from 0 to
600 images resulting in datasets with proportions of negative data ranging from 0%
to 50%.

Figure 4.2: Impact of introducing different proportions of negative data (images
with hands and tongs) into the training data. The instance segmentation network
used is PointTracks, SpatialEmbedding. The different curves shows the result from
three different mask AP metrics. Introducing negative data increases the accuracy,
but increasing the proportion of negative data is observed to not have much effect.

The result is shown in figure 4.2. Here it is observed that the model clearly benefits
from the introduction of negative data. Only a small amount is needed however.
Most of the improvement occurs when going from 0% to 10% of negative data. From
10% to 50% little improvement is observed. It is also observed that the metrics
AP@[50:95] and AP@75 improves more than the metric AP@50 when introducing
negative objects. In figure 4.3 qualitative results of the introduction of negative
objects is shown for two scenarios. Figure 4.3 (a) shows a scenario where an arm is
first detected as a sausage and then is not detected. Figure 4.3 (b) shows a scenario

32

4. Result

where when a sausage is held by a tong it is first split into two masks and then is
masked with one single mask.

Figure 4.3: Improvement of the produced masks when introducing negative data
in two scenarios. Images to the left shows result with no negative training data and
images to the right with negative training data. Different colors represent different
instance id’s. (a) The arm goes from being detected as a false positive to not being
detected. (b) A sausage goes from being split into two instances by the tong to
being detected as just one instance.

Three different datasets were created, one more general with sausages being ran-
domly dropped onto a stage (see figure 3.4), one more specific with sausages being
placed in a more ordered fashion (see figure 3.5) and one complete dataset including
both of these types of data. The accuracy achieved when training on each of these
datasets was then investigated. In table 4.5 the obtained mask AP’s are shown.
From this it is obtained that only training on the general data achieves better accu-
racy than only training on the specific data, while the best result is achieved when
training on the complete dataset. In figure 4.4 qualitative results are shown for a
couple of more challenging scenarios. When only training on the specific dataset it is
observed that the detector has trouble with rotated sausages, with sausages occlud-
ing each other and also in low light scenarios. Only training on the general dataset
achieves much better results in these scenarios, sometimes achieving comparable
results to training on the complete dataset.

33

4. Result

Figure 4.4: Comparison of qualitative results when training on different types of
data. For this comparison four more challenging scenarios are chosen. The instance
segmentation network used is PointTracks, SpatialEmbedding. In these scenarios
only training on the specific data is not sufficient. Only training on the general data
however sometimes yields comparable results to training on the complete dataset.

34

4. Result

Table 4.5: Accuracy (mask AP) of training on different types of data. The in-
stance segmentation network used is PointTracks, SpatialEmbedding. The complete
dataset includes both the specific and the general data. Examples of the specific
data is shown in figure 3.5 and the general data in figure 3.4. Training on the general
data achieves better accuracy than training on the specific data, while the highest
accuracy is achieved with the complete dataset.

dataset AP@[50:95] AP@50 AP@75
Specific dataset 0.655 0.812 0.760
General dataset 0.786 0.942 0.919
Complete dataset 0.839 0.979 0.969

The PointTrack tracker was also trained on each of these different dataset types.
Additionally it was also trained on a complete dataset without negative data. In all
cases the same instance segmentation method was used, SpatialEmbedding trained
on the complete dataset. The result is shown in table 4.6. Only training on specific
data yields the worst result and training on the complete dataset without negative
data yields the best result.

Table 4.6: Tracking accuracy achieved when training the PointTrack tracker on
different datasets. The same instance segmentation method is used in all cases,
SpatialEmbedding trained on the complete dataset. Training solely on the specific
data yields the worst result and training on the complete dataset without negative
data yields the best result.

dataset MOTSA sMOTSA IDS
specific dataset 93.41 84.73 9
general dataset 93.67 84.98 6

complete dataset without negative data 93.84 85.15 4
complete dataset with negative data 93.76 85.07 5

4.4 Scenario-specific robustness component
By adding an extra component to the tracking algorithm, id-switches were able to
be caught and corrected. In figure 4.5 a few examples of corrections are shown. Two
examples show situations where an id-switch occurs because a sausage is moved in
front of another sausage. A third example shows a situation where the instance
association fails because of a difference in lighting.

Three videos, each of a length around 40 seconds were captured. On these videos,
three of the proposed methods were tested and qualitatively evaluated. The methods
tested were SpatialEmbedding with the PointTrack tracker trained on the complete
dataset, SpatialEmbedding with the PointTrack tracker trained on only the gen-
eral dataset and SipMask++-ResNet50 with the PointTrack tracker trained on the
complete dataset. With all three methods all id-switches were able to be corrected.

35

4. Result

Figure 4.5: Examples of corrections made by the added tracking component. Two
examples show a situation where an id-switch occurs because a sausage is moved
in front of another sausage. A third example shows a situation where an id-switch
occurs because of a change in lighting.

36

5
Discussion

5.1 Instance segmentation and tracking methods
In table 4.1 it is shown that all instance segmentation methods performed bet-
ter when starting from a pretrained version. This was expected at least for the
COCO dataset as it includes a lot of small objects and also some food items. So
it includes data that is somewhat similar to the data in the investigated scenario.
The CityScapes data however only includes objects found in cities like vehicles and
pedestrians, so it is not very similar to the data in the investigated scenario. The
reason for why pretraining on the CityScapes dataset still improves the performance
is most likely that the convolutional networks are still able to take advantage of the
learned filters that detect more general features such as edges.

From the same table it is observed that according to the AP@[50:95] metric all
instance segmentation methods perform quite equally when pretrained, while ac-
cording to the metrics AP@50 and AP@75 SpatialEmbedding performs better than
all SipMask methods. This could be explained by the fact that the SipMask methods
more frequently detect negative objects as sausages, as shown in table 4.3. When
taking into account more precise metrics, like AP@[50:95] does, these false positives
might not contribute as much to the final score as the total amount of false posi-
tives will increase with more precise metrics. Looking at the tracking performances
which are measured by the MOTSA metric, differences are also observed. So in this
scenario the AP@[50:95] metric does not seem to reveal the whole truth.

Looking at the speed measurements of the instance segmentation methods, table
4.2, it is seen that SpatialEmbedding is significantly slower than all of the SipMask
versions. This could partly be explained by the way they produce their masks after
retrieving information from an image. For SipMask it is a simple linear combination,
while for SpatialEmbedding a clustering technique is used. SipMask++-ResNet50
is surprisingly found to be the fastest of them all. It is however still quite close
to SipMask-ResNet50. As expected, SipMask-ResNet101 is found to be the slowest
SipMask method due to its deeper backbone.

In table 4.4 the speed measurements of the trackers are shown. Here it is observed
that the SipMask tracker is faster than all versions using the PointTrack tracker. It

37

5. Discussion

is also noticed that SipMask with tracking actually seems to be slightly faster than
just the instance segmentation part on its own. It is however unlikely that this is
actually the case. It is more likely that this difference comes from that they are
tested on different datasets. However, it still indicates that the tracking in SipMask
is fast.

Combining the results on the speeds and accuracies of the methods it can first be
stated that no method is both the fastest and the most accurate. The best com-
promise seems to be the tracker which uses the SipMask++-ResNet50 for instance
segmentation and the PointTrack tracker for tracking. This tracker performs second
best in terms of both accuracy and speed. However, depending on the hardware
used, PointTrack with SpatialEmbedding might still be preferred as it is still a fast
method and achieves the best accuracy.

5.2 Training data
In Figure 4.1 it is shown that the instance segmentation accuracy improves with
larger datasets up to a point where the curve flattens out. The curve flattens out
at around a dataset size of 400 images. So not a lot of data is needed for this task,
which is not very surprising considering that only one type of object is being learned
and that the appearance of this object does not vary too much. After flattening out
some variation is still observed. This variation could be explained by the fact that
the training data is more general than the test data. This means that some images
might actually be detrimental to the test data and some might match very well. So
when increasing the dataset size, how well the added data matches the test data
might vary. Thus leading to varying accuracy.

From figure 4.2 and 4.3 it is seen that the inclusion of negative data is important
for the detector to reach high accuracy. The detectors performance improves more
on the more precise metrics AP@[50:95] and AP@75. This indicates what is also
observed qualitatively that the introduction of negative data not only reduces the
number of negative detections but also improves the masks of the positive detections.

In tables 4.5 and 4.6 it is observed that training solely on the specific dataset per-
forms the worst. Even though this is the dataset that tries to replicate the real
scenario the most, it lacks in generality. The largest drawback in this dataset is
most likely that all sausages have the same orientation, which is not the case in the
real scenario. Adding a random element to the choice of orientation could have been
beneficial. Solely training on the general dataset however yields favorable results,
which is promising as this method required the least manual effort. It could also
easily be used with other types of objects. Training on the complete dataset per-
forms the best, which indicates that the specific dataset still also contributes with
some important information.

38

6
Conclusion

Multiple methods have been identified that in the investigated scenario are able
achieve satisfactory results in most situations. Further, by introducing a new com-
ponent to the tracking algorithm that takes advantage of the current scenario, sat-
isfactory tracking results are also achieved in more difficult situations.

It has been shown that finetuning on solely synthetic data, generated through 3D-
modelling, can be a viable option for the MOTS task. Moreover, good results can be
achieved with a quite general data generation approach. However, to reach better
accuracy some extra manual work might be needed.

39

6. Conclusion

40

Bibliography

[1] Yifu Zhang et al. “FairMOT: On the Fairness of Detection and Re-Identification
in Multiple Object Tracking”. In: arXiv preprint arXiv:2004.01888 (2020).

[2] Zhongdao Wang et al. “Towards real-time multi-object tracking”. In: arXiv
preprint arXiv:1909.12605 2.3 (2019), p. 4.

[3] Peng Chu et al. “TransMOT: Spatial-Temporal Graph Transformer for Mul-
tiple Object Tracking”. In: arXiv preprint arXiv:2104.00194 (2021).

[4] Paul Voigtlaender et al. “Mots: Multi-object tracking and segmentation”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 7942–7951.

[5] Lorenzo Porzi et al. “Learning multi-object tracking and segmentation from
automatic annotations”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 6846–6855.

[6] Aljoša Ošep et al. “Track, then decide: Category-agnostic vision-based multi-
object tracking”. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2018, pp. 3494–3501.

[7] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 2961–2969.

[8] Shu Liu et al. “Path aggregation network for instance segmentation”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 8759–8768.

[9] Enze Xie et al. “Polarmask: Single shot instance segmentation with polar
representation”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2020, pp. 12193–12202.

[10] Pedro O Pinheiro et al. “Learning to refine object segments”. In: European
conference on computer vision. Springer. 2016, pp. 75–91.

[11] Daniel Bolya et al. “Yolact: Real-time instance segmentation”. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 2019,
pp. 9157–9166.

[12] Davy Neven et al. “Instance segmentation by jointly optimizing spatial em-
beddings and clustering bandwidth”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 2019, pp. 8837–8845.

[13] Jiale Cao et al. “SipMask: Spatial Information Preservation for Fast Image and
Video Instance Segmentation”. In: arXiv preprint arXiv:2007.14772 (2020).

41

Bibliography

[14] Ankur Handa et al. “Understanding real world indoor scenes with synthetic
data”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 4077–4085.

[15] Nathan Clement et al. “Synthetic Data and Hierarchical Object Detection in
Overhead Imagery”. In: arXiv preprint arXiv:2102.00103 (2021).

[16] Benjamin Midtvedt et al. “Quantitative digital microscopy with deep learn-
ing”. In: arXiv preprint arXiv:2010.08260 (2020).

[17] Facundo Bre, Juan Gimenez, and Víctor Fachinotti. “Prediction of wind pres-
sure coefficients on building surfaces using Artificial Neural Networks”. In: En-
ergy and Buildings 158 (Nov. 2017). doi: 10.1016/j.enbuild.2017.11.045.

[18] Bernhard Mehlig. “Machine learning with neural networks”. In: (2020).
[19] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceed-

ings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[20] Eduardo Romera et al. “ERFNet: Efficient Residual Factorized ConvNet for
Real-Time Semantic Segmentation”. In: IEEE Transactions on Intelligent Trans-
portation Systems 19.1 (2018), pp. 263–272. doi: 10 . 1109 / TITS . 2017 .
2750080.

[21] Zhenbo Xu et al. “Segment as points for efficient online multi-object tracking
and segmentation”. In: European Conference on Computer Vision. Springer.
2020, pp. 264–281.

[22] Tsung-Yi Lin et al. “Feature pyramid networks for object detection”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 2117–2125.

[23] Marius Cordts et al. “The cityscapes dataset for semantic urban scene un-
derstanding”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 3213–3223.

[24] Jifeng Dai et al. “Deformable convolutional networks”. In: Proceedings of the
IEEE international conference on computer vision. 2017, pp. 764–773.

[25] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”.
In: International journal of computer vision 115.3 (2015), pp. 211–252.

[26] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: European
conference on computer vision. Springer. 2014, pp. 740–755.

42

https://doi.org/10.1016/j.enbuild.2017.11.045
https://doi.org/10.1109/TITS.2017.2750080
https://doi.org/10.1109/TITS.2017.2750080

	List of Figures
	List of Tables
	Introduction
	Background
	Aim

	Theory
	Artificial neural networks
	Convolutional neural networks
	Residual neural networks
	ERFNet - Efficient Residual Factorized Network
	SpatialEmbedding
	PointTrack
	SipMask
	Metrics
	Intersection over Union
	Average precision
	MOTSA and sMOTSA

	Method
	Data generation
	Sausage models
	Scene environment
	Negative objects
	Image data
	Video data
	Camera and post-processing

	Tracking methods
	PointTrack
	SipMask
	Scenario-specific robustness component

	Testing
	Gathering test videos
	Speed evaluation

	Result
	Instance segmentation methods
	Tracking methods
	Training data
	Scenario-specific robustness component

	Discussion
	Instance segmentation and tracking methods
	Training data

	Conclusion

