A probabilistic model for genetic regulation of metabolic networks

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/174171
Download file(s):
File Description SizeFormat 
174171.pdfFulltext983.09 kBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: A probabilistic model for genetic regulation of metabolic networks
Authors: Kallus, Jonatan
Wilsson, Joel
Abstract: Recent advancements in gene expression pro ling and measurement of metabolic reaction rates have led to increased interest in predicting metabolic reaction rates. In this thesis we present a principled approach for using gene expression pro les to improve predictions of metabolic reaction rates. A probabilistic graphical model is presented, which addresses inherent weaknesses in the current state of the art method for data-driven reconstruction of regulatory-metabolic networks. Our model combines methods from systems biology and machine learning, and is shown to outperform the current state of the art on synthetic data. Results on real data from S. cerevisiae and M. tuberculosis are also presented.
Keywords: Data- och informationsvetenskap;Computer and Information Science
Issue Date: 2013
Publisher: Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)
Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers)
URI: https://hdl.handle.net/20.500.12380/174171
Collection:Examensarbeten för masterexamen // Master Theses

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.