Molecular Dynamics Simulations of Grain Boundaries in Cemented Carbides

Examensarbete för masterexamen

Använd denna länk för att citera eller länka till detta dokument: https://hdl.handle.net/20.500.12380/185868
Ladda ner:
Fil Beskrivning StorlekFormat 
185868.pdfFulltext10.25 MBAdobe PDFThumbnail
Visa
Bibliografiska detaljer
FältVärde
Typ: Examensarbete för masterexamen
Master Thesis
Titel: Molecular Dynamics Simulations of Grain Boundaries in Cemented Carbides
Författare: Gren, Martin
Sammanfattning: Cemented carbide is a tool material used in metal machining in industry. It is a composite material based on a mixture of a hard carbide phase and a more though metal binder phase. When used in cutting applications, the productivity is often limited by high temperature plastic deformation. A suggested mechanism for this deformation is grain boundary sliding and separation. In the present thesis grain boundary sliding and separation are studied for the tungsten carbide (WC) { cobalt (Co) system. Clean WC/WC grain boundaries and WC/WC grain boundaries with half a monolayer of segregated Co is investigated. The simulation method used in the thesis is molecular dynamics using a three body analytical bond order potential. The grain boundary sliding and separation was performed using a constant strain rate. The stresses under sliding and separation were found to be on the order of 1{10GPa. Furthermore, other studies have shown that the stresses are substantially reduced for grain boundaries with several layers of Co, i.e. thin films of Co. The occurrence of grain boundaries with thin films of Co is therefore likely to be crucial for the plastic deformation in WC{Co.
Nyckelord: Grundläggande vetenskaper;Energi;Fysik;Hållbar utveckling;Informations- och kommunikationsteknik;Innovation och entreprenörskap (nyttiggörande);Basic Sciences;Energy;Physical Sciences;Sustainable Development;Information & Communication Technology;Innovation & Entrepreneurship
Utgivningsdatum: 2013
Utgivare: Chalmers tekniska högskola / Institutionen för teknisk fysik
Chalmers University of Technology / Department of Applied Physics
URI: https://hdl.handle.net/20.500.12380/185868
Samling:Examensarbeten för masterexamen // Master Theses



Materialet i Chalmers öppna arkiv är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!