Proof output and machine learning for inductive theorem provers

Examensarbete för masterexamen

Använd denna länk för att citera eller länka till detta dokument: https://hdl.handle.net/20.500.12380/238593
Ladda ner:
Fil Beskrivning StorlekFormat 
238593.pdfFulltext545.26 kBAdobe PDFVisa
Typ: Examensarbete för masterexamen
Master Thesis
Titel: Proof output and machine learning for inductive theorem provers
Författare: Lindhé, Victor
Logren, Niklas
Sammanfattning: Automatic theorem provers have lately seen significant performance improvements by utilising knowledge from previously proven theorems using machine learning. HipSpec is an inductive theorem prover that has not yet explored this area, which is the primary motivation for this work. We lay a foundation for supporting machine learning implementations within HipSpec. Firstly, a format for representing inductive proofs of theorems is designed. Secondly, a persistent library is implemented, which allows HipSpec to remember already-proven theorems in between executions. These extensions are vital for allowing machine learning, since they provide the machine learning algorithms with the necessary data. This foundation is used to perform machine learning experiments on theorems from the TIP library, which is a collection of benchmarks for inductive theorem provers. We define several different feature extraction schemes for theorems, and test these using both supervised learning and unsupervised learning algorithms. The results show that although no correlation between induction variables and term structure can be found, it is possible to utilise clustering algorithms in order to identify some theorems about tail-recursive functions.
Nyckelord: Informations- och kommunikationsteknik;Data- och informationsvetenskap;Information & Communication Technology;Computer and Information Science
Utgivningsdatum: 2016
Utgivare: Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)
Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers)
URI: https://hdl.handle.net/20.500.12380/238593
Samling:Examensarbeten för masterexamen // Master Theses



Materialet i Chalmers öppna arkiv är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!