Detecting Appliances in Energy Traces

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/245848
Download file(s):
File Description SizeFormat 
245848.pdfFulltext25.07 MBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Detecting Appliances in Energy Traces
Authors: Alping, Mikael
Bergman, Anton
Abstract: The amount of data gathered in the world is increasing every day. More and more energy data is being gathered from households and smart energy meters. To extend the functionality of these energy traces, Non-Intrusive Load Monitoring (NILM) algorithms can be used. These algorithms use training data in the form of appliancespecific energy trace to label different sections of the aggregated energy trace with activity. In this thesis, we investigate how to create a data set with the goal of using it to investigate NILM algorithms, and to build a platform for future student projects in the area of energy trace data sets. This platform contains suggestions on what methods to use for gathering data, how to store it, and how to analyse it.
Keywords: Informations- och kommunikationsteknik;Data- och informationsvetenskap;Information & Communication Technology;Computer and Information Science
Issue Date: 2016
Publisher: Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)
Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers)
URI: https://hdl.handle.net/20.500.12380/245848
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.