Unsupervised feature learning for road segmentation with deep neural networks using generative models and auxiliary tasks

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/250424
Download file(s):
File Description SizeFormat 
250424.pdfFulltext5.45 MBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Unsupervised feature learning for road segmentation with deep neural networks using generative models and auxiliary tasks
Authors: Andersson, Simon
Waubert, Benjamin
Keywords: Elektroteknik och elektronik;Electrical Engineering, Electronic Engineering, Information Engineering
Issue Date: 2017
Publisher: Chalmers tekniska högskola / Institutionen för signaler och system
Chalmers University of Technology / Department of Signals and Systems
Series/Report no.: Ex - Institutionen för signaler och system, Chalmers tekniska högskola : EX039/2017
URI: https://hdl.handle.net/20.500.12380/250424
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.