Quantum state tomography of 1D resonance fluorescence

Examensarbete för masterexamen

Använd denna länk för att citera eller länka till detta dokument: https://hdl.handle.net/20.500.12380/252882
Ladda ner:
Fil Beskrivning StorlekFormat 
252882.pdfFulltext14.48 MBAdobe PDFVisa
Typ: Examensarbete för masterexamen
Master Thesis
Titel: Quantum state tomography of 1D resonance fluorescence
Författare: Strandberg, Ingrid
Sammanfattning: Tomography is the name under which all state reconstruction techniques are denoted, one of the most recognized examples being medical tomography. Quantum state tomography is a procedure to determine the quantum state of a physical system. By performing homodyne measurements on resonance fluorescence from an artificial atom coupled to a one-dimensional transmission line, its quantum state can be reconstructed. Resonance fluorescence is one of the simplest setups that results in non-classical states of light. If these states are non-classical in the sense that they have a negative Wigner function, they can be used as a computational resource for quantum computing. There are many different approaches to quantum computing. Some, like gate based quantum computing using discrete variables like qubits, have been extensively researched, both theoretically and experimentally. There exists and alternative approach: continuous variable quantum computing. The continuous variables we will be concerned with are the components of the electromagnetic field that constitute the resonance fluorescence. There are different parameters that affect the nature of the resonance fluorescence, for example, the number of transmission lines the atom is coupled to, or the strength of the driving field. In this work, we develop the tools necessary to numerically simulate homodyne detection of resonance fluorescence for different sets of parameters, and reconstruct the quantum state as well as calculating the Wigner negativity.
Nyckelord: Atom- och molekylfysik och optik;Nanoteknik;Fysik;Nanovetenskap och nanoteknik;Atom and Molecular Physics and Optics;Nano Technology;Physical Sciences;Nanoscience & Nanotechnology
Utgivningsdatum: 2017
Utgivare: Chalmers tekniska högskola / Institutionen för mikroteknologi och nanovetenskap
Chalmers University of Technology / Department of Microtechnology and Nanoscience
URI: https://hdl.handle.net/20.500.12380/252882
Samling:Examensarbeten för masterexamen // Master Theses



Materialet i Chalmers öppna arkiv är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!