Outdoor global pose estimation from RGB and 3D data

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/256908
Download file(s):
File Description SizeFormat 
256908.pdfFulltext6.88 MBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Outdoor global pose estimation from RGB and 3D data
Authors: Bastås, Simon
Brenick, Robert
Abstract: Accurate and robust localization is crucial for safe and reliable autonomous vehicles. In this thesis we present a machine learning approach for localization using RGB images and 3D structure information. More specifically we use two types of neural networks, one that predicts a pose in an given environment with a RGB-D image as input and one that uses a 3D LiDAR scan and a prebuilt 3D map of the environment to refine the prediction. The advantages of using neural networks for localization is the constant runtime and that it use natural navigation, i.e. without the need of infrastructure enhancement. We show that the RGB-D network gains increased accuracy from the multi-modal RGB-D data, compared to an uni-modal network trained on RGB or depth images when used in outdoor scenes. Additionally, we show the benefit of using 3D LiDAR data for pose refinement.
Keywords: Transport;Datorseende och robotik (autonoma system);Transport;Computer Vision and Robotics (Autonomous Systems)
Issue Date: 2019
Publisher: Chalmers tekniska högskola / Institutionen för mekanik och maritima vetenskaper
Chalmers University of Technology / Department of Mechanics and Maritime Sciences
Series/Report no.: Master's thesis - Department of Mechanics and Maritime Sciences : 2019:14
URI: https://hdl.handle.net/20.500.12380/256908
Collection:Examensarbeten för masterexamen // Master Theses

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.