Lösning av polynomekvationer

Examensarbete för kandidatexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/257125
Download file(s):
File Description SizeFormat 
257125.pdfFulltext1.02 MBAdobe PDFView/Open
Type: Examensarbete för kandidatexamen
Bachelor Thesis
Title: Lösning av polynomekvationer
Authors: Kristjansson, Kári
Bengtsson, Markus
Nero, Tim Johansson
Abstract: Polynomekvationen är ett grundläggande matematiskt begrepp men det är inte möjligt att hitta en exakt representation av nollställena för gradtal större än fyra. Trots att det inte går att hitta exakta lösningar till dessa polynomekvationer kan man med olika metoder ofta uppnå en god approximation till nollställena. Det finns mer eller mindre enkla sätt att approximera rötterna till ett polynom av hög grad och i denna rapport utforskar vi tre av dessa metoder där respektive metod är baserad på: Sturmkedjor, argumentprincipen eller kompanjonmatrisen Genom litteraturstudier bekantade vi oss med ämnesområdet som i grunden är teoretiskt. Befintliga numeriska metoder för approximativa lösningar av polynom analyserades och bevisades matematiskt. Vi testade sedan olika lösningsmetoder inklusive Sturmkedjemetoden, argumentprincipmetoden samt kompanjonmatrismetoden. Vi testade sedan beräkningsprogrammet roots i Matlab som använder kompanjonmatrismetoden för att hitta rötter till polynomekvationer. De tre metoder som vi testade har alla sina fördelar och nackdelar. Vi kunde inte utse en bästa metod för att hitta nollställen till alla former av polynomekvationer. Ska man beräkna många polynom och det inte spelar någon roll att reella lösningar kan få en liten imaginärdel kan kompajonmatrismetoden vara intressant. Om endast reella lösningar efterfrågas och polynomen har heltalskoefficienter är Sturmkedjemetoden mycket användbar. Argumentprincipenmetoden fungerar bra för de flesta rötter men när polynomets gradtal stiger så behöver den betydligt längre beräkningstid än de andra metoderna. Vilken metod som passar bäst beror således på vilket problem som ska lösas.
Keywords: Matematik;Mathematics
Issue Date: 2019
Publisher: Chalmers tekniska högskola / Institutionen för matematiska vetenskaper
Chalmers University of Technology / Department of Mathematical Sciences
URI: https://hdl.handle.net/20.500.12380/257125
Collection:Examensarbeten för kandidatexamen // Bachelor Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.