Learning Interpretable Prototype Trajectories for Patients with Alzheimer’s Disease

Examensarbete för masterexamen

Använd denna länk för att citera eller länka till detta dokument: https://hdl.handle.net/20.500.12380/303685
Ladda ner:
Fil Beskrivning StorlekFormat 
CSE 21-109 Moy de Vitry.pdf3.72 MBAdobe PDFVisa
Bibliografiska detaljer
FältVärde
Typ: Examensarbete för masterexamen
Titel: Learning Interpretable Prototype Trajectories for Patients with Alzheimer’s Disease
Författare: Moy de Vitry, Sarah
Sammanfattning: lzheimer’s Disease (AD) patients are known to have subtypes with distinctive progression traits. But progressions differ with distinctive patterns emerging even before patients transition to AD. Understanding these differences could help physicians understand what normal vs abnormal progressions look like. One way of characterizing differences in trends is by identifying patients that represent prototypical progressions of the defining features. We trained models to learn low-dimensional representations of all patient sequences and then, among the patients who transition to AD, used unsupervised learning to identify prototypical sequences that resembled and represented subsets of the representations. We examined trends in these subsets, searching for distinctive feature progression, and compared the prototypes to the subsets they described. We found that there are unique trends for subgroups of patients. In particular, we found a cohort that was predominantly female (79%) with distinctly high verbal memory retention relative to other cohorts. This was signifi cant because verbal memory is not a significant predictive factor, but seemed to be an axis of variation when distinguishing among subgroups. Additionally, we looked at how prototypes learned during training improve model performance compared to prototypes selected after training.
Nyckelord: Alzheimer’s Disease;prototypes;interpretability;deep clustering;machine learning
Utgivningsdatum: 2021
Utgivare: Chalmers tekniska högskola / Institutionen för data och informationsteknik
URI: https://hdl.handle.net/20.500.12380/303685
Samling:Examensarbeten för masterexamen // Master Theses



Materialet i Chalmers öppna arkiv är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!