Risk Modeling on Cyber Vulnerability Graphs

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/303912
Download file(s):
File Description SizeFormat 
CSE 21-125 Larsson.pdf4.14 MBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLarsson, Simon-
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.date.accessioned2021-08-19T08:08:30Z-
dc.date.available2021-08-19T08:08:30Z-
dc.date.issued2021sv
dc.date.submitted2020-
dc.identifier.urihttps://hdl.handle.net/20.500.12380/303912-
dc.description.abstractCyber security is a field which gets an increasing amount of attention. Record Future is a company providing services to aid and understand this field. An important part of their service is the Security Intelligence Graph (SIG), describing entities in the cyber threat world and how they relate to one and other. This master’s thesis proposes a k-neighborhood graph approach for estimating security risks regarding Internet Domains which are present on the SIG. In order to classify Internet Domains their k-neighborhood graphs, on SIG, are mapped to a feature space using Weisfeiler-Lehman graph kernels. Two class and three class classifiers are implemented using support vector machines and logistic regression models. The results suggest that this approach works well for the two class classifier, where the models achieve accuracies around 0.96 and F1 scores around 0.89. The results are less promising for the multiclass models.sv
dc.language.isoengsv
dc.setspec.uppsokTechnology-
dc.subjectcyber securitysv
dc.subjectgraph kernelssv
dc.subjectWeisfeiler Lehman graph kernelssv
dc.subjectrisk classification modelssv
dc.titleRisk Modeling on Cyber Vulnerability Graphssv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH-
dc.contributor.examinerAxelson-Fisk, Marina-
dc.contributor.supervisorJohansson, Fredrik-
dc.identifier.coursecodeMPENMsv
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.