Mapping and 3D reconstruction based on lidar

Examensarbete för masterexamen

Använd denna länk för att citera eller länka till detta dokument: https://hdl.handle.net/20.500.12380/304397
Ladda ner:
Fil Beskrivning StorlekFormat 
2021-58 Liangyu Wang & Varun Ganapati Hegde.pdfMaster Thesis4.75 MBAdobe PDFVisa
Bibliografiska detaljer
FältVärde
Typ: Examensarbete för masterexamen
Titel: Mapping and 3D reconstruction based on lidar
Författare: Wang, Liangyu
Ganapati Hegde, Varun
Sammanfattning: A 3D reconstruction and mapping framework aided by nonlinear filter optimization is introduced in this thesis project. A pipeline consisting of point cloud preprossesing, followed by a robust and rapid non-feature-based normal distributions transform (NDT) registration algorithm was developed for accurate mapping. An unscented kalman filter (UKF) solution to fuse inertial measurement unit (IMU) and global navigation satellite system (GNSS) measurements with augmented continuous turn rate velocity (CTRV) magnitude model is considered to obtain continuous six degree of freedom (6-DOF) pose estimation for accurate localization of the agent. The primary motivation for developing a high-quality mapping and localization system is because they play a key role in advancing towards an autonomous vehicle. Due to the lack of synchronized public datasets with IMU, GNSS, and light detection and ranging (lidar) measurements, the initial implementation of the mapping solution was tested over outdoor dataset from cars. The final phase of the project development is aimed at testing and tuning the program for the custom maritime dataset.
Nyckelord: mapping;3D reconstruction;lidar;Kalman filter
Utgivningsdatum: 2021
Utgivare: Chalmers tekniska högskola / Institutionen för mekanik och maritima vetenskaper
Serie/rapport nr.: 2021:58
URI: https://hdl.handle.net/20.500.12380/304397
Samling:Examensarbeten för masterexamen // Master Theses



Materialet i Chalmers öppna arkiv är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!