Semantic Scene Change Detection: Evaluation through Classical & Machine Learning Algorithms

Examensarbete för masterexamen

Använd denna länk för att citera eller länka till detta dokument: https://hdl.handle.net/20.500.12380/304578
Ladda ner:
Fil Beskrivning StorlekFormat 
CSE 21-167 Sreekumar Desai.pdfSemantic Scene Change Detection: Evaluation through Classical & Machine Learning Algorithms16.46 MBAdobe PDFVisa
Bibliografiska detaljer
FältVärde
Typ: Examensarbete för masterexamen
Titel: Semantic Scene Change Detection: Evaluation through Classical & Machine Learning Algorithms
Författare: Sreekumar, Jithinraj
Desai, Shreya
Sammanfattning: Scene change detection helps to detect changes in a pair of multitemporal images of the same scene. We apply the concept of scene change detection to detect misplaced objects in a passenger vehicle. Deep learning neural networks have been extensively used in scene change detection. We study scene change detection using the classical Watershed algorithm and machine learning algorithms. In machine learning, we exploit the feature extraction capability of ResNet and Spatial Pyramid Pooling to predict the scene change. The performance of the classical and machine learning algorithms are also compared. The models are trained on a custom dataset and evaluated using the metrics, dice coefficient, mean intersection over union (mIoU) and pixel accuracy. We infer that the machine learning model significantly outperforms the classical model in terms of mIoU score.
Nyckelord: scene change detection;machine learning;semantic segmentation;convolutional neural network;residual neural network;siamese network;spatial pyramid pooling
Utgivningsdatum: 2021
Utgivare: Chalmers tekniska högskola / Institutionen för data och informationsteknik
URI: https://hdl.handle.net/20.500.12380/304578
Samling:Examensarbeten för masterexamen // Master Theses



Materialet i Chalmers öppna arkiv är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!