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Abstract 

This thesis has aimed to design and implement a prototype for the authentication and 
authorization parts of the Pulsen Combine system. The system will be used by the social 
service agencies in several communes of Sweden. A study was carried out regarding the 
authentication part in Combine, whether it would be developed in-house or bought as a 
standalone product. The study resulted in the choice of a third party solution that will 
handle the authentication complexity. The authorization part was designed and further on 
implemented into several layers of the Combine system, adhering to well-known security 
principles. 
 
Keywords: Authentication, Authorization, Security principles, Service Oriented Applications 
 

 

Sammanfattning 

Detta examensarbete har haft som mål att designa och implementera en prototyp av 
autentiserings- och auktoriseringsdelarna i Pulsen Combine. Systemet kommer att användas 
av socialtjänsten i ett flertal svenska kommuner. En studie, som behandlade huruvida 
autentiseringsdelen i Combine skulle utvecklas internt eller om den skulle köpas in i form av 
en fristående produkt, genomfördes. Studien resulterade i valet av en tredjepartslösning 
som kommer att hantera komplexiteten kring autentiseringen i Combine. 
Auktoriseringsdelen designades först och implementerades sedermera, i flera olika lager av 
Combine, med välkända säkerhetsprinciper i åtanke. 
 
Nyckelord: Autentisering, Auktorisering, Säkerhetsprinciper, Serviceorienterade 
applikationer 
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1 Abbreviations 

  

XML eXtensible Markup Language 

SSO Single Sign-On 

WCF Windows Communication Foundation 

SAML Security Assertion Markup Language 

LDAP Lightweight Directory Access Protocol 

E-ID Electronic Identification 

BIF Bastjänster för InformationsFörsörjning (Swedish),  

Base services for information sustention 
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2 Introduction 

Pulsen Combine1 (Combine) [1] is the name of a yet to be finished web based social service 

system. The customers are several Swedish communes. Combine is going to support the 

complete work process for the employees in the communes. Citizens are also going to use 

the system to handle social service related errands and communicate with the employees in 

the communes. External performers, which accomplish tasks for communes, will use 

Combine too. The system hereby contains three separate parts – the Public application for 

citizens, the Local application for employees in communes and the Performer application for 

external performers.  

 

A great number of scenarios concerning social service related errands will be supported in 

Combine. An example is when a citizen needs help with cleaning due to functional 

limitation. In the system, the citizen has the opportunity to apply for assistance. The letter 

of application further on appears in the employee application which in turn handles the 

request. The decision is afterwards presented back on the citizen’s application. If the citizen 

was granted help the assistance is ordered. The order is sent to either employees in the 

communes or to external performers.  

 

Combine will have many concurrent users and the information in the system will be very 

sensitive. Private personal data is stored in the system and it is necessary that this 

information is protected and inaccessible for anyone without authority. The requirements 

on how users will be granted access to Combine are therefore strong. Neither the 

development of authentication functionality, nor the work with how the authorization 

complexity should be solved had been initiated by the Combine team at the start of this 

thesis. 

 

The authentication and authorization parts are non-trivial problems. The different 

applications require different authentication methods when users log on to Combine. 

Employees in the communes have differing roles and authorities which must be handled. 

Also, the organizational structures in the communes are not the same. The roles and 

authorities must therefore be handled separately from one municipality to another.  

 

There is a desire to be able to log on to Combine using the existing internal authentication 

infrastructure in the communes. One reason is because it would be convenient to be 

excused from having one authentication procedure for every system that is used within the 

commune. This approach is called Single Sign-On (SSO) [2]. To achieve the SSO behavior with 

federated identities, the identity of an authenticated user has to be sent to, and further on 

trusted by, the Combine system. There are different technologies available to achieve this 

                                                
1 The ANNA Project was used as working title of Pulsen Combine. 
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functionality. Among all, the Security Assertion Markup Language (SAML) 2.0 [3] is the 

preferred technology for the Combine system. The reason is because there is a new Swedish 

standard, BIF [4, 5], under development which will implement SAML 2.0. BIF is meant to rule 

and guide when designing security such as authentication, authorization and auditing in 

social service and healthcare applications such as for instance Combine. To avoid making a 

solution that is incompatible with this new upcoming standard, it was a good idea to take 

BIF into consideration when designing the security parts of Combine. 
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3 Problem Definition 

The aim of this thesis has been to design and implement a prototype for the authentication 

and authorization parts of the Combine system. 
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4 Method 

This section describes the methods which were used within the different phases of the 

thesis.  

4.1 Pre-study 

The pre-study phase aimed to give an understanding of the problem domain as well as how 

the Combine system was built up. The reason for this was that the prototype and 

architectural recommendations that were to be given had to be adapted to how the 

involved communes wanted things to get solved, and also to how the Combine system was 

designed on an architectural level. The phase served as an essential base for making 

important design decisions and made sure that there was a good understanding of the 

requirements that had to be met. 

 

The different available technologies that could be of use were given preliminary evaluations. 

Evaluating different authentication and authorization technologies and conducting some 

basic prototyping helped in getting an overview of how the problem could be solved. The 

study of available technologies was done using Internet searching and consulting with 

experienced personnel at Pulsen. Using the information that was found, analyses were done 

and decisions were made regarding the use of a certain technology or design pattern. 

 

Interviews and meetings were held at an early stage, to get more information about how 

the Combine system was designed, and to find out how the team planned on continuing the 

development until the release of the product. The interviews were carried out in an informal 

way, and no particular interview methodology was judged to be necessary. Just as with the 

interviews, most meetings had the goal of giving us more information about the general 

domain and the architecture of the system. 

4.2 Design 

This phase aimed to result in a design of the prototype that was later to be implemented. 

Basic software principles had to be followed, such as ease of maintenance, low coupling and 

easy extendibility. 

 

During the design phase, brainstorming sessions were carried out. These sessions aimed to 

find some initial scenarios, and bring some preliminary solutions to the table. They were 

interchanged with meetings together with the Combine team, to discuss the progress and 

harmonize the results with new information about the development of the system. 

 

Furthermore, simple prototyping was carried out in this phase. When making design choices 

for a system that uses technology that one is not accustomed to, simple programming 

helped in confirming new ideas and design choices. 
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4.3 Implementation 

The aim of the prototype, which was implemented in this phase, was to show that the 

proposed design was feasible, and compatible with the Combine system. 

 

During the implementation of the prototype, the agile process Scrum was utilized. This 

meant joining the daily Scrum meetings with the team, where development issues were 

discussed. [6] 

 

No clear iterations (or sprints) were used, as it did not seem necessary for the successful 

completion of the project. The size of the project was simply not big enough to have any 

meaningful division into time slots. 

4.4 Evaluation 

The aim of the evaluation was to see how the prototype correlated to the problem 

definition, and how well it fitted with the rest of the Combine system. Conclusions were 

drawn and recommendations for future work were given. 

 

Also, in this last phase of the project, code reviews were done. This was to make sure that 

the prototype followed software conventions, such as maintainability and transparency. 

 

The prototype was presented to the Combine team, and feedback was received. The 

feedback resulted in the definition of future work. 
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5 Security Principles 

When designing the authentication and authorization parts of the Combine system, a 

variety of security principles were adhered to. These principles are generally supported 

within the software security community, and therefore serve as a sensible base for the work 

in this project [7]. The principles that were followed during the thesis are described in the 

next paragraphs. 

5.1 Security in Depth 

This principle stresses the importance of having more than one security layer. Having only 

one layer of security in any type of application should be considered to be unsecure. This is 

because a person with ill intent, in many cases, is able to breach at least one layer. [8] 

5.2 Positive Security Model (Whitelist) 

When dealing with security, policies have to be made. In many cases lists are maintained of 

identities/protocols that are allowed/disallowed to access a certain resource. These policies 

and lists should in many cases be based on a Whitelist principle. This means that, for 

instance, the list should contain all the identities that are allowed access, instead of 

containing all identities that are disallowed. This might seem as a small detail in how to 

design the security of a software application, but it is actually of significant importance. This 

is because following the Blacklist principle (which is the opposite of the Whitelist principle) 

means that there is a constant need to be in the lookout for new threats to add to the 

Blacklist. Also, there is usually no guarantee that one can find all the possible threats, since 

new threats always are being discovered. Keeping a list of allowed instances is therefore 

much easier administratively as well as more secure; giving full control of who/what has 

access to ones application. This does, of course, not mean that using the Blacklist principle is 

negative in all situations. When building the architecture of an application, though, it is 

usually a good idea to base it on the Positive Security Model. [9]  

5.3 Fail Safely 

This principle says that when a program fails, it should fail safely. This means for instance 

that the original exception that was thrown never should be shown to the user, but general 

information should be given instead. If original errors and exceptions are shown to the end 

users, the information they provide could reveal information about the system that makes it 

more open to an attack. 

 

Also, this principle says that one should be careful of how access rights are given to users in 

the system. It is important to make sure that a thrown exception never makes the program 

bypass important access code. This is illustrated in the example in Listning 1. 
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Listning 1 – Fail Safely example 

 

What the example illustrates is that a user gains administrational rights if an exception is 

thrown at “codeWhichMayFail()”. It would therefore be a better idea to begin with denying 

the user administrational rights, and then granting the right if “isUserInRole” returns true. 

[10] 

5.4 Keep Security Simple 

This principle simply says that the more complex a solution is, the more difficult it will be to 

maintain it. It is also more difficult to make sure that the system gets full security coverage. 

Thus, keeping it simple is a key part in making a successful implementation. There is of 

course always a balance in the complexity of a system versus the level of protection. This 

principle should therefore not be read in isolation, all factors should be taken into 

consideration when designing security parts in systems. [11] 

isAdmin = true;  

try {  

     codeWhichMayFail();  

     isAdmin = isUserInRole( “Administrator” );  

} 

catch (Exception ex){ 

     log.write(ex.toString());  

}  



9 

6 Authentication 

Authentication can be summarized as the act of confirming that something that has been 

claimed is true. The claim can be that a computer program is from a trusted source, the 

origin of something is what it claims to be, or that a person is who she claims to be. In this 

report, whenever referring to authentication, the latter one is meant. [12] 

6.1 Authentication Methods 

There are many different ways of authenticating a person. Different methods are of 

different security levels and are based on different paradigms. One of the most basic kinds 

of authentication methods is the one-phased. This method is based on the idea that the 

person who wants to authenticate herself knows something that no one else knows, i.e. a 

password. In most environments that are not very security critical, this method is used. A 

negative aspect about the one-phased method is that knowledge is the only authenticating 

factor. If someone finds out what the password is, the security is in effect totally breached. 

 

There is also a two-phased authentication method. Not only is it required that the person 

knows something, but also that she possesses something, for instance a smart card or some 

other security token. This way, if the password is leaked, an intruder still can not 

authenticate herself since she does not have access to the security token. Two-phased 

authentication is used in situations where security is of higher importance, one example 

being many office environments where employees log in to their computers using smart 

cards. 

 

Biometric authentication is a rather common and secure way of authenticating people. It is 

based on the idea that a person uses a part of the body which is unique to that person to 

identify and authenticate herself. Parts of the body that can be used are fingerprints, iris of 

the eye among others. [13] 

6.2 Single Sign-On and SAML 2.0 

Single Sign-On (SSO) is when a user can utilize several different applications at once, by only 

logging in to one of them. This is based on trust between applications. The applications trust 

that when a user has logged in at one application, the user is authenticated in a secure 

manner and therefore does not have to login again when trying to access one of the other 

applications. 

 

Achieving cooperation between different applications to get the Single Sign-On behaviour 

can be done by implementing the SAML2 standard. SAML is an XML-based standard that has 

the primary aim to enable the exchange of security information between so called security 

                                                
2 Further on in this report, whenever using the term SAML, version 2.0 is referred. 
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domains. Security domains could for instance be different applications. The security 

information concerns authentication and authorization. 

 

The SAML standard is built up by assertions, protocols, bindings and profiles. Assertions are 

the basic building blocks of the SAML message. The protocols tell in what order the 

messages are sent. Bindings specify how the messages are sent technically, i.e. how they are 

transported over the Internet. Finally, profiles are groupings of the previous components, 

putting them in relevant groups that are useful for most users of the standard. One example 

of a profile is the Web Browser SSO Profile, which specifies all needed components 

(assertions, protocols and bindings) to make a successful SSO federation using web 

browsers. 

6.3 BIF 

BIF is a new and upcoming Swedish national standard and infrastructure for information 

security within the public healthcare sector. It will, when completed, ensure that the 

integrity of all patients in Sweden is kept. It will also guarantee that only authorized users, 

for instance doctors and other healthcare personnel, can access certain features and view 

certain information. 

 

Some important reasons for this new security infrastructure are: 

 Making it easier for healthcare personnel to access information about patients that 

live in another administrative region of the country and/or patients from another 

kind of institution (hospital, clinic, health centre) 

 Easing the authorization process of all healthcare (for instance social service) 

systems in the country by providing one infrastructure 

 Securing the information and integrity of the Swedish patients 

 

The implementation of this infrastructure will be in the form of web services that can be 

called and utilized by authorized systems. 
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7 Authorization 

Authorization, in contrast to authentication, is not about confirming the identity of a person, 

but rather that the person has enough credentials to perform a specific action. However, 

authorization can not be done without first having to authenticate. There has to be a 

guarantee that the user is who the user claims to be before confirming that enough 

authority exists to access some data or perform an action. [14] 
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8 The Combine System 

This section describes the Combine system; the architecture of the system, technologies that 

are used and the organizational aspects from the communes that were of importance to this 

thesis. 

8.1 System Architecture 

 

 
Listning 2 - System Architecture 

 

Service orientation is a central term when looking at how Combine has been built. This 

means that most of the business logic in the system is put inside web services. These 

services are then called by the web layer when data needs to be fetched, calculated or 

persisted. 

 

Combine is devised of several layers, the most bottom one being the data layer. The data 

layer has a number of databases that contain all the persisted data the system needs to 

store. There will be one database instance per commune and private performer. The 

different applications will also use some common databases. 

 

The service layer is located above the data layer. This layer handles all the communications 

with the data layer. Requests from the layer above therefore always goes through the 

service layer when fetching data from storage. The service layer also performs computations 

on the data that is fetched from the data layer. It therefore serves as a business layer for the 

system. 
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The three web applications reside above the service layer. There, all the presentation logic is 

located.  

8.2 Platform 

Combine is built using C# and the .NET (3.5) Framework from Microsoft. The data layer is 

built using Microsoft SQL Server (MSSQL 2008), and the service layer uses the Windows 

Communication Foundation (WCF). Finally, the web applications are constructed using 

ASP.NET and SilverLight. Two of the three web applications that are included in Combine are 

using SilverLight and one is a standard web application. The SilverLight applications are for 

the employees at the communes and the external performers respectively, while the web 

application is meant to be utilized by citizens of the communes. 

 

SilverLight is, at the writing of this report, a quite recent addition to the web browser plug-in 

arena. It enables features that are quite similar to that of Adobe’s Flash, which are vector 

graphics, animations and media playback. SilverLight applications are implemented using 

Microsoft’s .NET platform. Therefore, languages like C# and Visual basic can be used to quite 

easily create rich internet applications. [15] 

8.3 Organizational Architecture 

A requirement has been made on Combine; it should enable the communes to represent 

their organizational structures in the system, in the form of an organizational tree. This tree 

should be built through an administrative and graphical user interface by the commune 

administrator, and should serve as the base for all authorization functionality within the 

system. This means that an organizational structure is built by an administrator, followed by 

the adding of rights to the nodes in the tree. Every user in the system belongs somewhere in 

the tree, depending on what role the user has in the organization. 

 

The tree is central to all authorization functionality since being a member of a certain node 

gives the user access to certain functionalities in the system. A user gets connected to one 

node in the tree (for instance representing the role of a nurse), and so attains access to all 

components and functionality that is connected to that node. Also, specific for the Combine 

communes, being a member of one node in the tree automatically also grants the same 

rights as all children of that node. This is because the tree is built to reflect the hierarchical 

organization of the communes, i.e. management positions can be found at the top nodes. 

Henceforth in this thesis, whenever referring to a user having a right, it refers to the user 

being a member of a certain node. No difference is thus made between membership of a 

node and having a right.  

 

Ideally, an administrator in the commune should be able to dynamically bind and unbind 

users to nodes in the tree, and also easily change the rights for different nodes. 
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9 Pre-study 

In the pre-study phase the goal was to get a clear picture of how the authentication and the 

authorization parts could be designed and integrated into Combine. To be able to get this 

picture the Combine system was analyzed. 

9.1 Authentication 

Initially, there were different views and opinions on how the authentication part could be 

realized in the Combine system. Either the authentication part could be developed in house 

or it could be handled by using a, for Pulsen, well known security product on the market – 

the PortWise security platform [16]. 

 

To be able to make a correct decision, the market was searched for frameworks and toolkits 

that could correspond to the same functionality as the PortWise product, i.e. be able to 

perform the same tasks as PortWise. These were then compared to each other, and finally 

compared to the PortWise alternative. 

 

When the thesis work began there was a focus on BIF and therefore also on Single Sign-On. 

To achieve the SSO behaviour the protocol SAML was the choice of preference. One 

advantage with PortWise is that it supports the SAML standard. If PortWise would be 

chosen the customers could thereby be able to authenticate their users in their own 

environments using their own authentication methods/products. When the market was 

searched, therefore only frameworks and toolkits with SAML compatibleness were of 

interest, to achieve the same possibility for the customers.  

9.1.1 Market analysis 

One framework and one toolkit of interest were found during the market analysis. 

 

A candidate was the Geneva Framework [17] which is a Microsoft product3. Initially, it 

seemed to have full support for the SAML standard. Unfortunately, when investigating 

further, it was found that there did not seem to exist full support for the SAML protocols 

which was believed to be a requirement for the established scenarios. Also, the product had 

not yet been released as a final version, which created further uncertainties.  

 

The toolkit that was found with SAML compatibleness was the SAML v2.0 .NET Component 

from ComponentSpace [18]. This component implements the full SAML standard. No clear 

incompatibilities were found during the analysis and testing, although there were no 

references to be found of its' successful use in a real project. 

 

                                                
3 The first release of this framework reached the market in October 2008. The aim of the Geneva framework is 

to make the implementation of claims-based applications and services easier. 
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The SAML v2.0 .NET Component was the strongest challenger of the two candidates when 

considering developing the authentication part in house. Concerning the Geneva 

Framework, there was not time to wait for all the required functionality to be implemented, 

and for a final working version to be released. 

 

Even though the SAML v2.0 .NET Component seemed to fit the requirements, it was found 

that the level of complexity of developing a SAML solution was much greater than initially 

expected. This lead to the establishment of the fact that there was simply not enough time 

or resources to develop the authentication part of Combine in-house. Also, the 

authentication part is one of the most important and sensitive parts of the system. With the 

choice of PortWise the Combine system can rely on, and be protected by, a product with 

denary of years of experience in the security discipline. 

 

A choice was therefore finally made, to use PortWise for all authentication purposes in 

Combine. 

9.2 Authorization 

As pointed out, it is important to have several layers of security. A primary goal during the 

pre-study phase was to find several layers in the application in which authorization checks 

would be appropriate. 

9.2.1 Authorization in the web layer 

It is important to the security of Combine to have the possibility to hide or show alternatives 

to the system’s different users. The rights of a user determine if the user is authorized to 

access buttons, menus, pages and/or other graphical components. For example a user with 

administrational rights will have access to pages that an ordinary employee does not.  

 

It was decided to use a pre-processing method when authorizing if a user would have access 

to, for instance, the functionality of a button, i.e. if it is possible to click on it. This pre-

processing method would thus be executed before the page is shown to the user. Also, a 

web filter was decided to be implemented, serving as an authorization check for every 

requested page in Combine. A web filter serves as an intercepting method that all incoming 

requests pass through before being dispatched to the target resource. 

9.2.2 Authorization in the service layer 

It must be made sure that a user only can call the web services that the user is authorized to 

utilize. Role-based Authorization [19] was evaluated briefly as a candidate for serving as a 

tool when solving the service authorization problem. Role-based Authorization is built on 

the premise that each method or service accepts certain roles to invoke it. Furthermore, 

every caller has a role that is accessible for reading. In Role-based authorization, the role is 

placed inside the calling thread, which is not suitable in a service-oriented setting. The 

service will in no case have direct access to the calling thread. When examining the 
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possibility to customize this aspect, it was found that there did not seem to be a way of 

achieving this, so this method of authorization was discarded.  

 

In opposite to Role-based Authorization, a kind of filter, Parameter Inspector4, seamed to fit 

the purpose. When using the Parameter Inspector on a service operation one has to add an 

attribute5 to the operation. This leads to the implementation of the attribute being 

executed before the service operation itself. It is hereby possible to perform custom checks 

before letting the call pass to the operation. 

 

When experimenting with the Parameter Inspector one problem was found. The Parameter 

Inspector was not compatible with the fault handling functionality in the service layer of 

Combine. All service operations in Combine are tagged with an attribute that adds fault 

handling to the service layer. The problem occurred when a service operation was tagged 

with both the fault handling attribute and the Parameter Inspector attribute. Those two 

attributes could not be used at one service operation simultaneously. 

 

Therefore, it was perceived that it would be a solution to combine the implementation of 

those two attributes. Only one custom attribute on the service operation would be needed 

and the conflict would not arise. This seemed to work properly and will be discussed in more 

detail in the design part of this thesis. 

                                                
4Parameter Inspector is an extensibility object used to inspect and alter messages after they are received or 

before they are sent [20]. 
5 ”The common language runtime allows you to add keyword-like descriptive declarations, called attributes, to 

annotate programming elements such as types, fields, methods, and properties. Attributes are saved with the 

metadata of a Microsoft .NET Framework file and can be used to describe your code to the runtime or to affect 

application behaviour at run time.” [21] 
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10 Design 

10.1 The PortWise Security Platform 

When using PortWise one has the opportunity to configure the product and use parts of the 

functionality so that it adheres to the working environment. In this description only parts 

necessary for the actual thesis are concerned and discussed. 

 

There was a strong focus on Single Sign-On authentication early in the pre-study. As the 

time passed by, the customers realized that they will not be ready to facilitate SSO 

authentication. Therefore, in the first release of Combine, the authentication part will be 

carried out without any SSO and SAML functionality involved. Anyhow, the choice of 

PortWise makes it possible for customers to choose these technologies in the future. They 

will not be discussed in more detail in this thesis.  

 

In Listning 3, a brief graphical explanation of the final authentication and authorization 

process in PortWise is given. 

 
 

Listning 3 – The PortWise authentication and authorization process 
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When a user wants to enter the Combine system the user has to request the correct URL to 

the part of the system (i.e. the application) to which he or she wants to be granted access. 

The URL consists of both a role (employee, citizen or performer) and a customer 

(commune). Examples of how the URL’s will look like are shown in Listning 4. All URL's 

points to the server(s) where PortWise is located. 

 

 

employee.customer1.pulsen.se 

citizen.customer1.pulsen.se 

performer1.customer1.pulsen.se 

 

Listning 4 - Addresses to the Combine system 

 

In PortWise, the URL’s are further mapped to the different Combine applications. This 

means that, for instance, employee.customer1.pulsen.se is mapped to the location of the 

application which the employees at the specific commune (customer1) will use. 

 

Before entering the Combine system all users have to be authenticated correctly using 

authentication methods that are configured inside the PortWise product. PortWise supports 

different authentication methods. It is possible to add new ones or to use the built-in ones. 

For example it is possible to use the built in PortWise Password method or add an E-ID or 

smart card method. For instance, when an employee requests the Local application, the 

user has to be authenticated using a smart card authentication method. When a citizen 

requests the Public application, he or she has to be authenticated using E-ID. Those different 

authentication methods are set up as different access rules. 

 

Just because a user has been authenticated correctly it is not sure that the user will be 

granted access to the requested application. For instance, a citizen should not be able to get 

access to the employee application, just because the identity of the citizen has been 

authenticated. There is a need for an authorization check that makes sure that the 

authenticated user belongs to the requested application. This is achieved by setting up 

access rules which check whether a user is member of a certain group in a directory. 

Consequently, a user requesting the URL employee.customer1.pulsen.se must exist in an 

EmployeeCustomer1 group in the directory.  
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A short summary of which access rules that are required for different users in Combine is 

given in Listning 5. 

 

 Local users Public users Performers 

Group Membership X X X 

E-ID  X  

Smart card X   

Other hard certificate   X 

Listning 5 - Access rules for different user roles 

 

The outcome of the authentication process is an identification number (personal number) 

that is passed to the actual application in a cookie. When the user finally has reached the 

requested application, all following requests to/from the application will continue to pass 

through the PortWise system. This makes it possible to log user actions and handle 

timeouts. 

10.1.1 PortWise user directory 

The access rule that checks the group membership of a user requires, as mentioned before, 

a directory containing users and groups. This directory will contain all the users that can 

access the different Combine applications. The directory will only contain a basic 

identification number of the user, and no other information. All other information about the 

users will be kept inside the system, in the data layer. Thus, in short, the point of having 

such a directory is to make sure that only people that have the right to enter the requested 

application is granted access by PortWise. Note, however, that the directory does not have 

anything to do with the organizational structure within the communes. The only thing the 

directory establishes is a users’ basic belonging, i.e. employee, citizen or performer in a 

certain commune. PortWise requires this directory to exchange information through the 

LDAP-protocol [22]. The design of the directory is shown in Listning 6. 
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Listning 6 - LDAP structure for the authorization part in PortWise 

 

The hierarchical structure needed for checking group memberships has a root organizational 

unit6 (OU: CombineAuthorization) that serves as the base of the information needed for the 

authorization part in PortWise. The tree is then divided into two sub branches. One branch 

consists of an organizational unit (OU:Users) that contains the users of the system, 

independent of role and geography. The other branch consists of an organizational unit 

(OU:Communes) that handles the different communes (customers) in the system. 

 

The organizational unit called Communes contains one organizational unit for each 

customer (commune) in the system. Furthermore each single customer organizational unit 

contains three LDAP groups7. The first group contains the employees of the commune, the 

second group contains citizens that in some way are associated8 to the commune and the 

third group is for performers.  

                                                
6 An organizational unit is a way of organizing and categorizing data entries in an LDAP directory. 
7 An LDAP group is an LDAP entry that has the ability to associate with other entries as members.  
8 A user in the citizen group can be either a resident or a relative to a resident in that commune. 
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10.2 Database design 

 
Listning 7 - Database design 

 

The central part of the database design is the Rights table. This table contains all the rights 

that exist in the system. It is possible to derive a list of rights for each user in the system 

from this table. 

 

In the Combine system, an organizational tree is built up for each commune. In the 

database, this is realized by implementing the Rights table as a tree. Each entry in the table 

has a parent node, and so a hierarchical system is built up (see the Combine system part for 

more information about the organizational tree). Every user of the system has a location in 

this tree. Also, when being the member of a certain node in the tree, the user automatically 

gets the rights of all the child nodes. In the design of the database, a column called TopRight 

has been added to the User table. This column is meant to represent one node in an 

organizational tree that the user is a member of. How to traverse the tree to get all the child 

nodes of the users’ main member node will not be discussed in this report. 

 

The table Services contains the names of all the service operations that should be under the 

control of authorization checking. If an operation9 only can be accessed by some users of 

the system, it has to be recorded in this table. The Rights table is coupled with the Services 

table through a coupling table, as can be seen in Listning 7. This coupling is meant to 

connect each Service operation with all the rights in the Rights table that are authorized to 

call the operation. 

                                                
9 An example of an operation might be ”GetUserAddress” 



22 

 

The UIComponents table is based on the same idea as the Services table, only this table 

contains user interface components like buttons, panels and pages. Also, like the Services 

table, the UIComponents table is connected with the rights table. 

10.3 Authorization in the service layer 

When a call reaches a web service, the service can not be sure that the request comes from 

an authorized user. To avoid calls from unauthorized users an authorization mechanism has 

been implemented. Every time, before a call reaches the destination service, a check is 

made to see if the user has adequate rights for entering the service implementation. 

 

As discussed in the pre-study, several technologies for authorizing the service calls were 

evaluated. The outcome of the evaluation resulted in that it was applicable to integrate the 

service authorization with the fault handling functionality of the service operations. 

 

In the implementation of the fault handling attribute, as described in the pre-study section, 

the authorization code is run. The service operation rights are compared to the user rights. 

If they coincide, access is granted and the call is passed through to the service operation. 

Otherwise, the user is not granted access and the call is sent back with an error description. 

 

All service operation calls are logged. Information about a call is logged if a user is granted 

access to a service operation. It is also logged if a user does not have adequate rights to 

execute the service implementation. It is important to log calls to the services. If someone 

tries to call a service without adequate rights it may be an intrusion attempt. The logged 

data can be used to analyse suspicious activities and can also serve as evidence in possible 

disputes. 

10.4 Authorization in the presentation layer 

10.4.1 Graphical Rendering 

Using authorization when rendering graphical components serves as a first line of defense 

when entering the different applications. The authorization on this level is on a superficial 

level, since the application is service oriented. What this means is that even though a user is 

unable to see a specific button or menu in the graphical interface, there is not much that 

stops the user from trying to call operations in the service layer by other means. Having the 

PortWise solution as an intercepting instance helps in many ways, making it very unlikely 

that someone can access the service layer directly from the outside. Despite this, 

authorization checks are important in the presentation layer. 

 

As explained above, all the user interface components are put into the UIComponents table 

in the database. Using this backend architecture, authorization checks are made quite 

easily. When using the .NET framework, whenever a graphical component is loaded by the 



23 

server for a user request, it is possible to inject code that runs before the component is 

shown. For instance, when a user requests a page, there is a Page_Load method that is run 

before sending the page to the client browser. These kinds of methods were utilized to 

render the menus and buttons in such a way that users could only see the components that 

they were authorized for.  

 

Before each menu is rendered and shown to the user, code is run that make this 

authorization check. The code calls an authorization service operation that takes the 

component name as a parameter. The operation then makes a lookup in the database to 

see if the given user id has the required rights to see the specified component. The 

operation then returns a boolean value, true or false, depending on if access was granted or 

not. 

10.4.2 Page Loading 

Before a user can access a page in the Public web application, an authorization check is 

made. There are more ways to try to access a page in a web application than by clicking on a 

link or a button. The user might for instance try to write the URL for the page in the browser 

URL field. This leads to one more security mechanism being needed to protect the web 

application from malicious use. 

 

A well known concept and design pattern for web applications is the web filter. The web 

filter is based on the idea that every request that comes into the application server is 

processed with some generic10 code. Technically speaking, the web filter is a method that is 

run for each new request, before the requested page or resource is fetched and sent back to 

the client. Such a filter is therefore ideal to use when authorizing a user to access a certain 

page.  

 

For the filter to host a suitable solution, it is required to: 

 Know which page the client is trying to access. 

 Access the current user session, to be able to fetch information about who the user 

is. 

 The ability to redirect the user to somewhere else than the requested page, should 

the authorization fail. 

 

The ASP.NET framework has support for such a mechanism, namely the IHttpModule 

interface [23]. Implementing this interface made it possible to insert custom code into a 

point in the request lifecycle, and thus achieving the web filter functionality. 

 

The page loading authorization was thus designed as follows. For every request, the method 

OnAquireRequestState is run. The method first checks to see if the session is new. If it is, the 

                                                
10 For instance, clean URLs are often implemented in web filters. 
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session is populated with useful information. If the session is not new, the authorization 

check is made. It is made by making a service call to the same authorization service as for 

the graphical rendering, and works in the same way. One difference is, though, that the user 

is redirected to an error page if the authorization fails. Recall that in the graphical rendering 

case, the user simply could not view the button if the authorization for the button failed. 

Also, in the OnAquireRequestState method, the session is validated for general security 

purposes, but this falls outside the scope of this thesis project. 
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11 Implementation 

The design was implemented, and resulted in a prototype. The prototype was a simulation 

of the real Combine system, with the authentication and authorization functionalities 

added. Implementing the solution in this way helped to keep it in a controlled environment 

and made it easy to verify that it worked as expected. 

11.1 Problems 

Some issues arose during the implementation of the prototype. 

11.1.1 Parameter Inspectors 

The problem concerning the Parameter Inspector, being incompatible with the fault 

handling mechanism of Combine, was solved by excluding the Parameter Inspector from the 

solution, and putting the authorization logic inside the fault handling code instead. 

11.1.2 SilverLight and HTTP 302 

When making web service calls from within the SilverLight application, there was a problem 

with receiving HTTP 302 (redirect) messages that came from the PortWise platform when 

there had been a timeout. When a timeout had occurred, the PortWise platform redirected 

to a login page, so that the user could be authenticated again, before being allowed to 

access the system. 

 

The problem was solved as follows. Whenever an exception is reached in the SilverLight 

application that is related to a web service call, a manual redirect is made to the PortWise 

log in page. 
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12 Conclusion 

The goal with this thesis was to ensure that users of Combine are authenticated and 

authorized in a secure and proper manner.  

12.1 Authentication in the Combine system 

The developing of the authentication part in-house was compared against integrating the 

PortWise security platform with the Combine system. It was decided to make use of the 

existing knowledge and functionality within the area and therefore the PortWise platform 

was chosen.  

 

With this choice, the security aspects concerning the authentication were assigned to a 

product whose main purpose is security and login procedures. The Combine team doesn’t 

need to put a lot of resources and time on a complex authentication solution, but can 

instead focus on the development of the core system. 

 

The PortWise product furthermore supports authentication using SAML which may be 

useful in the future. If the customers of Pulsen want the login procedure to take place in 

their own environments, it will be possible. 

12.2 Authorization in the Combine system 

12.2.1 Implemented Principles 

A layered security model has been developed. If an intruder breaks one layer, there are 

more security layers to break until the secret information can be retrieved. This model 

follows the behavior of the defense in depth principle. 

 

When authorization checks are made in the system, user rights are compared against rights 

necessary to access the requested resource. The rights of a user symbolize information and 

functionality that the user has access to in the system and not the opposite - what a user is 

disallowed to. This structure follows the Whitelist principle. 

 

When exceptions are thrown, caused by for instance denied access to a resource, the 

original exceptions are not shown to the user of the system. This follows the Fail Safely 

principle. The exception messages are translated into pre-decided error messages so that 

they do not show the user any critical information about the system. Also, in the application 

code, authorization logic flows make sure that a user can not attain rights illicitly by making 

the application throw exceptions. 

 

During the project, the Keep Security Simple principle has pervaded the whole thinking. This 

has been manifested in, for instance, the web filter and the authorization in the service 

layer being transparent to the rest of the system. This means the code for those respective 
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parts were put in only one place each, instead of having to spread it throughout the whole 

system. 

12.3 Database design 

Designing the database in the described way brings some benefits to the solution as a 

whole. Decoupling rights from components which are under authorization checking makes it 

easy to keep from being too dependent on a single organizational structure. There could 

just as well have been a totally different structure in the rights table, and the overall 

database design would not have been majorly affected by this. 

 

The implementation of the organizational requirements is placed mainly on the software 

tier, instead of on the database tier, i.e. parsing of the Rights table is done in the code which 

leaves the Rights table simple and generic. 

 

The database design makes it easy to restructure the tables in such a way as to add more 

tables containing authorization controlled units. For instance, it is not a problem to split the 

UIComponents table into two tables, one that keep all the graphical elements and one that 

keeps all the pages. All that need to be done, except adding the new table, is to add a 

coupling table that connects the new component table with the Rights table. 

 

Finally, the design makes it possible to easily build a graphical administration interface to 

administer the rights, add components and change user authorization levels. This is due to 

the straight forward connections of all tables. 

12.4 Presentation layer 

The authorization service operation, which takes a name of a graphical component as input, 

could be written in more ways than the explained way. One other possibility is, for instance, 

that the service operation takes a group of buttons as a parameter, and returns a dictionary 

(Hash structure) with button–boolean pairs. This way, there will not be unnecessarily many 

service calls in the application. One thing is certain though, and that is that it is not a good 

idea to have to make one service call per button in the system. This would obviously mean a 

too large amount of service calls and database lookups. 

 

Implementing the authorization functionality, within the presentation layer, in the described 

way bring some benefits. First of all, this kind of solution makes it easy to write a stable and 

easily verifiable implementation, seeing as how the only place, in the Local application, that 

needs authorization code is in the controls where the menus are rendered. Also, putting all 

the authorization related code on the server side definitely adds to the security. 
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12.5 Future work 

After conducting an evaluation of the implementation, some issues and remaining work 

were established. 

12.5.1  Administration 

It is essential that a system with as many different users and authorities as Combine is easy 

to administer. The implemented security model is designed to be easy to administer. To 

make the administrational work even easier, it may be a good idea to introduce access 

categories. An example of an access category can be “health-care personnel”. Being a 

member of this category involves having access to a number of different functionalities in 

the system. 

 

The purpose of the access categories would be to serve as an intermediate layer between 

the nodes in the tree and the services and/or user interface components in the system. 

More specifically, a node (role) in the tree will be connected to one or several access 

categories which in turn are connected to services and user interface components. This 

would be in contrast to having a set of rights connected directly to each single service or 

user interface component in the system. 

 

The administrator of the system does hereby not connect each single service or component 

in the system to each single node in the tree but instead connects more abstract access 

categories with nodes in the tree. This relieves the administrator from having to deal 

directly with web service operation names and names of user interface components. 

12.5.2 Security in the data layer 

Having authorization checks in the data layer adds to the security of a system and makes 

sure that only authorized instances can make database lookups and editing. Even though 

the data layer most probably will have hardware based protection (for instance ip filtering) 

there is a need for protection against the authenticated users of the system, to prevent illicit 

use.  
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