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Abstract

The automotive sector is committed to advancing energy e [ciehcy by providing
customers with sustainable transportation solutions. With the increasing adoption
of electric vehicles with high powertrain e [Lciehcy but limited range, reducing other
forms of losses, such as rolling resistance, is important. Rolling Resistance (RR)
typically contributes around 25% of the energy loss in Electric Vehicles (EVs) [1].
The current measurement of the tire’s rolling resistance is obtained at steady state,
which rarely occurs in real-world driving conditions that involve frequent starts and
stops, preventing the tire from reaching a steady state equilibrium.

This thesis focuses on the e [edt of warmup on the rolling resistance of tires di [ering
only by their aspect ratios, focusing on measuring and calculating rolling resistance
under realistic conditions. The variation of the tire temperature and rolling resis-
tance is measured during both the warmup (transient) and the steady state on the
tire test rig by varying the inflation pressure, speed, and normal load for di[erent
tires. The rolling resistance showed a negative correlation with the inflation pres-
sure, a positive correlation with the speed, and no correlation to the load.

Using the data obtained in the warmup region, a rolling resistance model is created
that uses temperature and speed as inputs to calculate the instantaneous rolling
resistance. A thermal tire model is also developed that can predict the internal
temperature of the tire based on the rolling resistance and speed. Using drive cycle
tests, the models were validated, and it was observed that the rolling resistance of
the tires varied dramatically through the cycle and rarely matched the ISO stan-
dard rolling resistance value. Depending on the tire, it was found that the transient
rolling resistance was 25-30% higher before reaching a steady state value.

Data from the drive cycle test was used to calculate the rolling energy loss using
both the ISO standard rolling resistance coe [cieht & the rolling resistance model
developed. It was found that the rolling energy loss can vary from 6 to 22% between
the two approaches, which provides a better understanding of the transient behavior
of rolling resistance with respect to a complex drive cycle. This enables better
insights into the contribution of rolling resistance to the overall energy loss, and the
tire selection process can be made more e [edtive.

Keywords: rolling resistance, tire warmup, modeling, transient rolling energy loss.
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Preface

In this research work, the influence of tire temperature on rolling resistance was
captured in an empirical model, which can be further used to analyze rolling energy
loss. A semi-physical thermal model was also developed to predict the evolution
of tire temperature in a drive cycle. The thesis work was carried out between
January and June 2024 under the supervision of Professor Bengt J H Jacobson and
Carl Emvin from the Division of Vehicle Engineering and Autonomous Systems at
Chalmers University of Technology, and Teddy Hobeika from the Vehicle Energy
E [ciehcy Team at Volvo Car Corporation (VCC).
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List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

RR Rolling Resistance

RRf Rolling Resistance Force (N)

RRc Rolling Resistance Coe Lcieht (N/kN)
ICE Internal Combustion Engine

EV(s) Electric Vehicle(s)

T (in graphs and figures) Temperature (°C)

A40/A50/A60 Aspect ratio 40/50/60






Nomenclature

Below is the nomenclature of parameters and variables that have been used through-

out this thesis.

Parameters

Hgas

Cp,gas
Cp,tire
Acp
Atire

Variables

Linear Fitted Parameters for RR Model (-)

Linear Fitted Parameters for RR Model (1/m/s)
Exponential Fitted Parameters for RR Model (1/°C)
Exponential Fitted Parameters for RR Model (1/°C - (m/s))
Fitted Exponent for Pressure Dependence Factor (-)

Fitted Exponent for Load Compensation Factor (-)

Empirically Fitted Conductive Heat Transfer Coe Lcieht between
tire and road (W/m? -° C)

Empirically Fitted Convective Heat Transfer Coe Lcieht (speed fac-
tor) between tire and ambient Air (W/m? > C - m/s)

Empirically Fitted Convective Heat Transfer Coe [cieht (constant)
between tire and ambient Air (W/m? - C)

Convective Heat Transfer Coe Lcieht between tire to inflation gas
(W/°C)

Specific Heat Capacity of inflation gas (J/kg/°C)
Specific Heat Capacity of tire (J/kg/°C)

Area of contact patch of tire (m?)

Surface area of entire tire except the contact patch (m?)

Measured Inflation Pressure (kPa)
Normal Load (N)

Xi



Vx

T

RRf(vy, T)
RRc(vy, T)
Tgas

Tamb

Troad

Pgas

Mgas

Mtire

Qi
Qtire . amb
Qtire - road

Qtire—.gas
E

xii

Longitudinal Velocity of Tire/Vehicle (m/s)

Tire Temperature (°C)

RRf as a function of velocity and temperature (N/kN)
RRc as a function of velocity and temperature (N/kN)
Temperature of inflation gas (°C)

Temperature of ambient air (°C)

Temperature of road/roller (°C)

Modeled inflation pressure (kPa)

Mass of Inflation Gas (kg)

Mass of Tire Rubber (kg)

Heat generation due to rolling resistance (W)

Heat loss to ambient air (W)

Heat loss to road (W)

Heat loss to inflation gas (W)

Energy Loss (J or Wh)
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Introduction

1.1 Background

In the ISO 28580:2009 standard [2], the rolling resistance of tires is de ned as the
energy consumed by the tire per unit distance traveled. The measurement of rolling
resistance is done after steady-state equilibrium is attained by the tire. The mea-
surements are done on a test rig with a rolling steel drum that drives the test tire.
The test tire is mounted on a torque measurement hub. The ISO standard simpli es
the rolling resistance measurement by treating it as a constant parameter within a
controlled environment xed speed, temperature, and measurement after thermal
equilibrium is attained. While a standardized testing method allows di erent tires
to be compared, it does not provide an accurate interpretation of what the rolling
resistance is under real operating conditions.

Everyday driving, characterized by frequent stops and changes in speed, prevents
the tire from reaching a thermal steady state. Previous studies show that the rolling
resistance is up to 30-40% higher [3], [4] in the warmup phase as compared to the
steady state rolling resistance, especially for shorter travel distances. The rolling
resistance contributes to a large part of driving resistance in Electric Vehicles (EVs)
as the electric drivetrains have much higher e ciencies than the internal combustion
engine counterparts, and a large part of energy loss in deceleration can be recov-
ered by regenerative braking in EVs. Furthermore, the distinctive features of tires,
including tread patterns, load ratings, sizes, and compounds, introduce additional
variations in their behavior.

1.2 Problem Motivating the Project and Envi-
sioned Solution

The aim is to understand, model, and simulate temperature evolution within the tire
under transient conditions, considering a spectrum of tires, and establish correla-
tions with changes in rolling resistance, considering various factors such as in ation
pressure, normal load, and speed. A better model of the tire and the thermal de-
pendence of rolling resistance will improve the range estimation and help to reduce
the contribution of rolling resistance to the overall driving resistance by picking the
best tire considering the use case.
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The owchart in Figure 1.1 shows a holistic overview of the three phases followed
within the testing phases later described in Figure 3.1. The experimentation phase
involved gathering data by running tests to identify the impact of varying parameters
on rolling resistance. This was followed by the analysis of the tests obtained by post-
processing the data and visualizing the results. Automation of the test analysis
helped to streamline the process of obtaining results that was used to understand
certain phenomena. In the discussion phase, the test results were further analysed

to see if the proposed tests explained the phenomenon in question and discuss the
next steps.

Figure 1.1: Thesis phases

1.3 Research Questions

The following questions guide the research work in this thesis.

1. What are the di erent factors that a ect rolling resistance? What are their
contributions?

2. Can the temperature dependence of the rolling resistance of the tire be for-
mulated? Additionally, can mathematical or physical models be developed to
capture the temperature and rolling resistance of the tire?

3. Can the energy loss due to rolling resistance be quanti ed in a drive cycle?

4. Does the behaviour remain the same even with realistic driving?
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1.4 Objectives & Deliverables

The objectives and deliverables of the thesis are as follows:

Establishing baseline values, deciding new tests, and creating work ows to
analyze new data.

Processing and visualizing collected data to draw logical conclusions and es-
tablish correlations between changes in operating conditions, rolling resistance,
and temperature.

Formulating empirical relationships between temperature changes and rolling
resistance. Proposing a dynamic model and the numerical parameters of this
model.

Conducting drive cycle tests to understand and verify the transient behavior
of temperature and rolling resistance under realistic driving conditions.

1.5 Stakeholders

The following table lists the project stakeholders.

Table 1.1: Thesis Stakeholders

Name Organization Role
Abhishek Amit Kolekar Chalmers Student
Vivekanandan Madhuravasal Narasimhan  Chalmers Student
Bengt J H Jacobson Chalmers Examiner
Teddy Hobeika VCC Industrial Supervisor
Johan Lindquist Holmberg VCC Industrial Supervisor
Carl Emvin Chalmers Academic Supervisor

1.6 Limitations

Only free rolling tires are tested in the drum testing rig. The model devel-
oped does not include the e ect of driving manoeuvres (braking, acceleration,
turning) and wheel orientation (camber, toe) on the rolling resistance or tem-
perature of the tire.

E ect of road undulations and surface texture are not tested.

Only tires designed for cars are tested. The tires represent only a small window
of the physical variation in tires available.
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Literature Review and Theory

2.1 Literature Review

This sections lists literature that was reviewed and important to the thesis work.

2.1.1 Review article by Ydrefors et al [5]

The review article titled Rolling resistance and its relation to operating conditions:
A literature review provides a detailed overview of the literature and previous works
in the eld of rolling resistance and factors that a ect the rolling resistance. It starts
with the historical work on rolling resistance, the explanation of rolling resistance,
the measurement of rolling resistance, and the di erent factors a ecting it. The
compensation methods and equations for each of the factors are also listed along
with each factor. The article also details the di erent measurement techniques used
to quantify the rolling resistance of tires and their corresponding advantages and
disadvantages. It also highlights the importance of measuring the rolling resistance
under non-steady state behavior. The article concludes that the current testing
method of tires, while detailed, lacks an overall generalization that would allow the
comparison of di erent testing methods. It also concludes that while the e ect of
di erent operating conditions is known, there is still some knowledge gap in the
e ect of road surface properties and curvature. It also highlights the lack of infor-
mation on the e ect of temperature outside the testing standards.

2.1.2 Journal article by Hyttinen et al [6]

The journal article titled Truck tyre transient rolling resistance and temperature

at varying vehicle velocities - Measurements and simulations talks about rolling re-
sistance measurement in a wind tunnel and on-road tests and simulation of a truck
tire rolling resistance under transient conditions. The temperature in the truck tire
Is measured using thermocouples drilled and inserted into the tire shoulder and in-
frared sensors that can measure the temperature on the tire treads. Additionally,
the tire's temperature was measured on the inside during the on-road tests. The
transient behavior of the tires was recorded, and it was found that the rolling resis-
tance and shoulder temperature were higher for higher speeds. For simulations of a
tire, a lumped thermal capacitance model is used to predict the rolling resistance.
The lumped thermal model is used to obtain a master curve that is then used to

5
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simulate the tire shoulder and inner liner temperatures during warmup. The model
compensates for di erent factors such as loading, ambient temperature, and speed.
The model is seen to agree very well with measurements, and it is concluded that
the rolling resistance decreases signi cantly at lower ambient temperatures and high-
lights the importance of the transient e ect of rolling resistance in range estimation
calculations.

2.1.3 Master's Thesis by Chirag Rajopadhye and Bharat
Govardhan Raju [7]

The thesis titled Inuence of in ation pressure, speed, load and warm-up phase
on rolling resistance of passenger car tyres investigates the e ect of changes in
tire in ation pressure, vehicle speed and vehicle load on the rolling resistance. The
study is done to analyze the e ect of di erent on both the steady state rolling resis-
tance coe cient and the energy loss due to rolling resistance brought about by the
warmup phase of the tire. The thesis explores the e ect on the rolling resistance
and energy loss due to changes in the aforementioned parameters individually, as
well as the interactive e ect of changing 2 of the parameters at a time. The addi-
tional contribution of change in rolling resistance due to parameter changes in the
warmup phase was also explored. The fundamental ndings were that the rolling
resistance coe cient shows a negative correlation with a change in in ation pressure
and load and a positive correlation with a change in speed. It was concluded that
the consideration of the warm-up phase for estimating the energy e ciency of tires
Is warranted, especially in the context of short distance travel.

2.1.4 White Paper by IZZE Racing [8]

The white paper titled In uence of Temperature on Tire Grip provides a com-
pelling argument for the use of infrared temperature sensors to monitor tire temper-
ature. It describes dominant modes that generate heat within a tire namely strain
energy loss (i.e., heat generation due to hysteresis) and surface heat due to tire-road
tangential interaction. It brie y illustrates the modes of heat exchange from the tire

to the environment. Much of the white paper is spent on establishing the e ect of
varying temperature (considering di erent tire treads) on the di erent mechanisms

of tire grip (namely indentation and molecular adhesion), primarily from the view-
point of motorsports. It nally highlights the di erent ways the temperature data
obtained can be used to tune and build a faster race car.
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2.1.5 Journal Article by Vieira et al [9]

The journal article titled Rolling Resistance Evaluation of Winter Tires on In-
Service Road Surfaces explores how rolling resistance is impacted by the di erent
types of tires. The experiments were carried out with 50 di erent tires of 5 di er-
ent types all-season tires, summer tires, winter tires without studs, winter tires
with studs, and specialized winter tires embedded with hard particles. The exper-
iments were done independently on a steel drum rig and on road testing. One of
the major takeaways was that the drum results led to lower RRC values compared
to road conditions but did not lead to any signi cant correlations. Labelled values
of rolling resistance of the tires correlated quite well with the drum measurement
values, however were signi cantly di erent from road measurement values (road val-
ues were higher). Considering the e ect on rolling resistance by the type of tires,
there was no conclusive proof that studded tires have higher rolling resistance than
non-studded winter tires. The specialized winter tires showed relatively lower rolling
resistance than the regular winter tires. The summer tire showed the least rolling
resistance consistently. Finally, all-season tires have relatively high rolling resistance
since they are a compromise between winter and summer performance.

2.1.6 Journal Article by Dieter J. Schuring [3]

The journal article titled Transient Versus Steady-State Tire Rolling Loss Testing
develops and tests a formula for computing the rolling loss i.e., the energy loss
per unit distance, of the tires operating under two transient scenarios a warmup
test with constant speed and zero torque (free-rolling) and an urban driving sce-
nario (namely EPA) with rapidly varying speeds thus incorporating the in uence of
driving and braking torques on rolling loss. A very strong correlation was observed
between the averaged warmup rolling loss and steady state rolling loss. The rolling
losses during the urban driving test were found to be between 26% and 47% higher
than the steady state losses, the reason being additional losses added by the varying
torque application. The article, being old at this point, has technological limitations
regarding sensors, data acquisition, and torque application control, amongst other
things. However, it serves as an initial benchmark to transient testing, with future
research adding value and credibility to its ndings.
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2.1.7 Journal Article by Ejsmont et al [10]

This journal article, "In uence of load and in ation pressure on the tyre rolling re-
sistance experimentally determines the e ect of normal load and in ation pressure
on the rolling resistance. The tires were tested on a drum as well as a road with
di erent surface nishes also to obtain the e ect of surface roughness. The load and
in ation pressure were varied, and it was found that the load a ects the rolling re-
sistance force but does not signi cantly a ect the rolling resistance coe cient. The

in ation pressure was found to signi cantly a ect the rolling resistance, with both
the rolling resistance force and coe cient decreasing when tested at higher in ation
pressure. The researchers also concluded that tires with a higher rolling resistance
coe cient have a higher dependence on in ation pressure. With respect to surface
roughness, smoother surfaces were found to have similar e ect on rolling resistance
amongst themselves compared to a rougher surface.

2.1.8 Journal Article by Dieter J. Schuring et al [11]

This journal article titled Transient Speed and Temperature E ects on Rolling
Loss of Passenger Car Tires explores the e ect of speed and temperature on rolling
resistance as the authors underline the need to understand the transient behavior
of the tire. The authors also model the behavior of the tire using an exponential
equation and temperature and speed as inputs. The temperature dependence of
rolling resistance is analyzed for 2 di erent temperature measurements: ambient
temperature and tire temperature. The results identi ed in the paper match the
theoretical explanations and follow similar trends. The speed dependence is also
tested experimentally, and it is shown that the tire achieves an equilibrium temper-
ature irrespective of the starting temperature but depends on the speed. Finally,
a model is developed, and its parameters are calculated. This model developed in
this paper forms the basis of one of the models in this thesis work.

2.1.9 Master's Thesis by Redrouthu and Das [12]

The thesis titled Tyre Modelling for Rolling Resistance establishes a mathemati-
cal model for rolling resistance, focusing on a free-rolling tire and ignoring the e ect
of longitudinal slip considerations. The thesis work also lists the di erent ways of
modeling the tire and the rolling resistance. The model developed in the thesis in-
corporates multiple factors contributing to rolling resistance, including vertical tire
sti ness a ecting tire de ection and counter de ection, tire viscous and Coulomb
damping e ects, and rolling aerodynamic drag, and combines some existing models
with new ones. The study investigates the isolated and combined impacts of tire in-
ation pressure, tire size, velocity, and normal load on rolling resistance. Validation
of the model is accomplished through comparison with experimental data derived
from tests conducted by Michelin and LeanNova, ensuring a solid foundation for the
proposed mathematical framework.
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2.1.10 Master's thesis by Tevell and Zetterberg [13]

The thesis titled Creating a Virtual Tyre Temperature Sensor focuses on develop-
ing a virtual tire temperature sensor to determine the temperature under dynamic
driving conditions using a recurrent neural network. The virtual sensor uses onboard
signals from the vehicle to predict the temperature. A virtual sensor can be used
in real-time to determine the tire rolling resistance and hence improve the range
estimation. The limitation of using a virtual sensor based on neural networks is
that the sensor is only accurate in the driving scenarios it is trained on. Correlation
analysis and feature selection were done to remove onboard signals that do not have
much in uence on the tire temperature, and selected signals were used to train the
neural network. The trained model was found to be 90% accurate in predicting the
temperature that was con rmed using a temperature sensor mounted in the tire.
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2.2 Theory

The theory section elaborates on important concepts surrounding rolling resistance
and the causes and factors that a ect it. In addition, it includes information on the
measurement techniques used and information on past e orts in modeling rolling
resistance.

2.2.1 Rolling Resistance Force and Rolling Resistance Co-
e cient

Rolling Resistance Force (RRf) is a force at the tire's contact patch that acts oppo-
site to the direction to rotation. The Rolling Resistance Coe cient (RRc) is de ned

as the rolling resistance force per unit load. The RRc is a metric used to quantify
this resistance. The unit N/kN is used because a free rolling tire is considered, and
the load in the order of kN results in rolling resistance in the order of N. The RRc
values range from 6 to 10 N/kN for passenger car tires on asphalt. Rolling resistance
force comprises the losses from the tire due to deformation and losses from other
rotational sources, including aerodynamic losses and tire-rim friction. In standard-
ization methods, the value of the rolling resistance coe cient is calculated once the
measured rolling resistance force stabilizes. The resistance arising from the tire can
be understood by two di erent mechanisms.

2.2.1.1 Rolling resistance due to viscoelastic hysteresis

As the tire rolls, the part of the tire at the leading edge of the contact patch under-
goes deformation due to loading. The parts of the tire at the trailing edge of the
contact patch get unloaded. Due to the viscoelastic nature of rubber compounds,
the pressure distribution on the contact patch is not symmetric but generally tends
to be higher in the direction of rolling. In the following gure, the spring and
damper represent the rubber material's viscoelastic behavior. The spring represents
the elastic properties, and the damper represents the viscous losses.

The centroid of the pressure distribution integrated over the length of the contact
patch is o set by some distancel() from the center of the contact patch. This o set

of the centroid causes a braking/resistive torque, which can be represented in terms
of a vertical force cs), as seen in Figure 2.1. This force is responsible for the loss
of energy between loading and unloading, generally termed hysteresis, but in the
case of tires, termed as rolling resistance (energy consumed per unit distance with
units (J/m)). This phenomenon is majorly responsible for converting the mechani-
cal energy at the wheel to heat that warms up the tire and is lost to the environment.
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Figure 2.1: Mechanism of Rolling Resistance due to Viscoelasticity
(Figure from [14])

Thus, reducing the tire's viscoelastic hysteresis will result in a lower rolling resis-
tance. However, another important e ect of the hysteresis property is the grip
caused by the asymmetrical deformation due to the microtexture of the road in the
road [15]. This type of grip is important, especially when the road is wet. Thus,
there must be a compromise between reducing rolling resistance and retaining grip
in wet conditions.

2.2.1.2 Rolling Resistance Due to Aerodynamic Drag

Hysteresis from tire deformation primarily contributes to rolling resistance losses.
However, aerodynamic drag is a secondary contributor to the losses, accounting for
up to 15% at high speeds [16]. It results from the pure rotational motion of tires
(without any longitudinal movement), e.g., in a rolling drum test rig.

Aerodynamic drag comprises form drag, arising from the object's shape moving
through the air, and skin friction, arising from uid (air) and object surface friction,
and ventilation moment. If the tires are at (without any tread grooves), the drag
caused will be mostly due to skin friction. However, in normal car tires, the grooves
induce a small amount of form drag as well.

11
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2.2.2 Factors A ecting Rolling Resistance

The following is the theory surrounding the key factors that are tested in this thesis
work:

2.2.2.1 E ect of Tire Outer Diameter on Rolling Resistance

When the tire's outer diameter is increased (with everything else being similar),
some factors increase the rolling resistance, while other factors decrease it. These
factors are listed as follows:

Factors which decrease rolling resistance:

A larger diameter tire typically has a larger contact patch, which distributes
the vehicle's weight over a larger area. This results in lower contact pressure,
reducing hysteresis losses.

A larger diameter tire often has lower sidewall exing for the same load, which
can decrease energy losses due to exing and improve overall tire e ciency.
The reduced sidewall exing also contributes to a more e cient rolling motion.

A larger diameter tire tends to have lower tread deformation, further minimiz-
ing energy losses.

Factors which increase rolling resistance:
Aerodynamic drag increases rolling resistance force as the surface area in con-
tact with air increases.
Tires with larger diameters weigh more, which increases the normal load and,
consequently, the rolling resistance force.

Previous research by Pillai and Russel-Fielding [17] found that there is an overall
decrease in rolling resistance as diameter increases and established the relationship
between rolling resistance and outer tire diameter, which can be represented by the
formula:

1
RRf / D 3 (2.1)

This indicates that the rolling resistance decreases as the outer diameter increases.

2.2.2.2 E ect of Aspect Ratio on Rolling Resistance

The aspect ratio of the tire is the sidewall height expressed as a percentage of the
tire's section width. Thus, a higher aspect ratio for a constant section width indi-
cates a larger tire.

It has been observed by Pillai and Russel-Fielding [17] that an increase of the aspect
ratio increases energy dissipation, thus a higher rolling resistance. The reasoning is
that a higher aspect ratio would have longer sidewalls, which results in more sidewall

exing, increasing the magnitude of the compression-relaxation cycles and leading

to higher hysteresis.

12



2. Literature Review and Theory

2.2.2.3 E ect of In ation Pressure on Rolling Resistance

A tire with higher in ation pressure is sti er and will deform less than a tire with
lower pressure and, hence, have a lower hysteresis e ect. A lower hysteresis e ect
leads to a lower loss of energy and, hence, lower rolling resistance. Ejsmont et al.
[10] tested the e ect of increasing in ation pressure for 5 di erent tires and con-
cluded that increased pressure reduced the rolling resistance coe cient.

Grover, P. S. [18] experimentally determined that an exponentially decreasing de-
pendence for pressure ts most tires. The pressure dependence is hence given as
RRf / P , where is the pressure dependence exponent. The exponent of de-
pendence was found to be between -0.3 and -0.5 by both Hall and Moreland [19]
and by Ydrefors et al. [5] with the latter observing that an exponent of -0.4 pre-
sented the best t for the tires tested. Previous research works have also noted that
the pressure dependence of the rolling resistance coe cient changes depending on
whether the tire is tested on the road or a drum.

2.2.2.4 E ect of Temperature on Rolling Resistance

Three di erent temperatures a ect the rolling resistance:

" Tire temperature:  Increase in the tire temperature leads to a lowered hys-
teresis e ect as higher temperature increases the elasticity of the rubber used
in tires and increases the in ation pressure, both resulting in a lowered rolling
resistance [20].

Ambient temperature: The ambient air temperature does not a ect the
rolling resistance directly, rather, it a ects the internal temperature of the tire

and consequently, the rolling resistance [21].

Road temperature: Like the ambient temperature, the road temperature
a ects the rolling resistance indirectly by increasing the tire temperature and
reducing the rolling resistance [21].

Comparing the e ect of ambient and road temperatures on the rolling resistance
of the tire, it is found that the tire temperature is more sensitive to the road tem-
perature than to the ambient temperature. Yokota et al. [21] have used FEM and
physical correlation for di erent tires tested in the range of 10-3%B. for ambient
temperature and 10-5@o. for road temperature. They found that for every 1&o. rise
in the ambient temperature, the tire temperature rises by 1-2%0 and for every 1060
rise of the road temperature, the tire temperature rises by 6-7%o
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2.2.2.5 E ect of Speed on Rolling Resistance

Speed a ects the rolling resistance in various ways, due to its di erent e ects on the
various mechanisms that cause rolling resistance.

N

14

E ect on hysteresis:  Schuring [22] found that the hysteresis of the tire
is dependent on the frequency of tire deformation, which increases with an
increase in speed.

E ect due to aerodynamic losses: Research by Michelin [16] indicates
that, at constant load and in ation pressure, running the tires at a higher
speed increases the aerodynamic losses.

E ect due to generation of standing waves: Higher speeds also cause
standing waves to arise. Previous research [19], [20] have found that driving
at high speeds 120 km/h or more standing waves in the tires will quickly

and signi cantly increase rolling resistance. When the next de ection starts
while the thread and side walls are still being a ected by the previous one, a
standing wave is formed.

E ect on achievement of temperature steady state: Rajopadhye and
Govardhan Raju [7] found that at higher speed, the steady state temperature
Is achieved faster, which reduces the average energy loss during the warmup
phase, which results in a lesser contribution of warmup rolling resistance, and
overall lower rolling resistance during the test run.
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2.2.3 Rolling Resistance Measurement Techniques

Measurement of the rolling resistance can be divided into lab measurements and
on-road measurements. Lab measurements allow for carefully controlled conditions,
whereas on-road measurements provide realistic conditions for measurements.
Sandberg et al. [23] classi es rolling resistance measurement techniques as follows:
Lab test of tires: Lab measurements can, in turn, be classi ed as drum-based
measurements and rolling road-based (belt-based) measurements.
Drum test: A drum test has the tire to be tested pressed against a
large rolling drum with a prescribed load. The drum is then rotated,
and the resistive torque due to the tire is measured. The tested setup is
shown in the gure below. In this thesis work, lab measurement using a
drum-based method is focused upon.

Figure 2.2: 1SO Rolling Resistance testing rig
(Image from Volvo Car Corporation Internal Media)

Belt test: The belt test has a similar setup to the drum test but uses a
rolling belt instead of a drum.

Figure 2.3: Flat belt rig (Image from [24])
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