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Abstract

Even though considerable advancements have been made in time series

forecasting for audio, there are still many unexplored aspects. An objective of

the analysis is to develop a viable product to replace the look-ahead functions of

audio dynamic range compressors. Towards this end, and given the suitability

of neural networks for predictive purposes, this project discusses the application

of MultyLayer Perceptrons (MLPs) and Long-Short Term Memory (LSTMs) for

addressing this research question. The numerical experiments focuses on the

predictions of this systems. It is analyzed how changing window length (number

of inputs), prediction steps (number of outputs), and sampling frequency (dataset

resolution) affects prediction quality. The findings indicate that, after a threshold,

increasing number of inputs yields diminishing rewards.
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Foreword

It was 1885 when, thanks to the initiative of Gösta Mittag-Leffler, a mathematics

competition in the name of Oscar II, king of Sweden and Norway, was published

in the journal ”Acta Mathematica” [1]. As part of the competition, contestants

were asked to find a general solution to the classical mechanics n-body problem,

something that mathematicians have been hunting for since Newton’s time. This

competition turned into history thanks to the solution provided byHenri Poincaré

[2], which not only granted him the 2,500 Swedish kronor and gold medal prize

but contained concepts that laid the foundations for the new field of Chaos

Theory.

More than one hundred and thirty years later, I have started grappling with

the bizarre and beautiful ideas that such theory exposes through my studies on

Complex Adaptive Systems1 and I am in this work exposing the potentiality of

employing such ideas through a project thatMusicTribe proposed. The discussion

that follows these lines will most often be technical and pragmatic and can lead

one to quickly forget about the importance of the theoretical work done in the past

by great intellects, through stories such as the one mentioned above on Poincaré.

Nevertheless, I encourage you to recognize that we will be all along resting on the

shoulder of these giants, all along discussing the power of analytical ideas. Only

we will see these abstract general ideas manifest in the spirit of today, incarnated

in the incredible tools that our information era provides us.

A perspective on Machine Learning

It is of my interest to also address a general concern related to the Artificial

Intelligence (AI) field. To do so let us start with a quote from Pedro Domingos,

professor emeritus of computer science and engineering at the University of

Washington

People worry that computers will get too smart and take over the

1The knowledge of emergence and collective behaviour is the linchpin of Complex Systems and
very much rest upon insights gathered through the observance of Chaos
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world, but the real problem is that they’re too stupid and they’ve

already taken over the world.

From this we pick up not only a characterization of AI and its dangers which

also readers foreign to the field have been exposed to2, but also a clear statement

regarding the functioning of these algorithms: Machines learn stupidly, not

smartly. Attempting to reconcile this fact in order to make an intelligent product

has been my occupation for the duration of the internship. Even if this target has

not been reached, I hope that what follows will provide you useful insights, back-

propagating my efforts to an improvement of your work.

2Indeedmany popular figures, including SamHarris ( URL) andElonMusk (URL), arewarning
the general public about the existential danger of AI, while a more appropriate view would be the
one exposed by AI experts such as Janelle Shane (URL)
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Figure 0.1: Front cover of the original manuscript forwarded by Poincaré to
Acta Mathematica containing a dynamical solution to the three body problem.
Copyright to Institut Mittag-Leffler
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1 Introduction

After listening to a song for a few times, many of us find it easy to replay the song

in our head, singing along the lyrics and humming its rhythm. Sometimes it is

even sufficient to listen to only parts of the song, in order to be able to anticipate

what the next chorus will sound like. Given enough training, our brain seems

then capable of abstracting the patterns present in music in order to predict what

the next part of the track will sound like. Can an information computing system

residing on semi-conductor materials perform a similar task?

This thesis deals with music audio signal prediction. Machine Learning (ML)

techniques, applied mainly within a Time Series Forecasting (TSF) framework,

are used to obtain such predictions. The primary objective of this research is to

investigate the performance quality of supervised learning algorithms applied to

raw audiomusic data. The investigation aims to find an algorithm that can process

a given sequence of audio track time samples and output a sequence that matches

the original sequence. Here a time sample is a real value that corresponds to the

amplitude of the waveform of the audio signals.

The questions at the core of the research are:

• Is it possible to feed a Neural Network (NN) raw musical audio data and

obtain a valid forecast of the evolution of such data for a short time window?

• Which supervised learning method is best at performing such a task?

• Is it possible to obtain such NN for a use scenario that ranges over on

different kinds of musical genres and instruments or is it necessary to

restrict its application to a particular kind of genre or musical instruments?

Answering these questions is crucial for the application of these NNs in the audio

music industry. Indeed, a use case for awell-performing neural network is already

envisioned; Applying a forecasting algorithm to music audio tracks would be

valuable as a pre-processing tool for audio equipment. In particular dynamic

range compressors could benefit from its use by eliminating the need of a look-

ahead function, hence decreasing the latency of the audio system.
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1.1 Background - Machine Learning Applied to Audio

Living in 2022, it is conceivable to recognize that a ”AI spring” is in blossom [3].

The current success of Artificial Intelligence andMachine Learning (ML), ranging

from Language Translation (Google Translate) to Natural Language Generation

(GPT-3), from Image Recognition (ImageNet) to game playing systems (Alpha

GO) ferments a wave of optimism on the possibility of ML succeeding in a wide

range of applications.3

It comes as no surprise that ML approaches are also blooming in the Audio

Domain. To list a few of the applications of ML in this sector we can recall:

Audio Classification [4], Speech Synthesis [5], Sound Event Detection [6], Audio

Source Separation [7], Audio Signal Processing [8] and others. It appears, when

examining the audio domain and other fields, that when applied to tasks for

which adequate data is available, machine learning algorithms tend to outperform

traditional methods previously employed. For example, ML algorithms have

proven to be better performers for some use cases in Audio Signal Processing

compared to classic methods such as Gaussian mixture models, hidden Markov

models and non-negative matrix factorization [9]. This view justifies the utility

in testing whether a novel application of ML can replace the traditional use of a

look-ahead function within dynamic range compressors. Given such hypothesis,

a successful replacement would be indicated by an overall lower audio latency

of the audio system caused by the instrument. This also puts constraints on the

complexity of the ML Technique deployed.

Here it is not pertinent to focus on the technical details behind the effectiveness

of the ML procedures in the aforementioned cases. It will suffice to be aware of

the large extent to which AI is present within the Audio and Sound Engineering

fields. Hence it is not possible to provide a comprehensive description of AI’s

applications in the audio domain. Yet, this works provide a look on a subset

of supervised learning techniques, namely MultiLayer Perceptrons (MLPs) and

Recurrent Neural Networks (RNNs). Integrating these ML architectures, the raw

3One example of possible counterargument regarding the overarching optimism might be
provided by the delay in circulation of Self Driving Cars.
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audio music data, and the analysis under a TSF framework is the innovation

and primary focus of this thesis. This is the key addition of this study, as there

is comparatively much less research on TSF applied to audio data compared

to the amount of literature that employs ML for speech synthesis, voice-to-text

conversion, and genre categorization.

To get insight from this project, just minimal prior knowledge is necessary. The

part on theoretical background that follows should offer sufficient information

on ML approaches, Time Series Forecasting and audio data properties for an

engineering-savvy reader to follow the rest of the project.

1.2 Project Description

This study aims to investigate how ML may be used to enhance the prediction of

audio samples. The work takes place in the context of an internship atMusicTribe

in Kungsbacka, Sweden. Therefore, an effort is made to conceive of a machine

learning tool that may be directly applied to company products. As mentioned

above, the main use considered for such ML tool is replacing the compressor

look-ahead control, enabling an overall lower latency caused by the compressor

instrument. In spite of this, the applicability of an effective audio prediction ML

method extends beyond look-ahead replacement. In fact, given the plasticity of

NNs, it is conceivable to envision future uses of such algorithms in a variety of

audio equipment.

For the whole duration of the project, numerical experiments have been

performed through the use of the Python programming language and the

TensorFlow ML library. The training and testing of the algorithms were carried

out using the personal laptop of the author, operating with a AMDRyzen 7 5800H

CPU and NVDIA GeForce RTX 3070 Laptop GPU. Most of the algorithms were

optimized forGPUperformance usingCUDA toolkit andCUDNN library, allowing

parallel computing.
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1.3 Thesis Outline

The structure of this thesis is as follow:

In Chapter 2 the theoretical background comprising an overview of the machine

learning techniques employed, necessary knowledge pertaining to the analysis of

audio data and basic notions of time series forecasting is provided.

In Chapter 3 the methodology behind the research is illustrated following a

practical point of view.

In Chapter 4 a description of the different stages of research and experiencewithin

the company is provided.

In Chapter 5 the results of the analysis are presented.

In chapter 6 the major contributions stemming from such results are discussed.

4



2 Theoretical Background

Theultimate goal of the research is to provide an algorithmwhich is able to process

a given sequence of nt time samples of an audio track and output a generated

sequence pt+ of subsequent time samples which closely matches the real sequence

of the audio signal nt+. Here a time sample, n0, is a real value that corresponds

to the amplitude of the waveform of the audio signals at time t = 0. Given this

explanation, it should be apparent why the majority of the analysis given will be

framed as a time series forecasting exercise. The goal of this section is three-

fold:

• Introduce the reader to ML concepts

• Introduce the reader to basic properties of audio data.

• Provide an overview on the field of Time Series Forecasting.

2.1 An introduction to Machine Learning

To start, let us examine a clear definition of Machine Learning[10]:

ML is an algorithmic area that combines concepts from statistics,

computer science, and several other fields to build algorithms that

analyze data, generate predictions, and aid in decision-making.

Given that ML is regarded as an applied science, it seems reasonable to start the

topic by introducing the reader to fundamental statistical concepts using linear

algebra. Introducing these topics is beyond the scope of this project, for further

information please refer to [11]. This research focuses instead on the subfield

of machine learning known as supervised learning. This implies assuming the

reader is familiar with the fact that a ML model is comprised by weights and

connections between this weights which form a causal chain from input to output-

prediction.

ML methods are characterized by two factors: the data used for learning and

the optimization method which enables the machine to learn. Let us start by

describing the process of optimization. First of all, it is important to understand

why is it called optimization. From the standpoint of mathematics and computer

5



science, optimization is the selection of the optimal element from a collection of

possibilities, based on some criterion[12]. Usually this is the search for minimum

or maximum of a real function. Indeed, training refers the process of iterating a

set of computations in order to reach the minimum of a loss function.

Using an analogy with the real world, whereby the aforementioned real functions

refers to the steepness of a hill, and the optimization process refers to reach the

bottom of such hill, one should understand that in order to find the minimum

the requirements are first to understand in which directions one should walk, and

second to actually take steps in that direction. Continuing the analogy it is possible

to imagine that in the ML model the entity walking down (stochastically, hence

blind-folded) a high-dimensional hill4. This analogy provides an intuition for the

algorithmic procedure which leads a model to improve predictions after training,

by finding the gradient of the loss function (the direction towards the minimum)

and by updating its weight accordingly (walking in such directions).

Themachinery to calculate the gradients of a network is called Back-propagation5

[13]. Some of the most popular optimizer options include Stochastic Gradient

Descent [14], RMSProp [15],ADAM[16]

For completeness notice that unsupervised learning, in which transformations of

input data are discovered without the need for target labels. The case of weakly

supervised learning [17] is likewise intriguing for the task at hand, but it is beyond

the scope of this work.

2.1.1 Supervised Learning

Essentially, supervised learning forces neural networks to learn by example, by

finding a mapping between the given input data and target labels which are

provided. Labeled data is the defining characteristic of Supervised Learning. This

scenario is an ideal fit for the work at hand, as the audio track naturally offers the

required labels, namely the signal waveform amplitude (see Figure 2.1).

4The dimension space of the search is dependent upon the number of inputs provided to the
net.

5Technically this term is appropriate only for feed-forward networks (such as MLPs) and not
for other models (such LSTMs), yet it is common to refer to different methods for updating model
weights as such.
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Figure 2.1: A visualization of the sampling process. In blue it is pictured a simple
waveform. In orange it is showed the sampled signal with sampling frequency of
1 Hz. The sample points (orange dots) will work both as input and as target labels
for the net in question. An example of a regression task for the network will then
be, given the first four sample points predict the fifth sample point. A success for
the net would be a prediction close to the target value, i.e. having a prediction of
0 for the amplitude of the fifth time sample would be considered satisfactory.

Supervised learning is by far the most common among different branches of ML

[13]. The nets find correlations between the given parameters, so establishing a

cause-and-effect link between the variables and the targets in the dataset. Here it

is important to notice that a partition of the dataset is made in order to efficiently

carry on a ML study.

First a training dataset is necessary. This is in essence the learning material

for the ML method. Once the training set has been given to the model, it

is able to undertake optimization and back-propagation, which, based on the

characteristics of the training dataset and the selected loss function, will result

in improved predictions.

The fitted model is then used to predict the answers for the observations in

a second dataset known as the validation data set. The validation data set

gives an objective assessment of a model’s fit to the training data set while

hyperparameters are being tuned [18].

7



Lastly, the test dataset is a dataset used to offer an impartial assessment of the

model’s final fit to the training data set.

Typically, supervised learning is used in applications where previous data is used

to anticipate probable future occurrences. Supervised learning is also commonly

used for regression task and for these reasons it was considered the optimal choice

for the project.

2.2 Machine Learning Architectures

The three major types of network architectures are: dense networks,

convolutional networks, and recurrent networks. Regardless of the branch of ML

used for training and testing, each type of network is designed for a particular

input mode: a network’s architecture (dense, convolutional, recurrent) encodes

assumptions about the structure of the data, to learn the structure space and

correctly predict new inputs. Compatibility between the dataset and the network

architecture’s fundamental principles determines whether a specific design will

function in a certain context[13].

An important concept which is necessary to discuss is that of the activation

function. Essentially, an activation function is an essential infredient to be able

to represent non-linear functions. Some of the most popular activation function

include ReLU 6, sigmoid, tanh, Softmax [19].

In this study, music audio data cast as time series data were tested on both densely

connected and recurrent networks. Below is a full discussion of the types of

networks utilized.

2.2.1 Densely connected networks - MultiLayer Perceptron

A densely connected network consists of a series of Dense layers that are mostly

utilized for vector data processing (batches of vectors). Such networks assume no

particular input pattern; they are called densely connected because each neuron

in a Dense layer is connected to every other neuron in the next layer. This

form of network is the direct successor of Perceptrons, the first type of artificial

6see this article
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intelligence that was investigated extensively by Rosenblatt in 1957 [20]. For this

reason, this study refers to a stack of dense layers asMultiLayer Perceptrons.

2.2.2 RNNs - Long Short Term Memory

RNNs function by processing input sequences one time step at a time and

maintaining a state throughout7. In the case of time series data, when the

sequences of patterns of interest are not invariant over temporal translation, their

application is widespread. RNNs may discriminate between various temporal

sequences by attributing a high predictive power to values near to the required

prediction while still considering the effect of values from the distant past..

The Long Short TermMemory (LSTM) algorithm was developed in 1997 in order

to avoid a problem with standard RNNs topologies, which tend to suffer of

vanishing gradient problem[21]

2.2.3 Comparison LSTM vs MLP

While feedforward networks, such as MLPs, have the capabilities to learn any

nonlinear function, and hence are suitable for the task at hand, recurrent neural

networks are usually preferred for uses cases that involve TSF.

The two main advantages of recurrent networks are:

• RNN captures the sequential information present in the input data

• RNNs share parameters overmultiple time steps. This is commonly referred

to as Parameter Sharing. This reduces the number of parameters to train

and the computational cost.

2.3 Basic properties of Audio Data

Despite the kind of audio used in order to conduct the analysis (studio audio track

or live recordings, of a specificmusical genre or ofmixed genres, single instrument

outputs or even pure tones such as square or sine waves) this data consists of

Continuous Time (CT) signals. Yet the input for theNNsneeds to beDiscrete. This

poses the problem of transferring a CT to a DT signal, and this common reduction

7a state is typically a vector or set of vectors: a point in a geometric space of states
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problem takes the name of sampling.

2.3.1 Audio Sampling

The transformation from Continuous to Discrete time is usually performed by an

encoding of a subset of integers I ⊂ Z over the continuous interval. Hence the

Discrete Time signal gets defined as a function x : I → R, where the domain I

corresponds to points in time.The most used sampling method to translate a CT

signal f : R → R to a DT-signal x : I → R is known as equidistant sampling.

Following [22] equidistant sampling can be defined by fixing a positive real

number T > 0, so that the DT-signal x is obtained by setting

x(n) := f(n · T )

for n ∈ Z. The value x(n) is called the sample taken at time t = n · T of the

original analog signal f . This process is sometimes referred to as T-sampling. The

number T is referred to as the sampling period and the inverse Fs := 1
T
is called

sampling rate. The sampling rate specifies the number of samples per second and

is measured in Hertz (Hz).

Sampling tend to be a lossy procedure in the sense that generally information

is lost in the process and, if the frequency used for sampling does not satisfy

a criterion described below, the original analog signal cannot be reconstructed

from its sampled representation. This constitutes a problem for many practical

situations and the phenomenon takes the name of Aliasing. Temporal aliasing is

then the term used to describe the distortion or artifact that occurs when a time

signal reconstructed from samples differs from the original continuous signal.

Signal conversion fromCT toDT is not restricted to the audio domain, but includes

all aspects of signal processing. The Nyquist-Shannon Sampling Theorem is a

significant outcome of the discipline. This is a necessary condition for a sufficient

sampling rate that enables a discrete series of samples to capture all information

from a continuous-time signal with a restricted bandwidth [22].

10



If a system samples an analogue signal at a rate that is at least two

times higher than the signal’s highest frequency, the original analogue

signal can be properly recovered from the discrete values produced by

sampling.

Mathematically the sampling theorem then states that, given a CT signal f that

satisfies certain conditions not discussed here, and given x be the T-sample

version of f with T := 1
2Ω
, then f can be reconstructed from x by:

f(t) =
∑
n∈Z

x(n) sinc
(
t− nT

T

)
=

∑
n∈Z

f
( n

2Ω

)
sinc(2Ωt− n)

2.3.2 Quantization

While sampling turns the time domain from continuous to discrete, one also needs

to replace the continuous range of possible amplitudes by a discrete range of

possible values. This process is called quantization. This process is illustrated

in Figure 2.1, where certain sample points do not correspond to the shape of the

waveform (e.g. the third sample point) (e.g. the third sample point). Quantization

introduces another undesired effect known as quantization errors, or quantization

noise, which is indicated in red in Figure 2.1

Following [22] it is possible to define the process by setting a functionQ : R → Γ,

referred to as the quantizer, which assign to an amplitude a ∈ R a valueQ(a) ∈ Γ,

where Γ ⊂ R. In the case of digital signals, the accuracy of the amplitude values

post quantization depends on the amount of bits dedicated to the encoding. For

example, CD recordings employ a 16-bit encoding technique, which enables 65536

potential values to be represented.

To recapitulate, Aliasing and quantization may generate noticeable sound

artifacts, such as unpleasant buzzing noises or background noise. These can

however be overcome. For CD-based digital representations, however, the

sampling rate and quantization precision are selected such that the deterioration

of the waveform is imperceptible to the human ear. Regarding sampling rates, 8

kHz (8,000 Hz) is the common sample rate for phone lines, 32 kHz for digital

radio, 44.1 kHz for CD recordings, and higher sampling frequencies up to 96

11



kHz are used in professional studio equipment8 [22]. The experiments in these

research deal with a sampling frequency ranging from 8kHz to 44.1 kHz and a 8

or 16 bit quantization.

2.3.3 Audio Dynamic Range Compression

The concepts of audio dynamic range compression are presented in order to

give a foundation for the potential implementation of the findings of this study.

First, observe that dynamic range is intended to describe the ratio between

the largest and smallest signal amplitude values 9. Then, audio dynamic range

compression may be understood as a signal processing technique that reduces

the volume of loud noises and raises the volume of quiet tones, thereby reducing

(compressing) the dynamic range of an audio stream.

Compressors (or limiters) are the instrument that performs this signal processing

technique and are comprised of four major components:

• Ratio, a parameter that regulates the amount of attenuation that the

compressor will apply to the signal.

• Threshold, the amplitude level at which the compressor begins to operate.

Audio signals that are quieter than the threshold are not restricted.

• Attack, the length of time provided before a signal is limited by the

compressor. If the attack time is very brief, the signal will be compressed

nearly immediately.

• Release, The amount of time a compressor is applied to an audio stream.

When release times are extended, compression takes longer to diminish.

Another essential characteristic of compressors is the Look-Ahead. This function,

as its name indicates, allows the compressor to examine a signal for a few time

samples before processing it. The look-ahead feature is advantageous because it

captures fast transients in the audio signals that could otherwise be overlooked.

This function is computationally expensive since it requires duplicating the entire

signal and delaying it by 1 to 10 milliseconds. This significantly increases the

8This should provide an explanation for the sensation of voices on the phone sounding
”metallic”.

9Not only of an audio signal, also of light and voltage signals for example
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size of the audio data stream. A good ML prediction system would be able to

avoid this load by relying directly on the signal as opposed to having the need

of a replica.

2.4 Time Series Forecasting

Time series forecasting is the analysis of time series data using statistics and

modeling to provide forecasts and guide strategic decision-making. Through the

building of models, the purpose of time series analysis is frequently to gain an

understanding of the sequence of events. Analysis can give insight on the ”why”

behind observed outcomes. Forecasting then determines what to do with this

knowledge and the extrapolations of what can be predicted to occur in the future.

To formally introduce the topic, the structure of [23] is followed. To begin with,

a time series is defined as a set of observation xt each observed at a specific

time, t. On the other hand, a time series model of some observed data {xt} is

a specification of the join distributions of a sequence of random variables {Xt}
of which {xt} is postulated to be a realization. Most often, and also in this

research, the term time series is used to mean both the data and the statistical

process of which it is a realization. Nonetheless, it is essential to recognize that

the assumption of the time series model is the linchpin upon which the statistical

techniques used to infer the realization of the time series can be applied.

The ideas of stationarity and autocovariance function are of special relevance to

the area of time series forecasting. To explain these concepts it is useful to define

the mean and covariance function[23].

Let {Xt} be a time series with E(Xt) <∞. The mean function of {Xt} is

µX(t) = E(Xt)

The covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µX(s))]

13



for all r and s.

Given such definition {Xt} is said (weakly) stationary if:

1. µX(t) is independent of t

2. γX(t+ h, t) is independent of t for each h

Essentially, stationarity10 indicates that the statistical features of a time series (or,

more specifically, the process creating it) do not vary over time. This explain the

importance of such concept, as in general most statistical and analytical tools with

which time series are treated make use of this underlying assumption.

The autocovariance function (ACFV) of a stationary time series {Xt} at lag h is

defined as:

γX(h) = Cov(Xt+h, Xt)

While the autocorrelation function (ACF) of {Xt} is11:

ρX(h) =
γX(h)

γX(0)

If there are interdependent temporal values in a time series, the autocovariance

function can be used to describe this dependency. This function, as evident from

its definition, compares the time series to a time-shifted version of itself. It reflects

the extent to which the amplitude of a time series at one instant is connected to

or may be inferred from the amplitude of a time series at a different moment. On

the other hand, one may think of the autocorrelation function as a normalized

autocovariance function.

Another important concept to introduce within the time series framework is that

of linearity. A time series is said to be linear if it can be expressed in the form:

Xt =
∞∑

i=−∞

ψiZt−i

where {Zt} is a sequence of uncorrelated random variables with identical mean

10Throughout the paper we refer to stationarity to intend weak stationarity as in the definition
here reported.

11Notice that sometimes ρX(h) is also denoted as Cor(Xt+h, Xt)
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and variance, i.e. a white noise process, and
∑

i |ψi| < ∞. Any process that does

not satisfy the above condition is said to be nonlinear[24]. An intuition for the

concept of nonlinear time series can be gained by thinking about the stockmarket.

It is known that depending on the history period of the market, stock prices may

change more or less rapidly, characterizing the market as more or less volatile12.

This defines the presence of periods where the stock prices time series are more

predictable (less volatile) depending on the history of the series. Linear models

fail to capture this feature and are hence less suitable for the prediction of these

processes.

2.4.1 Traditional Methods in Time Series Forecasting

Regardless of the discipline in which TSF is used, the overall strategy stays

almost unchanged; The first stage is a graphical examination of the time series

to determine its patterns. Specifically, we examine if the following patterns are

present:

• A trend, that is a slowly changing component of the time series

• A seasonal component, that is a periodicity in the changes of the data

• The existence of outliers

This is done in order to recognize whether it is possible to undergo what is called

a classical decomposition[23] of the time series:

Xt = mt + st + Yt

Where mt is the trend component and st is the seasonal component and Yt is a

random noise component. This facilitates the aim of correct forecasts, as it is

possible to correctly estimate and extract the trend and seasonal components, so

that the task transforms in a modelling of the noise component [23].

Once the trend and seasonal components are eliminated, the noise components

can be modelled. In the majority of cases, this modelling follows the assumption

that the process is linear, in the sense defined in the previous subsection.

12Volatility is indeed a technical term within the field of TSF. The interested reader is directed
to [24] and [23] for more information, particularly interesting are its presence in the ARCH and
GARCHmodels.
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This allows for the use of powerful statistical methods, the most famous of

which are exponential smoothing[25] and evenmore the ARIMA (AutoRegressive

Integrated Moving Average) models[23].

As opposed to the studies mentioned early on application of ML on audio data[9],

some review studies indicates that statistical method such as ARIMA tend to

provide more accurate forecasts than ML approaches[26][27]. Nonetheless, it

is evident from the same experiments that NN are capable of handling difficult

data, including nonlinear and nonstationary time series. In light of the fact that

music audio signals are often nonlinear and nonstationary, and do not allow

themselves to be classicaly decomposed, the methodology employed in this study

is well justified.

2.5 Related Work

A surprising fact in itself is the lack of substantial literature on the topic, namely

ML predictions of music audio data.

Audio imputation, by which it is referred the process of recovering missing pieces

of audio, seems the closest aspect of research to the one investigated in this thesis

[28]. Audio imputation is tangent to another kind of research that necessitates

audio signal prediction for improving loss of packets in data transmission [29].

More useful has been a comprehensive study of audio signal processing provided

in [9]. This reports very interesting research related to music audio signal and

ML such as [30], whereby ML predictions have been used to improve automated

performance of music digital instruments.

Of interest is also theMagenta project, ”An open source research project exploring

the role of machine learning as a tool in the creative process”13. It contains ideas

tangent to the problem at hand as the process of music generation resemble the

process of music prediction.

Much literature is also present regarding the use of LSTMnetworks for time series

13Find it at https://magenta.tensorflow.org/ddsp
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predictions, such as [31]. Also the review of statistical methods and ML methods

for TSF is a useful study [26].

Regarding the theoretical side of audio processing, a main source has been found

in [22]. This book not only well presents relevant concepts within the field of

music digital analysis, but also provides examples of such concepts by means of

open available jupyter notebooks14.

14These can be found at www.audiolabs-erlangen.de
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3 Methodology

This chapter describes the procedure that led to the examination of the particular

models of this study.

3.1 Data gathering, Dataset analysis and pre-processing

Given the vast availability ofmusic audio data and the few restrictions on the types

of data investigated, data gatheringwas undertaken rapidly; The audio tracks used

to compile the dataset were obtained from an open-source database.

All datasets have been segmented sequentially as follow: the initial 60% of audio

is used for training, the subsequent 20% is used for validation and the last 20% is

used for testing.

The empirical distributions of all datasets were studied in order to comprehend

their statistical features. To illustrate an example, Figure 3.1 shows the empirical

distribution for the toy-dataset. It is possible to notice that all the points fall within

the amplitude range [−1, 1] and that a clustering towards 0 is present.

In fact, for all datasets all the values of the time samples fell inside the interval [-

1,1]. The sign within the range is arbitrary, the range could have been normalized

between [0,1] with mean 0.5. What matters is recognizing that the amplitude

represents the amplitude of the speaker vibrations, or similarly the air pressure

waves caused by it. Then we see that below the mean value we would have

a displacement of such in one direction and above the mean we would have a

displacement in the opposite direction. Interestingly the amplitude can also be

interpreted as the voltage that will cause the speaker vibrations. For this reason

the raw waveform is left without physical units, and only amplitude is discussed.

The data points in both datasets exhibit what can be defined as a Normal

distribution with extra mean-centered values. The latter is due to the occurrence

of silence15 in the majority of tracks.

15static is represented by almost still speakers and close to 0 time sample values
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Figure 3.1: Empirical distribution of raw signal (containing two channels) for toy-
data set. The horizontal axis describe the value of the time samples amplitudes. It
is possible to notice the distribution closely resemble a Gaussian for the exception
of a concentration of points around the 0mean value, due to the presence of quiet
sections within the audio track.

Other statistics of interest that were extracted prior to training and testing were

the minimum/maximum difference between consecutive time samples, the mean

difference and the mean absolute difference over all points.

While several pre-processing approaches for audio data, such as conversions

to frequency domain and subsequent analysis using tools such as mel

spectrograms[22], have been studied, it has been chosen to preserve the data as

closely as possible to its raw form. This decision was supported by considering the

algorithm efficacy on raw data as a benefit for the final application.

The only change made to the data following import was the deletion of a

few outliers time samples outside the [−1, 1] range. This step was deemed

unimportant to the outcome of the analysis since it reduced the dataset by less

than 0.001% . However, it was not possible to conclude what caused the presence

of these outliers and it was therefore attributed to computation errors of the

loading process.

Of importance is the consideration of the re-sampling process embedded within

the loading process. The librosa.load function has been utilized with the default

re-sampling process, which adopts the use of a Kaiser window. This advanced

approach was not covered in the theoretical portion, but further information is
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Figure 3.2: Raw waveform shape (entire dataset) of the toy-dataset sampled at
44.1 kHz

available16. However, the described sampling theorem enables us to comprehend

that the audio file’s frequency content will be decimated to half the required

sampling frequency, effectively applying a low-pass filter to the data.

3.1.1 Toy-dataset (9 seconds audio clip)

The first dataset consists of nine seconds of continuous audio music that was

hand-selected from a freely available track 3.2. A quick analysis of the dataset

resulted in displaying a maximum difference in consecutive values of 1.317. This

result might be of consideration as it represents the largest necessary gap between

time sample fed and result of prediction of the net.

The choice of track was also supported by the audible pattern that was displayed.

This presented a repetitive beat that was deemed useful for the purpose of

prediction as it allowed for little variation between the training  -validation-test

set partition.

3.1.2 Large dataset (20 minutes - 20 tracks audio collection)

With the intention of determining whether it would be possible to develop an

algorithm suitable for a genre-agnostic algorithm, ie one that would perform

similarly across different genres, the secondmajor dataset for analysiswas created

by combining popular songs of various genres and instrumentation, including

Rock, Hip-Hop, Soul, EDM, and others. Twenty songs were randomly trimmed,

16see for example the librosa documentation or this website.
17For example this indicates a change from 1 to -0.3 in one time step

20

https://librosa.org/doc/main/generated/librosa.load.html
https://ccrma.stanford.edu/~jos/resample/


with some containing the middle section, some the introduction, and others the

conclusion, or an overlap of these sections.

There is no preprocessing of the data and no adjustment of the hyperparameters.

A quick examination of the dataset revealed a maximum difference between

consecutive values of 1.5. Important are also the Mean Absolute Differences for

each section of the data set. TheMean Absolute Error (MAE)18 for the training set

is 0.0316, while theMAE for the validation set is 0.0342 and theMAE for the Test

set is 0.0154. This allowed for assessing expected values of this specific dataset

for baseline prediction methods.

3.2 Choice of framework

After initial trials with framing the problem as a regression task on simple

signals19, it has been decided to conduct the study using a time series forecasting

framework.

A significant consequence of this decision is the requirement to provide a form

of data windowing. This corresponds to the fact that the algorithm provides a

series of forecasts based on a window of consecutive data samples. Thanks to

Tensorflow’s functionality, the window generator class could be repurposed for

this work. This simplified feeding data toMLmodels (see Figure 3.3) and enabled

for more efficient computations.

At this stage it has been proved useful to follow the procedure described in [32]

in order to obtain a taxonomy of the time series problem at hand. This procedure

and the answers are provided in appendix C.

3.3 Choice of ML architecture

Once the data were loaded and properly shaped,a model could be trained. Before

training, the dataset was shuffled. Empirical testing revealed that nets perform

significantly better when the data are shuffled, even when the signal contains

sequential data. This was also confirmed by first tests on sinusoidal signals.

This behaviormaybe attributable to the fact that the temporal structure of the data

18Mathematical definition in section 3.4
19This topic is discussed more in the work section.
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Figure 3.3: A visualization of how thewindow function provides inputs and targets
to the model.

is enclosed within the time window and that shuffling successive windows breaks

correlations between them that are detrimental to the performance of the network.

In addition to the architectural distinctions discussed in the preceding section,

two choices had to be made: whether to configure the model for single-step

or multi-step predictions, and whether to conduct univariate or multivariate

(by using extra features relevant to the dataset) forecasts. All investigated

architectures supported both univariate and multivariate, single-step and multi-

step predictions.

Aside for a brief analysis on the effects of enriching the dataset with pure tones

(see section 5.5 for an interesting related side result), univariatemodels have been

preferred. Other methods of multivariate analysis, including separating different

kinds of audio in different channels20 were excluded. This was justified by the

fact that, given the desired model would ultimately have the ability to generalize

20Here by channel it is meant a time series representation of a signal. For example using one
channel for instrument type, that is using one channel for the drums, one channel for voice...
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over different kinds ofmusic audio tracks, providing an audio segmentationwould

bring no value.

Regarding the choice between single-step and multi-step forecasts, the latter has

been preferred as better suited for the ultimate product application. Yet, in order

to simplify calculations and speed up training, single-step predictions have been

adopted during the analysis of other parameter influence on predictions.

After making the essential analysis design choices, the desiredmodel architecture

could be built. Keras made this process easy. The library author compares

creating the design of a ML model to building LEGO block sculpture [13].

Choosing the number of layers and neurons per layer is however challenging. The

results section discusses model choices.

The final step before training21 was to select a valid optimizer. ADAM22

[16] optimizer with default learning rate of 0.001 was mostly used. This

was complemented with the choice of MSE as a loss function and MAE as a

performance metric, which functions are described more in depth in the next

section. Similarly the ”ReLU” (Rectified Linear Unit) activation function 23 is

mostly used.

3.4 Model Evaluations and choice of metric

To evaluate the performance of models during training and testing, performance

metrics are required. Notice the distinction between metrics and loss functions;

Evaluation metric refers to a metric that is desired to reduce or maximize

throughout the modeling process, while loss function refers to a metric that the

model will effectively minimize during model training. An important difference

between the two is that performance metrics need not to be differentiable24.

For the regression part of the process the loss function has been fixed to be the

21or more poetically, before the possibility of unleashing the computing power of the GPU
processors to identify a suitable set of model weights for the aim

22Adaptive Moment Estimation
23More information available at medium.com/@danqing/
24Strict requirement of the loss function for the optimization process to be valid.
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Mean Squared Error (MSE), while the performance metric has been fixed to be

the Mean Absolute Error (MAE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where n is the number of predictions, yi are the actual time samples values and ŷi

are the values predicted by the models.

MAE is computed as follows:

MAE =

∑n
i=1 |yi − ŷi|

n

where again n is the number of predictions, yi the actual and ŷi the predicted

values. Using MAE as a metric for time series forecasting is a standard procedure

as it is one of the most often used metric for this task[33].

Even if MAE gives an understanding of the performance of the metric, its

dependency on the dataset under considerationmakes it difficult to determine the

overall accuracy of the forecasts. To illustrate this, examine a comparison between

model predictions on a song containing a lot of silence (maybe an indie song) a

song with many loud sections (perhaps a metal song). The comparison would

likely result in the former having a lower MAE. This is due to the fact that quiet

portions result in low amplitudes with nearly no fluctuations, which contribute to

a lesser overallMAE,while loud parts includewaveformswith significant changes,

which contribute to a bigger overall MAE.

To alleviate this problem, a further qualitative metric has been used.

3.4.1 The persistence forecast

This consisted of a naïve forecasting technique in which the last time sample of

a window is utilized as the regression prediction. This approach is frequently

referred to as persistence forecast since the last piece of the sequence is retained

as the prediction forecast.

Frequently, the persistence model serves as a guide for calculating the forecasts

quality. This is because it is helpful to determine if a predictionmodel gives better

outcomes than the persistence model, as a simple reference model [34].
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The introduction of this technique made it simple to determine if a particular ML

model could be considered a valid candidate. During research having aMLmodel

MAE higher than the MAE of the persistence, was considered evidence in favor

of discarding such ML model. This way, this naive forecasting strategy offered

a rapid judgment tool for evaluating the model’s quality. Figure 5.1a display a

visualization of the persitence forecasts in case of a multiple step prediction.

3.5 The models investigated

In lieu of presenting all methods considered, this section focuses on the two top

choices, the MLP and the LSTM.

Adescription of themodel summaries canbe found inFigure 3.4. It is important to

notice that theRNNmodel is essentially composedby a single LSTMunit, followed

by the dense layer necessary for prediction and the reshape layer necessary for

ensuring the dataset shape. One could argue that a single LSTM unit is a valid

architecture for the current task; Multiple LSTM units would have increased the

likelihood of incurring in overfitting [13]. In general, simplicity is favored in this

research because it is believed that a smaller number of nets parameters and layers

will result to an easier look-ahead replacement implementation. Considering that

a real-time application is envisioned, the latency should be extremely low. This is

the rationale for preferring fewer parameters, even if it results in a performance

decrease. This justifies the initial choice of 32 neurons for the LSTMs unit, which

contributes to the net’s restricted complexity as indicated by the total number of

parameters (4385 in this particular instance with window length of 8).

Using the same broad concepts, the MLP is presented. The initial flattening layer

is included to accommodate multiple input steps. Following this are two simple

dense layers containing 32 neurons each. Again, it is deemed appropriate to select

a small number of neurons in order to retain a small number of overall parameters.

Then the net presents a dense output layer and a reshape layer which is necessary

for allowing the desired choice of steps predicted.
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Figure 3.4: Summaries of the LSTMmodel (top) and MLP model (bottom)
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4 Preliminary studies

In this section a description of the preliminaries studies is presented. This will

include a description of the strategies taken in order to narrow down the suitable

data representations and network models investigated. All significant results

will be represented with a more functional sorting in the next section. As such,

navigated readers are welcomed to skip directly to the next section.

4.1 First implementations

As customary, the first period involved gathering and scanning previous literature

data. However, it soon became obvious that research on this specific task of music

audio prediction is very limited.

The first goal of the project has been the implementation of the simplest possible

algorithm which would perform audio signal prediction. A 2-case classifier has

been chosen as the best candidate. Given a time sample input, the classifier task

is to predict whether the next sample is of higher amplitude (Case A) or of lower-

equal amplitude (Case B). To simplify the task to the most initially only simple

signals, such as pure sine waves, were fed to the network.

Tensorflow and Keras libraries were used to build this 2-case classifier, while the

data was shaped as numpy arrays.

The very first testing of this model resulted in a failure; the model happened to

be right 50% of the cases, showing a clear lack of understanding. A posteriori it

was clear this was a naïve attempt, the reason being that only a single time sample

was provided to the net. This enables us to comprehend the rationale behind the

necessity of giving many time samples, bundled together in a window, as well as

the importance of quantifying the difference in model performance for different

window sizes. In this simple case, having a window size of 2 drastically improved

the performance and the predictions got to almost perfect score with a window

size of 4. Once this result was reached, the performance of the net was tested on

other simple signals, namely a square and a triangular wave. Again, even with

short window lengths, the classifier was able to obtain perfect performance.
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After these successes, the classifier performance has been tested on music audio

clip. The clip has been chosen for being phonically simple and containing a

repetitive beat pattern which results in a highly periodic raw waveform. This

was thought to be helpful in aiding the net to good performance in predictions.

The duration of the clip was of 9 seconds, representing a small dataset even when

sampled at 44.1 kHz. The rest of the pipeline for creating the model remained

unchanged; again the same minimal data processing was used and the model

architecture remained unchanged.

Given the results on this challenge were positive but not perfect,(82% accuracy),

tests were run to improve performance. An analysis of the performance of the net

while varying length of inputs lead to the graph presented in Figure 5.4.

After the performance with classifiers was considered adequate, it was decided to

step up the complexity by switching to regression analysis. This implied switching

frompredicting whether the next time sample be higher or lower than the last one,

to predicting a numerical value for the amplitude of the time sample.

Much of the previous implementation was used in the design of the Regression

implementation. Important steps involved avoid one-hot-encoding and switching

accuracy metric to MAE, Mean Absolute Error. The investigation required the

adoption of a baseline comparison to qualitatively asses the performance of the

nets predictions, hence the implementation of the persistence forecast. The

introduction of this strategy allowed to easily check whether any given model

would improve on performance with a lowerMAE compared to theMAE obtained

by the naive strategy, providing a quick decision method for assessing the quality

of the model.

4.2 Labelling the problem as a Time Series Forecasting
task

The adoption of the persistence forecast as a qualitative metric for performance

reflected a choice of central importance for the rest of the research; it was decided

to frame the problem as a Time Series Forecasting (TSF) task. Even if this decision
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might be taken for granted given the description of a regression task on a time

sample windows, it actually represents an important distinction to many other

applications of audio signal processing. In fact, most other audio related ML

algorithms perform training and testing mostly on the frequency components

(frequency series, spectrograms) rather than the time components of a give audio

track.

The choice was made as it seemed well aligned to the scope of applications,

which requiredminimal data preparation in order to reduce possible delays in the

processing of the data. An analysis on the amplitudes of the given time samples

requires the least possible amount of preprocessing, therefore a successful model

obtained within the TSF framework was considered to be the ideal solution to the

problem at hand.

A benefit of narrowing the problemdown to a TSF taskwas found in the possibility

of translating the commonmethodologies of the field to the audio prediction goal.

Moreover, not only theoretical techniques but apt data pipelines were found. In

the specific, TensorFlow documentation containing a TSF example25 was studied

and its methodologies adopted to conduct experiments during the rest of the

project.

4.3 Implementation of different ML techniques and
forecasting strategies

Once the general pipeline for experimentswas tuned and optimized, different kind

of ML architectures and simple forecasting strategies were tested using the same

toy dataset.

Along side the persistence forecast strategy, a Linear model was tested as a

possible viable candidate for bench-marking. In essence this model consisted in a

linear transformation between input and output whereby the output depended on

a single time step (i.e. window length is 1) and was produced by means of a model

containing a single layer with a single neuron. Models so trained resulted in a

worse performance compared to persistence forecast and hence were discarded.

25www.tensorflow.org/tutorials/structureddata/timeseries
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Even when increasing the complexity of the linear model, from a single layer with

a single neuron to a deep network with two hidden layers of 32 neurons each.

This reconfirmed the very first result of this research, showing that not enough

information is carried by a single time sample to result in a valid prediction of the

following time sample. Hence also these models were discarded.

The performance quality drastically changed when the models were allowed to

take multiple time steps as input to produce a single output. To do so the number

of input neurons where adjusted to match the window length, which for the first

trials was fixed at 16 time samples. These MLPs models resulted in a lower MAE

when compared to the persistence forecast and were therefore kept for testing on

different parameters investigations.

The best performing architecture of those tested turned out to beRecurrentNeural

Networks. These were implemented by means of a single LSTM layer composed

of 32 units. Unsurprisingly the performance is of higher accuracy when the

return sequence is set to false and this process was used during the major part

of parameter analysis.

The next phase of research involved a series of analysis on the dataset properties

and the effect of changing parameters and model hyperparameters on prediction

accuracy.

4.4 Increasing Dataset size

Once an overviewof the differentmodel performancewas obtainedusing the small

9 second audio clip, the dataset was increased. First some of the analysis were

replicated on a 6 minutes audio track and later on a clip of 20 minutes duration

containing 20 one minute segments from songs of different genre.
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5 Results

This section presents the key findings of the research. These will be discussed

according to their classification by type of analysis and utilised dataset type. In

appendix A.1, it is possible to review significant code fragments.

Based on modifications in window length, sampling frequency, and number

of prediction steps, the research examines the accuracy of predictions. Here

lower MAE are desirable. Understanding the effect of these parameters on net

performance and determining the optimal range for each is the objective. This

type of evaluation is vital when determining the suitability of a machine learning

algorithm.

Figure 5.1a gives a summary of the kind of studies undertaken. Given as input

a variable window length consisting of time sample amplitudes that represent

the raw waveform of a given music audio clip, the objective of the networks is

to correctly estimate the subsequent time sample amplitudes by matching them

as closely as possible to the actual values of the track. The same picture shows the

persistence forecast’s type of output which the networks are compared against.

This is displayed in the case of a 8 step predictions in Figure 5.1b.

5.1 Analysis on window length

The analyses were originally performed on a small toy-dataset before being

replicated on a bigger dataset.

5.1.1 Toy-dataset

To focus on the effect of varying the window length, a single prediction step

analysis was chosen. Similarly, the Sampling Frequency was kept fixed at 22050

Hz, resulting in a dataset size of 178605 double float time samples. The Window

Length varied from 23 to 28 in integer steps of exponent.

The results are presented graphically by first displaying the results of the single

LSTM compared with the persistence forecast 5.2a, the analogous results for the
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(a) Visualization of Persistence Forecast on 8 prediction steps.

(b) Visualization of LSTMs prediction on 4 prediction steps.

Figure 5.1: Example of the network functioning taking an input size of 16 sample (a
variable window length, this is shown by the segmented blue line) and producing a
given n step prediction (marked by orange crosses) and the corresponding correct
labels used for training (marked by green dots)

MLP 5.2b and finally a comparison of the two 5.3.

Observing Figures 5.2a and 5.2b, an intriguing pattern is discernible that applies

to both MLPs and LSTMs. As expected, it appears that the net’s performance

initially grew as thewindow lengthwas raised, but after reaching a critical value, in

this case 32 inputs, the net’s performance began to fall continuously. This peculiar

occurrence could be attributed to insufficient training for the NNs withmore than

32 input units, but the same pattern was observed when the analysis was repeated

without an early stopping criterion and with a longer training period (20 epochs)

for networks with a greater number of inputs. It is unclear whether even longer

training time would reconfirm such behaviour.

This phenomenon has already been encountered in initial testing on classifiers.

We display the similar behaviour in Figure 5.6.Although it is evident that the

accuracy of the net decreases as the window size increases proportionally with
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(a) Window Length analysis on toy-dataset: LSTM prediction accuracy on
test set for varying window length

(b) Window Length analysis on toy-dataset: MLP prediction accuracy on
test set for varying input number

Figure 5.2: Window Length analysis on toy-dataset: Results of MLP and LSTM
predictions on test set on varying of input number
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Figure 5.3: Window Length analysis on toy-dataset: Comparison of MLP and
LSTM predictions normalized on the value of persistence forecast output

the amount of inputs, the explanation for this tendency is uncertain. A plausible

explanation is that the finding is an artifact resulting from the difference in

amount of training of the nets. Given that a greater number of inputs meant a

greater number of parameters, the training requirements for the large window

NN may not be met. Consequently, the graph may represent this lack of training.

However, this theory is not supported by the repeated occurrence of Figure 5.2a’s

behavior despite unequal training time of the nets.

Then it is conceivable to assert that such a result is due to a decline in the

importance of data points farther from the prediction’s most recent time sample

(i.e., time sample with lag 1).This can be explained as follows: as the number

of inputs, and consequently the number of samples with a large lag time,

increases, the short lag time samples are given a lower weight influence on the

net’s prediction. Coupling this fact with Figure 5.5, which shows that samples

with shortest lags have the largest autocorrelation coefficient amplitudes, it is

reasonable that the total outcome is a poorer forecast.

The preceding assertion has not yet been established, as it is unclear whether the
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autocorrelation coefficient is a suitablemetric for the overall information transfer.

Nonetheless, if the assertion is correct, this would be favorable for the research’s

ultimate objective, as it would indicate that small window lengths are advised for

optimal prediction performance.

Figure 5.4: 2-case Classifier accuracy vs Window Length on toy dataset. Observe
that the prediction accuracy decreases with increasing window length

Figure 5.5: Raw training dataset waveform Sampled at 22050 Hz(top) and
value of Auto-Regression coefficients for the first 100 lag values after the 32nd
sample(bottom). Notice how the amplitude of these coefficients decreases as the
lag increases, indicating lower correlation between the given sample and its lagged
companion. With the orange line it is marked the 16th time sample, and the red
box marks all samples past the 32nd.
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Last but not least, figure 5.3 provides two additional insights: First LSTMs

and MLPs outperform the qualitative metric for all investigated window lengths

indicating a positive outcome towards the final goal. Second, LSTMs tend

to outperform MLPs indicating they could be better candidate for ultimate

implementations.

5.1.2 Large dataset

The analysis performed is similar to the one previously described, with the

exception of a change in the dataset and a reduction in window lengths to reduce

computational costs.

Also for this experiment, only a single time sample was predicted as output, and

the sampling frequencywas fixed at 22050Hz. This resulted in a total of 1,867,635

time samples. It was decided to keep a relatively high sampling frequency in light

of the results depicted inFigure 5.7, wherein a greater sampling frequency resulted

in a significant improvement in the accuracy of prediction.

Figure 5.6 depicts the outcomes for window lengths of 16, 24, and 32. Here,

little variety in the outcomes is observed, and there is no discernible pattern of

decreasing predictions with increasing window size. This is attributable to the

small range of inputs tested, and it is hypothesized that similar behavior would be

observed with larger window sizes. There is however confirmation that the nets

continue to beat the Persistence Forecast, albeit with a slight improvement. This

could correspond in a higher difficulty of the nets to learn abstract patterns to

apply in the case of such a diverse dataset content.

To remedy the limitedwindow length range of the above study, LSTMswere tested

also on very largewindow lengths. The same dataset was used, but only 90%of the

dataset was used for training and testing, resulting in different values for MAE of

the various sets compared to the one displayed above. Of interest was the amount

of training time required for performing such a graph, which required around

10 hours of processing for a window length of 100 and more than 24 hours for

a window length of 400.
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Figure 5.6: Window Length analysis on large dataset: Prediction values of
validation and test sets of both LSTMs and MLPs(dense) models versus the
Persistence Forecast(Stupid).

5.2 Analysis on sampling frequencies

In order to optimize for computing efficiency, the window length was set to 16 and

the prediction steps were set to 1, therefore forecasting a single time step.

The sampling frequency varied from 44.1
1

kHz to 44.1
7

kHz in integer steps of the

divisor.

5.2.1 Toy-dataset

The results are described by direct analysis of Figure 5.7. Observe that the first,

fourth, seventh, etc. items in the histogram are consistently greater than the

subsequent two. This result illustrates the useful discovery that both MLPs and

LSTMs outperform the Persistence Forecast at all evaluated sampling frequencies.

Reducing sampling frequencies correlates with an increase in the MAE for both
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the test set and the validation set. This behavior is anticipated given that a lower

sampling frequency equates to a coarser partition of the same waveform and,

consequently, a bigger average difference between successive time samples.

Notably, the disparity between net performance and qualitative metric is

significantly more evident for the 44.1 kHz SF compared to the other sampling

frequencies, particularly in the LSTM example, where the performance is more

than twice as good as the Persistence Forecast. This suggests that high sample

frequencies may be necessary for accurate net forecasts.

The amount of training time allocated to each network is not apparent on

the graph but should be noted. Even while it may appear that MLPs and

LSTMs generate comparable performance at lower sampling frequencies, this is

partially attributable to the early stopping requirement, which causes LSTMs to

consistently terminate training before reaching the maximum training time of

10 epochs. In contrast, the majority of MLPs reached their maximal training

duration.

5.2.2 Large dataset

Given that the results exhibited in Figure 5.8 closely resemble the behavior of

the results stated for Figure 5.7, one could claim that scaling the dataset size has

no effect on the rationale presented in the previous section. Hence this might

indicate that suggesting a larger datasets will not affect the performance of the

model on the sampling frequencies analysis. Also, the same consideration of

LSTMs stopping training prematurely (after around 6-7 epochs) remains valid in

this instance.

This dataset’s analysis does not contain the 44.1 kHz frequency since the dataset

was too large to be processed on a personal computer. Therefore, it is impossible

to determine whether a significant improvement in predictions due to the

increased frequency would also be present in the large dataset. It is however

possible to observe a consistent but slight rise in MAE for forecasts at lower

sampling frequencies.
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Figure 5.7: Sampling Frequency Analysis on toy-dataset: Combined results on
validation and test sets of LSTMs and MLPs (dens) model versus the Persistence
Forecast(Stupid).

5.3 Analysis on number of prediction steps

The sampling frequency was fixed at 22050 Hz, and the window length was set to

16. Due to the previous results, only LSTM nets were investigated for this task.

The accuracy of the LSTM was evaluated by altering the output lengths from 2

to 16. Similar to the previous section, increasing the size of the dataset does not

appear to affect the study’s conclusions. Consequently, only the results of large

dataset will be provided.

5.3.1 Large dataset

It is noteworthy  that, surprisingly, almost no LSTMs had an early stopping in

training during this experiment. This may be a result of the bigger error values

caused by an increase in the number of forecasts, which lengthens the time
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Figure 5.8: Sampling Frequency Analysis on large dataset: Combined results on
validation and test sets of LSTMs andMLPs (dense) model versus the Persistence
Forecast(Stupid) on larger dataset.

required to locate a localminimumor due to the higher variation n gradients cause

by the larger dataset.

As can be seen in Figure 5.9, a larger number of prediction steps results in a higher

MAE for both test and validation predictions. In both cases, however, LSTMs beat

Persistence Forecast, suggesting that confidencemay bemaintained regarding the

optimization of an algorithm for forecasting several future time steps.

Examining Figure 5.10 will provide a more intuitive perspective. Here, one can

see Figure 5.9’s test results normalized by the persistence forecast for 2-step

nets. Using such outcomes as a starting point permits inferences regarding the

forecasts. Firstly, it is possible to observe that the performance of LSTMs is
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around 10 % better than that of the respective persistence forecasts. In addition,

it is possible to observe that the MAE seems to increase practically linearly as the

number of prediction steps doubles.

Figure 5.9: Prediction steps analysis on large dataset: Results of LSTMs accuracy
(nSteps) compared to Persistance Forecast (Stuipd nSteps) for values ranging
from 2 to 16 predicted samples.

5.4 Varying Sampling Frequencies while maintaining Window
Length and Prediction Steps fixed in time (Look-ahead
input replica analysis)

In order to better comprehend the potential performance of a NN as a look-ahead

replacement, this investigation examines the accuracy of the nets in simulating

the input-output requirements of a conventional look-ahead.

In this instance, the sample frequencies are varied similarly to the previous

analysis, but the window length is modified so that about 10milliseconds of audio
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Figure 5.10: Prediction steps analysis on large dataset: the test set results
presented in figure 5.9 are here reshaped with a normalization based on the 2-
steps persistence forecast.

Table 5.1: Parameters setting for replicating traditional look-ahead input. Notice
window length corresponds to 10 ms of audio time and the steps predicted form 1
ms of audio time

Sampling Frequency Window Length Steps Predicted
22 kHz 220 22
14.7 kHz 147 15
11 kHz 110 11
5.5 kHz 55 5

are received and the prediction steps are modified so that 1 millisecond of audio

is predicted, see Table 5.1 for clarifications.

Figure 5.11 display the results of this analysis and Table 5.2 presents the same

results in tabular format.
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This investigation yields a number of noteworthy findings. To begin with,

we observe that the Persistence Forecasts is substantially equal for all sample

frequencies and related windows. This demonstrates that, given fixed input and

output in time, a change in successive time sample differences does not result in

a change in the overall mean difference, regardless of the signal’s coarseness or

fineness.

The more striking discovery is that the identical behavior is observed in LSTM

predictions. Indeed, regardless of sampling frequency, the MAE values of the

predictions cluster densely around 0.087. This may suggest that the most

important factor contributing to MAE value is actually the amount of time, as

compared to the amount of time samples, contained in a window.

In this instance, MLPs clearly outperform LSTMs, which is an additional

interesting finding. It must bementioned that the decision wasmade to rearrange

the MLP’s hidden layers from the architecture previously displayed. In this

instance, there is a single hidden layer with 512 neurons. This is coupled to an

output layer with a neuron count dependent on the prediction step selection. In

the case of a 22kHz sampling frequency, for instance, the hidden layer is coupled

to an output layer of 22 neurons, resulting in a grand total of 12,310 trainable

parameters. For large datasets, the number of net parameters appears to be the

determining factor for net performance. In fact, theMLP tested on 220 inputs and

22 outputs is themost effective algorithm. Comparisons with the LSTMs network,

which received the same amount of training time but has fewer than half of the

trainable parameters (5078), and MLPs trained on other sampling frequencies

and with few output neurons corroborate the previous statement.

Table 5.2: Look-ahead input replica analysis on large dataset: MAE for the
test set of persistence forecast, LSTM, and MLP based on the selected Sampling
Frequency. Observe that the sample frequency value determines input and output
for the NN architectures shown in Table.5.1

Samp. Freq. Persistence LSTM MLP
22 kHz 0.1112 0.0877 0.0404
14.7 kHz 0.1123 0.0874 0.0503
11 kHz 0.1111 0.0859 0.0580
5.5 kHz na 0.0807 0.0733
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Figure 5.11: Look-ahead input replica analysis on large dataset: The histogram
show the results in prediction of the MLPs and LSTM for different Sampling
Frequencies

5.5 Side result - A perspective on complexity and scale

This part aims to demonstrate an interesting effect that was discovered when

evaluating the multivariate LSTM model’s predictions after training on the toy-

dataset. Here, the additional features in training that compose the multivariate

predictions correspond to enriching the model by adding pure tones (sine

waves) pertinent to the signal spectrum to the raw audio files. Four frequency

components, 50Hz, 500Hz, 1000Hz, and 20000Hz, were incorporated.

The effect is manifested while visualizing and hearing the results of the net’s

prediction on the added pure frequency tones. Figure 5.12 illustrates the
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predictions of the LSTM on the 500Hz signal. Judging exclusively from the top

part of Figure 5.1226 one might assume that the net’s predictions are close to

perfection. Examining closely the bottom part of the figure, which display almost

exactly a single period of the net’s pure tone replica by scaling down the top part by

a factor of 10, it is possible to notice some variations from a pure tone (indicative

is the roughness around time sample 20 and 70).

Now the interesting result; scaling up the number of time sample to the 100,000

range and playing the resulting signal on loud speaker results in realizing that the

deviations from the pure tone actually carry information related to the raw audio

file comprising the dataset. More explicitly, the beat of the audio file tracks ”leaks

through” the neural net weights into its prediction of the pure tones.

While this result might be considered as a pure undesired effect for the final

goal of the research, the author finds a fascination in this display of emergent

behaviour due to the change of scale in time. While by simple visual inspection

the signal appears devoid of meaningful information on the 10milliseconds scale,

and appears containing random noise on the 1 millisecond scale, scaling up to

the seconds and playing the signal to loud speakers allows to understand the

significance of such tiny deviations, giving birth to rhythm underneath the pure

tone sound.

This is of help for the later section, as it explains the apparent better accuracy of

test predictions in comparison to validation predictions, as the MAE within the

test was initially smaller.

26Here are displayed 1000 time samples froma segment of the datasetwith a sampling frequency
of 44.1 kHz. This corresponds approximately to 0.02 seconds of audio and given the frequency of
the sine is 500 Hz the figure displays approximately 10 cycles
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Figure 5.12: Multivariate LSTM model output prediction for 500 Hz signal of
enriched toy-dataset. On the top we see net’s predictions over a 1000 time sample
spans, while on bottom we see approximately one single cycle spanning 100 time
samples.
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6 Conclusions

This section is dedicated to reflect upon the information provided by the study

and discuss ways forward.

6.1 Best ML model

From the results of the research it is not possible to state that the investigated

neural networks are the best candidates for the requested algorithm. Following

a via negativa, it is however possible to exclude models that are proven to be

suboptimal.

Between the models to be excluded it is possible to find all classification based

methods, as the successful implementation of a look-ahead replacement would

request too many classes for proper performance.

Within the regression methods, it is maintained that analysis within the temporal

structure is the correct approach for the task.

Coming to the specific architectures, linear dense networks and any other dense

network which do not take into consideration a history of time samples (i.e.

all values within the window provided) are effectively too simple to be good

performers. These have been found to perform worse than the persistence

forecasts in a number of cases. Moreover also autoregressive models, whereby

the output of the nets are utilized as data for the subsequent forecast, such

an autoregressive LSTM should be considered inadequate for the task at hand.

This is because predictions of multiple time steps tend to deteriorate in quality

with autoregressive models and the use of the autoregressive forecasts are not

a necessity given the data type27. Hence a proper adjustment of window length

can effectively lead to performance improvement over the use of autoregressive

models.

As seen in Table 5.2, MLPs are deemed the most effective by numerical testing.

However, this only became apparent late in the study process, and owing to time

27As stated in precedence, any type of music audio will automatically have attached the labels
required for supervised learning.
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restrictions, it was not possible to confirm this via more tests.

Given the same number of net parameters, it appears plausible to assert that

LSTMs are superior to MLPs. Nonetheless, the latter have the benefit of a

relatively straightforward architecture and faster training than LSTMs, even

when the number of parameters is increased. In this study, both designs are

therefore regarded to be legitimate choices. In order to corroborate this assertion,

more complex architectures, such as WaveNets[35], a deep neural network for

generating raw audio and used in the Magenta project, need be researched.

6.2 Window length analyses

Probably themost intriguing finding of this study is that an increase in thewindow

size does not necessarily lead to an improvement in the accuracy of forecasts.

Following the description provided in the result section, it has been hypothesized

that this is because a longerwindow length causes the nets to give toomuchweight

to highly lagged time samples and too little weight to short-lagged time samples.

This argument is not however protected from criticism. In fact, the explanation

provided in the result section is not granted to hold due to the time series not

being weakly stationary. As such it could be argued that a suitable network

should be able to disregard the irrelevant information. This would then imply that

the results is an artifact resulting from insufficient training of the larger, higher

number of inputs, networks.

6.3 Sampling Frequency analyses

Downsampling is a valuable strategy for accelerating training. It emerges from the

research that it is not necessary to retain the sample frequency at its maximum,

but rather reducing it yields sufficiently correct predictions. Given the correlation

within the downsampling and the decimation of frequency contents, this result

might also suggest that there are no frequency bands which are easier to predict

compared to others.
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6.4 Number of outputs predictions analyses

Given the results of section 5.4 and 5.5, it is possible to conclude that suitable

multi-steps forecasts are possible. If by one hand it encouraging the fact that the

MAEerror tends to grow linearlywith the doubling number of prediction steps, on

the other it is crucial to note that this fact has only been tested on a small number

of outputs. Therefore it is anticipated that this fact will not hold true for a large

number of outputs. Anything greater than one-tenth of the sampling frequency

should be regarded as a significant number of outputs. The number of outputs

is then encouraged to remain below this level and ideally approximately one-

tenth of the number of inputs. These results are nevertheless regarded capable

of satisfying the look-ahead replacement criteria.

6.5 Discussion

The results imply that adopting a NN as a look-ahead is feasible and could

produce positive outcomes. For example, there would be no need to duplicate

and delay a track (a common application of a look-ahead); rather, the net might

utilize the same data stream as the compressor and decide whether to activate

the compressor based on the net’s projection. In fact, even if these predictions

were not totally accurate, the basic operation of the compressor would still be

ensured so long as the error in predictions was minimal. If the forecast error is

too big, there is a potential that the compressor will miss a quick transient or run

in undesired or unnecessary sections of the track, which could be a substantial

disadvantage. All of the preceding arguments should confirm that it is possible to

feed a NN raw music audio data and obtain a valid forecast.

It is encouraging to note that the research revealed a strong link between the

results and the planned implementation objectives; the window length analyses

revealed that a short window length and, consequently, a low computational goal

may be best for making accurate forecasts. In certain situations, higher sample

frequencies produced the better results, but the analysis of sampling frequencies

revealed that downsampling can be done successfully while preserving accurate

forecasts. The multi-step analysis demonstrated that a relatively large number

of prediction steps do not invalidate the quality of predictions. All of these
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outcomes are positive. However, the lack of genuine comparisons with more

sophisticated results is a significant negative, as the studies should be performed

also on such techniques to verify its validity. Hence it was not possible to establish

which supervised learning method is best. One may add that the window length

assessments do not provide sufficient rigor to conclude that the result presented

is ironclad. A similar lack of rigor prevented the determination of an optimal

number of layers and number of neurons per layer.

Overall, the results indicate that the original concept is practical and worthy of

additional effort.

6.6 Future Work

It is suggested that this research be advanced by beginning with the results

presented. The first suggestion for future research would be to compare the

analysis presented here with more complex approaches, using the rather small

data set employed in this study. Once it is determinedwhether simplemethods are

more effective than complex ones, it is suggested that additional comparisons be

conducted to determinewhether the nets can generalize across a variety ofmusical

genres or whether they should be trained for specific musical genres or musical

instrument content. It is suggested that this type of inquiry utilize sufficient

processing power, such as a computer cluster.
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A Code

The code below has been adapted from the openly available28 documentation page

on Time Series data [36].

A.1 TSF framework code

Used libraries:

1 #imports
2 import IPython
3 import IPython.display as ipd
4 import matplotlib as mpl
5 import matplotlib.pyplot as plt
6 import numpy as np
7 import pandas as pd
8 import seaborn as sns
9

10 import math
11 import librosa
12 import soundfile as sf
13 # Make NumPy printouts easier to read.
14 np.set_printoptions(precision=3, suppress=True)
15 %matplotlib inline
16

17 import tensorflow as tf
18 import keras
19 from keras.models import Sequential
20 from keras.layers import Conv2D,MaxPooling2D,Flatten,Dense,Dropout
21 from keras.datasets import mnist
22 from sklearn.metrics import confusion_matrix
23 import seaborn as sns

Data Windowing

1 class WindowGenerator():
2 def __init__(self, input_width, label_width, shift,
3 train_df=train_df, val_df=val_df, test_df=test_df, # !!Dataset automatically loaded in class
4 label_columns=None):
5 # Store the raw data.
6 self.train_df = train_df
7 self.val_df = val_df

28find it at:www.tensorflow.org/tutorials/structureddata/timeseries

56

https://www.tensorflow.org/tutorials/structured_data/time_series


8 self.test_df = test_df
9

10 # Work out the label column indices.
11 self.label_columns = label_columns
12 if label_columns is not None:
13 self.label_columns_indices = {name: i for i, name in
14 enumerate(label_columns)}
15 self.column_indices = {name: i for i, name in
16 enumerate(train_df.columns)}
17

18 # Work out the window parameters.
19 self.input_width = input_width
20 self.label_width = label_width
21 self.shift = shift
22

23 self.total_window_size = input_width + shift
24

25 self.input_slice = slice(0, input_width)
26 self.input_indices = np.arange(self.total_window_size)[self.input_slice]
27

28 self.label_start = self.total_window_size - self.label_width
29 self.labels_slice = slice(self.label_start, None)
30 self.label_indices = np.arange(self.total_window_size)[self.labels_slice]
31

32 def __repr__(self):
33 return '\n'.join([
34 f'Total window size: {self.total_window_size}',
35 f'Input indices: {self.input_indices}',
36 f'Label indices: {self.label_indices}',
37 f'Label column name(s): {self.label_columns}'])
38

39

40 def split_window(self, features):
41 inputs = features[:, self.input_slice, :]
42 labels = features[:, self.labels_slice, :]
43 if self.label_columns is not None:
44 labels = tf.stack(
45 [labels[:, :, self.column_indices[name]] for name in self.label_columns],
46 axis=-1)
47

48 # Slicing doesn't preserve static shape information, so set the shapes
49 # manually. This way the `tf.data.Datasets` are easier to inspect.
50 inputs.set_shape([None, self.input_width, None])
51 labels.set_shape([None, self.label_width, None])
52

53 return inputs, labels
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54

55 WindowGenerator.split_window = split_window

Data set generation:

1 def make_dataset(self, data):
2 data = np.array(data, dtype=np.float32)
3 ds = tf.keras.utils.timeseries_dataset_from_array(
4 data=data,
5 targets=None,
6 sequence_length=self.total_window_size,
7 sequence_stride=1,
8 shuffle=True,
9 batch_size=32,)
10

11 ds = ds.map(self.split_window)
12

13 return ds
14

15 WindowGenerator.make_dataset = make_dataset

Compile and Fit Function:

1 MAX_EPOCHS = 10
2

3 def compile_and_fit(model, window, patience=2):
4 early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
5 patience=patience,
6 mode='min')
7

8 model.compile(loss=tf.losses.MeanSquaredError(),
9 optimizer=tf.optimizers.Adam(),
10 metrics=[tf.metrics.MeanAbsoluteError()])
11

12 history = model.fit(window.train, epochs=MAX_EPOCHS,
13 validation_data=window.val,
14 callbacks=[early_stopping])
15 return history

Persistence Forecast:

1 class Continuation(tf.keras.Model):
2 def __init__(self, label_index=None):
3 super().__init__()
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4 self.label_index = label_index
5

6 def call(self, inputs):
7 if self.label_index is None:
8 return inputs
9 result = inputs[:, :, self.label_index]
10 return result[:, :, tf.newaxis]
11

12 continuation = Continuation(label_index=column_indices['ch1'])
13

14 continuation.compile(loss=tf.losses.MeanSquaredError(),
15 metrics=[tf.metrics.MeanAbsoluteError()])

1

B Tabular results

Below a table summurazing the results of different models using the toy

dataset.
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C Other Material

C.1 Taxonomy of Time Series Forecasting Problems [37]

1. Inputs vs. Outputs: What are the inputs and outputs for a forecast?

2. Endogenous vs. Exogenous: What are the endogenous and exogenous

variables?

3. Unstructured vs. Structured: Are the time series variables unstructured or

structured?

4. Regression vs. Classification: Are you working on a regression or

classification predictive modeling problem? What are some alternate ways

to frame your time series forecasting problem?

5. Univariate vs. Multivariate: Are youworking on a univariate ormultivariate

time series problem?

6. Single-step vs. Multi-step: Do you require a single-step or a multi-step

forecast?

7. Static vs. Dynamic: Do you require a static or a dynamically updatedmodel?

8. Contiguous vs. Discontiguous: Are your observations contiguous or

discontiguous?

In the case of this research the taxonomy results in:

C.1.1 Input and output

Input: Amplitude of time samples

Output: Prediction of one or more time samples amplitudes

C.1.2 Endogenous variables

Recall by Endogenoous it ismeant to indicate variables whose inputs are impacted

by other variables in the system and whose output variables are dependent).

In the case of this research it is clear that the variables are endogenous; This
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has the interesting consequence that feature extraction is applicable and may be

beneficial as a sort of data augmentation(adding to waveform other features eg.

Tempo tracking, pure frequencies)

C.1.3 Unstructured data

The data is considered to be unstructured as music audio tracks do not contain

clear trends, or seasonal-periodic behaviours in the traditional time series sense,

i.e. classical decomposition is not applicable (see section 2.4.1). It is however

fair to notice that significant correlation within different songs parts and tempo-

tracking patterns can be considered structures which could aid in the study of the

time series.

C.1.4 Classification vs Regression

While the initial part of the research framed the task as a classification problem,

most of the analysis have been conducted with as a Regression task. This is in line

with the desired final outcome.

C.1.5 Univariate Forecasts

Most of the research has been conducted with the objective to monitor a single

variable across time (it is suspected that if the net can generalize between different

kind of music audio tracks, then it has no necessity of getting for example audio

ch1 and audio ch2 from a given song, or other kinds of data augmentation)

C.1.6 Dynamic

Ideally the final product would continue to improve after having performed

analysis on audio samples. Hence, the ideal case scenario requires a dynamic

model. Yet within this research algorithms have been developed as static.

C.1.7 Contiguous

It is possible to consider the constant sampling rate of a music audio track as a

proof that observations are made uniform over time
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C.1.8 Shallow vs Advance ML architectures

This is another thematic confronted during the scope of the research. It would

prove useful to carry on the study here conducted on more sophisticated ML

architectures in order to understand whether shallowmethods actually ultimately

outperform more advanced ones.
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