
Sub-networks and Spectral Anisotropy
in Deep Neural Networks
Master’s thesis in Complex Adaptive Systems

HANWEN GE

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2025
www.chalmers.se

www.chalmers.se

Master’s thesis 2025

Sub-networks and Spectral Anisotropy
in Deep Neural Networks

HANWEN GE

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2025

Sub-networks and Spectral Anisotropy in Deep Neural Networks
HANWEN GE

© HANWEN GE, 2025.

Supervisor: Jan E. Gerken, Department of Mathematical Sciences
Examiner: Johan Jonasson, Department of Mathematical Sciences

Master’s Thesis 2025
Department of Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2025

iv

Sub-networks and Spectral Anisotropy in Deep Neural Networks
HANWEN GE
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Deep neural networks (DNNs) have achieved remarkable success across diverse do-
mains, yet the fundamental reasons behind their efficacy and ability to generalize
remain elusive. This thesis examines how over-parameterized DNNs learn and gen-
eralize by investigating two interconnected phenomena: the emergence of sparse,
critical sub-networks (aligned with the Lottery Ticket Hypothesis) and the struc-
tural symmetry-breaking. Additionally, we explore the geometric structure of the
parameter space, with a particular focus on the anisotropy of the Fisher Information
Matrix (FIM) spectrum.

We demonstrate that different layers in a deep network exhibit varying degrees of
symmetry breaking, which we link to the presence of sub-networks that encapsulate
the model’s core representational capacity. Using two distinct criteria—magnitude-
based and change-based—we identify critical sub-networks and show that, despite
the over-parameterization of DNNs, these sparse sub-networks play a central role in
achieving high performance.

By analyzing the spectrum of the FIM, we reveal that DNNs evolve along a limited
number of dominant eigendirections, spanning a subspace where training dynamics
converge. This finding highlights an intrinsic anisotropy in the parameter manifold.
Furthermore, we investigate how this anisotropy correlates with the emergence of
sub-networks and the internal structure of the subspace.

Overall, this thesis provides a novel perspective on the roles of implicit regular-
ization, loss landscape geometry, and sparse substructures in modern deep neural
networks, offering insights into the geometric nature of DNNs.

Keywords: Deep Neural Networks, Information Geometry, Generalization, Spectral
Analysis, Lottery Ticket Hypothesis.

v

Acknowledgements
This work, emerging in its current form, is the tangible expression of a long and
thoughtful journey through the realms of deep neural network theory—a journey
spanning a year and a half of exploration, discovery, and quiet wonder.

I owe immeasurable gratitude to my supervisor, Jan E. Gerken, whose insight lit the
path when I first envisioned a study centered on the evolution of parameter spaces.
His gentle suggestion to embrace Fisher Information Geometry opened up entirely
new vistas in understanding deep neural networks. Our countless meetings—filled
with rigorous theoretical discussions and moments of scholarly reflection—not only
nurtured my academic inquiry but also refined the very way I see and express my
research. His generous support, be it in granting creative freedom or guiding me
through intricate administrative details, has indelibly shaped this work.

I am equally indebted to my examiner, Johan Jonasson, whose brief but impactful
early collaboration gave me the confidence to propose this master’s thesis indepen-
dently. His steadfast commitment and compassionate guidance provided not only
academic wisdom but also the personal support that sustained me through every
challenge.

My heartfelt thanks extend to Francesca Mignacco, my early external supervisor,
whose numerous insightful pointers on deep learning theory broadened my under-
standing of implicit regularization, learning dynamics, training regimes, and the
applications of dynamical systems. The literature she introduced and our spirited
conversations—even when separated by thousands of miles from New York—infused
my work with profound depth and clarity.

A significant chapter of my life unfolded at the Physics Department of the Uni-
versity of Gothenburg. I remain deeply grateful to my project advisor, Kristian
Gustavsson, whose confidence in my ability to embark on an autonomous project
spurred me to dare explore uncharted territories. I cherish the lively, varied dis-
cussions with my friend Ludvig Storm, whose wisdom and passion ignited countless
moments of inspiration. I also wish to thank Linus Sundberg, Mathias Samuelsson,
Jingran Qiu, Frida Brogren, Michael Quin, Ehsan Ghane, Petter Uvdal, Zhe Han,
Enrique Rozas Garcia, Grigory Sarnitsky, Navid Mousavi, and many others—each
conversation, academic debate, and friendly smile has woven itself into the fabric of
my intellectual journey. My gratitude also goes to my Director, Mats Granath, for
his unwavering support.

During the fleeting yet transformative days I spent in Neuchâtel, Switzerland, I en-
countered a form of scholarly inspiration unlike any other. Under the free-spirited
guidance of Christos Dimitrakakis—and throughout the memorable walks in the
mountains, shared lunches, and quiet moments with Andreas Athanasopoulos and
Victor Villin—I absorbed not only the beauty of a vibrant summer but also a re-
newed academic outlook that continues to shape my path.

vii

And then there are my many friends, now scattered across the globe, without whose
light not only this work but my very life would surely be diminished. Estéban
Antoine Nocet-Binois, I long for the profound, meandering stories we once wove to-
gether and the shared passion for academia that enriched our hearts. The countless
days and nights spent with Napat Bhaholpolbhayuhasena in Denmark, Hungary,
Serbia, China, and of course Sweden remain etched in my memory—each moment
illuminated by his irrepressible optimism, unwavering enthusiasm, and steadfast
persistence. I also treasure the warmth and vibrancy of my dear friends Siwakorn
Sanchuensakul, Haik-David Avetian, and Marko Arnautovic, whose companionship
banishes loneliness and fills every space with light. Rundong Zhou and I were blessed
not only by the fine wine we savored and the sumptuous meals we enjoyed but also
by the spark of insight ignited by his thoughtful views on physics. And to my dear
friend Sameer Jathavedan, the shared praises and critiques, the joys intermingled
with frustrations, and the absurdities blended with laughter have together revealed
the true beauty of our world. Sharing an office and lively gossip with Edoardo Maria
Manoni remains one of my fondest memories, as does the ever-bright optimism and
attentive listening of Vasiliki Kostara. There are so many more hearts and stories
to recount—from my loyal friend Sheik Meeran Rasheed Abdul Rahuman and my
spirited defense opponent Cyrene Howland, to the two loving couples who enliven
every Christmas and New Year dinner, Hon Lam Cheung with Xiaotian Zhang and
Yuxin Fang with Noel Vincent. I also thank Nils Müller—a friend of remarkable
integrity whom I met later but whose understanding of me remains profound—as
well as every friend I have made over the past 26 years, and the countless strangers
whose paths have crossed mine. To each of you, I offer my most heartfelt thanks.

Finally, my deepest gratitude is reserved for my family—my brother, sister-in-law,
and most especially my parents—whose boundless love and the richness of my child-
hood continue to nurture my imagination and sustain my pursuit of knowledge.

The computation were enabled by resources provided by the National Academic
Infrastructure for Supercomputing in Sweden (NAISS) and the Swedish National
Infrastructure for Computing (SNIC) at Chalmers Centre for Computational Sci-
ence and Engineering (C3SE), partially funded by the Swedish Research Council
through grant agreement no. 2022-06725 and no. 2018-05973.

HANWEN GE, Gothenburg, April 2025

viii

x

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

DNNs Deep Neural Networks
MLPs Multilayer Perceptrons
FIM Fisher Information Matrix
NTK Neural Tangent Kernel
SGD Stochastic Gradient Descent
ReLU Rectified Linear Unit
MSE Mean Squared Error
LTH Lottery Ticket Hypothesis
SDE Stochastic Differential Equation
ODE Ordinary Differential Equation
KL Kullback-Leibler (Divergence)
erank Effective Rank

xi

Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis.

Indices

i, j Indices for neurons in a layer
l Index for layers in the network
t Index for iterations during training
n Index for data samples in a batch or dataset

Sets

L Set of layers in the network
N Set of neurons in a layer
S Set of data points in a mini-batch
D Full dataset

Parameters

W (l) Weight matrix of layer l; dimensions are M (l) ×M (l−1) (number of
neurons in layer l by number of neurons in layer l − 1)

b(l) Bias vector of layer l; dimensions are M (l) × 1 (one bias term per
neuron in layer l)

ϕ Activation function
L(y, ŷ) Loss function
η Learning rate
N Total number of training samples

xiii

M (l) Number of neurons in layer l

T Total number of training iterations

Variables

x Input feature vector
y Ground truth output
ŷ Predicted output of the network
u

(l)
i Pre-activation value of neuron i in layer l

h
(l)
i Post-activation value of neuron i in layer l

g
(l)
i Gradient of the loss function w.r.t. parameter i in layer l

J Jacobian matrix of the network output w.r.t. parameters
λ Eigenvalue of a matrix (e.g., FIM, NTK)

xiv

Contents

List of Acronyms x

Nomenclature xiii

List of Figures xvii

List of Tables xix

1 Introduction 1

2 Deep Neural Networks 5
2.1 Architecture: Multilayer Perceptrons 5
2.2 The Optimization of DNNs Under Supervised Learning 7

2.2.1 Initialization . 7
2.2.2 The Dynamics of Optimization 8

2.3 Generalization . 12
2.3.1 Generalization in Deep neural networks 14
2.3.2 The Role of SGD in Generalization 16

3 The Sub-networks in Deep Neural Networks 19
3.1 Structural Symmetry Breaking . 20

3.1.1 Critical and Robust Layers . 21
3.2 Beyond Layer-wise Re-initialization 22

3.2.1 Parameter-wise Re-initialization 23
3.3 Lottery Ticket Hypothesis . 26

3.3.1 Background of the Lottery Ticket Hypothesis 26
3.3.2 Lottery Tickets Hypothesis for Parameter-wise Re-initialization 27

3.4 The Sub-networks in Deep Neural Networks 30

4 The Spectrum of Deep Neural Networks 33
4.1 Neuromanifold and Fisher Information Matrix 33

4.1.1 Statistical Manifold . 33
4.1.2 Fisher Information Matrix . 35
4.1.3 Empirical Fisher Information Matrix 37

4.2 Neural Tangent Kernel . 40
4.2.1 Analogy to Cauchy–Green Tensors in Continuum Mechanics . 42

4.3 Anisotropy in the Spectrum of the Fisher Information Matrix 44

xv

Contents

4.3.1 The Dual Roles of FIM in DNNs 45
4.3.2 Spectral Statistics of the Fisher Information Matrix in MLPs . 48
4.3.3 The Sub-network and Anisotropy 50
4.3.4 The Top Eigenvectors . 53

5 Conclusion 57

Bibliography 59

A Appendix I
A.1 Supplemental Experimental Results I
A.2 Normalization of the Eigenfunction III

xvi

List of Figures

2.1 A fully connected feedforward neural network (MLP) with 2 hidden
layers, each containing 4 neurons. Source: CS231n: Deep Learning
for Computer Vision, Stanford University [31]. 6

2.2 The bias-variance trade-off curve. In the context of this thesis, risk
corresponds to the loss. Source: [94]. 13

2.3 A double descent risk curve for deep neural networks. Source: [94]. . 15

3.1 Layer-wise results of re-randomization showing significant performance
drop, indicating layer dependencies. 21

3.2 Layer-wise results of re-initialization showing the structural symmetry
breaking, with first layer’s criticality and other layers’ robustness. . . 22

3.3 Parameter-wise re-initialization with varying thresholds per layer.
The red dotted line indicates the threshold at which 95% of the pa-
rameters are re-initialized in each layer. Notably, parameter-wise re-
initialization results are consistent with the layer-wise method. Sub-
plot (a) exhibits a distinctly different range compared to the other
three subplots, highlighting the unique role of the first layer. 24

3.4 Parameter-wise re-initialization with different thresholds for the whole
model . 25

3.5 A flow chart illustrates the training procedure for the lottery ticket
hypothesis, is adapted from Dr. Sebastian Raschka’s blog [39]. . . . 27

3.6 A plot of the comparison results of sub-networks based on pruning
and re-initialization of parameter magnitude and absolute change on
the test set which illustrates the impact of two parameter-wise meth-
ods—pruning and re-initialization—on the performance of neural net-
works. These methods are shown by two criteria: the absolute mag-
nitude of the parameters and the absolute change in parameter values
between their initialization and post-training states. These two meth-
ods can be seen as distinct approaches to perturb the neural network
on a parameter-by-parameter basis. 29

3.7 A plot illustrates the overlap ratio, aligning with the experimental set-
tings from previous sections where a fraction of parameters is pruned
or re-initialized. 31

4.1 Distribution of the top 1000 non-zero eigenvalues of the FIM, illustrating
its highly anisotropic spectrum both at initialization and after training. . . 44

xvii

List of Figures

4.2 Training and Validation (Test) Loss Curves. The model achieves conver-
gence after approximately 75 epochs. 44

4.3 The Dimensional Reduction of the Last Hidden Layer Output into a
Two-Dimensional Space. 48

4.4 The Gradient Projection into the 1st, 10th, 100th, and 500th Largest
Eigenvectors . 49

4.5 Spectral Anisotropy shown by parameter-wise re-initialization. 50
4.6 Spectral Anisotropy: trace ratio and accuracies shown by re-initialization

and pruning. 52
4.7 Average Shannon Entropy of Top 100 Eigenvectors Across 100 Train-

ing Epochs. 54
4.8 Average Effective Rank and Kurtosis of Top 100/50 eigenvectors by

Parameter-wise Re-initialization . 56

A.1 Layer-wise results of re-initialization for FCN with Random Gaussian
initialization. I

A.2 Weights Distribution before and after training for every layer. II

xviii

List of Tables

A.1 Statistics of initial and final weights, and the correlation coefficient
between them for each layer. Mean is mean value of the weights; SD
is the standard deviation of the weights. Correlation Coefficient mea-
sures the linear correlation between the same layer’s weights before
and after training. I

A.2 Different absolute change interval and its corresponding parameters’
percentage of the whole model. III

xix

List of Tables

xx

1
Introduction

"More is different." This phrase, the title of Nobel Physics Prize laureate Philip W.
Anderson’s seminal paper [4], encapsulates a foundational principle in complex sys-
tems theory. Complex systems [5] are characterized by the interactions of numerous
components, yielding emergent, often nonlinear behaviors that cannot be inferred
from studying individual elements in isolation. As a multidisciplinary field, complex
systems theory encompasses diverse domains, including the human brain, biological
organisms, infrastructure networks (such as power grids, transportation, and com-
munication systems), complex software systems, ecosystems, the Earth’s climate,
and, potentially, the universe itself. Modern deep neural networks (DNNs) [35],
initially inspired by the architecture of the human nervous system, embody this
principle, exemplifying how the collective behavior of simple computational units
can lead to remarkable emergent intelligence.

DNNs comprise millions, or even billions, of artificial neurons interconnected via
weighted links. Each neuron executes simple nonlinear computations, yet the net-
work’s overall behavior emerges from intricate interactions across layers. The hi-
erarchical structure of DNNs enables them to learn intricate representations not
explicitly encoded in their training data, reflecting an emergent property akin to
that observed in other complex systems. Through optimization processes such as
backpropagation [6], DNNs dynamically adjust their parameters to minimize errors
and adapt to the structure of input data, further reinforcing their complex nature.

Beyond the complexity of DNNs themselves, the natural data [12, 13] they pro-
cess exhibits significant complexity. Natural data refers to information generated
by natural processes in the physical world, including, but not limited to, images,
speech, text, and biological structures. Over the past decade, DNNs have demon-
strated groundbreaking performance in diverse fields, including image classification
[14], video generation [15], large language models [16], and biological applications
such as protein and drug design [17, 18]. Deep neural networks have become indis-
pensable tools for uncovering patterns in complex natural data.

A fundamental illustration of data complexity arises from the sheer combinatorial
explosion of possible configurations [20]. Consider a grayscale image of n pixels:
the total number of possible images is 2n, an exponentially large space. Assigning
labels to each image (e.g., binary classification) further expands this space to 22n ,
an potential astronomical number. Even for a trivial 9-pixel black-and-white image
(n = 9), the number of possible labeled datasets surpasses the estimated number

1

1. Introduction

of atoms in the observable universe [19]. However, as noted by Lin et al. [92], the
laws of physics are such that the data sets we care about for machine learning are
drawn from an exponentially tiny fraction of all imaginable data sets. For instance,
images are composed of objects, which in turn consist of smaller components or-
ganized in a structured manner. Humans naturally recognize patterns at multiple
scales, a capability shaped by both experiential learning and evolutionary priors.
This hierarchical perception enables humans to categorize images not by memoriz-
ing all possible permutations but by identifying meaningful features such as shapes,
textures, and object relationships. In deep learning, the experiential learning and
evolutionary priors manifest as feature learning (or representation learning) [100]
and inductive bias [101]—mechanisms by which DNNs leverage hierarchical repre-
sentations to capture essential structures in data.

Despite the advancements in theoretical works over the past decade, the underlying
mechanism of deep neural networks (DNNs) remains elusive. These works, originat-
ing from diverse perspectives and theoretical backgrounds, aim to provide a com-
prehensive understanding of DNNs. For instance, Robert et al. [70] employed the
renormalization group to establish an effective theory for DNNs. In a more complex
systems perspective: Bahri et al. [73] extended statistical mechanics to elucidate
the principles governing DNNs, incorporating Random Matrix theory (RMT) [71],
Mean Field Theory [72], Phase Transitions and Chaos [21], Nonequilibrium Statisti-
cal Mechanics [28], Spin Glass Theory [29], and Free Probability Theory [30]. Storm
et al. [86] identified structural patterns in DNNs that contribute to their robustness,
in conjunction with Lagrangian coherent structures (LCSs) derived from dynamical
systems. Beyond these illustrative cases, a multitude of empirical and theoretical
investigations continue to probe the enigmatic nature of deep neural networks.

One of the central questions in deep learning is the generalization [7] of deep neural
networks (DNNs). While we discussed the astronomical scale of natural data above,
one might assume that DNNs with millions or billions of parameters are actually
small. However, these two concepts are not directly related. What we emphasize
when discussing natural datasets is that the inherent structure and features of nat-
ural data contribute to the performance of DNNs. Nevertheless, these models are
often over-parameterized, meaning the number of parameters exceeds the sample size
of the training data. In classical machine learning theory [94], over-parameterized
models tend to overfit, memorizing training samples rather than learning generaliz-
able patterns. This raises the fundamental question: How do deep neural networks
trained via gradient-based optimization achieve remarkable generalization to unseen
data? Resolving this paradox—where excessive over-parameterization paradoxically
enhances generalization—remains a major open problem in deep learning theory
[96, 7].

This thesis investigates structural symmetry breaking [1] as a central mechanism
underlying generalization in deep learning. In parallel, it employs the Fisher Infor-
mation Matrix (FIM) [104] as an analytical tool to explore the geometric structure
of the loss landscape. While this approach is similar to the energy landscape analysis

2

1. Introduction

of Bahri et al. [73], our work specifically emphasizes the interplay between sparsity
and the geometric structure of the loss landscape in DNNs. Structural symmetry
breaking refers to the phenomenon wherein different layers of a neural network ex-
hibit distinct functional importance, with some layers being critical to performance
while others remain redundant. A key experimental approach involves layer-wise re-
initialization: resetting specific trained layers to their initial values and evaluating
the resulting performance degradation. Layers whose re-initialization significantly
impairs performance are deemed critical. We extend this method to the parameter
level reveals that only a sparse subnetwork—rather than the entire dense network—is
responsible for structural symmetry breaking. This finding aligns with the Lottery
Ticket Hypothesis, which posits that within a randomly initialized dense network,
sub-networks exist that, when trained in isolation, achieve comparable accuracy to
the original model.

The Fisher Information Matrix (FIM) serves as the metric tensor that encapsulates
the geometric structure of the parameter space. Through further analysis employing
the FIM, it becomes evident that the effective dimensionality of DNN training is re-
markably low, suggesting that learning predominantly transpires along a restricted
number of parameter-space directions. This is evident in the anisotropic nature
of the FIM spectrum. Intriguingly, we demonstrate that these anisotropic eigendi-
rections correspond to the discovered sub-networks—when these sub-networks are
removed, the anisotropic structure of the FIM disappears. This suggests a deep
connection between spectral anisotropy in FIM and sub-network emergence. By
establishing this link, this work lays the foundation for further exploration of the
geometric structure of the parameter space in relation to deep neural network spar-
sity.

Outline of the Thesis
In Chapter 2, we explore the foundations of DNNs, focusing on generalization. We
discuss how classical measures often prove inadequate for modern over-parameterized
networks, prompting new lines of theoretical exploration such as PAC-Bayes [40],
the interplay between Stochastic Gradient Descent (SGD) algorithm and implicit
regularization, and the role of the loss landscape geometry. We highlight that al-
though gradient-based methods like SGD can favor flatter minima in many cases
(the flatness bias hypothesis), the exact extent to which this phenomenon explains
generalization is still a matter of debate [41, 42]. We also discussed the motivation
behind exploring the geometry of the loss landscape and parameter space.

Chapter 3 narrows in on the sub-networks that exist within well-trained DNNs.
We examine how iterative magnitude pruning (IMP) and an alternative parameter
change-based criterion consistently identify smaller sets of critical parameters. We
then illustrate how structural symmetry breaking arises: some parameters in certain
layers show higher sensitivity to re-initialization, reflecting a non-uniform distribu-
tion of critical parameters across layers [1]. Our results suggest that these sub-

3

1. Introduction

networks constitute a hidden low-complexity sub-network of the model, explaining
why performance remains robust even when vast portions of parameters are pruned
or re-initialized.

In chapter 4, it turns to a spectral analysis of deep neural networks from the stand-
point of information geometry. We employ the Fisher Information Matrix (FIM)
to analyze the unfolding of training trajectories along the dominant directions in
its eigenspace. Crucially, we show that only a small portion of the parameter
space—those directions associated with large eigenvalues—significantly drives the
model’s evolution during training [74]. We then connect the spectral anisotropy
to the sub-networks identified in Chapter 3, revealing deeper geometric reasons for
why these sparse substructures capture most of the model’s capacity and shape its
generalization behavior.

Finally, throughout the thesis, we focus on how symmetry breaking, sub-networks,
and the FIM spectrum interact in practice. While the results do not single-handedly
solve the mystery of generalization, they highlight a plausible story: Overparame-
terized deep neural networks (DNNs) are guided by the geometry of their parameter
space toward sparse, critically important substructures, resulting in effective and
robust generalization.

This thesis is inspired by the author’s previous project Structural Symmetry Break-
ing: An Empirical Study on Re-initialization of Hidden Layers in Deep Neural Net-
works (Physics, project - FUF060), and this project is partially covered in this
thesis.

4

2
Deep Neural Networks

In this chapter, the foundational concepts of deep neural networks will be explored,
including their architecture, initialization, optimization, and generalization. These
elements collectively underpin the remarkable performance of modern deep learning
systems.

We focus on a broad range of topics related to deep learning generalization, including
implicit regularization induced by gradient-based optimization methods, the role of
stochastic gradient descent algorithms in promoting generalization, and their lim-
itations in explaining generalization in over-parameterized deep neural networks.
Furthermore, we propose that integrating insights from the geometry of the loss
landscape structure can offer new perspectives for advancing the understanding of
generalization.

2.1 Architecture: Multilayer Perceptrons
Multilayer Perceptrons (MLPs) represent one of the earliest and most fundamental
architectures in the evolution of deep learning [35]. This thesis primarily focuses on
MLPs as a foundational model, serving as a basis for understanding the principles
that drive many advanced variants of deep neural networks.

An MLP is a quintessential example of a feedforward neural network, composed of
multiple layers of fully connected artificial neurons. Each neuron performs a linear
transformation of its inputs, followed by the application of a nonlinear activation
function. The input layer receives a vector x ∈ RM0 derived from a preprocessed
dataset. Subsequently, each layer computes its outputs through a combination of
linear and nonlinear operations, enabling MLPs to approximate highly complex
mappings between input and output spaces, as illustrated in Figure 2.1.

The mathematical formulation of an MLP begins with the computation of the pre-
activation for the i-th neuron in the l-th layer, defined as:

o
(l)
i =

M(l−1)∑
j=1

w
(l)
ij h

(l−1)
j + b

(l)
i , (2.1)

where M (l−1) represents the number of neurons in the (l − 1)-th layer, w
(l)
ij is the

weight connecting the j-th neuron in the (l − 1)-th layer to the i-th neuron in the

5

2. Deep Neural Networks

l-th layer, h
(l−1)
j denotes the activation of the j-th neuron in the (l − 1)-th layer,

and b
(l)
i is the bias associated with the i-th neuron in the l-th layer.

The output of each neuron, commonly referred to as its activation, is obtained by
applying a nonlinear activation function Φ(·) to the pre-activation value:

h
(l)
i = Φ(o(l)

i). (2.2)

In the broader context of deep neural networks (DNNs), the objective is to learn
a function fθ : RM0 → RML , parameterized by the network’s weights and biases,
collectively denoted as the network parameters θ ∈ RP , P is the number of parame-
ters. The goal is to ensure that the network’s output fθ(x) closely approximates the
target label z for a given input x. The functional form of an MLP can be expressed
as:

fθ(x) = Φ(L)
(
W (L)Φ(L−1)

(
W (L−1) · · ·Φ(1)

(
W (1)x + B(1)

)
+ B(2) · · ·

)
+ B(L−1)

)
+B(L),

(2.3)
where Φ(l) represents the activations of the l-th layer, W (l) is the weight matrix, and
B(l) is the bias vector of the l-th layer.

Figure 2.1: A fully connected feedforward neural network (MLP) with 2 hidden
layers, each containing 4 neurons. Source: CS231n: Deep Learning for Computer
Vision, Stanford University [31].

Two examples of activation functions are [75]:
• Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x).

ReLU introduces nonlinearity to the model while being computationally effi-
cient. It helps mitigate the vanishing gradient problem, making it a popular
choice for hidden layers[75].

• Softmax Function:
softmax(xi) = exi∑

j exj
.

Typically used in the output layer for multi-class classification problems, the
softmax function converts logits into probabilities.

Consequently, the representation produced by any given layer is recursively depen-
dent on all preceding layers, creating intricate inter-dependencies that challenge the
isolation and analysis of individual layers in theoretical studies [92].

6

2. Deep Neural Networks

The theoretical foundation for the expressiveness of MLPs is provided by the Uni-
versal Approximation Theorem (UAT) [64]. The UAT asserts that a feedforward
neural network with at least one hidden layer, a linear output layer, and a suitable
activation function can approximate any continuous function to arbitrary accuracy
on a compact subset of Rn. Moreover, the theorem states that this approximation is
possible for sufficiently wide networks, yet it offers no explicit guidance on how wide
they must be. Subsequent studies [60] demonstrated that this property is not con-
fined to specific activation functions but is a fundamental feature of the multilayer
feedforward architecture. While the UAT underscores the theoretical capabilities of
these networks, it provides no direct insight into how well the model generalizes to
unseen data or how to optimally configure network architectures [11]. These limita-
tions motivate further exploration into generalization mechanisms and architectural
design principles.

2.2 The Optimization of DNNs Under Supervised
Learning

Supervised learning [35] is a paradigm where a model is trained to map input data to
corresponding output labels. This approach forms the cornerstone of many machine
learning applications, enabling models to learn features and representation from
labeled datasets.

2.2.1 Initialization
The initial parameters in deep neural networks are sampled from a predefined dis-
tribution Pinit, in some cases, Pinit is determined by structural characteristics such
as the fan-in and fan-out of each layer, as outlined in [93].

Initialization schemes play a crucial role in ensuring stable signal propagation during
both forward and backward passes in deep neural networks. One widely adopted
scheme is LeCun initialization [99]. In this scheme, weights are drawn from a Gaus-
sian distribution with a mean of zero and a standard deviation of

√
1

nin
, where nin

denotes the number of input neurons to the layer. Alternatively, weights can be
sampled from a uniform distribution within [−

√
1

nin
,
√

1
nin

]. This initialization en-
sures that the variance of activations and gradients remains stable across layers,
facilitating efficient training and convergence.

He-Initialization [76], designed for DNNs employing ReLU activation functions.
Building upon earlier methods like LeCun initialization, He-Initialization incorpo-
rates a gain factor to account for the increased variance introduced by non-linear
activations. This approach aims to maintain consistent variance of input and out-
put signals across layers, thereby promoting gradient stability during training [76].
He-Initialization is the default choice in popular deep learning frameworks such as
TensorFlow [80] and PyTorch.

7

2. Deep Neural Networks

In our experiments, we primarily employ LeCun initialization. However, in Chapter
3, we utilize direct Gaussian initialization, as it provides a clearer view of the trans-
formations in parameter distributions before and after training.

2.2.2 The Dynamics of Optimization
The training process involves minimizing a loss function which quantifies the dis-
crepancy between the model’s predictions and the ground truth labels. This mini-
mization is achieved using optimization algorithms such as Gradient Descent (GD)
or Stochastic Gradient Descent (SGD) [34], which iteratively update the model pa-
rameters to reduce the loss.

Gradient Descent

The gradient descent update rule of a DNN[34] is:

θt+1 = θt − η∇θL(θt), (2.4)

where η is the learning rate, and ∇θL(θt) is the gradient of the loss function with
respect to the parameters θt at epoch t.

The loss function L(θt) is defined as the average loss over a dataset D, quantifying
the difference between the true labels and the predicted outputs. Formally, it can
be expressed as:

L(θt) = 1
|D|

∑
xn∈D

ℓ(fθ(xn), zn), (2.5)

where zn is the true labels associated with input data, |D| is the size of the dataset
D, ℓ(fθ(xn), zn)) is the instance-wise loss function.

To compute the gradient∇θL(θ) efficiently in deep neural networks, the backpropaga-
tion algorithm is employed [6]. Backpropagation leverages the chain rule of calculus
to propagate gradients from the output layer back through the network, layer by
layer, to compute the gradient with respect to all parameters. This algorithm is
essential for updating the parameters θ during gradient descent.

For different tasks, the loss functions are defined as follows:
• In regression tasks, the Mean Squared Error (MSE) is commonly used:

ℓ(z, fθ(x)) = 1
2∥z− fθ(x)∥2,

where z is the true label and x represents a single input data point.
• In classification tasks, the Cross-Entropy loss is frequently applied:

ℓ(z, fθ(x)) = −
∑

c

zc log(fθ(x)c),

8

2. Deep Neural Networks

where c indexes the classes, zc is the true label for class c in one-hot encoding,
and fθ(x)c is the predicted probability for class c.

To bridge the discrete-time gradient descent updates and the continuous-time frame-
work, we introduce θ(t), the parameter vector as a function of continuous time t.
By interpreting η as the time step size ∆t in Equation 2.10, the discrete update can
be rewritten in terms of finite differences:

θt+∆t = θt −∆t∇θL(θt). (2.6)
As ∆t → 0, the discrete-time updates transition into a continuous-time process,
where the parameter vector evolves according to an ordinary differential equation
(ODE). In this framework, we replace θt with θ(t), emphasizing its dependence on
continuous time. The resulting ODE is:

dθ(t)
dt

= −∇θL(θ(t)). (2.7)

Here, dθ(t)
dt

represents the instantaneous rate of change of the parameters, and L(θ(t))
is the loss function evaluated at the parameters θ(t). This formulation, known as
gradient flow, describes the trajectory of the parameters in continuous time as they
evolve to minimize the loss function under the assumption of infinitesimally small
learning rates.

Based on Equation (2.7), we have:

dL(θ(t))
dt

= ∇θL(θ(t)) · dθ(t)
dt

= −∥∇θL(θ(t))∥2 ≤ 0, (2.8)

This result shows that the loss L(θt) is non-increasing over time, as long as∇θL(θt) ̸=
0. This implies that gradient descent always moves in the direction of the steepest
decrease in L(θt). In this context, gradient descent can be viewed as an Eulerian
numerical approximation to the continuous-time ODE in Equation (2.7).

This method is commonly referred to as full batch gradient descent [77], as it com-
putes the gradient using all samples in the dataset. However, this approach has a
significant drawback: real-world datasets often consist of tens of thousands or even
millions of data points, making each iteration computationally expensive and, in
many cases, impractical.

Stochastic Gradient Descent

A common alternative to full-batch gradient descent is stochastic gradient descent
(SGD) [77], which partitions the dataset D into equally sized-mini-batch, either with
or without replacement (here we assume independent sampling for simplicity). In
each iteration, a mini-batch R ⊆D of size b is randomly selected, and the gradient
is computed using only the data points in R. Let the average loss over R be

LR(θt) = 1
b

∑
xn∈R

ℓ(fθ(xn), zn), (2.9)

9

2. Deep Neural Networks

where ℓ is an instance-wise loss function, fθ denotes the model, and zn is the corre-
sponding label. The standard update rule for gradient descent becomes

θt+1 = θt − η∇θLR(θt), (2.10)

with η as the learning rate. Note that while the full-batch loss L(θ) is the true
optimization objective, LR(θ) is a noisy estimate due to the random sampling of R.
Hence, ∇θLR(θt) is an unbiased but noisy approximation of ∇θL(θt).

Define the gradient noise as

ξt := ∇θL(θt)−∇θLR(θt). (2.11)

Although in practice ξt may be non-Gaussian and correlated, for qualitative analy-
sis [32, 27] we assume it is a mean-zero Gaussian random variable whose covariance
scales roughly as 1/b. Now we can re-write the discrete update as

θt+1 = θt − η∇θL(θt) + η ξt, (2.12)

and taking the limit of small η, we approximate the dynamics by the stochastic
differential equation (SDE)

dθ = −η∇θL(θ) dt +
√

η2

b
σ(θ) dWt. (2.13)

Here, Wt denotes a standard Wiener process and σ(θ) characterizes the local noise
intensity. For dimensional consistency, since dWt ∼

√
dt, σ(θ) must have units such

that the noise term has the same dimensions as θ (i.e., if θ has units [X], then σ(θ)
carries units of [X]/

√
time).

In a more general setting, the noise covariance may be anisotropic. In that case,
one writes

dθ = −η∇θL(θ) dt + η

√
Σ(θ)

b
dWt,

where Σ(θ) is the full (matrix-valued) covariance. For simplicity, the isotropic case
corresponds to Σ(θ) = σ2I.

The SDE (2.13) implies a Fokker–Planck equation governing the evolution of the
probability density P (θ, t):

∂P

∂t
= ∇θ ·

[
η∇θL(θ) P (θ, t)

]
+ η2

2b
∇θ ·

[
σ2(θ)∇θP (θ, t)

]
. (2.14)

In the general anisotropic case, σ2(θ) would be replaced by Σ(θ), with the isotropic
assumption being a special case.

Assuming (i) that σ2(θ) is constant (i.e., independent of θ), and (ii) that the system
is ergodic so that P (θ, t) converges to a stationary distribution P (θ), we impose
detailed balance (i.e., zero net probability flux). This yields

η∇θL(θ) P (θ) + η2 σ2

2b
∇θP (θ) = 0. (2.15)

10

2. Deep Neural Networks

Rewriting in terms of log P (θ) and integrating gives

P (θ) ∝ exp
(
− 2b

η σ2 L(θ)
)

. (2.16)

Often, the factor of 2 and other constants are absorbed into an effective inverse
temperature β, so that

P (θ) ∝ exp
(
−β L(θ)

)
, with β = 2b

η σ2 .

If σ2(θ) is not constant, the stationary distribution becomes more complicated and
generally involves a θ-dependent integral in the exponent.

The SDE analysis reveals that both the learning rate η and the batch size b modulate
the noise level in SGD. For averaged gradients, the noise variance scales as η2/b, so
that increasing b reduces the absolute variance of the gradient estimate. In contrast,
if gradients were summed rather than averaged, the variance would scale as η2b. This
interplay is critical in balancing exploration and exploitation [78, 83]:

• A larger η amplifies the noise, promoting exploration of the parameter space
and helping the optimizer escape shallow minima or saddle points.

• A smaller batch size b increases noise, whereas a larger b reduces it, leading to
more stable but potentially less exploratory updates.

Although the above analysis suggests that increasing the batch size as training pro-
gresses could be beneficial, this approach drastically increases computational over-
head. Consequently, this is limited to a range of batch sizes determined by the
complexity of the task, model, and available computational resources, making it an
uncommon approach. Modern practices often favor dynamic learning rate schedules
over adjusting the batch size [47, 46, 48]. For example, cyclical learning rates [46]
periodically increase η, effectively reheating the system to escape metastable states.

The stationary distribution P (θ) ∝ exp(−β L(θ)) closely resembles the Bayesian
posterior under a Gaussian prior when β = 1. This connection bridges SGD with
variational inference and Bayesian deep learning [22, 23, 24].

This analysis is built on idealized assumptions—such as constant, isotropic Gaussian
noise and ergodicity—that may not hold in practice for deep neural networks. In
high-dimensional, non-convex landscapes typical of DNNs, noise is often heavy-tailed
and parameter-dependent [27], and the system may reside in metastable states with
non-negligible probability currents. Consequently, the predicted stationary distribu-
tion and related escape times are approximations that capture only the qualitative
behavior of SGD, and additional empirical and theoretical investigations are needed
to fully characterize its dynamics in realistic settings.

A practically used variant of SGD is SGD with momentum [98]. Momentum helps
accelerate convergence by smoothing out gradient updates, much like a physical

11

2. Deep Neural Networks

object accumulating velocity through inertia. In this method, the velocity vector v
accumulates an exponential moving average of past gradients, effectively dampening
oscillations in directions where the loss landscape is steep while amplifying consistent
descent directions. The update rules are given by:

vt+1 = µvt − η∇θtL(θt), (2.17)
θt+1 = θt + vt+1. (2.18)

where η is the learning rate and µ is the momentum coefficient. This approach is
related to the heavy-ball method [26] in classical optimization and serves to navi-
gate the parameter space more effectively, especially in regions where the gradient
direction remains consistent over iterations. Variants such as Nesterov’s acceler-
ated gradient [25] further refine this idea by incorporating a lookahead step, offering
additional theoretical and empirical benefits.

2.3 Generalization
A generalized model effectively captures the underlying patterns in the data rather
than merely memorizing the training set. In deep neural networks (DNNs), general-
ization is especially intriguing due to their highly over-parameterized architectures.
Despite often having far more parameters than training samples, DNNs can still
exhibit striking generalization performance. This unexpected phenomenon has chal-
lenged conventional machine learning theories [94] and spurred extensive research
into the mechanisms driving modern deep learning generalization [7, 51, 52].

In machine learning, generalization refers to a model’s ability to perform well on
data that was not part of the training set. To evaluate a model’s performance,
the dataset is typically split into a training set and a test set. The training set is
used to learn relevant patterns, while the test set serves as an unbiased measure of
performance on previously unseen examples. One way to quantify generalization is
through the generalization gap:

Generalization Gap = Ltrain(θ)− Ltest(θ),

where Ltrain(θ) and Ltest(θ) denote the training and testing losses, respectively. A
small gap indicates that the model genuinely captures the underlying structure in
the data rather than merely memorizing the training set.

Traditionally, machine learning theory explains generalization by examining the in-
terplay of model complexity and sample size. Early results, such as those based on
the Vapnik–Chervonenkis (VC) dimension [51], show that for a hypothesis class with
finite VC dimension—an indicator of model complexity that quantifies the largest
set of points a model can shatter—the true loss L(f) is guaranteed to remain close
to the empirical loss Ltrain(f) provided that the number of training samples is suf-
ficiently large. In other words, as the training set size grows relative to the VC
dimension, the model’s performance on unseen data converges to its performance

12

2. Deep Neural Networks

on the training set, thereby ensuring good generalization.

In this framework, overfitting arises when a model is excessively complex relative to
the available data, leading to a small training error but a large test error. One way to
understand this phenomenon is through the bias-variance trade-off : simpler models
(high bias, low variance) tend to underfit the data, while more complex models (low
bias, high variance) often overfit. Formally, for a model f(x) approximating a target
function f ∗(x) with additive noise ϵ ∼ N (0, σ2), the expected squared error at a
data point x decomposes as:

E[(f(x)− z)2] = (E[f(x)]− f ∗(x))2︸ ︷︷ ︸
Bias2

+E
[
(f(x)− E[f(x)])2

]
︸ ︷︷ ︸

Variance

+ σ2︸︷︷︸
Irreducible Noise

, (2.19)

where z = f ∗(x) + ϵ. Specifically:
• Bias: The error due to the model’s inability to capture the true function

f ∗(x). High bias indicates underfitting.

• Variance: The error due to sensitivity to fluctuations in the training data.
High variance indicates overfitting.

• Irreducible Noise: The inherent noise in the data that no model can remove.

Figure 2.2: The bias-variance trade-off curve. In the context of this thesis, risk
corresponds to the loss. Source: [94].

As illustrated in Fig. 2.2, increasing the capacity of the hypothesis class H—that is,
making the model more complex—can lead to overfitting, in which the training error
approaches zero but the test error begins to rise. Conventional wisdom in machine
learning advises controlling the capacity of H according to the bias-variance trade-
off, striving to balance underfitting and overfitting. If H is too restricted, the model
may underfit (yielding high empirical loss), whereas if H is too large, the empirical
loss minimizer can latch onto spurious patterns, achieving low training loss but high

13

2. Deep Neural Networks

true loss on new data.

Regularization is introduced as a key strategy to mitigate overfitting by explicitly
controlling model complexity. In practice, this is often achieved by adding a penalty
term—commonly an L1 or L2 norm—to the training objective, biasing the learning
process toward simpler models. This approach is grounded in the principle of struc-
tural loss minimization, where the goal is to minimize a combination of empirical
loss and a complexity penalty, thereby balancing the trade-off between accurately
fitting the training data and ensuring robust performance on unseen data. Conse-
quently, classical machine learning theory underscores the importance of controlling
model capacity via regularization to achieve strong generalization.

2.3.1 Generalization in Deep neural networks
Despite the statistical learning community’s development of a relatively compre-
hensive framework for supervised learning [10], it has encountered difficulties in
elucidating the extraordinary generalization capabilities of deep learning models.

This challenge was highlighted by Zhang et al. [50], who conducted extensive exper-
iments to investigate the generalization properties of deep neural networks (DNNs).
They trained multiple architectures on datasets like CIFAR-10 and ImageNet under
several conditions: (1) with true labels, (2) with randomized labels, and (3) with
shuffled pixel values. Remarkably, the over-parameterized DNNs performed well
on regular datasets with true labels and are also capable of perfectly fitting data
with random labels, achieving zero training error despite the lack of any correlation
between the inputs and labels, with only a minor increase in training time for the
random label scenario. The performance remained at its peak even without explicit
regularization, demonstrating that the same over-parameterized DNN can memo-
rize individual data points perfectly to reduce the loss to zero while still effectively
learning underlying features and generalizing well to unseen data.

These findings challenge the conventional assumption held within the realm of tra-
ditional statistical learning theory, which suggests that over-parameterized models
like DNNs should overfit the training data and generalize poorly without explicit
regularization techniques. Zhang et al. concluded that while explicit regularization
methods, such as weight decay or dropout, may improve generalization performance,
they are neither necessary nor sufficient for controlling generalization error. Con-
trary to classical assumptions, DNNs were shown to generalize extremely well under
the true label condition even in the absence of explicit regularization. Instead, their
findings suggest that generalization arises from a combination of implicit regulariza-
tion introduced by gradient-based optimization algorithms like stochastic gradient
descent (SGD) and the inductive biases inherent in the architecture [9]. These in-
sights highlight the need to rethink the theoretical frameworks for understanding
generalization, as DNNs exhibit behaviors that deviate significantly from classical
learning theory.

14

2. Deep Neural Networks

In recent years, the deep learning theory community has extensively studied the
generalization properties of deep neural networks, seeking to reconcile their behav-
ior with traditional statistical learning theories. A notable contribution is the work
of Belkin et al. [94], who proposed the concept of the double-descent curve which
extends the classical bias-variance trade-off. Traditionally, the bias-variance trade-
off posits that minimizing total error requires achieving an optimal balance between
bias and variance. However, deep learning models demonstrate a surprising phe-
nomenon: generalization often improves as model complexity increases beyond the
interpolation point. This behavior is captured by the double-descent curve, as il-
lustrated in Figure 2.3 [94], offering a novel perspective on the relationship between
model capacity and generalization.

Figure 2.3: A double descent risk curve for deep neural networks. Source: [94].

The double-descent curve highlights two distinct phases of deep neural networks.
The first phase pertains to under-parameterized models, whose complexity is lower
than the number of data samples. This phase corresponds to the classical regime,
well-described by traditional statistical learning theories. In contrast, as model
complexity increases beyond the interpolation threshold, we observe the second
phase—the modern interpolating regime—where the risk or loss undergoes a second
descent. This unexpected behavior challenges conventional wisdom and underscores
the need for a deeper understanding of generalization in over-parameterized models.

In order to explain why the second phases exist and to further understand the
generalization principle of deep neural networks in the modern regime, studies have
been conducted from three main perspectives [7, 51, 52]:

• Complexity of Deep Neural Networks: Despite the success of conven-
tional statistical learning theory in establishing upper bounds on generaliza-
tion error using measures such as VC-dimension, Rademacher complexity, and
covering numbers, these bounds often become vacuous for deep neural net-
works due to their explicit dependence on model size. The colossal size of
modern deep learning models renders these classical approaches insufficient
for explaining generalization in practice [52]. Recently, efforts have been made

15

2. Deep Neural Networks

to refine these measures and extend their applicability to deep learning. For
instance, PAC-Bayes theory [40] has emerged as a promising framework, pro-
viding tighter bounds by incorporating probabilistic reasoning about model
weights and their distribution.

• The role of stochastic gradient descent (SGD): SGD and its variants are
critical in determining the trajectory of parameters during training. By mod-
eling SGD through stochastic differential equations (SDEs), researchers have
gained insights into the optimization and generalization dynamics of DNNs
[54, 53, 33, 9].

• The geometry of the loss landscape and parameter space: Deep neu-
ral networks involve highly non-convex, often non-smooth loss surfaces [2].
While this complexity complicates traditional optimization analyses, it can
also create a rich structure of saddle points and local minima that influence
both training trajectories and generalization outcomes. Understanding the ge-
ometry of these loss landscapes is key to explaining why over-parameterized,
seemingly prone to overfitting, models can still generalize well [3, 8].

In practical research, the three ideas outlined here often intersect—a natural con-
sequence of the inherent complexity of deep learning generalization. At its core,
generalization in deep learning seeks to address a fundamental question:

How do deep neural networks optimized using gradient-based methods generalize
well to unseen datasets?

This question inherently intertwines factors such as model complexity, optimization
methods, architectures, and data structure, each contributing to the model’s loss
landscape directly or indirectly.

In the next section, we will briefly discuss one of the key considerations related to
the second perspective, while the remainder of this thesis will primarily focus on the
third perspective, which will be explored in detail in the next chapters.

2.3.2 The Role of SGD in Generalization
When delving deeper into stochastic gradient descent (SGD), its influence on the loss
landscape becomes a focal point, particularly in the context of the widely discussed
sharp minima or flatness bias hypothesis [54, 53, 33]. This hypothesis suggests
that well-generalized deep neural networks trained via SGD tend to converge to flat
minima, whereas poor generalization corresponds to sharp minima. In other words,
according to this hypothesis, the Hessian ∇2

θL(θ) of a well-generalized DNN should
exhibit relatively small eigenvalues.

Note that, in theory, the Hessian of a non-convex loss can have both positive and
negative eigenvalues. However, when we focus on local minima of DNNs, we typically
look at whether there are large positive eigenvalues indicating high curvature (sharp
directions). In practice, many analyses center on the largest (positive) eigenvalue

16

2. Deep Neural Networks

to gauge how sharp a minimum is, as large eigenvalues represent steep directions in
the loss landscape. We give a brief description of the role of GD (SGD) here.

In addition to the discussion on the role of noise in stochastic gradient descent (SGD)
algorithms in Section 2.2.2, gradient descent (GD) provides additional advantages in
the context of flatness bias. A key starting point is the study by Barrett et al. [56],
who describe the implicit regularization introduced by gradient descent as Implicit
Gradient Regularization, proposing that GD inherently guides the optimizer toward
flat minima.

Gradient descent can be viewed as a numerical integration method for the following
ordinary differential equation (ODE):

θ̇ = g(θ) = −∇θL(θ), (2.20)

where the g(θ) is a shorthand of ∇θL(θ).

Let us recall equation 2.6 which is the explicit Euler method, a first-order Runge–
Kutta method [44]:

θt+∆t = θt + ∆t g(θt), (2.21)
incurring a local truncation error of order O((∆t)2) relative to the exact solution
θ(t + ∆t) of (2.20).

To systematically account for this discrepancy, backward error analysis [43] intro-
duces a modified ODE:

θ̇ = g̃(θ) = g(θ) + ∆t g(1)(θ) + (∆t)2g(2)(θ) + · · · , (2.22)

whose solutions match the discrete updates θt+∆t. In the context of gradient descent,
we write:

θ̇ = g̃(θ) = g(θ) + ∆t g(1)(θ) +O((∆t)2). (2.23)
Matching the discrete update Equation 2.21 to the Taylor expansion of θ(t + ∆t)
under θ̇ = g̃(θ) reveals the first-order correction

g(1)(θ) = −1
2 g′(θ) g(θ). (2.24)

Since g(θ) = −∇θL(θ), the correction simplifies to

g(1)(θ) = −1
2 ∇

2
θL∇θL = −1

4 ∇θ∥∇θL(θ)∥2. (2.25)

Hence, the modified ODE becomes

θ̇ = −∇θL(θ)− ∆t

4 ∇θ∥∇θL(θ)∥2 +O((∆t)2), (2.26)

which can be viewed as the gradient flow of a modified loss function:

L̃(θ) = L(θ) + ∆t

4 ∥∇θL(θ)∥2. (2.27)

17

2. Deep Neural Networks

From this perspective, discretizing gradient flow inherently imposes a regulariza-
tion effect by altering the gradient field with an additional term proportional to
∥∇θL(θ)∥2. This term penalizes sharp minima (i.e., regions of high curvature), bi-
asing optimization toward flatter minima with better generalization properties. To
retain such benefits regardless of the step size ∆t, one can explicitly add a gradient
penalty term to the loss:

Lnew(θ) = L(θ) + γ

4 ∥∇θL(θ)∥2, (2.28)

This explicit penalty preserves the regularization effect even if ∆t is altered, thereby
maintaining the bias toward flat minima.

While this implicit bias from SGD or GD has inspired the development of opti-
mization algorithms [55], its universality remains an open question. Several studies
have challenged the general applicability of this hypothesis [41, 42], emphasizing
the need for further investigation into its validity and broader implications. In
particular, Dinh et al. [41] argue that flatness alone cannot directly explain the
generalization of deep neural networks. In some cases, we can find well-generalized
models converge to sharp minima, while Ramasinghe et al. [45] demonstrated that
models failing to generalize can also exhibit flat minima. These findings suggest
that the mystery of generalization cannot be fully understood by focusing solely on
the flatness bias of optimization methods.

Wu et al. [2] propose that rather than exclusively studying the implicit regular-
ization induced by SGD, researchers should also consider the geometric structure
of the loss landscape in deep neural networks. They argue that the loss landscape
guides optimizers toward low-complexity solutions, ultimately facilitating general-
ization. Furthermore, Chiang et al. [3] argue that while optimization methods
influence the speed and effectiveness of convergence, the generalization error—and
even the structures of decision boundaries—are predominantly determined by the
intrinsic properties of the loss landscape itself, rather than by the specific choice
of gradient-based or non-gradient-based optimization methods. They demonstrated
this conclusion across multiple datasets and deep neural network architectures.

These insights motivate further investigation into the interplay between generaliza-
tion and the structural properties of the loss landscape and parameter space. In the
next chapter, we explore two ubiquitous phenomena in the parameter space of deep
neural networks and examine their interconnections. In Chapter 4, we delve deeper
into these phenomena from the perspective of information geometry.

18

3
The Sub-networks in Deep Neural

Networks

Zhang et al. [50] have highlighted that the remarkable generalization power of over-
parameterized deep neural networks is intimately tied to understanding their opti-
mization dynamics and associated inductive biases. Subsequently, several studies
[2, 3] have empirically and theoretically shown that the parameter space of deep
neural networks can exhibit properties analogous to implicit regularization.

In this chapter, we focus on two phenomena that relate to such implicit regular-
ization effect: structural symmetry breaking [1] and sub-networks of deep neural
networks. Structural symmetry breaking highlights that different hidden layers in a
multilayer perceptron may exhibit varying degrees of robustness when re-initialized.
Only a limited subset of these layers genuinely encodes the data’s structural in-
formation, suggesting an intrinsic layer-wise heterogeneity in how neural networks
learn.

Sub-networks, on the other hand, often termed winning tickets in the lottery ticket
hypothesis [69], are sparser architectures hidden within the original over-parameterized
model. The hypothesis posits that among the multitude of randomly initialized sub-
networks, a small subset—referred to as winning tickets—can independently train
to match or surpass the performance of the full network when coupled with their
original initialization. These winning tickets are typically identified through itera-
tive magnitude pruning (IMP) after training, revealing that the crucial capacity of
the model is concentrated in these sub-networks. Notably, the pruned sub-network
demonstrates performance comparable to the original network, even without addi-
tional training [85].

In this work, we extend experiments on structural symmetry breaking to demon-
strate that the phenomenon itself is also rooted in a sub-network akin to that iden-
tified by IMP. This provides fresh insight into how sparse sub-networks underlie the
emerging layer-wise heterogeneity in over-parameterized deep neural networks. And
in the next chapter, the nature of these sub-structures is sought qualitatively and
experimentally through the lens of information geometry.

19

3. The Sub-networks in Deep Neural Networks

3.1 Structural Symmetry Breaking
Structural symmetry breaking refers to the phenomenon in which, despite the ini-
tial symmetry of the structure of the MLP’s hidden layers, certain layers become
disproportionately important for the network’s performance. Neural networks are
typically initialized layer by layer using the same initialization scheme, where each
layer’s parameters are drawn from an identical statistical distribution. In this con-
text, symmetry signifies that the initialization of each hidden layer is statistically
equivalent. Zhang et al. [1] summarized this phenomenon as a self-restriction mech-
anism in the number of critical layers, leading over-parameterized deep networks
trained with stochastic gradient descent (SGD) to exhibit low complexity.

In this chapter, we build upon the work of Zhang et al. to further investigate the
causes and implications of structural symmetry breaking. Our primary research
questions are as follows:

• Can structural symmetry breaking be attributed solely to individual layers, or
is there a more intricate structure within the parameter space?

• How does this "low complexity" manifest within the specific parameter space?

Additionally, we pose the following question:
• In what way do neural networks exhibit this sub-structure, where different

layers take on distinct roles or generate unique sub-networks during training?

We focus on addressing the first two questions in this section, while the third ques-
tion is explored in later chapter of the thesis.

Zhang et al. [1] introduce two operations to analyze structural symmetry breaking:

• Re-initialization: After training, each layer is re-initialized individually by
resetting its parameters to their initial values: θT

l ← θ0
l , while leaving all other

layers unchanged: (θT
1 , . . . , θT

l−1, θ0
l , θT

l+1, . . . , θT
L). Here, θT

l denotes the param-
eters of the l-th layer at the end of training epoch T , and θ0

l represents the
parameters at initialization. The performance of the modified network is then
evaluated on a test set. The relationship between a layer and its performance
impact following re-initialization is termed the re-initialization robustness of
that layer.

• Re-randomization: In this operation, the parameters of a single layer are
replaced with new random values drawn from the same distribution d used
during initialization. Specifically, this is represented as θT

l ← θ̃l, resulting
in the modified network: (θT

1 , . . . , θT
l−1, θ̃l, θT

l+1, . . . , θT
L). Here, θ̃l refers to the

newly sampled parameters.

Crucially, no additional training or fine-tuning is performed after applying these
two operations. If the network’s performance experiences negligible degradation

20

3. The Sub-networks in Deep Neural Networks

following these operations, the layer is classified as robust. Conversely, if there is a
significant drop in performance, the layer is deemed critical.

3.1.1 Critical and Robust Layers
This thesis adopts the same network architecture as Zhang et al. [1]. The model is
a multilayer perceptron (MLP) comprising three fully connected layers, each with
an output dimension of 256, followed by a Softmax layer [36] as the final classi-
fier. The output dimension of the Softmax layer is 10, corresponding to the labels
in the MNIST dataset [37]. MNIST is a handwritten digits dataset containing
70,000 images of numbers (0–9), requiring ten output neurons to represent the la-
bels. Stochastic Gradient Descent (SGD) with a momentum [38] is used to optimize
the multi-class cross-entropy loss [81].

The training process is conducted over 100 epochs with a stage-wise learning rate
schedule [82], which reduces the learning rate by a factor of 0.2 at epochs 30, 60,
and 90. A batch size of 128 is used during training.

The results of the re-randomization and re-initialization experiments on the trained
model are presented in Figure 3.1 and Figure 3.2. The MLP achieves a high per-
formance on the MNIST dataset, attaining an accuracy of 0.9880. However, due to
the complex dependencies between the classification function and the parameters of
each layer [1], re-randomization of any single layer completely disrupts the learned
representations. As a result, the classification accuracy drops to the level of random
guessing (10% accuracy for ten classes), as illustrated in Figure 3.1.

Layer 1 Layer 2 Layer 3 Output Layer Original Model
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

0.0912 0.0976 0.0662 0.0918

0.9880

Figure 3.1: Layer-wise results of re-randomization showing significant performance
drop, indicating layer dependencies.

21

3. The Sub-networks in Deep Neural Networks

Layer 1 Layer 2 Layer 3 Output Layer Original Model
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

0.5150

0.9758 0.9768 0.9546
0.9880

Figure 3.2: Layer-wise results of re-initialization showing the structural symmetry
breaking, with first layer’s criticality and other layers’ robustness.

However, more intriguingly, as shown in Figure 3.2, re-initialization reveals that
while the first layer is crucial for the network’s performance, the remaining layers
exhibit robustness to re-initialization. This stark contrast between the two types of
layers is referred to as structural symmetry breaking by Zhang et al. [1]. Accord-
ingly, they classify the first layer as critical and the others as robust.

Zhang et al. further argue that if the increase in gradients during backpropagation
of SGD caused the bottom layers (those closest to the input layer) to update more
aggressively than the top layers (those closest to the output layer), one would expect
a smoother transition in the behavior of the first layer, rather than the observed
drastic differences. This indicates that structural symmetry breaking cannot be
fully explained by backpropagation alone but instead emerges from more subtle,
underlying mechanisms. They hypothesize that structural symmetry breaking in
over-parameterized deep networks trained with stochastic gradient descent reflects
a specific form of implicit regularization [49], enabling the network to maintain low
complexity by restricting the number of critical layers.

3.2 Beyond Layer-wise Re-initialization

We extend our analysis beyond the layer-wise level to examine parameter-specific
re-initialization, focusing on the critical role played by certain parameters. Re-
initializing these critical parameters results in a significant degradation of the model’s
performance. To further explore this phenomenon, we introduce parameter-wise re-
initialization as a method for assessing the importance of individual parameters.

22

3. The Sub-networks in Deep Neural Networks

3.2.1 Parameter-wise Re-initialization
To empirically investigate how a network’s parameters evolve during training, we
propose a parameter-wise re-initialization method. This approach is based on ana-
lyzing the absolute differences between parameters before and after training. The
method provides a more granular exploration of the parameter space in neural net-
works, enabling us to understand how specific parameter updates contribute struc-
tural symmetry breaking within each layer.

Algorithms 1 present the pseudocode for the re-initialization scheme. Specifically,
Algorithm 1 details the process of re-initializing specific parameters within a layer
of the network. The algorithm computes the differences between the final and ini-
tial parameter values, identifies parameters whose differences fall within a specified
threshold range—from min_threshold to max_threshold—and resets these parame-
ters to their initial values. The updated model is then returned for further evalua-
tion. In the subsequent experiments, the min_threshold is set to zero.

Algorithm 1 Parameter-Wise Re-initialization
Input: Model parameters θ; initial parameters θ0; thresholds: min_threshold,
max_threshold
Output: Updated parameters θ′

1: θ′ ← θ
2: for each θi ∈ θ do
3: ∆i ← |θi − θ0

i |
4: if min_threshold ≤ ∆i ≤ max_threshold then
5: θ′

i ← θ0
i

6: end if
7: end for
8: return θ′

Next, we evaluate the model’s performance across various threshold values. The pro-
cedure involves iterating over a range of max_threshold values, creating a new model
instance for each threshold. In this experiment, the parameter-wise re-initialization
process (Algorithm 1) is applied to reset parameters within the specified range for
only one specific layer of the model, while the parameters of the remaining layers
remain unchanged. The re-initialized model is then compiled and evaluated on the
same test dataset.

We reinitialize the parameters of each layer by gradually increasing the maximum
threshold from 0 to 0.4 in increments of 0.005 at each time. The result of this
re-initialization is shown in Figure 3.3. Additional details about the parameters
distributions and the distribution of the absolute change of parameters before and
after training are provided in Table A.1 and Figure A.2 in the Appendix.

In Figure 3.3, the decay in performance observed as the maximal threshold increases
is expected. Re-initializing parameters that have undergone little or no change dur-

23

3. The Sub-networks in Deep Neural Networks

ing training does not significantly alter the model’s weights, and thus, the perfor-
mance remains largely unaffected. However, as more parameters with larger changes
are included in the re-initialization process, the decay becomes evident.

The decay eventually reaches a level comparable to whole-layer re-initialization as
the maximal threshold increases. This observation indicates that most parameters in
the first layer are robust to re-initialization, with approximately 95% of parameters
exhibiting changes of less than 0.05 (as shown in Figure 3.3). The significant decay
observed when including parameters with larger changes suggests the presence of
critical parameters—those with substantial updates during training that contribute
disproportionately to the model’s performance.

The decay caused by re-initialization in the last three layers is significantly smaller
than in the first layer. This aligns with the findings of Zhang et al. [1], further
highlighting the distinctive role of the first layer in driving structural symmetry
breaking in the network.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Max Threshold of Interval

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

95% of weights change at 0.04301

(a) Hidden layer 1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Max Threshold of Interval

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

95% of weights change at 0.05344

(b) Hidden layer 2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Max Threshold of Interval

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

95% of weights change at 0.0511

(c) Hidden layer 3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Max Threshold of Interval

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

95% of weights change at 0.25754

(d) Output Layer

Figure 3.3: Parameter-wise re-initialization with varying thresholds per layer.
The red dotted line indicates the threshold at which 95% of the parameters are
re-initialized in each layer. Notably, parameter-wise re-initialization results are con-
sistent with the layer-wise method. Subplot (a) exhibits a distinctly different range
compared to the other three subplots, highlighting the unique role of the first layer.

When the decay begins (particularly evident in the first hidden layer), the majority

24

3. The Sub-networks in Deep Neural Networks

of parameters in each layer have already been re-initialized. This suggests that a
small subset of parameters with significant changes plays a critical role in structural
symmetry breaking, as revealed by parameter-wise re-initialization.

We then extend this parameter-wise re-initialization analysis to the entire model,
as illustrated in Figure 3.4. The distribution of parameters across the whole model,
based on the magnitude of absolute changes, is detailed in Table A.2. This broader
perspective provides further insight into the parameter-specific dynamics influencing
the network’s structure and performance.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Max Threshold of Interval

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 3.4: Parameter-wise re-initialization with different thresholds for the whole
model

As shown in Figure 3.4, the same thresholds as in Figure 3.3 lead to significantly
larger accuracy decay for critical parameters, with the eventual accuracy dropping
below 0.2, equivalent to random guessing. Zhang et al. [1] hypothesized that critical
layers, which house the primary learning capacity of the network, render other layers
robust to re-initialization. However, even when the entire first layer is re-initialized,
the lowest accuracy remains at 0.5150 (as shown in Figures 3.2 and A.1) or when
parameter-wise re-initialization is applied per layer (as shown in Figure 3.3). This
accuracy is still significantly better. This suggests that the remaining layers also
learn meaningful features from the output of the first hidden layer.

In other words, for per layer re-initialization, whether layer-wise or parameter-wise,
there are always some parameters that maintain the ability of classification in the
layers which have not been re-initialized, preventing the model from disintegrating
to random guessing. The parameters that caused only fairly small decays in the
robust layer when the layers were re-initialized independently in Figure 3.3, once re-
initialized together with the parameters that caused larger decays in the first layer,
caused a larger decay than any of the individual layers.

25

3. The Sub-networks in Deep Neural Networks

Once we consider the entire parameter space and re-initialize parameters across
different layers based on the magnitude of their absolute change before and after
training, the accuracy drops significantly. This implies a crucial relationship between
the parameters in different layers. Those potential parameters which are involved
contain the capacity of learning, we call them critical parameters. Based on these
observations, we postulate that these critical parameters, which represent only a
small fraction of the total, form a sparse and compact sub-network within the MLP.
This phenomenon can be connected with the Lottery Ticket Hypothesis described
by Zhang et al. [69].

3.3 Lottery Ticket Hypothesis
The observation from Figure 3.4 reveals that the critical parameters of each layer
are closely interconnected with those of other layers. This finding implies that the
critical parameters collectively constitute a sub-network within a well-trained neu-
ral network. To further investigate this phenomenon, we employ parameter-wise
re-initialization experiments, leveraging the Lottery Ticket Hypothesis (LTH) [69]
to identify a comparable sub-network embedded within the trained deep neural net-
work.

3.3.1 Background of the Lottery Ticket Hypothesis
Frankle et al. [69] proposed the Lottery Ticket Hypothesis (LTH), which suggests
that within a large, well-trained neural network, there exists a much smaller and
sparser sub-network (a winning ticket) that can be re-trained to achieve performance
comparable to the original network after pruning and re-initialization. Crucially, a
winning ticket consists not only of a sub-network but also of its specific initialization.
If the sub-network is re-initialized with a different sample from the same distribu-
tion, it no longer demonstrates the high performance observed with the original
initialization. This is the same scheme as re-initialization. This follows the same
scheme as re-initialization.

Iterative Magnitude Pruning [91] is the process of identifying and removing less
important parameters from the network, leading to the discovery of the winning
ticket. The standard pruning process involves iteratively training the network, re-
moving parameters with the smallest magnitudes as they are assumed to have minor
contributions to learning, and re-training the pruned network. The goal is to retain
the network’s expressive power while significantly reducing its complexity.

While the term lottery might suggest that the sub-network is determined solely by
initialization, this is not the case. The winning ticket or sub-network structure is
identified only after training through pruning. It is a function of the training dy-
namics, which determine the importance of specific parameters across the network.

26

3. The Sub-networks in Deep Neural Networks

Figure 3.5: A flow chart illustrates the training procedure for the lottery ticket
hypothesis, is adapted from Dr. Sebastian Raschka’s blog [39].

Importantly, the Lottery Ticket Hypothesis is not constrained by layer size; the
identified sub-network spans across layers, depending entirely on the absolute mag-
nitude of the parameters. This highlights that sub-network is not tied to any specific
layer or architecture but emerges as an optimal configuration discovered through the
interplay of over-parameterization, training, and pruning.

3.3.2 Lottery Tickets Hypothesis for Parameter-wise Re-
initialization

To investigate the sub-network identified through parameter-wise re-initialization
of the entire model parameter space, we propose an alternative pruning method.
Instead of selecting the winning ticket through iterative magnitude pruning and
re-training the model after pruning, our approach combines parameter-wise re-
initialization, as outlined in Algorithm 2, to reveal a similarly sparse sub-network.
This method introduces a novel pruning criterion: rather than pruning based on
the absolute magnitude of parameters in a post-trained neural network with good
generalization, critical parameters are selected based on the extent of their deviation
from their initialization.

This algorithm prunes the parameters of a given neural network model based on
the absolute differences from their initial values, retaining only those parameters
whose changes fall within a specified threshold. Notably, after pruning, we do not
re-train the pruned model, aligning with the re-initialization experiment settings
presented in this thesis. This approach differs from the Lottery Ticket Hypothesis
(LTH), which aims to maintain the same performance through multiple iterations
of pruning and re-training, with the goal of drastically reducing the network’s size.
Instead, our focus lies in uncovering an identical sub-network that exists within the
trained model.

To investigate the sub-networks identified through pruning and re-initialization un-
der two criteria—magnitude and the absolute value of changes between initialization

27

3. The Sub-networks in Deep Neural Networks

Algorithm 2 Pruning via Parameter-Change
Input: Model parameters θ, initial parameters θ0, pruning fraction p
Output: Pruned parameters θ′

1: θ′ ← θ
2: for each θi ∈ θ do
3: ∆i ← |θi − θ0

i |
4: end for
5: Determine threshold τ such that fraction p of all ∆i ≤ τ
6: for each θi ∈ θ do
7: if ∆i ≤ τ then
8: θ′

i ← 0
9: end if

10: end for
11: return θ′

and post-training parameters—we conducted further experiments. Building on the
assumptions of the Lottery Ticket Hypothesis (LTH) regarding magnitude-based
parameter importance, we ranked parameter importance based on two criteria: the
magnitude of the parameters themselves and the magnitude of their change dur-
ing training. Here, a larger magnitude of change indicates greater importance for
the model and a more significant contribution to its capacity. Parameters were then
ranked from least to most important under both criteria. For each ranking, the same
percentage of parameters was selected for pruning or re-initialization, expressed as
a fraction of the total parameters. The resulting sub-networks, generated through
these operations, were evaluated directly on the test set without re-training. The
final results are presented in Figure 3.6.

We observe several notable phenomena in Figure 3.6. First, among the two re-
initialization-based curves, the change-based approach demonstrates significant de-
cay only after the vast majority of parameters have been re-initialized. This observa-
tion aligns with our earlier findings and reinforces the characteristic of trained neural
networks where only a small subset of parameters across layers actively encode criti-
cal information about the data features. Secondly, random selections perform worse
than a systematic, criteria-driven approaches. Moreover, when re-initialization is
guided by well-defined criteria, it often preserves higher accuracy than pruning, be-
cause reverting parameters to their original initialization provides a stronger prior
than removing them entirely.

In a more detailed comparison of re-initialization and pruning, re-initialization
demonstrates superior accuracy under change-based criteria, while pruning main-
tains higher accuracy when adhering to magnitude-based criteria. The rationale
behind pruning and re-initialization is that parameters with smaller magnitudes
are set to zero during pruning, while those with smaller changes are resettled to
their initial values during re-initialization. This is done to maintain the model’s
performance as much as possible after the operation. Consequently, magnitude-

28

3. The Sub-networks in Deep Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0
Prune/Reinit Fraction

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Model Accuracy vs. Prune/Reinit Fraction

Prune by Magnitude
Prune by Change
Prune by Random Selection
Reinit by Magnitude
Reinit by Change
Reinit by Random Selection

Figure 3.6: A plot of the comparison results of sub-networks based on prun-
ing and re-initialization of parameter magnitude and absolute change on the test
set which illustrates the impact of two parameter-wise methods—pruning and re-
initialization—on the performance of neural networks. These methods are shown
by two criteria: the absolute magnitude of the parameters and the absolute change
in parameter values between their initialization and post-training states. These two
methods can be seen as distinct approaches to perturb the neural network on a
parameter-by-parameter basis.

based criteria and change-based criteria naturally possess advantages in these two
approaches. Specifically, when setting parameters in a neural network to zero, the
effective approach to minimize the damage on the model’s capacity is to remove pa-
rameters that are already close to zero, which is the advantage of magnitude-based
criteria over change-based criteria in pruning. The analogous advantage also applies
to criteria based on change in re-initialization, as the small changed parameters are
already closed to their initialization values.

The pruning-based experiments show that the results for the two criteria remain
largely consistent. This outcome is not surprising, as pruning introduces a larger
perturbation to the model compared to re-initialization. Specifically, pruning di-
rectly sets the selected parameters to zero, ensuring that the selected parameters
no longer contribute to the model, rather than re-initializing them with initializa-
tion. When decay becomes apparent in both pruning models, the majority of the
parameters have already been set to a value of 0. Additionally, due to our initial-
ization strategy, where parameters are initially drawn from a Gaussian distribution
(as shown in Figure A.2), parameters with larger absolute changes during training
are more likely to correspond to those with larger absolute values in the trained
model. This overlap in parameter selection between the two criteria and the nature

29

3. The Sub-networks in Deep Neural Networks

of pruning further contributes to the similarity of the pruned models during the
pruning process.

3.4 The Sub-networks in Deep Neural Networks
It should be clarified that this work does not attempt to reject the importance of lay-
ers in deep neural networks (as pointed out by Zhang et al. [1]) but rather explores
the more subtle structures on this basis, with the intention of finding low-complexity
structures across layers, giving us a deeper and more concrete understanding of the
training process of deep neural networks.

The primary focus here is not on comparing pruning methods but on gaining a
deeper understanding of the sub-network structures inherent in trained neural net-
works. The choice of pruning method ultimately depends on the criterion used to
assess the importance of neural network parameters. Both criteria, along with the
perturbation methods—pruning and re-initialization—examined in this study, high-
light, to varying extents, the existence of these sub-networks. These sub-networks
are the central focus of this thesis and are further analyzed in the subsequent chapter.

It is worth mentioning that if pruning is done to reduce the size of the network, then
one will select the network after 60% of it has been pruned for re-training (because
at this point the network’s performance is not significantly decayed, but most of
the parameters have been removed), and then this pruning-re-training process is
repeated, with the pruning fraction changing until the smallest network is found.
Therefore, an interesting research direction is to comprehensively compare the per-
formance of the final sub-network obtained by pruning according to the magnitude
of change and the sub-network of LTH based on the benchmark of IMP [79].

One can calculate the overlap ratio of the two criteria for each fraction of pruned
or re-initialized parameters. Let N denote the total number of parameters in the
model, and let S1 and S2 be two sets of indices corresponding to parameters selected
by different criteria, with each selection comprising a fraction p of the parameters
(i.e., |S1| = |S2| = pN). We define the overlap ratio R as

R = |S1 ∩ S2|
pN

. (3.1)

This metric quantifies the proportion of parameters common to both selections rel-
ative to the number selected.

When parameters are chosen uniformly at random, the expected number of common
parameters is p2N , since each parameter has a probability p of being selected in each
set independently. Thus, the expected overlap ratio in the random case is given by

p2N

pN
= p.

30

3. The Sub-networks in Deep Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0
Fraction

0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

la
p

Ra
tio

Overlap Ratio
Identity Line

Figure 3.7: A plot illustrates the overlap ratio, aligning with the experimental set-
tings from previous sections where a fraction of parameters is pruned or re-initialized.

In other words, if the selections are statistically independent, the overlap ratio is
expected to equal p.

Figure 3.7 presents the results of our experiments. We compare two criteria: one
based on the magnitude of the final weights and the other based on the absolute
change from initialization. Our experimental results indicate that although the pa-
rameter selection outcomes using the magnitude-based criterion and the absolute
change criterion outperform those of random selection, the two methods exhibit no
statistical correlation when assessed via the overlap ratio. In the case of two inde-
pendent random selections of a fraction p of the parameters, the expected overlap
ratio is exactly p. Our observation that the measured overlap ratio aligns with this
expectation suggests that the two criteria are statistically independent in terms of
the indices they select. Consequently, we can assert that the change-based criterion
defines effective sub-networks in neural networks in a distinct manner.

Even the two independent selection methods yield uncorrelated sets of parameter
indices, the resulting sub-networks can share a significant number of non-critical
parameters. For example, as illustrated in Figure 3.6, when a large fraction of pa-
rameters is pruned (e.g., p = 0.8), the overlap ratio between the two criteria reaches
83.7%, while the model’s accuracy remains around 90%. This observation indicates
that the two criteria converge on a similar set of non-critical parameters. In other
words, despite being statistically independent, the methods overlap considerably in
pruning and re-initialization. This interplay between independent selection methods
and parameter redundancy provides an intriguing direction for future research aimed

31

3. The Sub-networks in Deep Neural Networks

at further elucidating the importance of individual parameters in neural networks.

Based on our experiments, it becomes evident that the distribution of critical pa-
rameters forms a distinct critical sub-network. Furthermore, this sub-network, in
conjunction with the varying roles of feature extraction across layers, contributes
to the emergence of the observed structural symmetry-breaking phenomenon. In
the case of this three-hidden-layer MLP, feature learning in the first layer—achieved
with a relatively small number of critical parameters—emerges as a key factor in
determining the network’s overall performance. In contrast, subsequent layers per-
form layer-by-layer feature extraction, enhancing the network’s learning capabilities.
This process results in the formation of a critical, low-complexity sub-network that
underpins the model’s effectiveness.

The above answers the first two questions posed in the previous of this section:
Firstly, structural symmetry breaking cannot be attributed solely to individual lay-
ers; rather, it is a property of the emergence of sparse sub-networks within the model.
This is because re-initialization ultimately operates on the sub-networks identified
according to the corresponding criterion. Furthermore, the low complexity described
by Zhang et al. [1] corresponds to the sparse sub-network that encapsulates the ca-
pacity of the model.

The question of how stochastic gradient descent (SGD) shapes the parameter space
of the network during training to form these sub-networks is challenging to address
directly due to the complexity of deep neural network dynamics [92]. We propose
considering the unique role of the parameter space itself before attributing a magic
effect to SGD [2] in such cases. As noted by Wu et al.[2] and Ping-yeh et al.[3],
the parameter space inherently influences generalization. To understand how this
high-dimensional parameter space interacts with optimization dynamics and lever-
ages the structure of natural datasets to construct a valid model containing a sparse
and critical sub-network, we will examine the loss landscape from the perspective
of information geometry in the next chapter.

32

4
The Spectrum of Deep Neural

Networks

In this chapter, we further explore the properties of sub-networks and elucidate
their connection to the eigen-spectrum of the Fisher Information Matrix (FIM)
[104] through a series of novel experiments. The FIM acts as a metric tensor on the
statistical manifold induced by neural networks, thereby endowing the parameter
space with a Riemannian structure—a structure we refer to as the ’neuromanifold’
[106]—from an information geometry perspective.

Baratin et al. [74] demonstrated that deep neural networks evolve primarily along
a limited number of eigendirections of the FIM, where a few large eigenvalues dom-
inate the spectrum. This spectral analysis highlights the anisotropy of the FIM
spectrum and its impact on parameter space evolution, while also allowing us to
build on these findings to reveal how these anisotropic characteristics relate to the
sub-networks identified earlier. We also examine the internal structure of the sub-
space spanned by the eigenvectors corresponding to the largest eigenvalues of the
FIM spectrum, seeking spectral evidence for how models converge into sparse sub-
networks—a topic that extends discussions from the previous chapter.

The architecture and dataset utilized in this chapter are consistent with those em-
ployed in the preceding chapters to ensure continuity.

4.1 Neuromanifold and Fisher Information Ma-
trix

4.1.1 Statistical Manifold
We define the statistical manifolds from the perspective of Information Geometry
as applied to neural networks [106]. Let X ∈ Rd be a random variable representing
the network input, and let Y = fθ(X) denote the corresponding output, where fθ

represents the input-output mapping parameterized by neural network parameters θ.

We introduce the following probability distributions:
• pX(x): the marginal distribution of inputs,

33

4. The Spectrum of Deep Neural Networks

• pY |X(y | x; θ): the conditional distribution of outputs given inputs,
• pX,Y (x, y; θ): the joint input-output distribution,
• p(x, z): the training distribution, where z are the ground-truth labels associ-

ated with the inputs x.

Using the conditional probability rule, the joint distribution of (X, Y) can be ex-
pressed as:

pX,Y (x, y; θ) = pX(x) · pY |x(y | x; θ). (4.1)

Here, the marginal density pX(x) reflects the input distribution, while pY |X(y | x; θ)
encapsulates the mapping from inputs to outputs under the parameterization θ.
Furthermore, while dropping indices for brevity, we ensure that all dependencies are
clear from the context.

The family of density functions

{θ 7→ p(x, y; θ) | θ ∈ Θ},

parametrized by θ, forms a submanifold of the infinite-dimensional space of probabil-
ity density functions. Here, Θ represents the parameter space. To ensure smooth-
ness, we assume the following regularity condition: the partial derivatives of the
probability density with respect to the parameters,

∂

∂θ1
p(x, y; θ), . . . ,

∂

∂θN

p(x, y; θ),

are linearly independent, where θT = (θ1, . . . , θN) ∈ Θ. This condition guarantees
that the submanifold admits a tangent space at each point p(x, y; θ). This manifold,
denoted as

S = {p(x, y; θ) | θ ∈ Θ},

is called a statistical manifold [106].

At initialization, in most practical settings, the training distribution p(x, z) is un-
likely to lie exactly on the manifold S. By adjusting the parameters θ in the neural
network, the goal of the training is to minimize the proximity between the training
data distribution p(x, z) and the corresponding statistical manifold p(x, y; θ). If the
optimal parameter vector exists, it can be obtained by minimizing the Kullback-
Leibler (KL) divergence:

θ∗ = arg min
θ

DKL(p(x, z)∥p(x, y; θ)). (4.2)

This optimization ensures that the model’s predicted conditional distribution p(y |
x; θ) aligns as closely as possible with the true data conditional distribution p(z | x).
Consequently, the optimal parameters θ∗ maximize the likelihood of the observed
class labels under the model:

34

4. The Spectrum of Deep Neural Networks

The Kullback-Leibler (KL) divergence between two probability distributions p and
q over the same variable (e.g., (x, z)) is defined as

DKL(p ∥ q) = Ep

[
log
(

p
q

)]
= Ep

[
log p

]
− Ep

[
log q

]
. (4.3)

When p represents the (unknown) true data distribution p(x, z) and q is the model
distribution p(x, y; θ), the KL divergence measures how far the model is from the
true data distribution. Importantly, DKL(p ∥ q) ≥ 0, with equality if and only if
p = q almost everywhere.

Minimizing the KL divergence in Equation (4.2) is equivalent to maximizing the ex-
pected log-likelihood of the data under the model. By expanding the KL divergence:

DKL
(
p(x, z) ∥ p(x, y; θ)

)
= Ep(x,z)

[
log p(x, z)

]
︸ ︷︷ ︸

constant in θ

− Ep(x,z)
[
log p(x, y; θ)

]
.

Since the first term only depends on the true data distribution which makes it
constant, minimizing DKL is equivalent to maximizing the second term,

Ep(x,z)
[
log p(x, y; θ)

]
,

which is precisely the expected log-likelihood. In practice, we do not know p(x, z)
exactly; instead, we use an empirical distribution derived from a training dataset
{(xn, zn)}N

n=1, making the optimization criterion

1
N

N∑
i=1

log p
(
xn, zn; θ

)
,

which is the standard maximum log-likelihood objective [66] in statistics and ma-
chine learning.

The KL divergence is especially natural in this setting because minimizing DKL with
respect to θ corresponds directly to maximizing likelihood, giving rise to classical
maximum likelihood estimation (MLE) [66]. More importantly for this thesis, the
second-order Taylor expansion of DKL around the optimum yields the FIM as the lo-
cal metric, simplifying analyses of model sensitivity. This relationship will be shown
in the next sub-section.

4.1.2 Fisher Information Matrix
Once the optimal parameters θ∗ are determined by minimizing the KL divergence,
we can analyze the local geometry of the statistical manifold S. The KL divergence
between the true data distribution p(x, z) and the model’s predicted distribution
p(x, y; θ) provides a natural distance measure on this manifold. In the framework
of information geometry, it is a well-established result that S can be endowed with
a metric tensor, turning it into a Riemannian manifold—sometimes called a Neuro-
manifold in neural network contexts [106]. This metric tensor arises naturally from

35

4. The Spectrum of Deep Neural Networks

a perturbation perspective:

In the vicinity of θ∗, the KL divergence can be approximated by a second-order
Taylor expansion:

DKL
(
p(x, y; θ) ∥ p(x, y; θ + dθ)

)
≈ 1

2dθ⊤F dθ, (4.4)

where the Fisher Information Matrix (FIM) F arises as the second derivative of the
KL divergence with respect to the parameters:

F(θ) := E(x,y)∼p(x,y)
[
∇θ log p(x, y; θ)∇θ log p(x, y; θ)⊤

]
. (4.5)

This result establishes F as the Riemannian metric on the parameter space, captur-
ing the curvature of the statistical manifold S in terms of parameter perturbations.
By measuring how small changes in θ affect the model’s predictive distribution, F
provides a principled framework for analyzing the sensitivity properties of the model.

One might wonder whether different divergences can be associated with distinct
geometric frameworks, which influence the corresponding optimization methods.
Indeed, in Section 2.2.2, our discussion of gradient-based methods for DNNs implic-
itly adopts a Euclidean geometry. In this KL-based setting, performing standard
gradient descent is equivalent to carrying out maximum likelihood estimation in a
parameter space, assumed to have a standard Euclidean metric.

As noted above, minimizing the KL divergence amounts to maximizing the log-
likelihood of the observed data under the model. Gradient descent (GD) on L(θ) ≈
− 1

N

∑N
i=1 log p

(
xn, zn ; θ

)
is thus simply a numerical procedure for performing max-

imum likelihood estimation (MLE) in the parameter space.

Furthermore, one can transition to a natural gradient descent (NGD) framework by
incorporating the Fisher Information Matrix (FIM) into the update rule, thereby
adopting a Riemannian geometric viewpoint. In NGD, the gradient is preconditioned
by the inverse of F(θ), yielding [65]

θt+1 = θt − ηF(θt)−1∇θL
(
θt

)
. (4.6)

Intuitively, NGD accounts for the local curvature of the parameter manifold by
rescaling gradient directions according to the model’s sensitivity in each dimension.
This often improves optimization stability and can lead to faster convergence in cer-
tain problems. However, computing and inverting F(θ) is expensive, and becomes
prohibitive for large-scale models.

Since exploring alternative optimization methods is beyond the scope of this the-
sis, we focus instead on how the FIM itself offers valuable insights into parameter
evolution during training. We note the relevance of natural gradient methods in
passing, referring interested readers to the corresponding literature [65, 67, 68] for
more in-depth treatments.

36

4. The Spectrum of Deep Neural Networks

4.1.3 Empirical Fisher Information Matrix
Although the FIM in (4.5) relies on an expectation over the true distribution p(x, y),
the true distribution is rarely available in closed form. In practice, we define an
empirical FIM by replacing the expectation E(x,y)∼p with a sample average over a
dataset {(xn, yn)}N

n=1:

F̂(θ) = 1
N

N∑
n=1

[
∇θ log p(xn, yn; θ)

] [
∇θ log p(xn, yn; θ)

]⊤
. (4.7)

As N →∞, F̂(θ) converges to F(θ) under standard regularity conditions.

Using Bayes’ rule, we have

p(x, y; θ) = p(y | x; θ) p(x),

and since p(x) is independent of the model parameters θ, it follows that

∇θ log p(x, y; θ) = ∇θ log p(y | x; θ).

Therefore, Equation (4.7) can be equivalently written as

F̂(θ) = 1
N

N∑
n=1

[
∇θ log p(yn | xn; θ)

] [
∇θ log p(yn | xn; θ)

]⊤
. (4.8)

A common example in machine learning assumes a Gaussian likelihood with unit
variance:

p(y | x; θ) = 1√
2πσ2

exp
(
− 1

2σ2∥y− fθ(x)∥2
)

. (4.9)

In practice, one might have σ2 ̸= 1; here we set σ2 = 1 for simplicity. Consequently,
the negative log-likelihood is proportional to the Mean Squared Error (MSE) loss:

− log p(y | x; θ) ∝ ∥y− fθ(x)∥2.

This formulation highlights that, from a probabilistic perspective, the loss function
does more than merely measure the discrepancy between predictions and labels—it
also encodes a noise assumption, that is, a prior belief about the error (or noise)
distribution underlying the data. The model assumes that the observed outputs are
generated as

y = fθ(x) + ϵ,

with the error ϵ drawn from a specified distribution (e.g., a Gaussian distribution in
the MSE case). This assumption allows us to derive the loss function as the negative
log-likelihood of the noise model, thereby endowing the loss with the ability to cap-
ture the local curvature of the log-likelihood function—a curvature that is precisely
characterized by FIM.

Substituting the Gaussian likelihood (with σ2 = 1) into Equation (4.8) and inte-
grating out y yields the metric tensor

F :=
C∑

k=1
Ex∼ρ

[
∇θfk(x)∇θfk(x)⊤

]
, (4.10)

37

4. The Spectrum of Deep Neural Networks

where C is the number of classes (or outputs), fk denotes the k-th output of the
neural network, and ∇θfk(x) is the Jacobian of k-th output with respect to all train-
able parameters of the neural network.

When N input samples xn (n = 1, . . . , N) are available, the empirical FIM under
MSE can be derived from the definition in Equation 4.7 as:

F =
C∑

k=1

1
N

N∑
n=1
∇θfk(xn)∇θfk(xn)⊤. (4.11)

To streamline notation, we omit the hat F̂, which typically denotes the empirical
FIM, as all subsequent derivations are implicitly based on the empirical approxima-
tion. The equation 4.11 is equivalent to:

F = 1
N

N∑
n=1
∇θfθ(xn)∇θfθ(xn)⊤. (4.12)

where ∇θfθ(xn) is the Jacobian matrix of the network’s outputs with respect to all
parameters, computed for a single input sample.

In the computation of empirical FIM, one can collect the per-sample Jacobians
∇θfθ(xn) into a P × CN matrix:

J =
[
∇θf1(x1) ∇θf2(x1) . . . ∇θfc(x1) . . . ∇θfc−1(xN) ∇θfc(xN)

]
,

where each column of J corresponds to ∇θfk(xn) (k = 1, . . . , C, n = 1, . . . , N).
Then the empirical FIM can be expressed as

F = 1
N

J J⊤. (4.13)

We consider this type of empirical metric tensor for arbitrary N , which may also be
fixed at a constant value.

In parallel, we define
F∗ = 1

N
J⊤ J. (4.14)

Though F∗ is not itself the FIM, it is closely related: by rearranging the Jacobian
via matrix multiplication, one obtains a dual form. Applying the Singular Value
Decomposition (SVD) of the Jacobian J:

J = UΣV T , (4.15)

where U and V are orthogonal matrices and Σ is a diagonal matrix of singular
values, we compute:

F = 1
N

UΣΣT UT , F∗ = 1
N

V ΣT ΣV T .

The eigenvalues of F and F∗ are determined by the same squared singular values
of J divided by N , so F and F∗ share the same non-zero eigenvalues, as shown in

38

4. The Spectrum of Deep Neural Networks

[107].

It is noteworthy that, while the empirical Fisher Information Matrix (FIM) encap-
sulates local information about the neural network, its size—being a P × P ma-
trix—renders direct computation infeasible for large-scale models. Nevertheless, as
shown by Karakida et al. [102], F∗, is the empirical Neural Tangent Kernel (NTK).
The established duality between empirical FIM and empirical NTK offers an effi-
cient alternative to compute the spectrum without incurring the computational cost
of handling the full FIM. We will discuss the details of NTK in the next sub-section.

Impact of Noise Assumptions on the FIM. In the derivation above we as-
sumed the standard case of independent Gaussian noise with unit variance. Under
this assumption, the error yk − fk,θ(x) for each output is distributed as N (0, 1), so
that

Ey|x

[
(yk − fk,θ(x))(yj − fj,θ(x))

]
= δkj,

where δkj is the Kronecker delta that selects only the diagonal terms. Hence, the
FIM simplifies to Equation (4.10).

If, however, the noise is independent but with variance σ2 ̸= 1, then

Ey|x

[
(yk − fk,θ(x))(yj − fj,θ(x))

]
= σ2 δkj,

and the empirical FIM becomes

F = σ2
C∑

k=1
Ex∼ρ

[
∇θfk,θ(x)∇θfk,θ(x)⊤

]
.

On the other hand, if the noise terms are correlated—meaning that the errors follow
a multivariate Gaussian with a full covariance matrix Σ—then

Ey|x

[
(yk − fk,θ(x))(yj − fj,θ(x))

]
= Σkj.

In this case, the empirical FIM takes the more general form:

F =
C∑

k,j=1
Ex∼ρ

[
∇θfk,θ(x) Σkj∇θfj,θ(x)⊤

]
,

which reflects the coupling between different output dimensions.

In many real-world scenarios, the noise is heteroscedastic, meaning its variance (or
covariance) depends on the input x. This is modeled by letting the covariance
become a function Σ(θ, x). In this case, the empirical FIM generalizes to

F = Ex∼ρ

[
∇θf(x)⊤ Σ(θ, x)∇θf(x)

]
,

39

4. The Spectrum of Deep Neural Networks

which captures the input-dependent uncertainty directly in the geometry.

Even in numerous applications, the Gaussian assumption provides a convenient and
effective approximation to the local geometry of the neuromanifold. However, it is
important to note that alternative likelihoods can be adopted. For example, a uni-
form distribution might be assumed when noise is bounded, a Laplace distribution
leads to an L1 loss, and heavy-tailed distributions (e.g., Student’s t) yield a loss with
different sensitivities to outliers. In each case, the negative log-likelihood derived
from the model prescribes a distinct curvature for the loss landscape. Consequently,
the resulting empirical FIM will differ in its structure (for instance, by including
additional weighting factors or non-quadratic behavior) to capture the inherent un-
certainty of the model.

Thus, the empirical FIM is a general tool that encapsulates the local geometry of
the neuromanifold for any smooth, differentiable likelihood function. The particu-
lar choice of likelihood (and its induced loss) determines how the model “sees” the
data: it defines not only the performance measure but also the metric that guides the
optimization dynamics. In this way, the selection of the loss function is fundamen-
tal to both model fitting and to shaping the effective geometry of the neuromanifold.

4.2 Neural Tangent Kernel

The Neural Tangent Kernel (NTK) [108] provides a key framework for analyzing
the training dynamics of neural networks under gradient descent. It characterizes
how updates to the parameters θ on one data sample influence predictions for other
samples. The NTK formalism allows for the characterization of training trajectories
and convergence behaviors in wide neural networks, providing critical insights into
their generalization properties and scaling dynamics.

Now, we will recall the loss function and training dynamics from Section 2.2: The
empirical loss function, defined in Equation 2.5, quantifies the discrepancy between
predictions and true labels. The gradient of the loss with respect to the parameters
θ can be expressed as:

∇θL(θ) = 1
|D|

∑
xn∈D

∇θfθ(xn)∇fℓ(fθ(xn), zn),

where ∇fℓ(fθ(xn), zn) denotes the gradient of the loss with respect to the model’s
output fθ(xn), and ∇θfθ(xn) is the Jacobian of the network outputs with respect to
the parameters.

The parameters θ evolve under gradient descent. In the continuous-time limit, the
evolution can be written as:

dθ

dt
= −∇θL(θ).

40

4. The Spectrum of Deep Neural Networks

Although this formulation assumes a continuous-time limit, it closely approximates
the behavior of discrete gradient descent steps for small learning rates. Substituting
this into the derivative of the network output fθ(x), we obtain:

dfθ(x)
dt

= ∇θfθ(x)T dθ

dt
.

By substitution, this becomes:

dfθ(x)
dt

= − 1
|D|

∑
x′∈D

∇θfθ(x)⊤∇θfθ(xn)∇fℓ(fθ(xn), zn). (4.16)

Here the term ∇θfθ(x)⊤∇θfθ(xn) defines the Neural Tangent Kernel (NTK) [109]:

K(x, x′) = ∇θfθ(x)⊤∇θfθ(x′), (4.17)

where K(x, x′) measures the similarity between inputs x and x′ in the parameter
space. The elements of the NTK at position (m, n) are given by:

Km,n(x, x′) =
P∑

p=1

∂fm(x)
∂θp

∂fn(x′)
∂θp

, (4.18)

where m, n mean the m-th and n-th output of the neural network.

The most significant conclusions about the NTK emerge when the width of the
network approaches infinity, where the NTK demonstrates the following properties
[108]:

• Deterministic at Initialization: The NTK depends only on the network
architecture and is independent of the initialization values.

• Constant During Training: The NTK remains unchanged throughout train-
ing.

These properties allow the NTK to simplify the analysis of training dynamics, re-
ducing the study of non-linear networks to linear methods. The network function
can be approximated using a first-order Taylor expansion around its initialization:

fθ(x) ≈ fθ0(x) +∇θfθ0(x)⊤(θ − θ0). (4.19)

This linearization implies that the training dynamics in the NTK regime can be
represented as:

dfθ(x)
dt

= −K(x, x′)(fθ(x′)− y), (4.20)

where K(x, x′) is the NTK. This differential equation highlights how the NTK gov-
erns the evolution of the network’s output towards the target y.

Analogous to the empirical FIM, when a dataset of N input samples {xn}N
n=1 is

available, we can define the empirical NTK by collecting the per-sample Jacobians

41

4. The Spectrum of Deep Neural Networks

∇θfθ(xn) (n = 1, . . . , N) into the matrix J, the empirical NTK matrix K̂ is given
by

K̂ = 1
N

J J⊤. (4.21)

The empirical NTK is constructed by aggregating the Jacobians of the network
outputs with respect to the parameters for N data samples. This differs from the
conventional NTK [62] as shown in 4.17, which measures pairwise similarities be-
tween input samples, as we focus on the self-similarity within single samples to align
with the empirical FIM framework [103].

While the NTK framework is often presented in a differential-equation setting, in
practice we use discrete gradient descent. It is crucial to acknowledge that the the-
oretical guarantees of the NTK are contingent upon employing a parameterization
[57, 58] that is suitable for the infinite-width limit. In this limit, the continuous-time
equations can offer valuable insights as the learning rate becomes sufficiently small,
enabling parameter updates to be infinitesimal. In summary, this parameterization
guarantees the existence of an infinite-width limit and ensures that the Neural Tan-
gent Kernel (NTK) remains constant, as described above.

In practice, for sufficiently wide neural networks, the NTK becomes a more precise
predictor of the training dynamics. Specifically, when the network is wide, small
parameter updates have minimal effect on the feature map, causing the NTK to
remain nearly constant throughout training [84]. Here, parameterization refers to
how the network’s parameters (weights and biases) are scaled and initialized so that
signals and gradients flow in a controlled way. Parameterizations can include spe-
cific initialization schemes, output scaling factors, or other techniques (e.g., learning
rate and normalization adaptations) that preserve signal propagation. Under cer-
tain schemes, the NTK remains relatively stable, but with other parameterizations
[59], it can evolve significantly as parameters change, weakening or invalidating the
linearized training dynamics analysis.

4.2.1 Analogy to Cauchy–Green Tensors in Continuum Me-
chanics

Having established the duality between the empirical Fisher Information Matrix
(FIM) and the empirical Neural Tangent Kernel (NTK) in Section 4.1.3, we now
draw a continuum-mechanics analogy to illustrate why two different matrix forms
can describe equivalent geometric structures. This perspective parallels the rela-
tionship between the left and right Cauchy–Green deformation tensors [63], which
represent the same physical deformation in different coordinate systems.

In continuum mechanics, a body moving in Euclidean space is described by a defor-
mation map

X 7→ χ(X),

where the vector X denotes the position of a material point in the body at a reference
time, and χ(X) is its position at the current time. From the deformation gradient

42

4. The Spectrum of Deep Neural Networks

E = ∇X χ(X), one can define two fundamental tensor fields:

• Right Cauchy–Green Tensor: C = E⊤ E, commonly used in the La-
grangian (material) description [61].

• Left Cauchy–Green Tensor: B = E E⊤, naturally suited to an Eulerian
(spatial) perspective [61].

Although C and B appear as distinct matrices (E⊤E vs. EE⊤), they describe the
equivalent geometric content of the deformation. In particular, they share the same
non-zero eigenvalues (the squares of the principal stretches), and their maximal
eigenvectors determine the directions of maximal stretching, i.e. directions in which
the material is deformed the most [86]. One can thus think of them as measuring
curvature or strain in two different, but equivalently valid, coordinate frameworks.

Parallel to FIM and NTK. As described in Section 4.1.3, F and K also share the
same non-zero eigenvalues, arising from interchanging the order of multiplication
J J⊤ versus J⊤ J. Here, we omit the hat K̂, which denotes the empirical NTK. In
close analogy to the Cauchy–Green tensors:

F = 1
N

J J⊤︸ ︷︷ ︸
Left metric tensor

and K = 1
N

J⊤J︸ ︷︷ ︸
Right metric tensor

represent two ways of analyzing the same infinitesimal response of the model to
parameter perturbations. Since J is typically not square, F and K differ in their
dimensionalities. Nonetheless, when focusing on the diagonal of the NTK—that is,
considering the case where the same input is evaluated—both matrices share the
same non-zero eigenvalues. In the continuum-mechanics analogy, these two forms
(EE⊤ vs. E⊤E) correspond to Eulerian vs. Lagrangian viewpoints, whereas in deep
learning they correspond to:

• FIM(F): Focuses on how changes in θ (the parameter space) map directly to
changes in the outputs fθ(x).

• NTK (K): Emphasizes pairwise interactions among different data samples in
the output space via a kernel perspective, i.e. ∇θfθ(x)⊤∇θfθ(x).

Since both F and K share the same non-zero eigenvalues, they inherit the equivalent
core geometric content regarding how a neural network “stretches” small parameter
perturbations in terms of its output.

This analogy is particularly salient for understanding the spectral anisotropy of deep
network training: the principal eigenvalues and eigenvectors of F (and equivalently
K) reveal the most influential directions along which the model evolves. In the next
section, we show how this shared spectrum underlies the model’s strongly anisotropic
behavior.

43

4. The Spectrum of Deep Neural Networks

4.3 Anisotropy in the Spectrum of the Fisher In-
formation Matrix

0.0 0.1 0.2 0.3 0.4
Eigenvalue

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Distribution of Eigenvalues of initial FIM

(a) FIM Spectrum at Initialization

0.00 0.02 0.04 0.06 0.08 0.10
Eigenvalue

0

200

400

600

800

1000

Fr
eq

ue
nc

y

Distribution of Eigenvalues of FIM after Training

(b) FIM Spectrum after Training

Figure 4.1: Distribution of the top 1000 non-zero eigenvalues of the FIM, illustrating
its highly anisotropic spectrum both at initialization and after training.

0 25 50 75 100 125 150 175 200
Epochs

0.01

0.02

0.03

0.04

0.05

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

Figure 4.2: Training and Validation (Test) Loss Curves. The model achieves conver-
gence after approximately 75 epochs.

The Fisher Information Matrix (FIM) is symmetric and positive semi-definite [104],
ensuring that all its eigenvalues are non-negative. Empirically, the eigen-decomposition
of the FIM in deep neural networks consistently reveals a highly anisotropic spec-
trum, where only a few eigenvalues are significantly larger than the rest. In our
experiments, most eigenvalues remain clustered near zero after training, whereas a
small subset separates clearly from the bulk. For a concrete example, Figure 4.1

44

4. The Spectrum of Deep Neural Networks

shows top 1000 non-zero eigenvalues at initialization vs. post-training. We observe
a pronounced spike in the largest eigenvalues, underscoring strong anisotropy.

Simultaneously, Figure 4.2 shows that the model converges (training and test losses
flatten) after around 75 epochs. In the ensuing discussions and experiments, the
FIM, denoted as F, corresponds to Equation 4.13.

Trace Ratio as a Measure of Anisotropy. To quantify the extent of anisotropy,
we define the trace ratio:

Tk =
∑k

j=1 λj∑N
j=1 λj

, (4.22)

where λj denotes the j-th eigenvalue of the FIM (ordered from largest to smallest),
and k is the number of top eigenvalues considered. When Tk approaches 1, it indi-
cates that a small subset of eigenvalues dominates the spectrum. In our setup, T100
increases from 0.360 at initialization to 0.999 after training , indicating a concentra-
tion in a few direction.

Notably, the trace ratio is invariant under uniform scaling of the eigenvalues. Sup-
pose we uniformly rescale the network outputs by a factor α > 0:

fθ(x) 7→ α fθ(x).

In an MSE-based likelihood, each gradient in (4.11) acquires a factor of α, the Fisher
Information Matrix (FIM) is multiplied by α2 factor which makes each eigenvalue
scaled by α2. However, since Tk depends on ratios of eigenvalues, this global α2 fac-
tor cancels out. Hence, we do not conflate genuine changes in shape of the spectrum
with trivial global scaling.

4.3.1 The Dual Roles of FIM in DNNs
Regarding the significance of anisotropy in FIM in deep neural networks (DNNs),
FIM can be understood from two perspectives. Firstly, FIM plays a role in the geo-
metric structure of DNNs’ evolution under certain optimization methods. Secondly,
FIM’s connection to the Hessian of the loss function at minima enables its leverage.

FIM as a Local Metric. One intuitive explanation for why so few eigenvalues
dominate stems from the FIM’s role as a local metric on the parameter manifold.
The quadratic infinitesimal change in the network’s output, measured via the Eu-
clidean norm, can also be expressed in terms of the FIM:

E
[
∥fθ+dθ(x)− fθ(x)∥2

]
≈ dθ⊤F dθ. (4.23)

where the expectation is taken over data points (or a local distribution), and dθ
is an infinitesimal change in the parameters. This equation is typically derived
via a second-order (or probabilistic) expansion, so it holds locally. In differential-
geometric terms, F acts like a Riemannian metric that measures how parameter

45

4. The Spectrum of Deep Neural Networks

steps dθ get stretched in output space. Directions corresponding to large eigenval-
ues of F imply that even small parameter updates can yield substantial changes in
model output. Consequently, gradient-based optimization learns mostly along these
large-eigenvalue directions, driving anisotropic training behavior.

FIM as Hessian via the Gauss–Newton Matrix. Beyond the geometric inter-
pretation, an important theoretical link to Hessian-based analyses [105] arises under
a mean-squared error (MSE) loss near well-converged solutions. The Hessian of the
MSE loss function can be written as

∇2L(θ) = 1
N

N∑
n=1
∇θfθ(xn)∇θfθ(xn)⊤

︸ ︷︷ ︸
G(θ)(Gauss–Newton Matrix)

+ 1
N

N∑
n=1

rn∇2
θfθ(xn)︸ ︷︷ ︸

R(θ)

.

where rn = fθ(xn) − zn is the residual at sample xn. If the residuals are small
(i.e., the model nearly fits the data), then R(θ) becomes negligible, making ∇2L(θ)
well-approximated by the Gauss–Newton matrix G(θ) [67]. Under these conditions,
∇2L(θ) in fact coincides with the empirical FIM, thus linking Hessian-based curva-
ture analyses to the FIM’s anisotropic structure. In other words, if the network is
close to a good minimum (e.g., the minimun in Figure 4.2) under MSE loss func-
tions, the FIM reveals the same eigenvectors and eigenvalues as Hessian.

When gradient descent (GD) or stochastic gradient descent (SGD) operates in the
vicinity of such a solution, the Hessian—as a second-order approximation of the
loss—governs how curvature (and thus gradient changes) distribute across parameter-
space directions. Its eigenvalues quantify how rapidly the loss changes when moving
along their corresponding eigenvectors. Large eigenvalues correspond to high cur-
vature: even minor displacements along these directions induce substantial changes
in the loss, producing stronger gradient signals. As a result, each update step heav-
ily reinforces these directions, while directions associated with smaller eigenvalues
(lower curvature) receive comparatively minor updates.

Gradient Projection Visualization. This anisotropy of FIM spectrum arises
naturally from the local, second-order relationship between parameter changes and
model outputs, and becomes particularly pronounced near minima of MSE-like ob-
jectives, where the Hessian and FIM largely coincide. Consequently, training unfolds
primarily within a low-dimensional subspace determined by these top eigenvectors.

Here, we delve deeper into the convergence of training dynamics into the subspace
through the alignment of the gradients of the parameters with the dominant eigen-
vectors of the FIM spectrum. This is achieved through a novel visualization tech-
nique.

To visualize how each dominant eigenvector vθi
interacts with the model’s parame-

ters updates from the loss function on new data, we construct an eigenfunction uθi
,

which maps an input x to the normalized projection of its Jacobian onto vθi
. Specif-

ically, let fk(x) be the network’s k-th output (e.g., corresponding to the correct label

46

4. The Spectrum of Deep Neural Networks

in a classification setting), and denote ∇θfk(x) ∈ RP the gradient of that output
with respect to all P trainable parameters. Then, for the i-th dominant eigenvector
vθi

with eigenvalue λθi
, we define

uθi
(x) = 1√

λθi

〈
vθi

, ∇θfk(x)
〉
. (4.24)

Here, ⟨·, ·⟩ denotes the inner product in RP , {λθi
, vθi
}r

i=1 are the top-r eigenpairs of
F (sorted by descending eigenvalues). Intuitively, uθi

(x) captures how strongly the
gradient for input x aligns with the i-th principal direction of the empirical FIM.
The normalization factor 1√

λθi

is derived in Appendix A.2 to ensure uθi
has unit

norm in L2(ρ).

Since {vθi
} represent the most influential directions for parameter updates, uθi

(x)
can be seen as a spectral embedding of the gradient at x. By evaluating uθi

(x) on
the test set, one can identify dominant directions of variation. Because high abso-
lute values of uθi

(x) indicate that small parameter changes along vθi
significantly

alter the model’s prediction for x. Hence, the construction in (4.24) provides a
direct bridge between the eigenvectors in the subspace (as reflected in the FIM’s
anisotropic spectrum) and practical, input-dependent gradient.

Figure 4.3 shows the results of applying t-SNE dimensionality reduction [114] to
the output of the last hidden layer, projecting it into a two-dimensional space. The
visualization reveals ten distinct clusters, each corresponding to a different class la-
bel—a phenomenon known as Neural Collapse [113]. Since this gives us the position
of each data point in the test set within the two-dimensional output space, we use
these coordinates to visualize the projection between the eigenvectors and gradients.

We visualize this projection in the same neural collapse (output) space as shown
in Fugre 4.3 across the entire test set in Figure 4.4. The visualization highlights
the behavior of eigenvectors corresponding to different eigenvalues: the 1-st, 10-th,
100-th, and 500-th largest eigenvectors. Notably, the eigenvector associated with
the largest eigenvalue exhibits the most significant response to changes in the data,
suggesting its dominant role in capturing the gradient dynamics.

This observation aligns with the anisotropy of the FIM spectrum, where a small
number of top eigenvectors dominate the training dynamics. These dominant eigen-
vectors likely encode critical information about the data structure and play a key
role in determining the network’s generalization capability. Conversely, the less sig-
nificant eigenvectors show minimal response, consistent with their relatively lower
contribution to the overall gradient evolution.

Empirical evidence further indicates that this subspace, determined by the top eigen-
values and eigenvectors, can remain stable throughout extended training [110]. Con-
sequently, the anisotropic structure of both the Hessian and the FIM near an MSE
optimum helps explain how high-dimensional neural networks effectively focus their

47

4. The Spectrum of Deep Neural Networks

75 50 25 0 25 50 75
Dimension 1

80

60

40

20

0

20

40

60

80

Di
m

en
sio

n
2

2D Visualization of Last Hidden Layer Output
Classes

Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9

Figure 4.3: The Dimensional Reduction of the Last Hidden Layer Output into a
Two-Dimensional Space.

capacity on a relatively small number of fundamental parameter directions.

This anisotropic picture raises several important questions, which we address in the
following subsections:

1. Is the anisotropy ubiquitous across MLPs?
2. What are the implications of this anisotropy for generalization, particularly

with respect to the emergence of sub-networks in MLPs, as observed in our
previous findings?

4.3.2 Spectral Statistics of the Fisher Information Matrix
in MLPs

The spectral statistics of the Fisher Information Matrix (FIM) offer valuable insights
into the anisotropy of the FIM in deep neural networks (DNNs), particularly MLPs.
These statistics play a crucial role in addressing the first question: the ubiquitousness
of the anisotropy. Karakida et al. [102] introduced a mean-field approach to analyze
the spectrum of the FIM, focusing on its mean, variance, and maximum eigenvalues.
For sufficiently wide neural networks, where the width M ≫ 1, the eigenvalue

48

4. The Spectrum of Deep Neural Networks

80 60 40 20 0 20 40 60 80
t-SNE Dimension 1

80

60

40

20

0

20

40

60

80
t-S

NE
 D

im
en

sio
n

2
Eigenvector 1

80 60 40 20 0 20 40 60 80
t-SNE Dimension 1

80

60

40

20

0

20

40

60

80

t-S
NE

 D
im

en
sio

n
2

Eigenvector 10

80 60 40 20 0 20 40 60 80
t-SNE Dimension 1

80

60

40

20

0

20

40

60

80

t-S
NE

 D
im

en
sio

n
2

Eigenvector 100

80 60 40 20 0 20 40 60 80
t-SNE Dimension 1

80

60

40

20

0

20

40

60

80

t-S
NE

 D
im

en
sio

n
2

Eigenvector 500

0

10

20

30

40

50

60

70

Figure 4.4: The Gradient Projection into the 1st, 10th, 100th, and 500th Largest
Eigenvectors

statistics of the FIM can be asymptotically evaluated as:

λ̄ ∼ κ1C

M
, sλ ∼ α

(
N − 1

N
κ2

2 + κ2
1

N

)
C, λmax ∼ α

(
N − 1

N
κ2 + κ1

N

)
M,

where α := ∑L−1
l=1 αlαl−1. In their proof, they introduce Ml = αlM as the width of

each layer in the neural network, αl is a constant. However, in my previous setting,
this specific decomposition of Ml is not necessary. C is the number of classes in
the datasets, N is the number of training samples, κ1 and κ2 are positive constants
derived from order parameters in the mean-field theory approach.

This analysis reveals a critical result: the shape of the eigenvalue spectrum becomes
pathologically distorted as the network width increases.

Specifically:

49

4. The Spectrum of Deep Neural Networks

• The mean eigenvalue, λ̄, decreases asymptotically as O(1/M).
• The variance, sλ, remains at O(1).
• The largest eigenvalue, λmax, grows asymptotically as O(M).

These findings imply that, in sufficiently wide network with random initialization the
majority of eigenvalues asymptotically approach zero as the network width grows.
At the same time, a small number of eigenvalues are significantly larger, correspond-
ing to O(M).

Given the statistical properties of the spectrum derived in this sub-section, this
anisotropy is ubiquitous in multilayer pcerceptrons (MLPs), particularly in suffi-
ciently wide architectures.

4.3.3 The Sub-network and Anisotropy
As demonstrated in the preceding chapter, the performance drop upon re-initialization
provides a pruning-like criterion for identifying sub-networks in a well-trained DNN
that capture essential aspects of the underlying data. A natural question, then, is
whether this anisotropic related to the emergence of sub-networks. In the following,
we investigate this empirically.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Max Threshold of Interval

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ac

e
Ra

tio
 (T

op
 5

0)

Trace Ratio (Top 50 Eigenvalues) with Different Reinitialization Intervals

Interval Method
Random Method
95% Reinitialized

(a) Trace Ratio of Top 50 Eigenvalues

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Max Threshold of Interval

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ac

e
Ra

tio
 (T

op
 1

00
)

Trace Ratio (Top 100 Eigenvalues) with Different Reinitialization Intervals

Interval Method
Random Method
95% Reinitialized

(b) Trace Ratio of Top 100 Eigenvalues

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Max Threshold of Interval

0

10

20

30

40

50

60

70

L2
 N

or
m

 o
f E

ig
en

va
lu

es

L2 Norm of Eigenvalues Change with Different Reinitialization Intervals

Interval Method L2 Norm of Eigenvalues
Random Method L2 Norm of Eigenvalues
95% Reinitialized

(c) L2 Norm of Eigenvalues

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Max Threshold of Interval

0

5

10

15

20

25

Sp
ec

tra
l N

or
m

Spectral Norm Change with Different Reinitialization Intervals

Interval Method
Random Method
95% Reinitialized

(d) Spectral Norm of Eigenvalues Change

Figure 4.5: Spectral Anisotropy shown by parameter-wise re-initialization.

In our experiments, we adopt a similar setting from Algorithm 1 but replace the

50

4. The Spectrum of Deep Neural Networks

accuracy metric with the trace ratio. Using this approach, we analyze how re-
initialization affects the anisotropy of the FIM spectrum. In other words, for each
re-initialization of the same range of parameters as in the experiment of Figure 3.4
for the entire model, we display the trace ratio of the FIM corresponding to each
re-initialization. The results are shown in Figure 4.5.

The two plots in the first row of Figure 4.5 depict the anisotropy of the FIM spec-
trum under re-initialization, focusing on T50 and T100, respectively. The results
indicate that when relatively less critical parameters are reinitialized determined by
the absolute change criterion the anisotropy remains largely unchanged, even after
most of the parameters have been reset to their initial values. In contrast, random
parameter selection significantly reduces the anisotropy from the start of training.
This clearly show the direct connection between the critical parameters (the sub-
network) and the anisotropy of the spectrum.

The second row shows the L2 norm and spectral norm of the FIM. The spectral
norm is defined as the square root of the maximum eigenvalue of the matrix. Both
norms initially increase as the re-initialization interval grows, followed by a gradual
decrease toward the initialization norms as most parameters are progressively re-
initialized to their initial values. These findings suggest that the emergence of the
sub-network plays a dual role: not only is it essentially related with the anisotropy
of the FIM, but it also contributes significantly to robustness.

On the one hand, the plots of trace ratio demonstrate that the trace ratio decreases
only when the parameters that form the sub-network are re-initialized. Only after
the sub-network has been replaced does the anisotropy of the FIM decrease. Two
facts regarding the evolution of parameters in DNNs are presented in the thesis:
first, a sub-network with a significantly lower number of parameters compared to
the original one emerges during training and concentrates the model’s capacity;
second, the evolution or update of a neural network occurs along the directions of
the top eigenvectors corresponding to the largest eigenvalues. The aforementioned
experiment connects these two concepts, suggesting that empirically, the spectral
anisotropy of the FIM can also be attributed to the sub-network.

On the other hand, robustness is reflected in the reduction of the norms of spectrum
during training. The smaller spectrum norms indicates that the model converges
to a flatter and more stable minimum, consistent with the concept of flatness bias.
Flat minima are less susceptible to parameter perturbations, making the model more
resilient to noise and better equipped to maintain stable performance across varying
inputs.

One may question whether the observed decay in anisotropy is an artifact of our
experimental setup, given that we re-initialized most of the parameters prior to ob-
serving it. To address this, we conducted an additional experiment to isolate the
effects of pruning and re-initialization with the same pipeline as the experiment in
Figure 3.6. Instead, here we employed the one additional trace ratio curve.

51

4. The Spectrum of Deep Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0
Prune/Reinit Fraction

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ac

e
Ra

tio
 (T

op
 1

00
)

Reinit by Change: Accuracy and Trace Ratio (Top 100)

(a) Top 100 Eigenvalues by Re-
initialization

0.0 0.2 0.4 0.6 0.8 1.0
Prune/Reinit Fraction

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ac

e
Ra

tio
 (T

op
 1

00
)

Prune by Change: Accuracy and Trace Ratio (Top 100)

(b) Top 100 Eigenvalues by Pruning

0.0 0.2 0.4 0.6 0.8 1.0
Prune/Reinit Fraction

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ac

e
Ra

tio
 (T

op
 1

00
)

Reinit by Change (Rev): Accuracy and Trace Ratio (Top 100) (Reversed Selection Order)

(c) Top 100 Eigenvalues by Re-
initialization (decresing direction)

0.0 0.2 0.4 0.6 0.8 1.0
Prune/Reinit Fraction

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ac

e
Ra

tio
 (T

op
 1

00
)

Prune by Change (Rev): Accuracy and Trace Ratio (Top 100) (Reversed Selection Order)

(d) Top 100 Eigenvalues by Pruning (de-
cresing direction)

Figure 4.6: Spectral Anisotropy: trace ratio and accuracies shown by re-
initialization and pruning.

Figure 4.6 presents the results of this experiment. In the first row, the plots illus-
trate pruning and re-initialization performed in increasing order of absolute param-
eter change, i.e., the parameters with smaller changes are pruned or reinitialized
first. Conversely, the second row shows results where the operations are conducted
in reverse order: the parameters with larger changes are targeted first. Sub-figures
(b) and (d) illustrate an increase in the trace ratio at the end of pruning, attributed
to the removal of all parameters in the model.

From these experiments, we observe a clear correlation between the sub-networks
and anisotropy. Specifically, when critical parameters are disturbed—whether by
pruning or re-initialization—the anisotropy of the FIM spectrum consistently de-
clines, accompanied by a corresponding drop in model performance. These results
suggest that the anisotropy is closely tied to the generalization capabilities of neural
networks via the sub-network.

In this subsection, we demonstrate a strong correlation between the anisotropy of
the FIM spectrum and the emergence of sub-networks. It is plausible that the

52

4. The Spectrum of Deep Neural Networks

anisotropy is directly linked to the existence of sub-networks. In the next two sub-
sections, we will further explore the structure of the subspace where the training
dynamics converge. Understanding this subspace could provide deeper insights into
the mechanisms underlying neural network generalization, particularly the correla-
tion with the sub-network.

4.3.4 The Top Eigenvectors
Given the deep connection between sub-networks and the anisotropy of neural net-
works, it is worthwhile to explore the internal structure of the subspace which is
spanned by the top eigenvectors which are corresponding to the largest eigenvalues
in the FIM spectrum. To this end, we conducted a series of experiments to analyze
the structure of the eigenvectors.

We are motivated by the results presented in Figures 4.5 and 4.6 to investigate
whether the eigenvectors exhibit related low-dimensional characteristics with the
sub-networks. More precisely, we measure the distributions of the components of
specific eigenvectors after re-initialization. The relative magnitudes of the compo-
nents in the eigenvectors serve as a measure of the significance of each parameter
dimension in a specific eigen-direction. They can elucidate the contribution of each
parameter dimension to the principal direction of curvature or sensitivity within the
model. A large positive or negative value in a particular parameter location sug-
gests that the eigen-direction is heavily influenced by that parameter. Given that
sub-networks are composed of those critical parameters, we aim to establish a more
direct connection here. We employed two metrics, kurtosis and Shannon entropy,
for our experiments.

Kurtosis [112] quantifies the tailedness of a distribution. For a vector, where a few
elements are substantially larger than the remainder, the kurtosis value is elevated.
The kurtosis of a vector v = [v1, v2, . . . , vn] is given by:

K(v) = 1
n

n∑
i=1

(
vi − µ

σ

)4
− 3, (4.25)

where:
µ = 1

n

n∑
i=1

vi

is the mean of the vector, and

σ =
√√√√ 1

n

n∑
i=1

(vi − µ)2.

is the standard deviation of the vector. The subtraction of −3 ensures that the
kurtosis of a normal distribution is zero.

53

4. The Spectrum of Deep Neural Networks

0 20 40 60 80 100
Epoch

202500

205000

207500

210000

212500

215000

217500
Av

er
ag

e
En

tro
py

Average Entropy

Figure 4.7: Average Shannon Entropy of Top 100 Eigenvectors Across 100 Training
Epochs.

Shannon Entropy measures the disorder or uncertainty in the magnitude distri-
bution of the eigenvector elements. For a vector, where the magnitude distribution
is concentrated on a few elements, the entropy value is low. The entropy of the
normalized magnitudes pi of the eigenvector elements vi is defined as:

H(v) = −
n∑

i=1
pi log(pi), (4.26)

where:
pi = |vi|∑n

j=1 |vj|
is the normalized magnitude of each element, treated as a probability distribution.To
ensure numerical stability when computing log(pi) for very small values of pi, a small
constant ϵ can be added:

H(v) = −
n∑

i=1
pi log(pi + ϵ). (4.27)

In some presented results, the entropy is shown using the effective rank [111] for a
better visualization, which is derived from the Shannon entropy. The effective rank
provides an interpretable measure of dimensionality and is computed as:

erank = exp(H(v)). (4.28)

Figure 4.7 illustrates a clear trend in which the average effective ranks of the top
eigenvectors, corresponding to the 100 largest eigenvalues, consistently decrease
throughout training until convergence to a minimum. This trend aligns with the loss
curves shown in Figure 4.2. As previously discussed, at the end of training, the dy-
namics of neural networks converge into a subspace spanned by the top eigenvectors.

54

4. The Spectrum of Deep Neural Networks

This observation presented here suggest that, as training progresses, the neural net-
work increasingly operates within a lower-dimensional subspace. This empirically
indicates the emergence of a low-dimensional sub-network by the end of training.

We employ a re-initialization procedure based on absolute change and random se-
lection to analyze two metrics: effective rank and kurtosis. In this process, we
repeatedly re-initialize the parameters and calculate the corresponding metrics for
the eigenvectors of FIM until we have re-initialized the entire model. The results,
presented in Figure 4.8, demonstrate that when the parameters with the largest
changes are reinitialized based on the absolute change criterion, where we commence
with the parameters that have the most significant alterations as the setting from
the experiments in the second row of Figure 4.6, the entropy exhibits a substantial
increase. Conversely, the kurtosis exhibits a clear decrease for both the top 50 and
100 eigenvectors. In contrast, for the same experiments pipeline based on random
selection, there is a distinct difference: there are no rapid increases or decreases for
both of the metrics.

These findings further support the notion that parameter evolution is concentrated
in a limited number of parameters, not solely by examining the performance through
pruning or re-initialization, but also from the distribution of top eigenvectors. In
other words, the subspace where the training dynamics converge to may be rooted in
the sub-networks within a well-trained neural network. Because both of the metrics
demonstrate the declines of the concentration from a few components in the top
eigenvectors, when we re-initialize the neural networks.

We can now address Question 2 posed at the beginning of this section: Our experi-
mental findings strongly suggest that the anisotropy of the FIM spectrum is tightly
linked to the formation of sub-networks in multilayer perceptrons. Moreover, if we
examine the components of the top eigenvectors, we can find that the corresponding
top eigenvectors also exhibit patterns of sparsity that align with these sub-networks.
An open question is whether there exists an underlying mechanism within the neu-
romanifold that governs the network’s evolution, not only along the eigenvectors
associated with the largest eigenvalue, but also within a subspace spanned by these
dominant eigenvectors that may exhibit a sparse structure. Finally the top eigen-
vectors have an extremely significant and direct effect on the gradient propagation
during training, thereby exerting a significant influence on how the model learns and
generalizes.

55

4. The Spectrum of Deep Neural Networks

0 50000 100000 150000 200000 250000 300000 350000
Number of Parameters Reinitialized

200000

205000

210000

215000

220000

Av
er

ag
e

En
tro

py

Average Entropy vs Number of Parameters Reinitialized

Difference-based
Random

(a) Average Effective Rank of Top 100
eigenvectors

0 50000 100000 150000 200000 250000 300000 350000
Number of Parameters Reinitialized

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Av
er

ag
e

Ku
rto

sis

Average Kurtosis vs Number of Parameters Reinitialized
Difference-based
Random

(b) Average Kurtosis of Top 100 eigenvec-
tors

0 50000 100000 150000 200000 250000 300000 350000
Number of Parameters Reinitialized

165000

170000

175000

180000

185000

190000

Av
er

ag
e

En
tro

py

Average Entropy vs Number of Parameters Reinitialized
Difference-based
Random

(c) Average Effective Rank of Top 50
eigenvectors

0 50000 100000 150000 200000 250000 300000 350000
Number of Parameters Reinitialized

10

11

12

13

14

15

16

17

Av
er

ag
e

Ku
rto

sis

Average Kurtosis vs Number of Parameters Reinitialized
Difference-based
Random

(d) Average Kurtosis of Top 50 eigenvec-
tors

Figure 4.8: Average Effective Rank and Kurtosis of Top 100/50 eigenvectors by
Parameter-wise Re-initialization

56

5
Conclusion

The final aspect that may be of particular interest is the unique role of the critical
layer. Several recent studies [88, 89] have shown that iterative magnitude pruning
can uncover the structures of receptive fields (RFs) in the first layer of multilayer
perceptrons, resembling those found in convolutional neural networks (CNNs) [97]
and the visual cortex of animals [90]. The primary function of RFs is to extract
specific features from the data. This observation suggests that receptive fields can
naturally emerge in MLPs to identify and distinguish specific features in real-world
datasets. Moreover, this finding highlights the critical role of the sparse sub-network
structures we identified in the first layer, as these substructures serve a similar role to
the convolutional layers in CNNs. Building on this, an intriguing research direction
would be to investigate the similarities and differences between the sub-networks
identified by various methods, with a particular focus on the correlation of their
receptive fields.

This thesis explores the intricate relationships between the sub-networks and the
anisotropy of the FIM spectrum in deep neural networks (DNNs), as well as in-
vestigate the structure of the subspace spanned by the eigenvectors corresponding
to the largest eigenvalues, focusing on the fundamental architecture of multilayer
perceptrons (MLPs). The findings presented in this work offer insights into the un-
derlying mechanisms that enable over-parameterized DNNs to achieve remarkable
performance.

We employed parameter-wise re-initialization and pruning experiments, which high-
lighted that the existence of critical sub-networks is the cause of the structural
symmetry breaking. These sub-networks retain the primary learning capacity of
the model. They align with the Lottery Ticket Hypothesis (LTH), emphasizing the
importance of specific parameter configurations. The sub-networks exhibited sparse
structures, suggesting that effective feature extraction and hierarchical learning oc-
cur within a constrained subspace of the parameter space.

By introducing the neuromanifold framework and analyzing the spectrum of Fisher
Information Matrix (FIM), this work provided a geometric perspective on the sub-
networks of DNNs. The highly anisotropic spectrum of the FIM revealed that the
training dynamics of DNNs predominantly evolve along a limited number of eigen-
directions.The experimental connections discovered between the spectrum of FIM
and the sub-network of neural networks reveal that the sub-network exhibits a strong
correlation with spectral anisotropy. Furthermore, the subspace spanned by the

57

5. Conclusion

top eigenvectors is directly associated with the low-dimensional nature of the sub-
network. Through a novel visualization technique, we directly demonstrate that
the dominant influence of the top eigenvectors on the parameter evolution in the
parameter space is evident.

These findings collectively advance our understanding of how DNNs achieve both
efficiency and effectiveness in solving complex learning tasks. The interplay be-
tween low-dimensional subspaces, parameter criticality, and optimization dynamics
suggests promising directions for future research, including:

• Developing improved pruning method based on re-initialization.
• Explore the relationship between the layer-wise FIM and the gradient projec-

tion, to see how hidden layers’ output interplays with the subspace.
• Explore how sparsity evolves in conjunction with existing results on the evo-

lution of anisotropy in the FIM spectrum with training.

In conclusion, this thesis investigates the hidden structures of deep neural networks,
an important step towards developing more robust and generalizable models. By
applying principles of information geometry and spectral analysis, we have gained
insights into the intricate mechanisms that drive modern deep learning. These
findings lay a foundation for future research to further investigate and refine our
understanding of the complex dynamics underlying DNNs.

58

Bibliography

[1] Zhang, C., Bengio, S., & Singer, Y. (2022). Are All Layers Created Equal?
Journal of Machine Learning Research, 23(67), 1–28. Retrieved from http:
//jmlr.org/papers/v23/20-069.html.

[2] Wu, L., Zhu, Z., & E, W. (2017). Towards Understanding Generalization of
Deep Learning: Perspective of Loss Landscapes. CoRR, abs/1706.10239. Re-
trieved from http://arxiv.org/abs/1706.10239.

[3] Chiang, P., Ni, R., Miller, D. Y., Bansal, A., Geiping, J., Goldblum, M., &
Goldstein, T. (2023). Loss Landscapes are All You Need: Neural Network Gen-
eralization Can Be Explained Without the Implicit Bias of Gradient Descent.
The Eleventh International Conference on Learning Representations. Retrieved
from https://openreview.net/forum?id=QC10RmRbZy9.

[4] Anderson, P. W. (1972). More is different. Science, 177 (4047), 393-396. Re-
trieved from https://api.semanticscholar.org/CorpusID:34548824.

[5] Wikipedia contributors. (n.d.). Complex system. Wikipedia, The Free Ency-
clopedia. Retrieved from http://en.wikipedia.org/wiki/Complex_system.
(Accessed: March 3, 2025).

[6] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Repre-
sentations by Back-Propagating Errors. Nature, 323, 533–536. Retrieved from
https://api.semanticscholar.org/CorpusID:205001834.

[7] Chatterjee, S., & Zielinski, P. (2022). On the Generalization Mystery in Deep
Learning. Retrieved from https://arxiv.org/abs/2203.10036.

[8] Neyshabur, B., Tomioka, R., Salakhutdinov, R., & Srebro, N. (2017). Geom-
etry of Optimization and Implicit Regularization in Deep Learning. CoRR,
abs/1705.03071. Retrieved from http://arxiv.org/abs/1705.03071.

[9] Vardi, G. (2022). On the Implicit Bias in Deep-Learning Algorithms. Retrieved
from https://arxiv.org/abs/2208.12591.

[10] Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY,
USA.

[11] Weng, L. (2019). Are Deep Neural Networks Dramatically Overfitted? lil-
ianweng.github.io. Retrieved from https://lilianweng.github.io/posts/
2019-03-14-overfit/.

[12] Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural
representation. Annual Review of Neuroscience, 24, 1193-1216. Retrieved from
https://api.semanticscholar.org/CorpusID:147618.

[13] Field, D. J. (1987). Relations between the statistics of natural images and the
response properties of cortical cells. Journal of the Optical Society of America

59

http://jmlr.org/papers/v23/20-069.html
http://jmlr.org/papers/v23/20-069.html
http://arxiv.org/abs/1706.10239
https://openreview.net/forum?id=QC10RmRbZy9
https://api.semanticscholar.org/CorpusID:34548824
http://en.wikipedia.org/wiki/Complex_system
https://api.semanticscholar.org/CorpusID:205001834
https://arxiv.org/abs/2203.10036
http://arxiv.org/abs/1705.03071
https://arxiv.org/abs/2208.12591
https://lilianweng.github.io/posts/2019-03-14-overfit/
https://lilianweng.github.io/posts/2019-03-14-overfit/
https://api.semanticscholar.org/CorpusID:147618

Bibliography

A, Optics and Image Science, 4 (12), 2379-2394. Retrieved from https://api.
semanticscholar.org/CorpusID:1600874.

[14] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet clas-
sification with deep convolutional neural networks. In F. Pereira, C. J.
Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems (Vol. 25). Curran Associates, Inc. Re-
trieved from https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[15] Liu, Y., Zhang, K., Li, Y., Yan, Z., Gao, C., Chen, R., Yuan, Z., Huang,
Y., Sun, H., Gao, J., He, L., & Sun, L. (2024). Sora: A review on background,
technology, limitations, and opportunities of large vision models. arXiv preprint
arXiv:2402.17177. Retrieved from https://arxiv.org/abs/2402.17177.

[16] Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatri-
ain, X., & Gao, J. (2024). Large language models: A survey. arXiv preprint
arXiv:2402.06196. Retrieved from https://arxiv.org/abs/2402.06196.

[17] Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ron-
neberger, O., Willmore, L., Ballard, A. J., Bambrick, J., Bodenstein, S. W.,
Evans, D. A., Hung, C. C., O’Neill, M., Reiman, D., Tunyasuvunakool, K.,
Wu, Z., Žemgulytė, A., Arvaniti, E., Beattie, C., Bertolli, O., Bridgland, A.,
Cherepanov, A., Congreve, M., Cowen-Rivers, A. I., Cowie, A., Figurnov, M.,
Fuchs, F. B., Gladman, H., Jain, R., Khan, Y. A., Low, C. M. R., Perlin, K.,
Potapenko, A., Savy, P., Singh, S., Stecula, A., Thillaisundaram, A., Tong, C.,
Yakneen, S., Zhong, E. D., Zielinski, M., Žídek, A., Bapst, V., Kohli, P., Jader-
berg, M., Hassabis, D., & Jumper, J. M. (2024). Accurate structure prediction
of biomolecular interactions with AlphaFold 3. Nature, 630 (8016), 493-500.
https://doi.org/10.1038/s41586-024-07487-w.

[18] Askr, H., Elgeldawi, E., Aboul Ella, H., Elshaier, Y. A. M. M., Gomaa, M.
M., & Hassanien, A. E. (2023). Deep learning in drug discovery: An integrative
review and future challenges. Artificial Intelligence Review, 56 (7), 5975-6037.
https://doi.org/10.1007/s10462-022-10306-1.

[19] Eddington, A. (1939). The philosophy of physical science. Tarner Lectures 1938.
Cambridge University Press.

[20] Roberts, D. A. (2021). Why is AI hard and physics simple? arXiv preprint
arXiv:2104.00008. Retrieved from https://arxiv.org/abs/2104.00008.

[21] Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., & Sohl-Dickstein, J. (2016).
On the Expressive Power of Deep Neural Networks. Retrieved from https:
//arxiv.org/abs/1606.05336.

[22] Chaudhari, P., & Soatto, S. (2018). Stochastic gradient descent performs vari-
ational inference, converges to limit cycles for deep networks. arXiv preprint
arXiv:1710.11029. Retrieved from https://arxiv.org/abs/1710.11029.

[23] Mandt, S., Hoffman, M. D., & Blei, D. M. (2018). Stochastic gradient descent
as approximate Bayesian inference. arXiv preprint arXiv:1704.04289. Retrieved
from https://arxiv.org/abs/1704.04289.

[24] Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient
Langevin dynamics. In Proceedings of the International Conference on Ma-

60

https://api.semanticscholar.org/CorpusID:1600874
https://api.semanticscholar.org/CorpusID:1600874
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2104.00008
https://arxiv.org/abs/1606.05336
https://arxiv.org/abs/1606.05336
https://arxiv.org/abs/1710.11029
https://arxiv.org/abs/1704.04289

Bibliography

chine Learning (ICML). Retrieved from https://api.semanticscholar.org/
CorpusID:2178983.

[25] Su, W., Boyd, S., & Candès, E. J. (2015). A differential equation for modeling
Nesterov’s accelerated gradient method: Theory and insights. arXiv preprint
arXiv:1503.01243. Retrieved from https://arxiv.org/abs/1503.01243.

[26] Danilova, M., & Malinovsky, G. (2021). Averaged heavy-ball method. arXiv
preprint arXiv:2111.05430. Retrieved from https://arxiv.org/abs/2111.
05430.

[27] Simsekli, U., Sagun, L., & Gurbuzbalaban, M. (2019). A tail-index anal-
ysis of stochastic gradient noise in deep neural networks. arXiv preprint
arXiv:1901.06053. Retrieved from https://arxiv.org/abs/1901.06053.

[28] Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., & Ganguli, S.
(2015). Deep unsupervised learning using nonequilibrium thermodynamics.
arXiv preprint arXiv:1503.03585. Retrieved from http://arxiv.org/abs/
1503.03585.

[29] Jung, G., Alkemade, R. M., Bapst, V., Coslovich, D., Filion, L., Landes, F.
P., Liu, A. J., Pezzicoli, F. S., Shiba, H., Volpe, G., Zamponi, F., Berthier,
L., & Biroli, G. (2025). Roadmap on machine learning glassy dynamics. Nature
Reviews Physics, 7 (2), 91–104. https://doi.org/10.1038/s42254-024-00791-4.

[30] Pennington, J., Schoenholz, S. S., & Ganguli, S. (2018). The emergence of spec-
tral universality in deep networks. arXiv preprint arXiv:1802.09979. Retrieved
from https://arxiv.org/abs/1802.09979.

[31] Stanford University. (2024). Convolutional Neural Networks for
Visual Recognition. Retrieved from https://cs231n.github.io/
convolutional-networks/.

[32] Su, J. (2018, June). Optimization algorithms from a dynamics perspective (I):
From SGD to momentum acceleration. Retrieved from https://www.spaces.
ac.cn/archives/5655.

[33] Neyshabur, B., Bhojanapalli, S., McAllester, D., & Srebro, N. (2017). Exploring
Generalization in Deep Learning. CoRR, abs/1706.08947. Retrieved from http:
//arxiv.org/abs/1706.08947.

[34] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning repre-
sentations by back-propagating errors. Nature, 323, 533-536. Retrieved from
https://api.semanticscholar.org/CorpusID:205001834.

[35] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521, 436-
444. https://doi.org/10.1038/nature14539.

[36] Pearce, T., Brintrup, A., & Zhu, J. (2021). Understanding Softmax Confidence
and Uncertainty. Retrieved from https://arxiv.org/abs/2106.04972.

[37] LeCun, Y., & Cortes, C. (2005). The MNIST Database of Handwritten Digits.
Retrieved from https://api.semanticscholar.org/CorpusID:60282629.

[38] Liu, Y., Gao, Y., & Yin, W. (2020). An Improved Analysis of Stochastic Gra-
dient Descent with Momentum. Advances in Neural Information Processing
Systems, 33, 18261–18271.

[39] Raschka, S. (2025). FAQ: Lottery Ticket Hypothesis. Retrieved from https://
sebastianraschka.com/faq/docs/lottery-ticket.html (Accessed: 2025-
01-17).

61

https://api.semanticscholar.org/CorpusID:2178983
https://api.semanticscholar.org/CorpusID:2178983
https://arxiv.org/abs/1503.01243
https://arxiv.org/abs/2111.05430
https://arxiv.org/abs/2111.05430
https://arxiv.org/abs/1901.06053
http://arxiv.org/abs/1503.03585
http://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1802.09979
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://www.spaces.ac.cn/archives/5655
https://www.spaces.ac.cn/archives/5655
http://arxiv.org/abs/1706.08947
http://arxiv.org/abs/1706.08947
https://api.semanticscholar.org/CorpusID:205001834
https://arxiv.org/abs/2106.04972
https://api.semanticscholar.org/CorpusID:60282629
https://sebastianraschka.com/faq/docs/lottery-ticket.html
https://sebastianraschka.com/faq/docs/lottery-ticket.html

Bibliography

[40] Neyshabur, B., Bhojanapalli, S., McAllester, D., & Srebro, N. (2017). A PAC-
Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Net-
works. CoRR, abs/1707.09564. Retrieved from http://arxiv.org/abs/1707.
09564.

[41] Dinh, L., Pascanu, R., Bengio, S., & Bengio, Y. (2017). Sharp Minima
Can Generalize For Deep Nets. In D. Precup & Y. W. Teh (Eds.), Proceed-
ings of the 34th International Conference on Machine Learning (Vol. 70, pp.
1019–1028). PMLR. Retrieved from https://proceedings.mlr.press/v70/
dinh17b.html.

[42] Zhang, S., Reid, I., Valle Pérez, G., & Louis, A. A. (2021). Why Flatness Corre-
lates With Generalization For Deep Neural Networks. CoRR, abs/2103.06219.
Retrieved from https://arxiv.org/abs/2103.06219.

[43] Reich, S. (1999). Backward Error Analysis for Numerical Integrators. SIAM
Journal on Numerical Analysis, 36, 1549–1570. Retrieved from https://api.
semanticscholar.org/CorpusID:15179418.

[44] Ixaru, L. G., & Vanden Berghe, G. (2004). Runge-Kutta Solvers for Ordinary
Differential Equations. Retrieved from https://api.semanticscholar.org/
CorpusID:116795115.

[45] Ramasinghe, S., Macdonald, L. E., Farazi, M., Saratchandran, H., & Lucey,
S. (2023). How Much Does Initialization Affect Generalization? In A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), Pro-
ceedings of the 40th International Conference on Machine Learning (Vol. 202,
pp. 28637–28655). PMLR. Retrieved from https://proceedings.mlr.press/
v202/ramasinghe23a.html.

[46] Smith, L. N. (2017). Cyclical Learning Rates for Training Neural Networks. In
2017 IEEE Winter Conference on Applications of Computer Vision (WACV)
(pp. 464–472). https://doi.org/10.1109/WACV.2017.58

[47] Wu, Y., Liu, L., Bae, J., Chow, K.-H., Iyengar, A., Pu, C., Wei,
W., Yu, L., & Zhang, Q. (2019). Demystifying Learning Rate Poli-
cies for High Accuracy Training of Deep Neural Networks. In 2019
IEEE International Conference on Big Data (Big Data) (pp. 1971–1980).
https://doi.org/10.1109/BigData47090.2019.9006104

[48] Smith, L. N., & Topin, N. (2018). Super-Convergence: Very Fast Training of
Neural Networks Using Large Learning Rates. Retrieved from https://arxiv.
org/abs/1708.07120.

[49] Neyshabur, B. (2017). Implicit Regularization in Deep Learning. CoRR,
abs/1709.01953. Retrieved from https://arxiv.org/abs/1709.01953.

[50] Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Under-
standing Deep Learning Requires Rethinking Generalization. Retrieved from
https://arxiv.org/abs/1611.03530.

[51] Suh, N., & Cheng, G. (2024). A Survey on Statistical Theory of Deep Learning:
Approximation, Training Dynamics, and Generative Models. Retrieved from
https://arxiv.org/abs/2401.07187.

[52] He, F., & Tao, D. (2021). Recent Advances in Deep Learning Theory. Retrieved
from https://arxiv.org/abs/2012.10931.

62

http://arxiv.org/abs/1707.09564
http://arxiv.org/abs/1707.09564
https://proceedings.mlr.press/v70/dinh17b.html
https://proceedings.mlr.press/v70/dinh17b.html
https://arxiv.org/abs/2103.06219
https://api.semanticscholar.org/CorpusID:15179418
https://api.semanticscholar.org/CorpusID:15179418
https://api.semanticscholar.org/CorpusID:116795115
https://api.semanticscholar.org/CorpusID:116795115
https://proceedings.mlr.press/v202/ramasinghe23a.html
https://proceedings.mlr.press/v202/ramasinghe23a.html
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1709.01953
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/2401.07187
https://arxiv.org/abs/2012.10931

Bibliography

[53] Hochreiter, S., & Schmidhuber, J. (1997). Flat Minima. Neural Computation, 9,
1–42. Retrieved from https://api.semanticscholar.org/CorpusID:733161.

[54] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P.
(2017). On Large-Batch Training for Deep Learning: Generalization Gap and
Sharp Minima. Retrieved from https://arxiv.org/abs/1609.04836.

[55] Foret, P., Kleiner, A., Mobahi, H., & Neyshabur, B. (2020). Sharpness-
Aware Minimization for Efficiently Improving Generalization. arXiv preprint,
arXiv:2010.01412. Retrieved from https://arxiv.org/abs/2010.01412.

[56] Barrett, D. G. T., & Dherin, B. (2020). Implicit Gradient Regularization.
CoRR, abs/2009.11162. Retrieved from https://arxiv.org/abs/2009.11162.

[57] Chizat, L., Oyallon, E., & Bach, F. (2020). On Lazy Training in Differentiable
Programming. Retrieved from https://arxiv.org/abs/1812.07956.

[58] Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R., Sohl-Dickstein, J., &
Pennington, J. (2020). Wide Neural Networks of Any Depth Evolve as Linear
Models Under Gradient Descent. Journal of Statistical Mechanics: Theory and
Experiment, 2020(12). https://doi.org/10.1088/1742-5468/abc62b.

[59] Geiger, M., Petrini, L., & Wyart, M. (2021). Landscape and Training
Regimes in Deep Learning. Physics Reports. Retrieved from https://api.
semanticscholar.org/CorpusID:234848577.

[60] Hornik, K. (1991). Approximation Capabilities of Multilayer Feedforward
Networks. Neural Networks, 4, 251–257. Retrieved from https://api.
semanticscholar.org/CorpusID:7343126.

[61] Batchelor, G. K. (1968). An Introduction to Fluid Dynamics. Retrieved from
https://api.semanticscholar.org/CorpusID:80869282.

[62] Novak, R., Sohl-Dickstein, J., & Schoenholz, S. S. (2022). Fast Finite Width
Neural Tangent Kernel. Retrieved from https://arxiv.org/abs/2206.08720.

[63] Fülöp, T. (2022). Compatibility Condition for the Eulerian Left Cauchy-
Green Deformation Tensor Field. Retrieved from https://arxiv.org/abs/
2108.01567.

[64] Hornik, K., Stinchcombe, M. B., & White, H. L. (1989). Multilayer Feedforward
Networks are Universal Approximators. Neural Networks, 2, 359–366. Retrieved
from https://api.semanticscholar.org/CorpusID:2757547.

[65] Amari, S. (1998). Natural Gradient Works Efficiently in Learning. Neural Com-
putation, 10(2), 251–276. https://doi.org/10.1162/089976698300017746

[66] Murphy, K. P. (2013). Machine Learning: A Probabilistic Perspective. MIT
Press, Cambridge, MA.

[67] Martens, J. (2014). New Insights and Perspectives on the Natural Gradient
Method. Journal of Machine Learning Research, 21, 146:1–146:76. Retrieved
from https://api.semanticscholar.org/CorpusID:10284405.

[68] Santambrogio, F. (2016). Euclidean, Metric, and Wasserstein Gradient Flows:
An Overview. Retrieved from https://arxiv.org/abs/1609.03890.

[69] Frankle, J., & Carbin, M. (2019). The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks. Retrieved from https://arxiv.org/abs/
1803.03635.

63

https://api.semanticscholar.org/CorpusID:733161
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/2009.11162
https://arxiv.org/abs/1812.07956
https://api.semanticscholar.org/CorpusID:234848577
https://api.semanticscholar.org/CorpusID:234848577
https://api.semanticscholar.org/CorpusID:7343126
https://api.semanticscholar.org/CorpusID:7343126
https://api.semanticscholar.org/CorpusID:80869282
https://arxiv.org/abs/2206.08720
https://arxiv.org/abs/2108.01567
https://arxiv.org/abs/2108.01567
https://api.semanticscholar.org/CorpusID:2757547
https://api.semanticscholar.org/CorpusID:10284405
https://arxiv.org/abs/1609.03890
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635

Bibliography

[70] Roberts, D. A., Yaida, S., & Hanin, B. (2022). Frontmatter. In The principles
of deep learning theory: An effective theory approach to understanding neural
networks (pp. i–iv). Cambridge University Press.

[71] Baskerville, N. P. (2023). Random matrix theory and the loss surfaces of neural
networks. arXiv preprint arXiv:2306.02108. Retrieved from https://arxiv.
org/abs/2306.02108.

[72] Schoenholz, S. S., Gilmer, J., Ganguli, S., & Sohl-Dickstein, J. (2017). Deep
information propagation. arXiv preprint arXiv:1611.01232. Retrieved from
https://arxiv.org/abs/1611.01232.

[73] Bahri, Y., Kadmon, J., Pennington, J., Schoenholz, S., Sohl-Dickstein, J. N.,
& Ganguli, S. (2020). Statistical mechanics of deep learning. Annual Review of
Condensed Matter Physics. Retrieved from https://api.semanticscholar.
org/CorpusID:273727294.

[74] Baratin, A., George, T., Laurent, C., Hjelm, R. D., Lajoie, G., Vincent, P.,
& Lacoste-Julien, S. (2021). Implicit Regularization via Neural Feature Align-
ment. Retrieved from https://arxiv.org/abs/2008.00938.

[75] Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation
Functions: Comparison of Trends in Practice and Research for Deep Learning.
Retrieved from https://arxiv.org/abs/1811.03378.

[76] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. Retrieved
from https://arxiv.org/abs/1502.01852.

[77] Ruder, S. (2016). An Overview of Gradient Descent Optimization Algorithms.
CoRR, abs/1609.04747. Retrieved from http://arxiv.org/abs/1609.04747.

[78] Samuel L. Smith and Pieter-Jan Kindermans and Chris Ying and Quoc V.
Le (2017). Don’t Decay the Learning Rate, Increase the Batch Size. CoRR,
abs/1711.00489. Retrieved from http://arxiv.org/abs/1711.00489.

[79] Li, H., Li, C., Xue, M., Fang, G., Zhou, S., Feng, Z., Wang, H., Wang, Y.,
Cheng, L., Song, M., & Song, J. (2024). PruningBench: A Comprehensive
Benchmark of Structural Pruning. Retrieved from https://arxiv.org/abs/
2406.12315.

[80] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... Zheng, X.
(2016). TensorFlow: A System for Large-Scale Machine Learning. Retrieved
from https://arxiv.org/abs/1605.08695.

[81] Terven, J., Cordova-Esparza, D. M., Ramirez-Pedraza, A., & Chavez-Urbiola,
E. A. (2023). Loss Functions and Metrics in Deep Learning. Retrieved from
https://arxiv.org/abs/2307.02694.

[82] Leclerc, G., & Madry, A. (2020). The Two Regimes of Deep Network Training.
Retrieved from https://arxiv.org/abs/2002.10376.

[83] Masters, D., & Luschi, C. (2018). Revisiting Small Batch Training for Deep
Neural Networks. Retrieved from https://arxiv.org/abs/1804.07612.

[84] Seleznova, M., & Kutyniok, G. (2022). Analyzing Finite Neural Networks: Can
We Trust Neural Tangent Kernel Theory? Retrieved from https://arxiv.
org/abs/2012.04477.

[85] Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A. (2021). Sparsity
in Deep Learning: Pruning and Growth for Efficient Inference and Training

64

https://arxiv.org/abs/2306.02108
https://arxiv.org/abs/2306.02108
https://arxiv.org/abs/1611.01232
https://api.semanticscholar.org/CorpusID:273727294
https://api.semanticscholar.org/CorpusID:273727294
https://arxiv.org/abs/2008.00938
https://arxiv.org/abs/1811.03378
https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1711.00489
https://arxiv.org/abs/2406.12315
https://arxiv.org/abs/2406.12315
https://arxiv.org/abs/1605.08695
https://arxiv.org/abs/2307.02694
https://arxiv.org/abs/2002.10376
https://arxiv.org/abs/1804.07612
https://arxiv.org/abs/2012.04477
https://arxiv.org/abs/2012.04477

Bibliography

in Neural Networks. Journal of Machine Learning Research, 22(241), 1–124.
Retrieved from http://jmlr.org/papers/v22/21-0366.html.

[86] Storm, L., Linander, H., Bec, J., Gustavsson, K., & Mehlig, B. (2023).
Finite-time Lyapunov Exponents of Deep Neural Networks. Physical Review
Letters, 132(5), 057301. Retrieved from https://api.semanticscholar.org/
CorpusID:259224472.

[87] Bonnaire, T., Ghio, D., Krishnamurthy, K., Mignacco, F., Yamamura, A., &
Biroli, G. (2024). High-dimensional non-convex landscapes and gradient descent
dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2024 (10),
104004. https://doi.org/10.1088/1742-5468/ad2929.

[88] Pellegrini, F., & Biroli, G. (2022). Neural Network Pruning Denoises the Fea-
tures and Makes Local Connectivity Emerge in Visual Tasks. In Proceed-
ings of the International Conference on Machine Learning. Retrieved from
https://api.semanticscholar.org/CorpusID:250340597.

[89] Redman, W. T., Wang, Z., Ingrosso, A., & Goldt, S. (2024). On How Iterative
Magnitude Pruning Discovers Local Receptive Fields in Fully Connected Neural
Networks. Retrieved from https://arxiv.org/abs/2412.06545.

[90] Hubel, D. H., & Wiesel, T. N. (1962). Receptive Fields, Binocular Interaction
and Functional Architecture in the Cat’s Visual Cortex. The Journal of Phys-
iology, 160. Retrieved from https://api.semanticscholar.org/CorpusID:
17055992.

[91] Saleem, T. J., Ahuja, R., Prasad, S., & Lall, B. (2024). Insights into the Lottery
Ticket Hypothesis and Iterative Magnitude Pruning. Retrieved from https:
//arxiv.org/abs/2403.15022.

[92] Lin, H. W., Tegmark, M., & Rolnick, D. (2017). Why Does Deep and Cheap
Learning Work So Well? Journal of Statistical Physics, 168(6), 1223–1247.
https://doi.org/10.1007/s10955-017-1836-5.

[93] Kumar, S. K. (2017). On Weight Initialization in Deep Neural Networks. Re-
trieved from https://arxiv.org/abs/1704.08863.

[94] Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling Mod-
ern Machine-Learning Practice and the Classical Bias–Variance Trade-Off.
Proceedings of the National Academy of Sciences, 116(32), 15849–15854.
https://doi.org/10.1073/pnas.1903070116

[95] Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., ...
Zdeborová, L. (2019). Machine Learning and the Physical Sciences. Reviews of
Modern Physics, 91(4). https://doi.org/10.1103/revmodphys.91.045002.

[96] He, F., & Tao, D. (2021). Recent Advances in Deep Learning Theory. Retrieved
from https://arxiv.org/abs/2012.10931.

[97] Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2021). A Survey of Convolutional
Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on
Neural Networks and Learning Systems, 33(12), 6999–7019.

[98] Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the Importance
of Initialization and Momentum in Deep Learning. Proceedings of the 30th In-
ternational Conference on Machine Learning, 28(3), 1139–1147.

65

http://jmlr.org/papers/v22/21-0366.html
https://api.semanticscholar.org/CorpusID:259224472
https://api.semanticscholar.org/CorpusID:259224472
https://api.semanticscholar.org/CorpusID:250340597
https://arxiv.org/abs/2412.06545
https://api.semanticscholar.org/CorpusID:17055992
https://api.semanticscholar.org/CorpusID:17055992
https://arxiv.org/abs/2403.15022
https://arxiv.org/abs/2403.15022
https://arxiv.org/abs/1704.08863
https://arxiv.org/abs/2012.10931

Bibliography

[99] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-Based Learn-
ing Applied to Document Recognition. Proceedings of the IEEE, 86(11), 2278–
2324. https://doi.org/10.1109/5.726791

[100] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 35 (8), 1798-1828. https://doi.org/10.1109/TPAMI.2013.50.

[101] Neyshabur, B., Tomioka, R., & Srebro, N. (2015). In search of the real induc-
tive bias: On the role of implicit regularization in deep learning. arXiv preprint
arXiv:1412.6614. Retrieved from https://arxiv.org/abs/1412.6614.

[102] Karakida, R., Akaho, S., & Amari, S. (2019). Universal Statistics of Fisher
Information in Deep Neural Networks: Mean Field Approach. Retrieved from
https://arxiv.org/abs/1806.01316.

[103] Karakida, R., Akaho, S., & Amari, S. (2020). Pathological Spectra of the
Fisher Information Metric and Its Variants in Deep Neural Networks. Retrieved
from https://arxiv.org/abs/1910.05992.

[104] Amari, S., & Nagaoka, H. (2000). Methods of Information Geometry. Re-
trieved from https://api.semanticscholar.org/CorpusID:116976027.

[105] Kunstner, F., Balles, L., & Hennig, P. (2020). Limitations of the Empirical
Fisher Approximation for Natural Gradient Descent. Retrieved from https:
//arxiv.org/abs/1905.12558.

[106] Calin, O. (2020). Neuromanifolds. Deep Learning Architectures. Retrieved
from https://api.semanticscholar.org/CorpusID:240689529.

[107] Kanatani, K. (2021). Linear Algebra for Pattern Processing: Projection, Sin-
gular Value Decomposition, and Pseudoinverse. In Linear Algebra for Pattern
Processing. Retrieved from https://api.semanticscholar.org/CorpusID:
249416969.

[108] Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural Tangent Kernel: Con-
vergence and Generalization in Neural Networks. CoRR, abs/1806.07572. Re-
trieved from http://arxiv.org/abs/1806.07572.

[109] Weng, L. (2022, September). Some Math behind Neural Tangent
Kernel. Lil’Log. Retrieved from https://lilianweng.github.io/posts/
2022-09-08-ntk/.

[110] Gur-Ari, G., Roberts, D. A., & Dyer, E. (2018). Gradient Descent Happens in
a Tiny Subspace. CoRR, abs/1812.04754. Retrieved from http://arxiv.org/
abs/1812.04754.

[111] Roy, O., & Vetterli, M. (2007). The Effective Rank: A Measure of Ef-
fective Dimensionality. In 2007 15th European Signal Processing Confer-
ence (pp. 606–610). Retrieved from https://api.semanticscholar.org/
CorpusID:12184201.

[112] DeCarlo, L. T. (1997). On the Meaning and Use of Kurtosis. Psychologi-
cal Methods, 2, 292–307. Retrieved from https://api.semanticscholar.org/
CorpusID:18829068.

[113] Kothapalli, V. (2023). Neural Collapse: A Review on Modelling Principles and
Generalization. Retrieved from https://arxiv.org/abs/2206.04041.

66

https://arxiv.org/abs/1412.6614
https://arxiv.org/abs/1806.01316
https://arxiv.org/abs/1910.05992
https://api.semanticscholar.org/CorpusID:116976027
https://arxiv.org/abs/1905.12558
https://arxiv.org/abs/1905.12558
https://api.semanticscholar.org/CorpusID:240689529
https://api.semanticscholar.org/CorpusID:249416969
https://api.semanticscholar.org/CorpusID:249416969
http://arxiv.org/abs/1806.07572
https://lilianweng.github.io/posts/2022-09-08-ntk/
https://lilianweng.github.io/posts/2022-09-08-ntk/
http://arxiv.org/abs/1812.04754
http://arxiv.org/abs/1812.04754
https://api.semanticscholar.org/CorpusID:12184201
https://api.semanticscholar.org/CorpusID:12184201
https://api.semanticscholar.org/CorpusID:18829068
https://api.semanticscholar.org/CorpusID:18829068
https://arxiv.org/abs/2206.04041

Bibliography

[114] Cai, T. T., & Ma, R. (2022). Theoretical Foundations of t-SNE for Visualizing
High-Dimensional Clustered Data. arXiv preprint, arXiv:2105.07536. Retrieved
from https://arxiv.org/abs/2105.07536.

67

https://arxiv.org/abs/2105.07536

Bibliography

68

A
Appendix

A.1 Supplemental Experimental Results

Layer 1 Layer 2 Layer 3 Output Layer Original Model
0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

0.5864

0.9426 0.9720 0.9480
0.9870

Figure A.1: Layer-wise results of re-initialization for FCN with Random Gaussian
initialization.

Layer Initial weights (Mean, SD) Final weights (Mean, SD) Correlation Coef

Hidden 1 0.000, 0.050 0.000, 0.054 0.930
Hidden 2 0.000, 0.050 0.003, 0.058 0.906
Hidden 3 0.000, 0.050 0.004, 0.058 0.921
Output 0.002, 0.049 0.002, 0.158 0.753

Table A.1: Statistics of initial and final weights, and the correlation coefficient
between them for each layer. Mean is mean value of the weights; SD is the standard
deviation of the weights. Correlation Coefficient measures the linear correlation
between the same layer’s weights before and after training.

I

A. Appendix

Figure A.2: Weights Distribution before and after training for every layer.

II

A. Appendix

Interval Percentage

0.00000 to 0.00800 53.97%
0.00800 to 0.01600 16.48%
0.01600 to 0.02400 10.45%
0.02400 to 0.03200 6.79%
0.03200 to 0.04000 4.39%
0.04000 to 0.04800 2.80%
0.04800 to 0.05600 1.77%
0.05600 to 0.06400 1.12%
0.06400 to 0.07200 0.73%
0.07200 to 0.08000 0.44%
0.08000 to 0.08800 0.30%
0.08800 to 0.09600 0.19%
0.09600 to 0.10400 0.12%
0.10400 to 0.11200 0.08%
0.11200 to 0.12000 0.06%
0.12000 to 0.12800 0.05%
0.12800 to 0.13600 0.03%
0.13600 to 0.14400 0.03%
0.14400 to 0.15200 0.03%
0.15200 to 0.16000 0.02%
0.16000 to 0.16800 0.01%
0.16800 to 0.17600 0.01%
0.17600 to 0.18400 0.01%
0.18400 to 0.19200 0.01%
0.19200 to 0.20000 0.01%
0.20000 to 0.20800 0.01%
0.20800 to 0.21600 0.01%
0.21600 to 0.22400 0.01%
0.22400 to 0.23200 0.01%
0.23200 to 0.24000 0.01%
0.24000 to 0.24800 0.01%
0.24800 to 0.25600 0.01%

Table A.2: Different absolute change interval and its corresponding parameters’
percentage of the whole model.

A.2 Normalization of the Eigenfunction
For completeness, we provide here the derivation showing why the function

uθi
(x) = 1√

λθi

〈
vθi

,∇θfk(x)
〉

has unit norm in L2(ρ).

III

A. Appendix

Recall that the empirical Fisher Information Matrix (FIM) is defined as

F = Ex∼ρ

[
∇θfk(x)∇θfk(x)⊤

]
.

Assume vθi
is an eigenvector of F with eigenvalue λθi

, i.e.,

F vθi
= λθi

vθi
.

By multiplying on the left by v⊤
θi

and using the fact that vθi
is normalized, we get

v⊤
θi

F vθi
= Ex∼ρ

[
v⊤

θi
∇θfk(x)∇θfk(x)⊤ vθi

]
= Ex∼ρ

[
⟨vθi

,∇θfk(x)⟩2
]

.

Define the eigenfunction

uθi
(x) = 1√

λθi

〈
vθi

,∇θfk(x)
〉
.

Then its L2(ρ) norm is

Ex∼ρ

[
uθi

(x)2
]

= Ex∼ρ

[1
λθi

⟨vθi
,∇θfk(x)⟩2

]
= 1

λθi

Ex∼ρ

[
⟨vθi

,∇θfk(x)⟩2
]

= 1
λθi

λθi
= 1.

Hence uθi
is normalized in L2(ρ), completing the proof.

IV

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Deep Neural Networks
	Architecture: Multilayer Perceptrons
	The Optimization of DNNs Under Supervised Learning
	Initialization
	The Dynamics of Optimization

	Generalization
	Generalization in Deep neural networks
	The Role of SGD in Generalization

	The Sub-networks in Deep Neural Networks
	Structural Symmetry Breaking
	Critical and Robust Layers

	Beyond Layer-wise Re-initialization
	Parameter-wise Re-initialization

	Lottery Ticket Hypothesis
	Background of the Lottery Ticket Hypothesis
	Lottery Tickets Hypothesis for Parameter-wise Re-initialization

	The Sub-networks in Deep Neural Networks

	The Spectrum of Deep Neural Networks
	Neuromanifold and Fisher Information Matrix
	Statistical Manifold
	Fisher Information Matrix
	Empirical Fisher Information Matrix

	Neural Tangent Kernel
	Analogy to Cauchy–Green Tensors in Continuum Mechanics

	Anisotropy in the Spectrum of the Fisher Information Matrix
	The Dual Roles of FIM in DNNs
	Spectral Statistics of the Fisher Information Matrix in MLPs
	The Sub-network and Anisotropy
	The Top Eigenvectors

	Conclusion
	Bibliography
	Appendix
	Supplemental Experimental Results
	Normalization of the Eigenfunction

