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Object Detection and 6D Pose Estimation of Scenes with Occluded Objects Using
Multiple Viewpoints

Development of a tool for annotation of image data, and an algorithm for visual
inventory of supermarket objects

OSCAR BARK

ANDREAS GRIGORIADIS
Department of Electrical Engineering
Chalmers University of Technology

Abstract

In recent years, deep learning based approaches have excelled at the task of ob-
ject detection and 6D pose estimation at the expense of requiring large amounts of
annotated data compared to traditional approaches. The purpose of this thesis is
twofold. It investigates an algorithm for object detection and 6D pose estimation
with the aim of enabling visual inventory of items in a supermarket, and it presents
the development of a tool for annotation of datasets suitable for such tasks. The
detection algorithm aimed to exploit images from multiple viewpoints of the same
scene to perform the task in scenarios where established methods of single-view de-
tection are unsuitable. A state-of-the-art single-view pose estimation method was
built upon to detect multiple instances of an object, and was used on each frame of
a video of the scene. The output from each frame was then aggregated by clustering
candidate pose centers, enabling grouping of keypoint locations across images to
which the final detections of poses could be fitted. The annotation tool relied on
users identifying keypoint locations in a few images, and exploited a known camera
motion to infer the poses of objects relative all viewpoints. The detection algorithm
was evaluated on three previously unseen scenes with a total of 85 objects, and
yielded Fj-scores in the range of 0.1739 to 0.7142 for the different classes, implying
that the algorithm was not suitable for the task. We attribute the low performance
partly to our method of grouping keypoints to separate instances not being able
to handle scenarios where objects are occluded, and partly to learning and general-
ization issues of the deep learning module. Conversely, we consider the annotation
tool successful, as it integrates several features to facilitate the annotation, and the
method is robust. However, users need to be cautious during annotation due to
potential inaccuracies in the camera model assumed, and the difficulty of labeling
rotationally symmetric objects appropriately. A new dataset exhibiting difficulties
present in the target setting was created, and annotated using our tool.

Keywords: Object Detection, 6D Pose Estimation, Data Annotation, Visual Inven-
tory, Deep Learning






Acknowledgements

We would like to thank our examiner Fredrik Kahl and our supervisor Lucas Brynte
for all the great support and motivation during our work. We are grateful to Fredrik
for the inspiration during the computer vision course that motivated us to pursue
this thesis, for excellent guidance in both general and technical matters, and for
help with the formulation and development of the thesis. To Lucas we are grateful
for the numerous inspiring technical meetings, the support provided during times
of adversity and the excellent knowledge he possesses on the subject. We would
also like to express gratitude to Sebastian Almfeldt for helping us produce essential
models for our objects.

Oscar Bark & Andreas Grigoriadis, Gothenburg, August 2019

vii






Glossary

Pinhole camera model: Simple model of a camera, describing how points in a
3D world are displayed in a 2D picture.

6D Pose: A representation of an objects location and orientation. 6D indicates six
degrees of freedom.

Motion: A collection of poses for a set of cameras.

Keypoint: Point with special significance, e.g. on a point cloud model of an object.
Clustering: The task of partitioning a set of data into groups.

MSC: Mean-Shift Clustering. A clustering method which can determine the number
of groups.

Mode: The most likely value of a probability distribution.

Model fitting: Adjusting the parameters of a model to make it coherent with data.
RANSAC: Random sample consensus. Method to fit a model to data with outliers,
by sampling of small subsets.

ANN/NN: Artificial Neural Network

CNN: Convolutional Neural Network, a variant of artificial neural networks often
used for modeling functions with images as input.

Deep Learning: Usage of large ANN’s to solve complex tasks.

Dataset: A set of labeled data related to a task.

Fi-score: A performance metric for classification tasks which is especially suitable
for unbalanced datasets.

Generalizability: Ability of an algorithm to perform well on previously unseen
data.

Hyperparameters: Algorithm parameters which are not automatically optimized
with respect to data.

Overfitting: Fitting a model to a specific observation of data, resulting in poor
generalizability of the model.

PyTorch: A programming library for Python for implementing deep learning mod-
els
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1

Introduction

This chapter serves to present the context of this project, and to specify the main
problems it aims to solve. Furthermore, the disposition of the report is presented.

1.1 Background

In May of 2016, the research project Semantic Mapping and Visual Navigation for
Smart Robots was initiated at Chalmers University of Technology with the goal of
developing an integrated framework for autonomous vehicles to see, navigate in, and
map their surroundings based on computer vision and optimal control techniques
[1]. The project owners aim to demonstrate their advances in relevant fields by
developing an autonomous system capable of performing visual inventory inspection
in a supermarket setting, using small quadcopters. An important problem that needs
to be solved for this task is that of identifying different classes of stocked items and
their locations in shelves using camera images.

A common problem within the field of robotics is object detection and 6D pose
estimation from single images of scenes containing various items. Such solutions
often utilize deep learning models due to their robustness to lighting conditions,
and their ability to exploit semantic information [2]. The models often make up
part of the application pipeline in conjunction with conventional computer vision
methods, but more recently researchers have started to design end-to-end systems
where all operations are learned from data [3]. Being able to identify visible objects
and their poses in real time from a single image is important for a robot which aims
to navigate a dynamic world.

In some settings however, the aim is simply to obtain a complete map of a static
scene, containing all objects and their poses in a global coordinate system. This is
the case with our problem of visual inventory posed above, and here there are no
constraints on real-time performance or number of viewpoints. A challenge posed
when applying single-view estimation methods to solve this problem is that objects
in a scene may be partially or wholly occluded in images. Though detection and pose
estimation of partially occluded objects have been successfully achieved with single-
view methods in settings with few selected objects [4], in many practical settings,

1



1. Introduction

such as supermarket shelves, it is not feasible to produce a single image where all
items are sufficiently visible. In this light, the idea of exploiting multiple viewpoints
of the scene to overcome said challenges has been explored [5] [6] [7], albeit to a
lesser extent than single-view methods.

Furthermore, a challenge of using deep learning frameworks is the need for large
amounts of annotated data on which to train the models. Producing this data
manually can be difficult and time consuming for a party who wishes to apply
these methods in new settings. Typically, datasets for these tasks are produced by
constructing specific scenes including clear markers from which the poses of carefully
placed objects can be calculated [2] [8], or by manually rotating and translating 3D
models in a point cloud reconstruction of the scene at hand [9]. It is common to
generate synthetic training data, e.g. images obtained by rendering CAD-models of
relevant objects against a black background [10] [11]. This is due to convenience,
and lack of real data [12]. Models trained on synthetic data risk not being able to
generalize well to real data without careful strategies to combat overfitting.

1.2 Purpose

In light of the problems presented above, the purpose of this project was twofold:

o It aimed to develop and evaluate an algorithm which uses a video stream
of a scene for global detection and 6D pose estimation of objects which are
occluded in several of the frames. The method is primarily meant to be applied
for inventory of supermarket products placed in shelves, as to contribute to
the above described research project.

o It aimed to develop and evaluate a method for semi-automatic annotation of
data used for object detection and pose estimation. The produced data should
be compatible with algorithms such as the above mentioned single-view pose
estimation methods. The intention was to provide an easy-to-use tool for
researchers to create large scale annotated data sets.

The algorithm for object detection and 6D pose estimation will in this report be
referred to as the Detection Algorithm, whereas the method for data annotation will
be referred to as the Annotation Tool. Furthermore, a new dataset was created
for this project, which we annotated using the Annotation Tool, and on which we
evaluated the Detection Algorithm.
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1.3 Specification of issues under investigation

Concerning the Annotation Tool we aimed to develop, the following questions were
posed:

e Does our annotation tool facilitate the creation of large datasets for object
detection and pose estimation in new settings?

o How accurate are labels obtained from typical use cases with our annotation
tool?

Concerning the Detection Algorithm, the following questions were posed:

o Is it possible to accurately identify all objects in an occluded scene, with
reasonable pose estimates, using only RGB images from multiple viewpoints?

« How can images of a static scene from several viewpoints be exploited to enable
object detection and pose estimation with a deep learning framework?

« How do different levels of occlusion of objects in a scene affect the performance
of visual inventory with multiple images?

1.4 Limitations

Each entry in the dataset we produced consists of an RGB video of a scene with
its corresponding motion, and the poses of each object in the scene with respect to
every camera. The dataset does not contain labels for other relevant quantities such
as segmentation labels, object visibility in the images, etc.

Methods for obtaining the motion of the video, which is an important quantity in
many multi-view computer vision applications (see Section 2.1), were not investi-
gated for this project. The motion was instead obtained by using an openly licensed
Structure-from-motion software solution which uses only the video to calculate it.
The software used was COLMAP [13] [14], which imposes constraints on the videos
in order to function properly. Such constraints include good textures and similar
illumination.

Although many learning based computer vision applications make use of labels other
than poses, the Annotation Tool only produces the pose labels. Relevant labels, such
as segmentations, keypoint projections and 2D bounding boxes may be inferred in
an automated fashion using the produced pose labels (and we did use these labels
in our project). The motivation for not integrating such features into the tool was
twofold: Separate tools implementing such features already exist and it would have
required additional development time. The tool focuses on minimizing the manual
effort required to produce a set of principal labels which can then be used to produce
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additional labels.

As was previously mentioned, the project Semantic Mapping and Visual Navigation
for Smart Robots strives to perform full visual inventory of market shelves using
drones. Since our algorithm aimed to be used for this type of task, the evaluation
of our work did not focus on testing for high accuracy of the poses of the objects.
Rather, the evaluation was based on the detection rate, i.e detecting a majority of
the objects while avoiding false detections.

There is conceptually no need for the visual inventory task to be performed live
during drone deployment. Therefore, neither does the algorithm need to process data
sequentially, nor did we impose real-time performance constraints on the execution
speed.

Furthermore, the inventory algorithm was developed with aim of being applied in
a supermarket setting, but limitations regarding this goal had to be made. Firstly,
the number objects used during development and testing was for performance and
convenience limited to a manageable number of objects, rather than the number of
objects a typical store could have in stock, ranging in the tens of thousands. Sec-
ondly, supermarket shelves may also vary greatly in shape, causing various degrees
of unpredictable environmental occlusions (see Section 3.2). The scope of applicable
cases for the project had to be limited by making assumptions regarding the envi-
ronment which may or may not be valid for the supermarket setting. Thirdly, the
objects were limited to rigid objects, since a static scene is assumed in the scope
of this project. Consequently, we did not expect the final algorithm, regardless of
results on our data, to be able to perform the task in real typical supermarkets
where instances of products such as fruit vary in shape.

1.5 Related work

In this section, related works on tasks similar to ours are reviewed.

1.5.1 Annotation of 6D poses

As previously mentioned, existing methods for 6D pose annotation include careful
placement of an object on a board with markers [2] [8] and manual fitting of an
object model to a point cloud [9]. In the former case, the requirement set on the
pose placement and the use of the board makes such a method unfeasible in a setting
where no constraints are to be set on the environment. For the latter case, the
method is limited to scenes where the object is clearly visible in many images. This
is not the case when objects are occluded, and sets a restriction on the environment.
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1.5.2 Single-view 6D pose estimation

Traditionally, multiple methods for 6D pose estimation depended on template match-
ing techniques. For the 6D pose problem this usually means rendering object models
to an image and using a handcrafted template to compute a similarity score at each
image location [15] [16]. These methods are however sensitive to changes in appear-
ance and occlusions in the environment.

Another category of pose estimation methods are feature based methods which aim
to find local features of objects [17] [18] and match them between the image and an
object model. Such procedures yield 2D-3D correspondences which can be used to
solve the Perspective-n-Point (PnP) problem to find the pose. Traditional methods
within this category make use of handcrafted features and the approach is efficient
for pose estimation even in the case of occlusion. The methods do however suffer
performance losses when an object lacks texture, or the image is blurry.

Recent years have shown a trend towards deep learning based methods, in particular
Convolutional Neural Networks, for learning features [19]. Breaking down the prob-
lem into the steps of keypoints detection, by utilization of a CNN, and solving the
PnP has been proven effective in multiple works. The work of [4] performs the three
steps of instance segmentation, pixel-wise regression of 3D coordinates for 2D-3D
correspondences and solving the PnP. A pipeline that regresses pixel-wise voting for
the direction to 2D keypoints, and utilized an uncertainty measure for solving an
alternate formulation of the PnP was proposed by [20]. This work currently achieves
state-of-the-art for numerous standard datasets [20] in the 6D pose localization task.

Other works propose to utilize a CNN to solve the problem in an end-to-end fashion
by directly regressing the pose parameters or a subset of them. A completely end-
to-end system was designed by [3] where a VGG network is combined with a region
proposal network that simultaneously classifies and regresses the class, bounding
box, mask and pose of an object. [10] proposes to regress voting for each pixel in a
instance segmented area towards the center 2D point of the object, and the neural
network also estimates the depth of this point. The rotational part is also regressed
by the network.

1.5.3 Multi-view 6D pose estimation

To detect global poses given multiple viewpoints, multiple works have approached
the problem by using a single view pose algorithm and aggregation of the output.
The single view pose algorithm of [3] is extended by [6] to the multi view case. Pose
hypotheses for each image are estimated by using a sparse auto-encoder network
with RGB-D input, followed by a Hough forest classifier. The pose hypotheses from
all images are transformed to a global coordinate system where the final poses are
determined by subtractive clustering [21] of the pose centers. They also handle the
case of multiple instances of the same class by the hypothesis verification method
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proposed by [22]. The work of [23] integrates the output from several single-view
pose algorithms, that each provide pose hypotheses coupled with a confidence score.
They predict poses by weighted Mean-Shift clustering in the state-space of the pose.
[5] uses semantic segmentation in conjunction with a created point cloud of the scene
by exploiting RGB-D data. The segmentation output from a CNN is projected to
the corresponding 3D points which yields a point cloud of 3D semantic points. The
point cloud of the object is adjusted to fit to the semantic 3D points by the Iterative
closest point algorithm.

1.6 Contributions

The main contributions of this thesis work are the following:

o A new dataset for pose estimation in scenes with heavy occlusions between
multiple instances of the same objects.

e A tool for 6D pose annotation of multiple RGB images capturing a general
environment.

o A proposed framework for global object detection and pose estimation using
a sequence of RGB images, and an evaluation of said framework.

1.7 Report disposition

In this section, the contents of the remaining chapters are briefly introduced.

The Theory chapter aims to present concepts within computer vision that are related
to our work. Understanding the concepts presented in this chapter is important to
understand our solutions. The chapter presents all theory, both that which is related
to the Annotation tool, and that which is related to the Detection Algorithm.

The Project Disposition & Data Acquisition chapter presents the disposition of the
project as a whole. It covers practical details such as choice of platforms and tools
used in the development of the solutions, details regarding the data acquisition and
the overarching structure of the solutions.

This project, as previously described, has two main purposes for which the tasks dif-
fer substantially. Therefore, method, results and discussion of the two sub-projects
are for clarity’s sake reported in two separate chapters: Annotation Tool and De-
tection Algorithm.

Finally, in the conclusion chapter, the key takeaways from the development of the
Annotation Tool, and the resulting Detection Algorithm, are summarized and com-



1. Introduction

mented on.
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2

Theory

2.1 Geometric computer vision

The general field of Computer Vision deals with extraction of data from images and
includes several categories of problems. One particular field concerns modeling the
world as 3D points and how these are captured in an image in terms of geometrical
2D points. In these cases, linear algebra can be utilized for predicting e.g. the
position and shape of objects, the movement pattern of a moving camera and the
depth map in an image. Multiple models exist in this category and in this section
one of the most widely used is presented.

2.1.1 Pinhole camera model

The Pinhole camera model models how a camera captures a 3D point in the world
on the sensor/film by projecting the 3D points onto a geometrical plane called the
image plane, resulting in 2D points. The 3D and 2D points are denoted object
points and image points respectively. The projection of a single object point X can
be viewed in Figure 2.1.
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Figure 2.1: Illustration of the pinhole camera model. A world coordinate X is
projected onto the image plane of distance 1 length unit from the camera center
C, resulting in the image point . The camera is located in a coordinate system
(x,y, z) and has its own coordinate system (z’,y', ).

As the figure depicts, a camera is located at a point C. The orientation of the
camera is defined by a camera coordinate system where the Z-axis, denoted the
principal axis, serves as the viewing direction of the camera. The camera film is
modeled by a plane orthogonal to the principal axis at distance 1 from C. The
projection of an object point onto the image plane is done by taking the intersection

of the line defined by X — C and the image plane, resulting in a coordinate <T>,

where € R? is the image point.

The camera coordinate system can be viewed as the local frame of reference of the
world as "seen” by the camera. The camera, along with the object points, may
however be described in an outer global coordinate system which is more descriptive
of the world itself and is arbitrarily defined. As such, the position of C' denotes the
position of the camera in the global coordinate system while this point is defined to
be the origin of the camera coordinate system. See Figure 2.1

When dealing with the projections of object points into cameras in different coor-
dinate systems, transformations need to be utilized. A Euclidian transformation of
an object point X from a global to a camera coordinate system is composite of a
rotational and translation operation which is performed with matrix operations

X'=RX +t (2.1)
X

where X' = [ X} | is the object point in the camera coordinate system, R is a
X3

10



2. Theory

rotational matrix (see Section 2.1.3.2) and ¢ is a vector for translation. The projected
image point of X’ onto the image plane is given by the perspective projection function

(‘f) = r(X') = ‘;{3 (2.2)

A more common way of writing the above equation is

A (T) - X' (2.3)

where A = XJ. Using the two equations (2.1) and (2.3) for transformation and
projection yields the normalized camera equation (2.4) for capturing an object point,
residing in a global coordinate system, in a camera.

A (j") = RX +t (2.4)
In addition to the coordinate system transformation, a transformation needs to be
made to account for the intrinsic properties of the camera, such as pixel resolution.
This is done by a further multiplication by a matrix K which among other things
changes units from spatial image distance, e.g. meters, to pixels. This matrix is
added to (2.4) which gives us the camera equation

AK (f) = K(RX +t)=K R ¢ ("f)

The matrix P = K [R t} is called the camera matriz. K may be a known quantity,
in which case the camera is said to be calibrated, and it is often eliminated from the
problem. The normalized camera matriz may then be defined as P = [R T}.

X
The points <T> and 1 > are expressed in homogeneous coordinates which are de-

fined merely to express the equations in a compact and convenient way. Throughout
the rest of the report, the 1 will most often be omitted for brevity and X and « will
denote both the original and homogeneous versions of the points. A more compact
way to write the (normalized) camera equation is then

M =PX =RX +t

which will also be denoted the camera equation throughout this report. Note that
the camera equation is in fact composed of three scalar equations

M =RIX +t
Ny = RIX +t,

11
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th
where R] denotes the i:th row of R and t = | ¢,
i3

2.1.2 Inference from camera equation

The camera equation serves as a basis for inferring different quantities depending
on the known data. In the general case the known data includes multiple points N
which give rise to an equation system of the following form:

The following problems are relevant for this work.

2.1.2.1 Structure from motion

When a set of N corresponding (belonging to the same object point) image points
{x;, 2}, are known in two different images, the unknowns of the problem are the
normalized camera pairs P, = [R; t;] and P, = [Rs t5], the set of object points

{Xl}fil and the set of point depths {)\i, Xi}N

- in the following equation system:

ijz - PQXi, Z: 1,..,N.

There is an ambiguity in this equation system. As the cameras and object points
are unknown, a transformation H can be applied and solving an equivalent problem:

)\iwi = P1X-Z = (PlH)(H_le) = ple = élX-Z +t~1
NE; = Py X, = (PH)(H'X,;) = X, = R X, + t.

The transformation may be chosen to simplify the problem:
_[RY —Ri
=N
Py = [Ry t3)H = [RyRyY — RyR7 't + 1] .

] — (2.6)

As can be seen, the solution for one of the cameras is arbitrary and can be con-
structed to be the identity camera P = [I O}. The solutions of the cameras do
in fact represent how they are oriented relative to each other. Note that there is
no connection in this problem to any global coordinate system. As such, a global
coordinate system may be defined to be aligned with say P;, which is effectively
what is being done when it is transformed to be the identity camera.

12
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There is also another ambiguity in the equation system (2.1.2.1). Since only the
image coordinates x; are known for each camera, an equivalent equation system can
be acquired by multiplying each equation by a scalar s

/\iSGZi = SR1XZ' + Stl
XZ'SQ_?Z‘ = sy X, + sty —

which is called a scale ambiguity. Given no other information regarding the scenery,
s will be a unknown parameter.

In a more general case, the structure from motion consist of image point correspon-
dences in m images and the unknowns will include the cameras {P;, Ps, ..., Pp}.
Similar to the two-view case, a transformation H may be applied to align a global
coordinate system with the first camera, as seen in eq. (2.10).

m

{PH, BH, .., PyHY ={[T 0], P, .., P} (2.9)

This set of cameras is denoted a motion object. In the case that the scale s is
unknown, the set of cameras is denoted an unscaled motion object

{1 o], [Ry sty], ... [Ry, stn]}. (2.10)

2.1.2.2 Perspective-n-point

When the image points in a single image and the object points are known, in which
case they are said to be 2D-3D correspondences, the unknowns of the camera equa-
tion are \; and P. This problem is called the Perspective-n-point (PnP) problem.
Two variations of the problem exist

o The object points are defined in a given global coordinate system, in which
case the solution to the problem will be the camera matrix.

o The object points are defined in a local coordinate system (e.g. for an object
model, see 2.1.6) in which case the solution will be to find the position and
orientation of the object relative to the camera.

In the latter case, the global coordinate system is undefined and the problem may be
viewed in two equivalent ways. Either the global coordinate system can be defined
to be aligned with the object local coordinate system and the problem is to find the
camera matrix. Or it can be aligned with the camera coordinate system (similar to
the operations in (2.6), resulting in the identity camera) and the problem is finding
R, t,

a transformation 7 = 0 1

] from the object coordinate system to the global

13
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coordinate system such that it projects to the image points in camera P = [I O}
according to eq. (2.11).

R, t,

)\a::PTX:[IO][O ;

] X =[R, t,]X (2.11)

As can be seen this equation has the same form as the camera equation, showing
that the two ways of looking at the problem are equivalent.

When solving the equations that arise, numerical methods need to be resorted to
since exact solutions rarely occur due to noise in the data. One of several ways of
solving the PnP problem is minimizing the reprojection error

K

E=Yrlrg (2.12)
k=1

T = W(RXk + t) — T (213)

where 7 is the perspective projection function from (2.2), K is the total number of
point correspondences and 7y is denoted a residual vector.

An extension to this problem is the case of having 2D-3D correspondences in multiple
images of a motion object and finding a solution for 7" to the following equation
system:

t
/\331:P1TX:[IO] Rp pX
t
)\$2:P2TX:[R2 tQ] Rp 1p X
t

Solving this can be done by minimizing the multi-view reprojection error

Epati = > > TigTik (2.14)
iEM kEK;
rip =R Xy + 1) — g (2.15)

where M is the set of camera indices in the motion object, and /C; is the set of point
correspondence indices available for camera 7.

2.1.3 Pose representation

As was described by (2.11), the projection of an object point X in some local
coordinate system onto a camera is performed by multiplication by a matrix P, =

14
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R, t,]. P, is commonly referred to as the pose of an object and represent the
location and orientation relative a particular camera. Note that t represents the
placement of the local coordinate system origin in the global coordinate system.
This can be seen by transforming the origin point

X' = RyX origin +t, = RO+ t, = t,. (2.16)

In the case of representing a pose relative to a motion object, where it makes more
sense to use a global coordinate system, a global pose is defined to the pose relative
to the first camera. For the pose P, = [R, t,] in a camera P = [R t] of the motion

object, the pose P, = [R, t ] relative any another camera P’ = [R' t'] can be
calculated by
R —R7't| |R, t
A 5Y; P P
Pp—P[O | HO 1]. (2.17)

2.1.3.1 Global pose with unscaled motion object

When the motion object does not share the scale units with the object point clouds,
the pose transformation as given by equation (2.17) between cameras is invalid.
Consider two cameras {[Rl stl} , {Rg stg}} of an unscaled (s unknown) motion
object for which a global coordinate system is defined. For known image points
{x1, T2} and a given object model {X,;}™, the global pose has a transformation

T = }BT tir to the global coordinate system which needs to fulfill the equations
Ry tr

Moy = PTX = [Ry st] |7 | X = [RiRr Ritr+sti] X (2.18)
RT tr

Xy = PBTX = [R2 Stz} 0 1 X = [RQRT Rotr + St2:| X. (2.19)

The two equations can be solved individually for P,,;; = P/T and P,y = P,T. The
translational part of the solutions t,,; and t,,» can be used to determine the value
for s by

tsoll = thT + Stl (220)

tsox = Rotr + sty — (2.21)

Riton =tr +sRit (2.22)

Riten =tr + sRyt, = (2.23)
(Riteon — Ryten) = s(Rit, — Rity) = (2.24)

(R{tl B Rth)T(R?tsoll - Rgtsol2> _
[(RTt1 — R3t,)]|3
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This provides a way to determine s given an unscaled motion object, image points
and model points. It also shows that it is necessary to determine s before the pose
transformation (2.17) is used.

2.1.3.2 Rotation representation

A rotation matrix R € R3*3 performs geometrical rotations of a vector x in 3D which
is an operation of three degrees of freedom that imposes the following constraints

on R:

RR'=1

det(R) = 1. (2.26)

For avoiding unnecessary constraints or leveraging known data for the rotation,
it may be convenient to represent the orientation of the pose or camera by an
alternative representation of fewer degrees of freedom.

One such representation is by Euler angles which consist of three parameters {1, 6, ¢},
which describe three successive rotations around each of the three coordinate axes
most often with the convention of the Z-Y-X order. For a given set of Euler angles,
R is given by

R = R.(¢)R,(0)R. (1))

cos(¢) —sin(¢) 0]
R.(¢) = |sin(¢) cos(p) O
0 0 1]
cos(0) 0 sin(6)]

R,(0) = 0 1 0 (2.27)
—sin(f) 0 cos(f))

1 0 0
R.(¢) =10 cos(yp) —sin()
0 sin(yp)  cos(v)

Another representation is azis-angle, which describes rotation about an axis defined

Uy
by a unit vector % = | u, | with an angle 0.
u,
cosf +uZ(1—cos)  wuzuy(l—cosf) —u,sinf wu,u,(1— cosb)+ u,sinb
R = |uyu,(1 —cosf) +u,sinf  cos+u(l —cost)  wuyu.(l—cosf) —u,sinb
Uty (1 —cosf) —u,sin®  w,u, (1 —cosf) +u,sinf  cosh + u(1 — cosh)

(2.28)
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When solving for the pose or camera matrix, the solution is carried out by making
the substitution R = R(¢,0, ¢) or R = R(uy,u,, u,,0) for the two cases respectively
in (2.14).

2.1.4 Pose optimization with plane constraint

When an object is lying on a flat surface, the scenery can be modeled as an object
model being attached to a plane. When solving the PnP problem, this can be
exploited by constraining the solution, for which the degrees of freedom are reduced
from 6 to 3. Such a plane can be inferred from an object with known pose, and
which is known to also be attached to the same plane, by the following procedure.

Consider the points { X }£ | of the object model which are known to be attached
to the plane. The global location { X }X | of these points are given by using the
known pose

' = RX,+t. (2.29)

The attached plane 7 is then acquired by fitting the coordinates {X}}X . The
plane may be represented by a single point py belonging to it together with either
the plane normal n or two vectors {u, v} spanning it. The plane is used to constrain
the pose problem in the following way.

Consider another object with unknown pose but for which the model points { X}~ ,
that are attached to the plane 7 are known in the object specific coordinate system.
A plane 7 is fitted to {X;}%, in the object coordinate system and represented by
Po, 7,{@,0}. Note that the distance d between 7 and the origin is d = po"7 and is a
known quantity. This plane is expected to align with the known plane 7 when the
object is transformed by the correct pose since it is known that

RX,+tecnV X, (2.30)

This imposes the following two constraints on the PnP problem:

pP=Rp+tenVp €x (2.31)
Rii=n. (2.32)

These constraints can be used to remove one DoF for ¢ by writing it on the form
t = p' + nd, and inferring d which is the orthogonal distance to 7 according to

t=po+nd = (2.33)
nd=t—p, = (2.34)
d=(t—po)'n=(Rpy)'n= (2.35)
o' RTn =poin =d. (2.36)
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The constraint Rn = n can be exploited in the following way. Note that a particular
solution to the equation is given by representing R with an axis-angle rotation R;(n)
with the parameters 4; = 7i x n and #; = arccos @’ - n. This solution is not unique
however since any subsequent rotation Ry(n) around the n axis, i.e. 4y = n, will
still fulfill the equation. R is therefor represented as the two sequential axis-angle
rotations

R(7) = Ra(Ry(71)) = Ra(n). (2.37)

Since there is only a single unknown parameter 6 in this function, the DoF are 1.

2.1.5 Inferring the image projection

Utilizing the pose transformation (2.17) for a known pose and a particular object
model point, it is possible to predict the placement of the image projection for any
image in the motion object. The expected image point in a camera is given by

T(P.X) = <P’ lRO_ 1 _Rl_lt] [Jff tlp] X) (2.38)

This can for instance be used in conjunction with object-models to predict which
pixels in an image will belong to the object. Although the simple procedure of
projecting all object points into an image does not incorporate the possibility of
objects being occluded, more intricate algorithms exist which accurately predicts
object pixels. The output of such an algorithm could both be rendered images (in
the case of colored meshes of objects), and instance segmentation data for each
object.

2.1.6 Object model representation and keypoints

An object can be modeled by a point cloud which is a collection of N 3D coordinates
{X 1Y (usually labeled "vertices') defined in an object specific coordinate system
[24]. The coordinate system is usually defined to have its origin in the geometrical
centre of the object, and axes such that the z-axis points in a direction that one
could naturally think of as the "up'-direction of the object (although this choice is
arbitrary).

The diameter D of a point cloud is defined to be the maximum Euclidian distance
between any two points in the point cloud [25].

In addition to the vertices, a model may also have a set of faces {Fz}fi1 which define
a piece-wise continuous surface of the object. Each face F; is defined by a number
of vertex indices which span a simple geometric surface shape (usually 3 vertices
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spanning a triangle). Having model faces defined is important when rendering 3D
models in an image, to fill the space between projected image points.

In addition to the point cloud, the model may also be accompanied in some scenar-
ios by a set of K keypoints {X k}szl also defined in the object specific coordinate
system. Note that keypoints may also be defined as indices of certain points in
the already existing point cloud. Properly sampled keypoints may serve to simplify
pose estimation problems by reducing the number of 2D /3D point correspondences
needed to solve for the pose [26]. Furthermore, properly sampled keypoints may
also have semantic indication in the object model surrounding them, which can be
exploited in learning based approaches [20] [27] [28]. Keypoint sampling is usually
carried out either in an efficient automated fashion, such as farthest point sampling
[20], or by manually selecting keypoints which appear useful, such as sharp edges or
distinct textures [29].

2.2 Deep learning

Artificial Neural Networks (ANN) most commonly refer to input-output models
inspired by the human brain [30] which act as universal function approximators
[31]. The ANN architecture consists of a number of neurons which are sequentially
connected, each of which accepts a multi-dimensional input and produces a one-
dimensional output. See Figure 2.2 for a visual representation of a standard feed-
forward neural network model. Deep learning refers to ANN’s which are "deep, i.e.
consisting of a large number of neurons and layers.
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Figure 2.2: Schematics of a feed-forward artificial neural network.

The most common neural network model, the Feed Forward neural Network, consists
of L sequential layers, where layer [ contains N; neurons. First, a weighted linear
combination z() is computed from the input € R? by multiplication with a weight
matrix O € RN and addition of a bias vector b) € R (2.39). The activation
aM) of the first layer is then given by the activation function f,(z)) (2.40). The
activation function serves the important purpose of introducing non-linearity to the
model. Without a non-linear activation function, the final output will only depend
linearly on the input, limiting the complexity and applicability of the model [32].
Popular choices of activation functions include ReLLU [33] and the hyperbolic tangent
function. For each of the subsequent layers, the same two steps are taken, but with
the activation of the previous layer as the input rather than x (2.41). The output
of y is simply taken to be the activation of the final layer [ = L.

2 = oWz 4+ pW (2.39)
a = f,(z) (2.40)
20 = @Wal=1 4 p0 (2.41)

Deep learning models are commonly used to model unknown systems f(x) for

NN
which data in the form of N input-output pairs {(m,yt)(z)};l are given. The
subscript ¢ denotes that this is the target output. By tweaking the parameters

0 = {(@(l), b(l))}lL__ll of the neural network fy(x), the complexity of a sufficiently
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deep neural network allows for the model to match a vast set of input-output pars
to a high degree. The parameters are tweaked by gradient-based methods such as
Stochastic Gradient-Descent, or more sophisticated methods such as ADAM [34],
minimizing an appropriate objective function F (0;y,) (loss function). To compute
the gradient of the loss function w.r.t €, the backpropagation algorithm is used. The
details of backpropagation is omitted here, but it essentially boils down to applying
the chain rule in several steps, assuming the loss function is differentiable [35].

The appropriate loss function varies from task to task, but is always chosen such
that outputs produced by }'9 which are similar to y, yield lower loss values. For
example, in the task of binary classification, the loss function is usually taken to be
the Cross-Entropy loss (2.42). Note that the dependence of € is incorporated into
the output y.

E(8;y,) = —]i, > u” log (y) + (1 - y”) -log (1 - 4) (2.42)

i=1

Deep learning has been successfully deployed in numerous tasks within computer
vision, such as image depth estimation [36] and object classification [37], where the
deep learning models outperformed the traditional methods. Deep learning based
methods have the ability to capture semantics in data to solve tasks for which
humans have no difficulty solving (e.g. stating whether or not an image contains a
dog), but for which it is very difficult to formulate a rule-based algorithm which
solves it.

2.2.1 Convolutional neural networks

A Convolutional Neural Network (CNN) is a deep learning model which processes
data through convolutions. CNN’s are particularly useful within Computer Vi-
sion, where the grid-like structure and spatial coherence of images is exploited [32].
Specifically, this is accomplished by weight sharing which reduces the number of
parameters of the network. Similar to the Feed Forward neural Network, a CNN
successively performs a linear operation on the input @ followed by an activation
function and repeats these two operations a set number of times. The matrix multi-
plication ©Wal~b in equation 2.39 is replaced by a discrete convolution operation,
see Figure 2.3 for a visualization of this operation.

In the case of images, the input is usually a tensor of dimension (h, X w, X d) which
is the height,width and number of channels of the image. The discrete convolution
is a function associated with a tensor K denoted a kernel, which in this case is of
dimension (hx X wg x d). The convolution is performed by taking the inner product
between the two tensors  and K in a sliding window fashion. The elements of the
output tensor z are defined by
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Figure 2.3: Depiction of discrete convolution between an image (6 x 6) and a filter
(3 x 3).

z(i,5) = > K(m,n,0)-&(m+i—1n+j—10) (2.43)
m=1,2 .. hg (2.44)
n=12 .. wg (2.45)
0=1,2..4d (2.46)

z is of dimension ((h, —hx +1) X (wy —wg + 1) x 1). Usually the input @ is padded
in such a way that z gets the same height and width as . Padding means that the
input is extended in the relevant dimensions by adding zeros in the beginning and
end of it.

A typical layer in a CNN consists of n different kernels { K'}}_,, where n may differ
between the layers. Each of the kernels produces an output z; which are stacked
together to produce the complete output tensor Z(i,j, k) = zx(i,j) for a layer. A
bias vector b is added to Z and used as input to the activation function similarly
as in the Feed Forward case.

CNN’s have been proven efficient in object detection on pixel level, i.e. segmentation
problems [38]. The segmentation problem consist of classifying pixels into a number
of categories, of which one usually represents background or lack of an object.

2.3 Object detection and 6D pose estimation

The problem of object detection is the problem of identifying n objects where each
object is labeled as one of m classes, and finding their locations in some space,
given some input. The input contains no information regarding the inventory of
objects. (As opposed to the related problem of object localization [39]) In the more
researched area of 2D object detection, the location is typically represented by a
bounding box in the image, defined by x and y coordinates of a corner, and side
lengths h and w [40] [41]. In 6D pose estimation and object detection, the location
is represented by the 6D pose relative some reference camera.
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The ground truth data G is specified as a set of n objects O; which are defined by
one of m available class labels, and a pose P;.
m 3x4\ "
G = {Oz = (ClaSSi € {Cj}j=17 R eR % >}i=1
The goal of a 6D pose estimation and object detection algorithm is to, given some
input data z, produce a detection set D which is specified as a set of n’ objects O},
defined as for the ground truth data.

n/

D= {O; = (ClaSSz‘ € {Cj}721> S R3X4) }izl

Usually one includes a "confidence" metric to the output objects O} in addition to
the pose and class label. Confidence can be used as an intermediate step in filtering
detections before deciding upon the final set D [42], and the confidence of the final
detections are typically used while calculating one of the most popular evaluation
metrics, Mean Average Precision [39].

2.3.1 Evaluation

An object detection algorithm is evaluated by comparing the detection set D to the
ground truth set G.

A detected object O} in D is referred to as matched with an object O; in G if
they belong to the same class and are sufficiently close according to some metric
as described in Section 2.3.1.2. Depending on the choice of metric, there may also
be multiple detected objects {Oji = 1,2,...,k} matched with the same ground
truth object or vice versa. Object detection algorithms are typically evaluated using
classification metrics [43] [44] where the number of true positives (TP), false positives
(FP) and false negatives (FN) are counted by the following definitions.

A FP is counted for each object in the detection set D that is not matched with
any object in G. A TP is counted for each matched detection O}, in which case it
is said to be assigned to the ground truth object it is matched with, except in the
case of multiple detections {O}]i = 1,2, ..., k} being matched with the same ground
truth object O;. In this case only one of the detections O; will be counted as a TP,
and furthermore assigned to O, and the rest will be counted as FP. For each object
in GG that was not matched, a FN is counted. In typical classification evaluation,
there is also the concept of true negatives, but this is not applicable for the object
detection problem, since there are an infinite amount of locations where there is no
object in a scene.

One of several evaluation metrics for pose detection is the F1l-score, which may be
written on the form

B 2T P TP
TP+ FP+FN n+n

Fy (2.47)
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where n and n’ are the number of objects in the sets G and D respectively.

2.3.1.1 Assigning the matches

There is an ambiguity when using the Fj-score for this problem which is a conse-
quence of the fact that TP will depend on how the object assignment is performed.
Since the choice of assignment is ambiguous, different approaches exist which specify
how it is to be carried out. One approach is by assigning the detection matches in
the most profitable way as to maximize TP [39]. This approach result in a variation
of the assignment problem [45], for which multiple algorithms provide the solution
[45] [46] [47]. One way of assigning the matched instances in the most profitable
way is by the use of the Hungarian Algorithm [45] with a binary cost matrix; Either
detection 7 is a match with ground truth j or it is not.

2.3.1.2 Matching between ground truth and detections

The concept of "closeness' can be defined in different ways depending on the problem.
In 2D object detection, a detected object is taken to be sufficiently close to the
ground truth if the Intersection over Union (IoU) between their bounding boxes
is greater than a set threshold (typically 0.5 or 0.9) [48]. The metric is simply
the fraction between the area of the intersection of the boxes, and the area of the
union of the boxes. For our problem of detection of objects in 3D space, the ToU
metric generalizes by using 3D bounding boxes which encloses the CAD-models of
the objects. Alternatively, one can use other metrics such as the 5°-5cm metric
[49] where a pose is correct if it is within 5° rotational and 5cm translational error.
Another alternative is ADD which is the average distance of CAD-model points
transformed with the estimated and ground truth poses [2], for which the threshold
of detection typically is 10% of the object diameter.

2.4 Clustering algorithms

Clustering is the problem of finding structure in data and dividing the data into
a number of groups according to some measure of similarity. The intention might
be to categorize the data or acquire a more sparse representation of it. Different
clustering algorithms may furthermore depend on carefully selected parameters to
function properly.
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2.4.1 K-Means clustering

K-Means is an algorithm for clustering data {x;|i = 1,2,...,n} into a predefined
K number of clusters {Ci|k = 1,2,..., K}. The idea is to find the means {p;|k =
1,2,..., K} of the data clusters and group the data according to the closest mean
point they belong to. Different measures of distance may be applied and in this
section the euclidean distance d = || — pl|2 is used.

The K-Means algorithm consists of the following steps

Result: A set of K means

Initialize K means {g, }r ;;

while not converged do

for z; € {x;},_, do

Calculate k from ming ||&; — pi|2

Set x; € C,

end

if {Crlk=1,2,..., K} equal to last iteration then
| converged

end

for 1, € {p}iy do
Ky = Sik ZwEC’k Z;
Sk = 2aeCy(1)
end

end

Different schemes exist for initialization of { uk}szl, a common one being random
selection in the set of data;
Algorithm 1: K-means algorithm

2.4.2 Mean-shift clustering

The Mean-shift algorithm is a method used to find modes of a density function from
discretely sampled data of the distribution [50], and can easily be extended to be
used for clustering tasks [51]. Mean-shift has been used for tasks in computer vision
such as segmentation or object tracking [52].

The underlying idea of the method is to estimate the gradient of the density function
f(x) at point & to be proportional to the mean-shift m(x). By initializing a number
of centroids in the feature space and iteratively taking steps in the estimated gradient
direction, properly initialized centroids will converge to the various modes of the
distribution.

The mean-shift may be defined as difference between & and the mean of the samples
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weighted by a kernel K (x; — «) in the neighborhood N(x). (2.48)

YN K(xi — @)
The kernel K(x;,x) is often chosen to be a flat kernel with bandwidth A, in which

case the neighborhood N (x) is automatically inferred, and the mean of points within
the neighborhood is unweighted.

m(x) = (2.48)

1 if|lz—2'|| <h

0 otherwise (2.49)

K(z—a') = {

Intuitively, the idea behind using the mean-shift on data sampled from a density
function as an estimate of the gradient is motivated by the expectation of observing
more samples in a neighbourhood around & where the density is greater. Further-
more, it has been mathematically proven that the mean-shift at @ is proportional to
a kernel gradient density estimate under reasonable assumptions. The Mean-shift
algorithm for mode detection is described below:

Result: A set of m mode coordinates
Initialize n centroids {@;}}_,;
for z; € {x;},_, do
while not converged do
Calculate m = m(x;) according to eq. (2.48);
Set x; — x; + m;
if |/m|| < € then
| converged
end

end

end
Filter out duplicates among n final centroid locations to obtain m < n mode

coordinates;
Algorithm 2: Mean-shift algorithm

A strength of the Mean-shift algorithm is the lack of parameters. With the most
common choice of kernel functions, only one parameter h, the bandwidth of the
kernel needs to be decided upon. This parameter has a physical interpretation for
many applications [50], making the decision easier.
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Project disposition & dataset
acquisition

Since the purpose of the project was partially object detection in a supermarket
setting, and partially development of a data Annotation Tool, a natural inclusion
into the project was the creation of an annotated dataset of labeled object poses in
a supermarket setting. That way, the development of the Annotation Tool could
benefit from continuous testing/iteration, our detection algorithm could be trained
and tested on a new dataset, and we would produce a dataset relevant to the afore-
mentioned research project. A flowchart of the project disposition is shown in Figure
3.1.

Acquire Data

A 4

Develop Annotation

Annotate Data
Tool

Y

Train Neural Network

Y

Inspect Intermediate Develop Rest of
Results Algorithm

Y

Report Results on
Unseen Data

Figure 3.1: Flowchart diagram of project tasks.
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3. Project disposition & dataset acquisition

3.1 Project planning and execution

The project started out by an extensive literature study which would shape the
structure of the project. The goal of the study was partly to decide upon a state-of-
the-art, deep-learning based method for single-view 6D pose estimation and object
detection which we could extend to a multi-view framework. The method had to
satisfy our constraint on legal inputs to our final algorithm (RGB images, object
models and motion), and we also needed to be able generate the corresponding labels
for the trainable part of the method.

Among the existing literature, one method, PVNet by S. Peng et al. [20], stood
out for several reasons. Particularly due to their state-of-the-art performance on
a well known dataset. We decided to build upon their work since a) they had
source code published, b) their deep learning component produced interesting out-
put which could enable flexibility, ¢) they claimed their method to be robust to
occlusions and truncations, d) they proposed a method for extending their algo-
rithm to enable detection of multiple instances, e) their performance on the popular
occluded-LINEMOD Dataset [2] [53] was among the best reported at the time, and
f) their model required labeled data which we would be able to produce with little
effort from the labels generated using our tool.

The development of the Annotation Tool complemented the labeling of our dataset
well, as we (expectedly) encountered bugs and flaws of the tool in practical use.
Furthermore, we were able identify and to implement additional features which
would make the software more efficient.

The finalized dataset was partitioned into a set of training scenes, and a set of
validation scenes. The former set was used during development of the Detection
Algorithm, manual parameter tweaking and deep learning model fitting. The latter
set was used to assess the performance of the algorithm on new, unseen data, the
values of which are reported.

3.2 Dataset creation

To acquire our datasets, we placed various objects in different environments of vary-
ing lightning, and recorded the scenes with a video camera.

The dataset included objects one could typically find in a supermarket setting, and
also exhibited the same type of occlusions one could expect. The final list of objects
used in our datasets included: Soap (green), Soap (blue), Paper cup, Box of Lentins,
Box of Macaroni, Deciliter Measure, Can of Coconut Milk. The types of occlusions
we took into account during creation included:

« Objects (partially) out of frame.
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o Objects occluded by other inventory objects. This is common in supermarket
shelves where items are typically lined up.

e Objects occluded by the environment. This could typically be the shelves
themselves from some viewing angles.

These types of occlusions need to be handled differently in some scenarios, e.g.
when producing segmentations by rendering objects. Note that our dataset lacks
images with environmental occlusions due to the lack of a proper method to produce
accurate segmentation labels taking that into account. That said, the Detection
Algorithm may be able to produce decent results on test data in which environmental
occlusions are present, if it is capable of dealing with the other types of occlusions.

Furthermore, each scene in the dataset was labeled with a "difficulty" with respect
to occlusions to enable discussion of how occlusion affected the performance of our
algorithm. Each scene was labeled as "Easy", "Medium" or "Hard" depending on the
fraction of objects for which the video lacked viewpoints where they were clearly
visible. For example, scenes most resembling an actual store shelf would be labeled
as difficult, since objects are typically stacked tightly in a row, limiting the visibility
of most items greatly.

The motion was calculated using the structure-from-motion framework COLMAP.
The COLMAP pipeline required only the RGB images to calculate this.

The object models were obtained either by creating simple geometric shapes pro-
grammatically (for cuboids and cylinders), or by scanning them with HandyScan3D
[54] and processing the data in VXmodel [55].

3.2.1 Resulting dataset

In Tables 3.1 and 3.2, statistics for the resulting datasets are presented. In total,
data for 22 scenes were generated, 19 of which are used as the training set, and 3 of
which as the validation set. The difficulty distribution of the training set is uniform,
whereas the validation set consists of one medium, and two hard.

Unfortunately, many of the recorded scenes had to be discarded due to COLMAP
either failing to generate motion objects which remotely represented the camera
motion, or generating motion objects which simply were not accurate enough. Fur-
thermore, among the scenes included in the datasets, many of the images were
inexplicably ignored by COLMAP; resulting in fewer images on which to train the
deep learning model. We approximate that 75% of the actually recorded frames
were lost.

A sample of the scenes can be seen in Figure 3.2. For an overview of all the scenes,
Figure B.1 in Appendix B presents a single frame for every scene which aims to give
a good overview.

29



3. Project disposition & dataset acquisition

Table 3.1: Statistics of training dataset. The final 7 columns are the number of
instances of each class as indexed in Table 3.3.

Idx | #Images #Objects Difficulty | #1 #2 #3 H#4 #5 H#H6 H#7
1 555 13 Easy 2 2 2 3 0 2 2
2 345 35 Hard 5 6 7 3 1 5 8
3 267 52 Hard 6 10 9 8 6 5 8
4 227 20 Easy 4 3 3 3 4 3 0
5 201 13 Easy 0 3 3 0 4 3 0
6 611 52 Hard 6 10 9 8 6 5 8
7 364 23 Medium 4 4 3 4 0 5 3
8 536 11 Easy 2 2 2 2 1 0 2
9 400 29 Hard 4 4 3 7T 4 4 3
10 | 463 30 Hard 4 6 0 6 3 5 6
11 | 422 30 Hard 4 6 0 6 3 5 6
12 | 346 16 Easy 4 4 0 0 3 3 2
13 | 569 17 Medium 0 2 0 4 4 4 3
14 | 387 12 Medium 0 2 0 2 3 2 3
15 | 529 19 Medium 4 4 2 2 1 3 3
16 | 637 21 Medium 3 3 2 4 5 2 2
17 | 528 52 Medium 6 10 9 8 6 5 8
18 | 656 13 Easy 0 2 0 2 4 2 3
19 | 165 36 Hard 6 5 7 4 1 5 8
- 8208 494 - 64 88 61 76 59 68 78

Figure 3.2: Two of the scenes in the dataset.
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Table 3.2: Statistics of validation dataset. The final 7 columns are the number of
instances of each class as indexed in Table 3.3.

Idx | #Images #Objects Difficulty | #1 #2 #3 #4 #5 #6 H#7
1 260 29 Medium 4 5 7 5 4 0 4
2 385 26 Hard 3 4 4 4 4 4 3
3 981 30 Hard 4 6 0 6 3 5 6
- 1626 85 - 11 15 11 15 11 9 13

Table 3.3: Table of classes used in our dataset, and their corresponding numeric
indices for future reference.

Class Idx Class Name
1 Deciliter Measure
Coconut Can
Paper Cup
Box of Macaroni
Soap Bottle (Green)
Soap Bottle (Blue)
Box of Lentils

N O UL = W o
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Annotation Tool

This chapter covers the development of the Annotation Tool. It starts with an intro-
duction and motivation of the core idea behind the tool, followed by a specification
of user requirements and features. In the method section, the programming frame-
work used to create the tool is presented, and the underlying mechanisms utilized
are explained and motivated. Additionally, experiments which aim to evaluate the
efficiency and quality of the core method are formulated. In the section labeled
"Resulting Software", the features of the final product are presented along with dis-
cussion regarding usability of the tool. Thereafter, the results of the experiments are
presented. Finally, the chapter closes with a section of discussion of the experiment
results, and also regarding the quality of the method as a whole, with suggestions
for future improvements and features.

4.1 Core idea and specification

Consider an RGB image sequence {It}thl of a scene containing a number of objects
of interest (Ool). The image sequence is accompanied by its relative motion {Pt}thl
as defined in Section 2.1.2.1. Assume the objects of interest belong to one of N
object classes (e.g. Box of macaroni, Box of lentils, etc.). The goal is to obtain, for
each image [; in the sequence, the poses relative the image camera of all objects of
interest specified with the class of the object as described in Section 2.3. Note that
this includes poses of objects relative a camera for images in which the object may
not be visible.

The core idea of the Annotation Tool is for the user to manually identify and label
the poses of each object in the scene once, by identifying keypoints of the objects in a
small subset of the images. The global pose of an object, which can be transformed
to poses relative any camera, is calculated using reprojection error minimization
across the different viewpoints. The user continuously assesses the quality of the
pose annotations by observing the projections of the models onto the images from
multiple viewpoints.

The utility of the tool lies in its ability to produce thousands of annotated images

33



4. Annotation Tool

from the manual effort of partial annotation in only a few, while allowing the user to
seamlessly get an overview for the quality of fit of all labeled data. The tool makes
no explicit assumptions regarding the environments in which the images have been
captured, making it versatile for labeling new datasets for any new scenario.

The data provided by the user is the following:
o An RGB image sequence of the scene in question
o Pre-calculated camera motion

e The inner parameter matrix K of the camera which captured all images of the
sequence

e Point cloud CAD models of the inventory objects, complete with vertices and
faces

» (Optional) Keypoints associated with the CAD models

4.2 Method

4.2.1 Software development framework

The Annotation Tool was built using the MATLAB App Designer. This choice of
platform was motivated by a number of reasons. Firstly, we had great familiarity
with the MATLAB programming language, and the it includes efficient tool for
matrix algebra and optimization, which are important concepts within computer
vision. Secondly, MATLAB supports object-oriented programming, which provides
flexibility when developing a user friendly tool. Finally, the App Designer allowed
for easy user interface generation through its click-and-drag capabilities, which was
especially useful considering our lack of experience with front-end development.

4.2.2 Underlying mechanisms

4.2.2.1 Defining the global coordinate system

In order to simplify things, it is useful to define a global coordinate system. There-
fore, before any calculations are made in the tool, the motion object is transformed
to a coordinate system where the first camera P; is the identity camera [I,0]. We
denote the global pose of an object as P, and it is expressed in this coordinate
system.
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The provided motion object is not necessarily defined in a coordinate system which
shares the scale of the object specific coordinate systems. (Recall that scale is
ambiguous from Section 2.1.2.1) As a result, the pose P,y of an object when trans-
formed to a viewpoint ¢ will be improperly scaled as explained in Section 2.1.3.1.

Therefore, we also introduced a multiplicative scaling factor s which scales the
global coordinate system such that it is expressed in the same units as the objects’
coordinate systems. The scaling factor can either be set manually by the user, or it
can be specified to be a free parameter in the optimization procedure.

When navigating the different viewpoints, it is important that the user is able to
visually assess the quality of the pose in the current image. This is enabled by
simply transforming the global pose to a pose relative the current camera according
to eq. (2.17), and then projecting the model point cloud onto the image.

4.2.2.2 Pose optimization

For a single object instance, given a collection of 2D coordinates {; ; } where ¢ is the
viewpoint index, and k& denotes the keypoint type, we optimize for a pose Py, such
that the multi-view reprojection error E,,.;;; (2.14) of the keypoints are minimized
in all image planes. The optimization is carried out every time the user updates the
set of 2D keypoint locations in the step described in Section 4.3.2.

In the case that the scaling factor s is a free parameter, the translation component
ty of P, = [Ry,t is replaced by st;. Note that this implies that scaling factor
optimization is only carried out with respect to one object instance at a time.

The optimization procedure, like most optimizers, requires an initial solution P;g{;fz
This was obtained by using a 3-point minimal solver on three randomly selected
point correspondences. The solver results in two pose candidates, from which the
most appropriate one must be manually assessed. The 3-point minimal solver was
written by Olof Enqvist of the Computer Vision Group at Chalmers.

Once an initial solution has been obtained, the optimization is carried out using
the function fmincon which is available in MATLAB’s Optimization Toolbox. For
a new pose solution Py = [R*,#*] to be valid, R* must be a rotational matrix. To
avoid implementing the rotational constraint (2.26) during optimization, we utilized

an Euler angle representation of R (2.28) and optimized w.r.t the Euler angles.

4.2.2.3 Pose optimization with plane constraint

In many cases, multiple objects lie on the same flat environment surface. Some of
our objects have parts which are flat and may rest with that part on the underlying
environment. To aid in the annotation, we model the underlying surface as a plane
and make use of the plane constraint defined in Section 2.1.4.
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As explained in 2.1.4, we need a set of points { X} | on the object model which
are known to be attached to the plane. To acquire such a set we associate with each
object a number of lying positions (such as a macaroni box standing upright) where
a particular set of points is defined. In the case of macaroni in upright position,
the bottom four corners of macaroni are taken to be such a set. We choose the set
of points associated with the lying positions so that the planes they define always
are orthogonal to one of the coordinate axes. This simplifies our problem since the
normal vector to the plane in the object coordinate system will always be equal
to one of the coordinate axis n € {Z,9,2}. The user can then specify the lying
position by specifying which coordinate axes is equal to the plane normal, e.g. 2
when the macaroni is standing upright. A plane in the global coordinate system
is then acquired by fitting the set of points, as explained in Section 2.1.4, and is
represented by py and n. The user may also specify multiple such known objects,
in which case the set of keypoints defining the plane is the union of the objects
individual sets.

The plane can then be used to first detect the lying position. The pose problem is
initially solved without the aid of the plane by the normal solver, which will yield
an initial solution P; = [R; t;]. One of the coordinate axes will be similar to n after
transformation, i.e. (R;1)Tn ~ 1.

Since the transformed coordinate axes are equal to the rows of the transformation
R = RI = R(%,7, %), we can find the relevant coordinate axis by finding which row
of R produces the larges inner product with n

max RI n (4.1)
1
where R! denotes row i of R. i identifies the index for the correct coordinate axis.
Since 7 is now known, we can use equation (2.37) and solve the problem for the
single parameter # in an axis-angle representation.

4.2.3 Experiment 1: Assessing quality of labels

In order to assure that the pose labels generated using the tool are reasonable for each
of the images in {I }thl, we needed to efficiently measure their quality-of-fit across all
data. Since no ground truth labels were available prior to the annotation, we opted
for a visual inspection. This was done by rendering transparent segmentations of the
CAD models onto each frame in every video, and checking that they overlapped well
with their respective objects in the images. For this report, we include a random
sample of the frames across all videos. Although the user should be able to assess the
quality of their labels during annotation using the tool, some systematic errors in the
method may not always be apparent while using the tool, or some implementation
errors during the exportation of the labels may occur. A comprehensive visual
inspection of the scene is necessary to confirm that the ground truth labels produced
are reasonable.
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4.2.4 Experiment 2: Assessing the efficiency of annotation

Since the tool revolves around the user manually identifying keypoint locations in
images, the number of identifications per object instance measures in a sense the
manual effort of generating the data with our tool. To provide ground for discussion
of how our tool facilitates data labeling, we retroactively counted this quantity
from the labeling of our dataset. The histogram of the number of identifications
per object, and the number of viewpoints utilized are reported. Furthermore, this
experiment was formulated after the annotation had been performed. Therefore,
we were not influenced to deliberately minimize the visible effort, and the data is a
better representation of a typical use case.

4.3 Resulting software

In this section, the final Annotation Tool is presented. The usage of each feature of
the tool is explained along with a discussion pertaining to strengths and weaknesses
from a user perspective. Screenshots of the various user interfaces the tool consists
of are shown in Figures 4.1, 4.2, 4.3 and 4.4 where Figure 4.1 shows the main view.
Note that some of the screenshots have been cropped to better fit the report.

4.3.1 Main view

In the main view, the user may navigate between the images {It}thl and select the
active object instance among the available. The active instance is the instance for
which all operations are performed. The current image is the image in which the
user may identify keypoints of the selected object by pressing "Click Points". The
list of available object instances is initially empty. The user adds an instance of
every object they identify in the images. Each object instance has an associated
object class, with an associated CAD model and list of keypoints.
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Figure 4.1: Main view after loading data of a scene. In this example, the projected
point cloud of a green soap bottle is shown which was generated with a pose fitted
by the user.

4.3.2 Point identification

The point identification window is opened when the user presses "Click Points" in
the main view. In this window, the user is presented with a view of the CAD model
of the selected Ool along with markers for its current set of keypoints. The user is
also presented with the image of the selected viewpoint.

In this window, the user may select one of the defined keypoints as active by either
selecting it from the list of defined keypoints, or by marking it graphically in the
model view. When a keypoint is marked as active, the user may mark a pixel
coordinate in the viewpoint image by simply clicking it. This creates a 2D keypoint
coordinate x;; and adds it to the set of coordinates associated with the selected
object instance.

The user is also able to add new object keypoints by marking them graphically on
the CAD model. This is useful in case no keypoints have been defined a priori, or if
the user discovers a new particularly helpful set of points. The new keypoints can
also be exported for future use.

The user is able to use MATLAB’s integrated tools for plot view manipulation, such
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as rotating the CAD model or zooming and panning in the camera image, allowing
for clearer views and more precise identification.

Upon confirming the identified set of 2D keypoint locations, the user is returned to
the main view, and the pose is automatically optimized w.r.t all current keypoint
correspondences associated with the model. If the model had no correspondences
associated with it prior to this, two candidates for the initial solution for optimization
are presented to the user. The user selects the best fitting of the two candidates in
the view shown in Figure 4.3.

Figure 4.2: View where user may identify 2D keypoint locations {x;  } for arbitrary
keypoint types k in a viewpoint ¢. Here, keypoint5 (lower left corner) of the green
soap bottle is the active keypoint, as indicated by the green color of the markers.
Other keypoints marked with red markers have a 2D correspondence identified, and
keypoints marked with black markers lack a 2D correspondence.

O Left figure

® Right figure

[] Done

Figure 4.3: Prompt view to manually select one of two initial pose candidates.
The user simply selects the pose which appears to be the better fit as the initial
solution for optimization, which clearly is the rightmost solution in this case.
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4.3.3 Manual pose manipulation

Once a pose has been obtained from the optimization procedure(s), the user should
be able to manually fine adjust the pose to eliminate errors potentially introduced
during identification. Since the projection of a point cloud onto one image plane
can give a misleading idea of assessing the quality of the pose, it is important to be
able visualize the projection in multiple viewpoints. Therefore, 4 viewpoints, evenly
spaced in the image sequence, are presented in the same view to allow for better
feedback during fine adjustment. The viewpoints of all 4 views can be navigated
through.

The fine adjustment is carried out by selecting one of three coordinate system
axes and either translating in the positive/negative direction, or rotating in the
clockwise/counter-clockwise direction. The step size for either type of transforma-
tion can be adjusted using a slider. Transformation steps are taken using keyboard
combinations for maximum efficiency.

Figure 4.4 displays the fine adjustment view. In the example scenario shown in the
figure, one may think from the left uppermost reprojection onto the image that the
current pose is a good fit. However, upon inspection of the projection onto other
viewpoints, one can clearly see that this is not the case. This example demonstrates
the usefulness of the multi-view display when manipulating the pose label. Without
the ability to continuously assess the quality-of-fit of the projection in multiple
viewpoints, one may focus too much on seemingly perfecting the projection in one
view without realizing how much worse the projection fits in other views.
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Figure 4.4: Fine adjustment view. The user is presented with 4 viewpoints focused
on the selected object. The user selects one of three object axes (selected axis is
green, other axes are red) which they can either rotate the pose about, or translate
along with. The sliders labeled "Rotation" and "Translation" adjusts the step size of
rotations and translations respectively.

4.3.4 Plane identification

As mentioned in Section 2.1.6 it is not uncommon for objects point clouds to be
defined in a coordinate system where the axes are oriented along certain key direc-
tions pertaining to the object geometry. An example would be that the z-axis is
defined to point in the direction one naturally would assume to be up if the object
rested on a flat surface (such as the top of a table). E.g., the CAD models of the
objects available in Hinterstoissers dataset from the SIXD challenge repertoire are
expressed in coordinate systems abiding this rule of thumb.

Under this assumption, the tool allows users to select a number of the object in-
stances for which poses have been fit. For each instance, the axis orthogonal to the
plane and the direction of the axis pointing towards the plane are selected. The
plane is then fitted to the instances, and the user may choose to toggle on or off the
plane constraint described in Section 4.2.2.3 for new object instances.

After implementing the plane constraint, we found that the number of cases where
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the poses required fine adjustment after the initial identification of keypoints was
reduced significantly. This naturally reduces the workload of annotation in cases
when there are numerous objects in natural resting positions on a flat surface, which
was particularly common for our dataset emulating supermarket shelves.

In the final product, there is no visualization of the plane in the main view. This
makes it difficult to assess the quality of the plane estimate. A simple additional
implementation which projects a bounded rectangle or circle in the main view, with
the ability to scale the bounds and translate the center, would have made for a
better user experience. Furthermore, it could also be desirable to be able to define a
plane without first needing to find the poses of some objects. Instead, a plane could
be defined by allowing for the user to e.g. identify a set of points on the flat surface
and locate their 2D coordinates in two or more viewpoints from which a plane can
be fitted much like the poses.

4.4 Experiment results

The videos of all of the 22 scenes with object segmentation renders were inspected.
From the resulting segmentations, the poses were deemed to be good labels. Ran-
domly sampled frames of the produced videos are included in Appendix C for the
reader to personally verify, see Figure C.1.

The recorded numbers of identifications during the annotation of our dataset is
presented in Figure 4.5. The recorded numbers of viewpoints utilized is presented
in Figure 4.6.
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Figure 4.5: Histogram of the number of 2D points identified for fitting the pose of
an object instance. The thick black bar denotes the median, and the left and right
dashed bars denote the 0.25- and 0.75-quantiles respectively.
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Figure 4.6: Histogram of the number of viewpoints utilized for fitting the pose of
an object instance. The thick black bar denotes the median.
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4.5 Discussion

The aim of this section is to summarize the the main features and discuss how they
facilitate the annotation process. Also, the results of the experiments are discussed.
Furthermore, we discuss flaws with the produces tool and conclude this section with
proposals for future improvement.

4.5.1 Summary of key features

During annotation, an object might be heavily occluded from all viewpoints, with
none or few of the predefined keypoints being visible in any image. The resulting tool
provides a method for the user to define new object keypoints live during annotation
by selecting the keypoint directly on the CAD-model, which is particularly useful
when objects are textured.

The tool provides continuous assessment of the pose by easy navigation between
images in conjunction with the projected point cloud of the pose. This is important
since the quality of the current pose estimate might be hard to visualize from a single
viewpoint. An overview of the annotation state is also provided by the feature for
projecting all point clouds of annotated objects.

A pose can be manually refined by continuous translation /rotation with visualization
in multiple views. This is particularly useful when the pose estimate is poor due to
noisy clicked point or outliers, where it may hard to improve it by further clicking.

Functionality is provided for exploiting environments where objects are lying on a
flat surface. As the pose problem is then constrained, the DoF are reduced and
fewer click are needed.

The tool allows unscaled motion objects as input, since the scale can be determined
as part of the optimization procedure. This may be useful when motion object
are given directly from a software like COLMAP, which was the case for our own
annotated dataset. Since we consider our dataset to be of sufficient quality, we draw
the conclusion that this way of determining scale is feasible.

4.5.2 Workload analysis

We note that in the majority of cases, the number of used viewpoints is in line with
our expectations. When a pose is calculated from a single viewpoint the solution
suffers from noise that is particularly scattered along the direction between the
camera and the object, i.e. along the translation vector ¢ of the local pose. Identifying
further points from a viewpoint which is orthogonal to the first one is expected
improve the pose estimate significantly since it reduces the noise in the mentioned
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t direction. A third viewing direction orthogonal to the first two is not expected to
have the same effect, although it usually still means an improvement, since there
is no longer a particular spatial direction of high noise. Given that the user has
identified points carefully, two viewpoints is expected to be sufficient in many cases.

In contrast to above argument, we do in fact observe a significant number of single-
view identifications. A possible explanation for this is the use of the plane feature,
since the solution in this case is restricted to be on this plane. Any identifications
made in a viewpoint from above the object will for this reason not suffer the increased
noise since the viewpoint is orthogonal to the restrictive plane.

We further observe cases where the number of viewpoints are between five and
fourteen, which is a larger number than desired. One reason for this is the case
where an object is heavily occluded in all images, and only a small part of the object
with only a few keypoints can be identified, in which case multiple viewpoints are
needed. Note that the live adding of keypoints came in particularly handy in this
case. Related to this is the lack of good texture for some objects. For instance,
the paper cup texture is of particularly bad quality, with the consequence that only
a few keypoints on the model could be defined. More effort placed on improving
the texture for some of the inventory objects would certainly improve annotation
efficiency in these cases.

As observed in Figure 4.5, a majority of the identifications (the 0.75-quantile) are
below 20. We deem this to be sufficiently efficient for annotation since it approx-
imately translates to 10 identifications in two viewpoints or 7 identifications in 3,
although we consider this result to be improvable. The previously mentioned lack
of texture quality could potentially have an impact since keypoints that exploited
the texture might suffer from bad positioning on the object.

4.5.3 Visual assessment of pose label quality

A flaw with the method used to assess the quality of the final labels used is the inabil-
ity to conclude to what degree the orientation of geometrically rotation symmetric
objects is correct. For example, the paper cup in our dataset, whose "forward" orien-
tation is encoded in the texture of the cup, has the same projection for all rotations
about the z-axis. Assuming one wishes to find the 6DoF poses for such objects,
allowing the texture to signify principal directions, the methods we used both in
the tool, and in the assessment of our produced labels, is insufficient. One could
potentially solve this problem by rendering a transparent mask with the texture of
the object.

Despite the inability to correctly assess the rotation, should we expect the labels
of our dataset to to be flawed? Provided that the correct 2D keypoint locations
were identified, the fitted pose should be correct. However, due to the method we
used to texturize the models, we are not confident that the textures precisely match
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the textures of the actual object. This in conjunction with manual fine adjustment,
which was likely carried out for many of the objects, introduces reasons to believe
that the final pose labels for the rotationally symmetrical objects in our dataset
(Coconut Can and Paper Cup) are flawed.

In the case of labeling objects which are rotationally symmetric, both geometrically
and w.r.t texture, the core method of our tool is flawed. When identifying keypoints
from different viewpoints, consider a keypoint along the surface of the object whose
2D location was identified as x, in viewpoint ¢. It would be very difficult, if not
impossible, for a user to find the correct 2D location xj of the same keypoint in
a different view t’. As a result, an appropriate pose may not be found at all when
optimizing with respect to points form multiple viewpoints.

With this said, during evaluation of pose estimation algorithms, one may use eval-
uation metrics which take into account rotational symmetries, and do not punish
the algorithm for producing estimates whose orientation does not match the ground
truth in this regard. If one decides to evaluate an algorithm on our dataset with such
a metric, and decides not to use the model textures to define principal directions,
the labels can still be used for evaluation.

4.5.4 Flaws of the tool

Since the tool is based on the transformation described in Section 2.1.3, it heavily
depends on the usage of a motion object. Acquiring a motion object of sufficient
quality may not be feasible for any given set of images. For instance, we used
COLMAP for acquiring the motion, which was unable to calculate a sufficiently
accurate motion object in all image sequences. A user may therefore be restricted
in the data collection in some cases.

A restriction when exploiting the plane optimization is that only specific predefined
parts of the object model may be attached to the plane. Furthermore, the plane
defined by such parts are constrained to be orthogonal to a coordinate axis. More
general object shapes which are not adapted to these requirements are not handled
in the current implementation.

MATLAB App Designer proved to be slower than desired during usage. This is
particularly noted during loading of new screens, during addition of new instances
and during changes of viewpoints. Although convenient during development, the
fact that MATLAB App Designer is not an A-grade software development program
impairs the usability of the Annotation tool.

Finally, a problem which we have identified stems from the simplified camera model
used for pose calculations. As reviewed in Section 2.1.1, the pinhole camera model
does not take into account some distortions introduced when capturing images with
a real camera. Particularly, the pinhole camera tends to be a less accurate mapping
from the 3D point space to the image plane the further away from the viewing ray
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the 3D points are. Therefore, 2D points indicated by a user close to the edges of
image suffer from a directional bias, which may have a significant impact on the
accuracy of the fitted pose. This effect was noticed when annotating our data. This
is especially troublesome since a user may intuitively assume that their keypoint
indication should be more accurate if the image was taken close to the object, since
the object then naturally occupies a larger portion of the image. However, only the
part of the object close to the center of the image will be in line with the camera
model.

4.5.5 Future work

Improvements for the plane exploitation feature can be performed which removes the
restrictions made on the object. The implementation can be extended to allow for
flat parts on the object which spans a plane that is not axis orthogonal. Furthermore,
in addition to the predefined lying positions, a user could be able to specify the set
of points on the CAD-model that are known to be attached to the plane, similar to
the feature of adding new keypoints.

The problem of the pinhole camera model bias could be partially solved by allowing
users to provide distortion models in conjunction with the inner parameters, such
as the radial distortion model [56] or the division model [57]. This would allow for
the tool to use the corresponding correction model (inverse distortion models) to
obtain corrected 2D keypoint coordinates better suited for the pose reconstruction.
Alternatively, since the pinhole camera model is very commonly used, and users
may not have better models to provide, the tool could be extended to simply warn
users when localizing 2D keypoints in further away from the image center, where
the pinhole model is typically less accurate. Yet another alternative could be to
introduce an uncertainty associated with the distance from the image center for the
2D points, and perform weighted optimization. The scaling of the uncertainty levels
would have to be chosen by the user, depending on how accurately they believe their
pinhole camera model models the real camera.

In order to let the user more efficiently navigate the viewpoints, the tool could have
exploited the spatial information contained in the motion object. An example would
be to add a navigation button in the main view which skips to the "next-best-view"
for keypoint identification. This could e.g. be the next viewpoint in the sequence
where the camera matrix differs enough from the prior camera matrix. Intuitively,
identifying 2D keypoints from significantly differing viewpoints should lead to better
pose estimates [58] than doing so from closely adjacent cameras. Rather than having
the user navigate to such viewpoints, such a system could potentially do it for them
in many cases.

Finally, as discussed above, we recognize that our Annotation Tool currently assumes
that the user is interested in finding 6DoF poses for any object class. This does
not have to be the case, and functionality which takes this into account should be
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considered for future development of the tool. Such funtionality would appropriately
be realized with separate optimizers for objects indicated by the user as rotationally
symmetric.
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Detection Algorithm

This chapter describes the whole pipeline that was used for global detection of 6D
poses, presents the results and discusses them.

Given a sequence {I;},_, of T RGB images with an associated camera motion { P,};_,
and the inner parameters K, the goal of the algorithm is to detect instances of
specific inventory objects, and estimate their 6D poses in a global coordinate system.
Note that the detections are not accompanied by confidence scores, disqualifying the
results to be evaluated with the standard metric mAP.

5.1 Method

In order to achieve the task at hand, we have designed a pipeline which for each
image I; in the sequence calculates an output independently. It then aggregates the
outputs to produce the final object detections and pose estimations, utilizing the
motion {Pt}thl. The single-view procedure heavily makes use of modules developed
and published by S. Peng et al. for their work PVNet [20]. This choice is motivated
in Section 3.1. A flowchart for the pipeline as a whole is shown in Figure 5.1. We
justify the choice of processing each image in the sequence independently by our
assumption of static scenes; Taking the sequential nature of the images into account
should yield no additional information to exploit. Furthermore, for reasons stated
below in Section 5.1.1, the entire pipeline is built to handle one object class at a
time.
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Global
poses

Viewpoint Aggregation

Single-view Single-view Single-view
method method method

Figure 5.1: Overview of the Detection Algorithm. The algorithm first processes
each image of the scene independently to find quantities that may be aggregated
simultaneously inthe final step, producing the detections and pose estimates in the
scene.

The resulting Detection Algorithm was evaluated by calculating the Fj-score as de-
scribed in Section 2.3, on each of our datasets, both the validation sets and the
training sets. The results reported on the validation indicates how well the algo-
rithm performs on unseen data, i.e. how well it generalizes. An estimated pose was
considered a match with a ground truth pose if the ADD metric between them was
less than 10% of the object diameter, and the Hungarian Algorithm was used for
assignment between estimated and ground truth poses. We claim there is value in
evaluating the pipeline even on the training datasets, since these results provide in-
sight in how well the non-NN components of the algorithm perform specifically, and
let us assess how sensitive the pipeline is to good regressions from the NN (assuming
the NN performs better on the training data to which it is fitted). Furthermore,
since the pipeline makes use of a deep learning module, the final performance met-
rics (loss function values) on both the training and validation set of the module are
presented.

In this section, we describe our complete pipeline for estimating global poses through
the following steps: First we present an exhaustive review of the PVNet [20] method
for single-view pose estimation. Since our single-view procedure uses modules from
that work, we present their methods separately to make clear what parts of our
algorithm stem from their contributions. Secondly, our single-view procedure, the
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output of which is used in the aggregation step, is explained in detail. Finally, we
explain how the data extracted from each image by the single-view procedure is
aggregated to yield the final object detections and pose estimates.

5.1.1 Single-view pose estimation using PVNet

The PVNet architecture is designed to detect an instance of a specific object, and
estimate its pose relative the camera, assuming there is at most one instance of
the object present in the image. The inability to process images with multiple
instances of the object makes the method unsuitable to include as it is in our pipeline.
However, parts of their methods are directly applicable to the task our single-view
component of the pipeline aims to carry out. Therefore, this section aims to explain
these parts.

Similar to many other recent works within single-view pose estimation, PVNet
breaks down the problem in two main steps consisting of using a deep learning
based approach for creating a set of 2D-3D correspondences and solving the PnP
problem defined in Section 2.1.2.2. The core idea of PVNet is to regress a set of 2D
vectors for each object pixel that points towards the locations of a set of keypoints
in the image.

The following are the key components of the PVNet pipeline:

e« A NN is trained to simultaneously perform class segmentation, i.e. predict
which class a pixels belong to, and within the segmented area predict the
voting direction to the set of keypoints for the object.

o A RANSAC scheme is used to generate a number of hypotheses for the location
of keypoints, coupled with a score for the "goodness" of the hypothesis.

o The hypotheses and their scores are then used to estimate the keypoints and
their covariances in a probability distribution fashion.

e A modified version of the PnP-problem is then solved for, which utilize the
estimated uncertainties in the keypoints.

Although the NN can be used to predict the desired outputs for all classes simul-
taneously, an alternative implementation is to train a separate NN for each class
separately. As far as the authors are aware, the latter case is the one adopted by
the PVNet authors. This is also the approach we have used, as it allows for new
object types to be incorporated to the problem without having to retrain the NN
each time we do so. This means that the detection of the objects are done sepa-
rately between the classes during the whole pipeline. Following sections assume this
implementation.
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5.1.1.1 Pixel-wise voting and class segmentation

As explained in Section 2.1.6, a set of keypoints {X k}kK:1 belonging to a known
model of an object may be defined. By detecting the projection {.’Bk}szl of these
keypoints in an image, and thus acquiring a set of 2D-3D correspondences, solving
the PnP problem would provide the the single-view pose of the object in an image.

The idea behind the PVNet method is to infer {z}+_,, which may be occluded in
the image or outside the image border, from visible parts of the object. This is done
by predicting the direction from each of the object pizels (i.e. pixels belonging to
visible parts of the object) towards {a@;}r_,.

Consider the coordinate p of a pixel in the image and the coordinate for a single
projected keypoint x; in the image. The direction from p towards x; is defined by
the voting vector
Iy —p
||l — pll2
which is the main quantity of interest in the PVNet method. The prediction of v (p)
is made for each of the pixels in the image and for each keypoint meaning that the
complete quantity is a tensor of dimension (H x W x (K x 2)), where H and W
is the height and width of the image. We refer to this quantity as the voting field,
and will interchangeably use this name to reference both the complete quantity and
a subset of it for a single keypoint.

vi(p) (5.1)

To make the prediction, a CNN is used as explained in Section 5.1.1.2 below. Al-
though the prediction is made for all pixels, only the object pixels are used in the
following steps of the algorithm. This is reasonable since CNN’s makes use of local
features in an image. PVNet is therefore designed to also predict object pixels,
i.e. perform semantic segmentation, which is represented by a tensor of dimension
(H x W x 2). The segmentation is depicted in Figure 5.3 and the voting field of a
single keypoint within the segmented area is visualized in Figure 5.2.

5.1.1.2 Neural network design

The NN of PVNet was implemented in the PyTorch computing framework for ma-
chine learning [59]. The input to the NN consists solely of an RGB image, which is a
tensor of dimensions (H x W x 3). The output is a tensor containing both the voting
vector field and the segmentation predictions stacked along the third dimension, i.e.
it is of dimension (H x W x (K x 2 4 2)). The neural network model is a revised
version of a pretrained ResNet-18 network [60], with the following alterations:

o The pooling layers following the feature maps of dimension (% X %) are dis-
carded.

o The subsequent convolutions are replaced by dilated convolutions.
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Figure 5.2: Example of a voting field corresponding to a keypoint. Each pixel in
the semantically segmented area of the image has a direction vy pointing towards
keypoint k. The directions are color-encoded in this illustration.

0 100 200 300 400 500 600

Figure 5.3: Example of semantic segmentation. A semantic mask (transparent
green) of all pixels belonging to the blue soap bottle covers the bottle in the image.
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o Skip connections, convolution and upsampling is added after the feature map
until it reaches the dimensions (H x W) and finally a (1 x 1) convolution layer
is applied.

Note that the output voting field during testing might not be vectors of unit length,
and are therefore normalized after the prediction.

The network, parameterized by the weights w, is trained with a separate loss func-
tion for the segmentation and the voting field. The loss function [, for the voting
field is defined for a single image by

L(w) =" > h(Avk(p;w)ls) + L(Avk(p; w)l,)

k=1peO
Avi(p; w) = Ui (p; w) — vi(P)

where vy, is the predicted voting vector, while v, is the ground truth voting vector
and the two elements vy, and wvy|, are the two elements of v;. O is the set of
pixels belonging to the ground truth segmentation and w is the parameters of the
network. [y(x) is the smooth l; loss as defined by

0.522if |z| < 1
(@) = { 2]

|z| — 0.5 otherwise .

The segmentation loss I (5.2) is the mean cross-entropy as described in Section 2.2
over all P = H - W pixels in the image. Here, y € {0,1} is the target class of a
pixel, and 3 is the predicted output.

ls(w) = ;iy(i) -log (yf(i)) + (1 — y(i)) -log (1 — gj(i)> (5.2)

i=1

The complete loss is then taken as a sum of the two [ = [, 4+ [,. The total loss for
the dataset is the mean loss over all images in the dataset.

5.1.1.3 Hypothesis generation and keypoint estimation

The next step in the pipeline is estimating the keypoints. The PVNet pipeline
determines an uncertainty measure for the the keypoints it detects and model the
keypoints by a Gaussian probability distribution.

First a number of N keypoint hypotheses {hy;|i = 1,2,..., N} are calculated for
each keypoint type. This is done by sampling pairs of random pixels within the
segmented area and taking the intersection of the two voting lines which are formed
by extending their voting vectors. Each of the hypotheses are then scored according
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to how many pixels vote for them according to

hkz - )T ~
=30 M (p) > 0 (5.3)
peO | ‘hk 7 p‘ ‘2

where I is the indicator function, # is a threshold parameter and p € O denotes the
set of predicted object pixels. We denote the composite function in the summation
the inlier function for future reference. The resulting scores of equation (5.3) are
used to estimate the mean p, and covariance 3 for a keypoint xj according to
equations (5.4) and (5.5).

Ef\il wk,ihk,i
Zij\i1 W ;
> o Ef\il Wi (A — py) (e — Hk)T 55

M =

5.1.1.4 Uncertainty-driven PnP

To exploit the probability distribution representation of x, PVNet solves the PnP
problem by minimizing the Mahalanobis distance instead of the reprojection error
defined in equation 2.12. The minimization problem is then

K
: Ty—1
r%}%qu:l rL XL Tk (5.6)
re = 1(RX ) +t) — @y . (5.7)

This problem is denoted Uncertainty-driven PnP, for which the solution will provide
the pose P = [R, t].

5.1.2 Our single-view pipeline

Our single-view procedure aims to, given a single RGB image of the scene, produce
output containing information which can be aggregated to yield accurate object
detections and pose estimations. The output this procedure aims to produce is
for each instance visible in the image, all K corresponding 2D keypoint locations
{wk}le. The choice of this output quantity, rather than alternatives such as direct
pose estimates, provides interpretability in the intermediate steps of the pipeline,
while also allowing for flexibility in the aggregation step.

To calculate this output, the method needs a way of deciding upon a number of
instances visible in the image, and regress the 2D keypoint locations for each in-
stance. Briefly put, this method aims to separate the semantic segmentations pro-
duced by the PVNet neural network into instance segmentations, and thereafter
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use the RANSAC procedure (see Section 5.1.1.3) to find the 2D keypoint locations
for each separate instance using the split segmentations. In the original paper on
PVNet, the authors proposed a simple method to separate the semantic segmen-
tations (for which no implementation was published), but the method was deemed
to be inadequate for its purpose when we tested it. An overview of the single-view
procedure is presented in Figure 5.4.

The pipeline starts with the use of a Neural Network for predicting the voting field
and the semantic segmentation in a single image. These two quantities are used
to generate a number of N keypoint hypotheses for each keypoint type. Multiple
keypoints are then selected from the hypotheses by using a clustering method. The
instance segmentations are determined by first deciding upon the number S of visible
objects and then grouping pixels according to similarity in voting patterns. Finally
the sets of 2D keypoints for each of the S instances are determined by running
the PVNet pipeline from the hypotheses generation step for each of the instances
segmented areas individually.

5.1.2.1 Neural network

To predict the voting field and semantic segmentation we use the same network
architecture as the work of PVNet, described in Section 5.1.1.2. When training the
network we also used the same loss function and hyperparameters.

As explained in Section 5.1.1, a neural network was trained for each of the different
objects in our inventory. To produce the labels for training we made use of the
annotated poses. The semantic segmentation labels were acquired by using external
software which rendered the models according to the poses. The voting fields were
calculated by using the pose data to project the model keypoints to the image and
then calculating the voting vectors according to equation (5.1).

5.1.2.2 Hypothesis generation

Given the output from the Neural Network, we follow the procedure for acquiring
a number of hypotheses {h;|i = 1,2,..., N} in the exact same way as outlined in
Section 5.1.1.3. To score the hypotheses, we do however use an alternative to the
inlier function in equation 5.3 which we denote a voting function V,(h,p,v):

Vo(h,p,®) = exp(—al?) - max {W, O} (5.8)
12 = ||h—pli3 - ((h—p)75) . (5.9)

where L is the orthogonal distance between the voting line and the hypothesis, and
a is a parameter of the function. The reasons for using the voting function rather
than the inlier function is to get a continuous value in (0, 1) of "how much” a pixel
votes for a hypothesis. The need for this will be apparent in Section 5.1.2.5.
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Figure 5.4: Flowchart describing the various components making up the single-
view pipeline, which takes one RGB image and outputs estimates of the 2D keypoint
locations of object instances detected in the image.
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The form of V, consisting of the two terms exp(—aL?) and max{ (\}|lh_ f’;i: ,0} is moti-

vated by the requirement that a pixel both vote spatially close to the hypothesis as
well as in the correct direction to get a high voting score. For instance, a pixel which
is placed at great distance from the hypothesis may get a high value of the term
max{ (T,; _”I))T‘: ,0} even though it votes at a large distance L from the hypothesis. On
the other hand, a pixel placed really close to the hypothesis will get a large value
of the term exp(—alL?) since L will be small even though it might vote in a quite
different direction than the hypothesis location. Using both these terms balances
out these two extreme cases and worked overall better for our purposes. Using a

larger value of the parameter a balances the score to prioritize the spatial measure.

5.1.2.3 Keypoint detection

In the case of single instances in an image, the generated hypotheses data is inter-
preted as being drawn from a Gaussian probability distribution as noted in Section
5.1.1.3, for which we associate a mean/mode p and a covariance . In the case
of multiple instances of a keypoint type in an image, the distribution becomes a
mixture model, and we aim to find the all modes of the distribution. The mode
detection is accomplished by using Mean-Shift clustering (MSC), as it was designed
for this. Although MSC can be performed with the hypotheses locations only, we
propose to incorporate another quantity in the data.

We observe a pattern that the orientation of a particular hypotheses cluster, i.e. the
principal components of the data in the cluster, seem to be aligned with the relative
direction between the cluster and the object pixels as seen in Figure 5.5. We may
therefore expect that the hypotheses in this cluster on average get their votes from
approximately the same direction as the principal components. Motivated by this
observation we define a additional property for a hypothesis h; which we denote the
voting direction d;

(hi—py)
Ype0 M=~ Valhis Pjs 05)

T ZpEO ‘/;L(hlapjv’v])

(5.10)

This property represents which direction a hypothesis got its votes from on average
and approximates the principal components of the cluster it belongs to. The idea
is to exploit this property by performing MSC in a higher dimensional space where
each hypothesis point is represented not only by its location «, but also its voting
direction d. This is advantageous over just clustering on the locations when the
locations of the keypoints are near each other, but they steam from the votes from
different instances. A sparse set of voting directions can be seen in Figure 5.6.
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Figure 5.5: The voting direction (orange arrow) of the MSC detected keypoint
(yellow point) and the principal component (green arrow) starting at the keypoint
plotted among the keypoint hypotheses. The keypoints hypotheses are color coded
according to voting score.

Figure 5.6: Voting directions for a sparse set of keypoint hypotheses. The orange
arrows indicate the average voting direction from all pixels p € O. The yellow circles
are examples of keypoints detected after MSC in the combined space of location and
voting directions. The keypoints hypotheses are color coded according to voting
score.
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5.1.2.4 Instance detection and segmentation

At this point we have acquired a set of keypoints for each keypoint type and aim to
use this data to first determine the number S of visible instances in the image and
then split the semantic segmentations into .S instance segmentations.

To estimate S we resort to looking at the number of detected keypoints for each
keypoint type. S is taken to be the most common number of detections among the
different keypoint types.

The main idea for grouping the pixels in S categories is that pixels belonging to
the same instance are expected to vote similarly across all detected keypoints for
all keypoint types. To exploit this assumption we make use of the voting function
V, defined in equation (5.8). The complete set of votes for a particular pixel can be
represented as a point in R%¢, where K, is the total number of detected keypoints
across all keypoint types. Due to our choice of V,, the votes will have values in a
continuous range in contrast to the indicator function. As pixels are assumed to
vote similarly, they are expected to be spatially close in this space. We therefore
make use of K-Means clustering with S centroids to group the pixels. Note that
the reason for defining an alternate voting function was due to the requirement of
acquiring voting scores in a continuous range for clustering purposes.

5.1.2.5 Instance 2D keypoint estimation

Given the split segmentations from the previous step, the original PVNet pipeline is
now used with each instance of the segmentations separately. This provides S sets
of all K keypoints for the visible instances which is desired data from each image.

5.1.3 Aggregation

Given a set of keypoints for each instance in all images we now aim to aggregate
these into the global pose estimates, and decide how many instances of the class
are present in the scene. From viewpoint ¢, a collection of #; sets of 2D keypoint
locations in that image is given. The overall collection of keypoints is assumed to
contain noisy data, and outliers.

Since the keypoint locations were calculated independently for each image by the
single-view procedure, the indices of detected instances in each viewpoint are not
consistent with indices in other viewpoints. For example, given 2 sets of keypoints
from image I; and 2 sets of keypoints in image [, we have no way of knowing if
instance 1 detected in I; corresponds to instance 1 or 2 in I5. See Figure 5.7 for a
visualization of the scenario. Therefore, the first step of our aggregation method is
to match the instances detected in the various images. This will subsequently yield
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Viewpoint 371 Viewpoint 347

400 500

Figure 5.7: Point estimates from single-view procedure for two different viewpoints
of the same scene. In the viewpoint 371, the leftmost box of macaroni was detected
as the first instance (blue dots), whereas in viewpoint 347, the rightmost was.

the final number of detections of an object class in the scene. After that, the pose
of each object instance is obtained using Multi-View PnP.

The first step taken is to simply fit a pose to each of the sets {:ck},le across all T’
images, and from the poses express the object centers in a unified global coordinate
system. The idea is that if sufficiently accurate 2D keypoint locations were regressed
from enough images I;, the object centers in R?® will cluster around the true object
center point.

The next step is to detect these clusters. Once the clusters have been detected,
instances in different viewpoints can be matched; 2D keypoints which generated
object center hypotheses which belong to the same cluster are considered to belong
to the same object instance. Note that clustering methods do not necessarily assign
every data point to a cluster. 2D keypoints corresponding to such data points are
considered outliers, and are filtered out.

The clustering method used to find the clusters was Mean-shift clustering with a
parameter sweep. Since the final number of detected instances is decided upon in this
step, it is crucial for the clustering method to find the correct number of clusters.
To make the method more robust in this regard, the bandwidth parameter h is
swept over the interval [leDminy Dypin) where D, is the minimum point cloud axis
limit. The reasoning behind these limits stems from the physical interpretation of
the bandwidth parameter of the Mean-shift kernel; The center points of two clusters
are not expected to end up within a radius h. Therefore, we set the upper limit of
the h to the closest distance the center points of two object of the same class may
have. After having performed Mean-shift clustering sweep, a set of cluster centers
is obtained for every parameter value. To find the final number of clusters, a single
Mean-shift clustering procedure is performed on these cluster centers. This will
detect the center points of the cluster center data which will yield one hypothetical
center point per detected instance in the scene.
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Now, a set of I global instance centers have been detected, and the image-specific
instances are to be matched by assignation to one or none of the global instances.
For each image-specific instance, the distances between the center point of the pose
fitted to the corresponding 2D keypoints, and each of the global instance centers are
calculated. The image-specific instance is then either assigned to the global instance
for which the distance is smallest, or to no instance if the smallest distance is above
a certain threshold. Now, for each global instance ¢ = 1,2, ...I, there is a collection
{z; )} for some ¢t € {1,2,...,T} and all £ = 1,2,...K. Finally, to obtain the poses
of the detected instances, Multi-view PnP is carried out on that data. Finally, the
algorithm filters our duplicates among its detections by deleting instances which are
too similar. An instance is considered a duplicate if the ADD-metric between it and
another instance’s pose is below 10% of the object diameter (the same criterion as
used for instance matching during evaluation).

5.2 Results

Table 5.1: Fj-score over all scenes in the validation set for each class.

Object Class Fi-score | Precision | Recall
Deciliter Measure | 0.3750 0.2857 0.5455
Coconut Milk 0.4000 | 0.5000 0.3333

Paper Cup 0.1739 0.1667 0.1818
Macaroni 0.7142 0.7692 0.6666
Soap (Green) 0.6666 | 0.6154 0.7273
Soap (Blue) 0.3157 | 0.3000 0.3333
Lentils 0.2399 | 0.2500 0.2308

Table 5.2: F)-score over all classes for each scene in the validation set.

Scene Idx | Fi-score | Difficulty
1 0.6229 Medium
2 0.3333 Hard

3 0.2951 Hard

62



5. Detection Algorithm

Table 5.3: Fj-score over all scenes in the training set for each class.

Object Class Fi-score | Precision | Recall
Deciliter Measure | 0.9037 0.8592 0.9531
Coconut Milk 0.6839 0.7910 0.6023
Paper Cup 0.6168 0.7174 0.5410
Macaroni 0.7625 0.8413 0.6974
Soap (Green) 0.7500 0.6957 0.8136
Soap (Blue) 0.8888 0.8955 0.8823
Lentils 0.6861 0.7966 0.6026

Table 5.4: Fj-score over all classes for each scene in the training set.

Scene Idx | Fi-score | Difficulty
1 1.00 BEasy

2 0.7576 Hard

3 0.6170 Hard

4 1.00 Easy

) 0.8667 Easy

6 0.4810 Hard

7 0.8511 Medium
8 0.8800 Easy

9 0.6000 Hard

10 0.5283 Hard

11 0.8136 Hard

12 0.9412 Basy

13 1.00 Medium
14 0.5217 Medium
15 0.8500 Medium
16 0.7143 Medium
17 0.8247 Medium
18 1.00 Easy

19 0.7883 Hard
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Table 5.5: Table of segmentation loss, voting loss and total loss values on training
and validation data for the different classes. The classes are indexed as in Table 3.3.

1 2 3 4 5 6 7
Train loss (To- | 0.0063 | 0.0073 | 0.0077 | 0.0081 | 0.0065 | 0.0043 | 0.0058
tal)
Train loss | 0.0102 | 0.0114 | 0.0118 | 0.0102 | 0.0094 | 0.0060 | 0.0082
(Voting)
Train loss | 0.0024 | 0.0031 | 0.0037 | 0.0060 | 0.0037 | 0.0026 | 0.0034
(Segmenta-
tion)
Validation loss | 0.0248 | 0.0373 | 0.0132 | 0.0297 | 0.0204 | 0.0212 | 0.0366
(Total)
Validation loss | 0.0315 | 0.0520 | 0.0200 | 0.0369 | 0.0251 | 0.0176 | 0.0350
(Voting)
Validation 0.0182 | 0.0227 | 0.0065 | 0.0225 | 0.0158 | 0.0249 | 0.0381
Loss (Segmen-
tation)

5.3 Discussion

The results in Table 5.1 shows that our algorithm performs very poorly on new data.
The class for which it detected objects with the best Fj-score was the Macaroni Box
class, and for that class the score was 0.7142, significantly below the desired value
of 1. Furthermore, the results on the training dataset are not impressive either,
where the algorithm scored 0.9037 for the best class. We believe that the poor
results stems partly from questionable design choices in our algorithm, and partly
from poor training of the NN module. Both aspects are discussed below, with
suggestions on how the algorithm could have been improved.

5.3.1 Design choices and potential improvements

On the highest level, we considered the idea of solving the problem by determining
keypoints in multiple images and using a multi-view PnP approach for aggregated
pose estimation to be well grounded. For instance, this is the basic idea that the
annotation tool was based on and multiple works of others have shown success in
keypoint detection. Our solution for tackling the two major problems of keypoint
detection in an image and keypoint matching between images was however insuffi-
cient.

Although the choice of the PVNet pipeline for keypoint detection was well moti-
vated for a number of reasons, we did not consider differences in the data we would
work with. During the development of our algorithm, we discovered scenarios ex-
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hibited in our data which the PVNet method was unsuited to handle. PVNet was
mainly designed for detecting single instances in an image, and essentially solves the
localization problem, which did not translate well to the multi-instance case. This
may be most evident from the noisy voting field in images where there was heavy
occlusion between objects of the same class. See Figure A.1 in Appendix A for a
comparison between the ground truth voting field, predicted voting field and the
resulting hypotheses in such a case.

Furthermore, in these cases, keypoints of the same type tend to be spatially close in
the image which results in hypotheses clusters overlapping. The authors proposed
a method for extending the PVNet method for detection of multiple instances and
keypoints of the same type, but it did not suffice in the scenario of same class self-
occlusion. Their proposed method seemingly assumed that multiple instances of a
class were located far away from each other. Consequently, the predicted number
of instances and the segmentation was often incorrect, which may be an argument
against the fundamental idea of a voting field in this particular scenario.

The issues of determining the number of instances and segmentation in cases of same
class self-occlusion propagated into the stage of keypoint matching between images.
Since our method for keypoint matching made use of single-view pose estimation,
it required matched keypoint sets within the image to be determined. As a con-
sequence, much effort and time was spent designing more sophisticated procedures
which could handle the problems that were due to same class self-occlusion.

A better alternative for the keypoint matching could have been to examine solutions
where the poses were not needed for aggregation of keypoint detections. For instance,
the unmatched keypoints in an image could have been used with a triangulation
approach to the problem. This would provide a set of unmatched global 3D points
of different keypoint types for which the poses could have been solved for. This
would also have the advantage of exploiting images with a single or few detected
keypoints, where pose predictions are unfeasible. In hindsight, such a method would
have been more justifiable since we aimed to solve the problem with heavy occlusion.

Although we are critical of our choices for keypoint detection and keypoint match-
ing, we consider a large part of our insufficient result to stem from too little effort
invested in the neural network training stage. The inadequate performance of the
NN is evident from both the losses in Table 5.5 and the final F1-scores for the train-
ing versus the validation datasets. In addition we have the previously mentioned
qualitative observation of the voting field performance in the image A.1 presented
in Appendix A. We believe than an improvement could have been made by more
experiments regarding the hyper parameters of the network. Furthermore, online
data augmentation could have been implemented which has proven to be an ef-
fective tool for training purposes. Since our training set consisted of merely 8208
images, we question whether the amount of data was sufficient for training and data
augmentation would in this case be a particular good idea.
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Conclusions

For this project, we have developed a tool for 6D pose annotation of RGB images
which we used to create a new dataset for object detection and 6D pose estimation
in a supermarket setting. We have also developed an algorithm for performing this
task, and evaluated it on our dataset.

The Annotation Tool lets a user identify locations of keypoints belonging to objects
from a few viewpoints, and uses this data to find the pose of the object relative all
images. We believe that the final product facilitates efficient annotation of large
datasets, and that the interface design and additional features integrated in the tool
help reduce the workload. However, in its current state, the tool needs the user to
exercise caution with respect to potentially insufficiently accurate camera modeling,
and pose fitting of rotationally symmetric objects. The latter aspect may have
affected the quality of the labels of some objects in our dataset negatively. Future
development of the tool should thus focus on expanding the tool with alternative
camera models and optimizers which allow for poses with fewer degrees of freedom.

Our Detection Algorithm incorporated parts of a single-view pose estimation method
to produce sets of object instance keypoints, and aggregated that data from several
viewpoints by fitting poses and clustering the pose centers using a Mean-Shift clus-
tering procedure. From our results, both from evaluation on unseen and previously
seen data, we conclude that our method is not suitable for the task of visual inven-
tory. The performance was especially poor in scenes which exhibited great levels of
occlusions, as one would expect of the target environment of supermarket shelves.
We believe that our intermediate goal of producing instance-matched keypoint de-
tections in every image was misguided, as the deep learning model used produced
output data which, in images exhibiting occlusions from instances of the same class,
made this task difficult. Furthermore, the deep learning module failed to produce
accurate output in these scenarios, potentially due to lack of training data. For
future work using an algorithm structure similar to ours, we recommend either re-
placing the deep learning module, or changing the target output of the single-view
procedure and consequently exploring alternative methods of data aggregation for
pose detection.
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A

Voting field prediction for tightly
packed objects

This appendix provide images which underlines the insufficient prediction perfor-
mance of the neural network, in particular for the voting field in cases of severe self
occlusion between objects of the same type.

(c)

Figure A.1: Comparison between the ground truth voting field (a) and the pre-
dicted voting field (b) of a keypoint for an image with four tightly placed instances
of blue soap. (c) illustrates the image together with the set of hypotheses generated
from the predicted voting field (b).
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B

Dataset overview

This appendix contains sample images from the dataset, one image for each scene
in the dataset.

Validation 1 Validation 2

Training 2 Training 3
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B. Dataset overview

Training 16 Training 17

Training 18 Training 19

Figure B.1: Overview of all scenes in the dataset. Each figure caption specifies
the subset of the dataset (validation or training) and the scene index.
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C

Samples of annotation
segmentations

This appendix contains samples of generated segmentations in the dataset.
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C. Samples of annotation segmentations

Figure C.1: Overview of produced pose labels. Each figure image is a randomly
sampled frame from a randomly sampled video produced by rendering object seg-
mentations onto the original RGB video of a scene, using the poses annotated using
our tool.
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