
Object Detection and 6D Pose Estima-
tion of Scenes with Occluded Objects
Using Multiple Viewpoints
Development of a tool for annotation of image data, and an
algorithm for visual inventory of supermarket items

Master’s thesis in Complex Adaptive Systems

OSCAR BARK
ANDREAS GRIGORIADIS

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

Object Detection and 6D Pose Estimation of
Scenes with Occluded Objects Using Multiple

Viewpoints

Development of a tool for annotation of image data, and an
algorithm for visual inventory of supermarket items

OSCAR BARK
ANDREAS GRIGORIADIS

DF

Department of Electrical Engineering
Division of Signal processing and Biomedical engineering

Computer vision and medical image analysis group
Chalmers University of Technology

Gothenburg, Sweden 2019

Object Detection and 6D Pose Estimation of Scenes with Occluded Objects Using
Multiple Viewpoints
Development of a tool for annotation of image data, and an algorithm for visual
inventory of supermarket items
OSCAR BARK
ANDREAS GRIGORIADIS

© OSCAR BARK
ANDREAS GRIGORIADIS, 2019.

Supervisor: Lucas Brynte, Department of Electrical Engineering
Examiner: Fredrik Kahl, Department of Electrical Engineering

Master’s Thesis 2019
Department of Electrical Engineering
Division of Signal processing and Biomedical engineering
Computer vision and medical image analysis group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2019

iv

Object Detection and 6D Pose Estimation of Scenes with Occluded Objects Using
Multiple Viewpoints
Development of a tool for annotation of image data, and an algorithm for visual
inventory of supermarket objects

OSCAR BARK
ANDREAS GRIGORIADIS
Department of Electrical Engineering
Chalmers University of Technology

Abstract
In recent years, deep learning based approaches have excelled at the task of ob-
ject detection and 6D pose estimation at the expense of requiring large amounts of
annotated data compared to traditional approaches. The purpose of this thesis is
twofold. It investigates an algorithm for object detection and 6D pose estimation
with the aim of enabling visual inventory of items in a supermarket, and it presents
the development of a tool for annotation of datasets suitable for such tasks. The
detection algorithm aimed to exploit images from multiple viewpoints of the same
scene to perform the task in scenarios where established methods of single-view de-
tection are unsuitable. A state-of-the-art single-view pose estimation method was
built upon to detect multiple instances of an object, and was used on each frame of
a video of the scene. The output from each frame was then aggregated by clustering
candidate pose centers, enabling grouping of keypoint locations across images to
which the final detections of poses could be fitted. The annotation tool relied on
users identifying keypoint locations in a few images, and exploited a known camera
motion to infer the poses of objects relative all viewpoints. The detection algorithm
was evaluated on three previously unseen scenes with a total of 85 objects, and
yielded F1-scores in the range of 0.1739 to 0.7142 for the different classes, implying
that the algorithm was not suitable for the task. We attribute the low performance
partly to our method of grouping keypoints to separate instances not being able
to handle scenarios where objects are occluded, and partly to learning and general-
ization issues of the deep learning module. Conversely, we consider the annotation
tool successful, as it integrates several features to facilitate the annotation, and the
method is robust. However, users need to be cautious during annotation due to
potential inaccuracies in the camera model assumed, and the difficulty of labeling
rotationally symmetric objects appropriately. A new dataset exhibiting difficulties
present in the target setting was created, and annotated using our tool.

Keywords: Object Detection, 6D Pose Estimation, Data Annotation, Visual Inven-
tory, Deep Learning

v

Acknowledgements
We would like to thank our examiner Fredrik Kahl and our supervisor Lucas Brynte
for all the great support and motivation during our work. We are grateful to Fredrik
for the inspiration during the computer vision course that motivated us to pursue
this thesis, for excellent guidance in both general and technical matters, and for
help with the formulation and development of the thesis. To Lucas we are grateful
for the numerous inspiring technical meetings, the support provided during times
of adversity and the excellent knowledge he possesses on the subject. We would
also like to express gratitude to Sebastian Almfeldt for helping us produce essential
models for our objects.

Oscar Bark & Andreas Grigoriadis, Gothenburg, August 2019

vii

Glossary
Pinhole camera model: Simple model of a camera, describing how points in a
3D world are displayed in a 2D picture.
6D Pose: A representation of an objects location and orientation. 6D indicates six
degrees of freedom.
Motion: A collection of poses for a set of cameras.
Keypoint: Point with special significance, e.g. on a point cloud model of an object.
Clustering: The task of partitioning a set of data into groups.
MSC:Mean-Shift Clustering. A clustering method which can determine the number
of groups.
Mode: The most likely value of a probability distribution.
Model fitting: Adjusting the parameters of a model to make it coherent with data.
RANSAC: Random sample consensus. Method to fit a model to data with outliers,
by sampling of small subsets.
ANN/NN: Artificial Neural Network
CNN: Convolutional Neural Network, a variant of artificial neural networks often
used for modeling functions with images as input.
Deep Learning: Usage of large ANN’s to solve complex tasks.
Dataset: A set of labeled data related to a task.
F1-score: A performance metric for classification tasks which is especially suitable
for unbalanced datasets.
Generalizability: Ability of an algorithm to perform well on previously unseen
data.
Hyperparameters: Algorithm parameters which are not automatically optimized
with respect to data.
Overfitting: Fitting a model to a specific observation of data, resulting in poor
generalizability of the model.
PyTorch: A programming library for Python for implementing deep learning mod-
els

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Speci�cation of issues under investigation 3
1.4 Limitations . 3
1.5 Related work . 4

1.5.1 Annotation of 6D poses . 4
1.5.2 Single-view 6D pose estimation 5
1.5.3 Multi-view 6D pose estimation 5

1.6 Contributions . 6
1.7 Report disposition . 6

2 Theory 9
2.1 Geometric computer vision . 9

2.1.1 Pinhole camera model . 9
2.1.2 Inference from camera equation 12
2.1.3 Pose representation . 14
2.1.4 Pose optimization with plane constraint 17
2.1.5 Inferring the image projection 18
2.1.6 Object model representation and keypoints 18

2.2 Deep learning . 19
2.2.1 Convolutional neural networks 21

2.3 Object detection and 6D pose estimation 22
2.3.1 Evaluation . 23

2.4 Clustering algorithms . 24
2.4.1 K-Means clustering . 25
2.4.2 Mean-shift clustering . 25

3 Project disposition & dataset acquisition 27
3.1 Project planning and execution . 28
3.2 Dataset creation . 28

3.2.1 Resulting dataset . 29

xi

Contents

4 Annotation Tool 33
4.1 Core idea and speci�cation . 33
4.2 Method . 34

4.2.1 Software development framework 34
4.2.2 Underlying mechanisms . 34
4.2.3 Experiment 1: Assessing quality of labels 36
4.2.4 Experiment 2: Assessing the e�ciency of annotation 37

4.3 Resulting software . 37
4.3.1 Main view . 37
4.3.2 Point identi�cation . 38
4.3.3 Manual pose manipulation . 40
4.3.4 Plane identi�cation . 41

4.4 Experiment results . 42
4.5 Discussion . 44

4.5.1 Summary of key features . 44
4.5.2 Workload analysis . 44
4.5.3 Visual assessment of pose label quality 45
4.5.4 Flaws of the tool . 46
4.5.5 Future work . 47

5 Detection Algorithm 49
5.1 Method . 49

5.1.1 Single-view pose estimation using PVNet 51
5.1.2 Our single-view pipeline . 55
5.1.3 Aggregation . 60

5.2 Results . 62
5.3 Discussion . 64

5.3.1 Design choices and potential improvements 64

6 Conclusions 67

References 69

A Voting �eld prediction for tightly packed objects I

B Dataset overview III

C Samples of annotation segmentations VII

xii

List of Figures

2.1 Pinhole camera model . 10
2.2 Schematics of a feed-forward arti�cial neural network. 20
2.3 Discrete convolution operation . 22

3.1 Flowchart diagram of project tasks. 27
3.2 Two of the scenes in the dataset . 30

4.1 Main view after loading data of a scene in the Annotation Tool . . . 38
4.2 View where user may identify 2D keypoint locations in the Annotation

Tool . 39
4.3 Prompt view to manually select one of two initial pose candidates in

the Annotation Tool . 39
4.4 Fine adjustment view in the Annotation Tool 41
4.5 Histogram of the number of 2D points identi�ed for �tting the pose

of an object instance in the Annotation Tool 43
4.6 Histogram of the number of viewpoints utilized for �tting the pose of

an object instance in the Annotation Tool. 43

5.1 Overview of the Detection Algorithm 50
5.2 Example of a voting �eld corresponding to a keypoint. 53
5.3 Example of semantic segmentation 53
5.4 Flowchart of single-view meachinsm in the Detection Algorithm . . . 57
5.5 Voting direction vs. principal component of data. 59
5.6 Voting directions for a sparse set of keypoint hypotheses. 59
5.7 Point estimates from single-view procedure for two nearby viewpoints. 61

A.1 Comparison between ground truth and predicted voting �eld for a
keypoint in an image with tightly placed objects I

B.1 Overview of all scenes in the dataset V

C.1 Overview of produced pose labels . VIII

xiii

List of Figures

xiv

List of Tables

3.1 Statistics of training dataset. The �nal 7 columns are the number of
instances of each class as indexed in Table 3.3. 30

3.2 Statistics of validation dataset. The �nal 7 columns are the number
of instances of each class as indexed in Table 3.3. 31

3.3 Table of classes used in our dataset, and their corresponding numeric
indices for future reference. 31

5.1 F1-score over all scenes in the validation set for each class. 62
5.2 F1-score over all classes for each scene in the validation set. 62
5.3 F1-score over all scenes in the training set for each class. 63
5.4 F1-score over all classes for each scene in the training set. 63
5.5 Table of segmentation loss, voting loss and total loss values on training

and validation data for the di�erent classes. The classes are indexed
as in Table 3.3. 64

xv

List of Tables

xvi

1
Introduction

This chapter serves to present the context of this project, and to specify the main
problems it aims to solve. Furthermore, the disposition of the report is presented.

1.1 Background

In May of 2016, the research projectSemantic Mapping and Visual Navigation for
Smart Robotswas initiated at Chalmers University of Technology with the goal of
developing an integrated framework for autonomous vehicles to see, navigate in, and
map their surroundings based on computer vision and optimal control techniques
[1]. The project owners aim to demonstrate their advances in relevant �elds by
developing an autonomous system capable of performing visual inventory inspection
in a supermarket setting, using small quadcopters. An important problem that needs
to be solved for this task is that of identifying di�erent classes of stocked items and
their locations in shelves using camera images.

A common problem within the �eld of robotics is object detection and 6D pose
estimation from single images of scenes containing various items. Such solutions
often utilize deep learning models due to their robustness to lighting conditions,
and their ability to exploit semantic information [2]. The models often make up
part of the application pipeline in conjunction with conventional computer vision
methods, but more recently researchers have started to design end-to-end systems
where all operations are learned from data [3]. Being able to identify visible objects
and their poses in real time from a single image is important for a robot which aims
to navigate a dynamic world.

In some settings however, the aim is simply to obtain a complete map of a static
scene, containing all objects and their poses in a global coordinate system. This is
the case with our problem of visual inventory posed above, and here there are no
constraints on real-time performance or number of viewpoints. A challenge posed
when applying single-view estimation methods to solve this problem is that objects
in a scene may be partially or wholly occluded in images. Though detection and pose
estimation of partially occluded objects have been successfully achieved with single-
view methods in settings with few selected objects [4], in many practical settings,

1

1. Introduction

such as supermarket shelves, it is not feasible to produce a single image where all
items are su�ciently visible. In this light, the idea of exploiting multiple viewpoints
of the scene to overcome said challenges has been explored [5] [6] [7], albeit to a
lesser extent than single-view methods.

Furthermore, a challenge of using deep learning frameworks is the need for large
amounts of annotated data on which to train the models. Producing this data
manually can be di�cult and time consuming for a party who wishes to apply
these methods in new settings. Typically, datasets for these tasks are produced by
constructing speci�c scenes including clear markers from which the poses of carefully
placed objects can be calculated [2] [8], or by manually rotating and translating 3D
models in a point cloud reconstruction of the scene at hand [9]. It is common to
generate synthetic training data, e.g. images obtained by rendering CAD-models of
relevant objects against a black background [10] [11]. This is due to convenience,
and lack of real data [12]. Models trained on synthetic data risk not being able to
generalize well to real data without careful strategies to combat over�tting.

1.2 Purpose

In light of the problems presented above, the purpose of this project was twofold:

ˆ It aimed to develop and evaluate an algorithm which uses a video stream
of a scene for global detection and 6D pose estimation of objects which are
occluded in several of the frames. The method is primarily meant to be applied
for inventory of supermarket products placed in shelves, as to contribute to
the above described research project.

ˆ It aimed to develop and evaluate a method for semi-automatic annotation of
data used for object detection and pose estimation. The produced data should
be compatible with algorithms such as the above mentioned single-view pose
estimation methods. The intention was to provide an easy-to-use tool for
researchers to create large scale annotated data sets.

The algorithm for object detection and 6D pose estimation will in this report be
referred to as theDetection Algorithm, whereas the method for data annotation will
be referred to as theAnnotation Tool. Furthermore, a new dataset was created
for this project, which we annotated using the Annotation Tool, and on which we
evaluated the Detection Algorithm.

2

1. Introduction

1.3 Speci�cation of issues under investigation

Concerning the Annotation Tool we aimed to develop, the following questions were
posed:

ˆ Does our annotation tool facilitate the creation of large datasets for object
detection and pose estimation in new settings?

ˆ How accurate are labels obtained from typical use cases with our annotation
tool?

Concerning the Detection Algorithm, the following questions were posed:

ˆ Is it possible to accurately identify all objects in an occluded scene, with
reasonable pose estimates, using only RGB images from multiple viewpoints?

ˆ How can images of a static scene from several viewpoints be exploited to enable
object detection and pose estimation with a deep learning framework?

ˆ How do di�erent levels of occlusion of objects in a scene a�ect the performance
of visual inventory with multiple images?

1.4 Limitations

Each entry in the dataset we produced consists of an RGB video of a scene with
its correspondingmotion, and the poses of each object in the scene with respect to
every camera. The dataset does not contain labels for other relevant quantities such
as segmentation labels, object visibility in the images, etc.

Methods for obtaining the motion of the video, which is an important quantity in
many multi-view computer vision applications (see Section 2.1), were not investi-
gated for this project. The motion was instead obtained by using an openly licensed
Structure-from-motion software solution which uses only the video to calculate it.
The software used was COLMAP [13] [14], which imposes constraints on the videos
in order to function properly. Such constraints include good textures and similar
illumination.

Although many learning based computer vision applications make use of labels other
than poses, the Annotation Tool only produces the pose labels. Relevant labels, such
as segmentations, keypoint projections and 2D bounding boxes may be inferred in
an automated fashion using the produced pose labels (and we did use these labels
in our project). The motivation for not integrating such features into the tool was
twofold: Separate tools implementing such features already exist and it would have
required additional development time. The tool focuses on minimizing the manual
e�ort required to produce a set of principal labels which can then be used to produce

3

1. Introduction

additional labels.

As was previously mentioned, the projectSemantic Mapping and Visual Navigation
for Smart Robots strives to perform full visual inventory of market shelves using
drones. Since our algorithm aimed to be used for this type of task, the evaluation
of our work did not focus on testing for high accuracy of the poses of the objects.
Rather, the evaluation was based on the detection rate, i.e detecting a majority of
the objects while avoiding false detections.

There is conceptually no need for the visual inventory task to be performed live
during drone deployment. Therefore, neither does the algorithm need to process data
sequentially, nor did we impose real-time performance constraints on the execution
speed.

Furthermore, the inventory algorithm was developed with aim of being applied in
a supermarket setting, but limitations regarding this goal had to be made. Firstly,
the number objects used during development and testing was for performance and
convenience limited to a manageable number of objects, rather than the number of
objects a typical store could have in stock, ranging in the tens of thousands. Sec-
ondly, supermarket shelves may also vary greatly in shape, causing various degrees
of unpredictable environmental occlusions (see Section 3.2). The scope of applicable
cases for the project had to be limited by making assumptions regarding the envi-
ronment which may or may not be valid for the supermarket setting. Thirdly, the
objects were limited to rigid objects, since a static scene is assumed in the scope
of this project. Consequently, we did not expect the �nal algorithm, regardless of
results on our data, to be able to perform the task in real typical supermarkets
where instances of products such as fruit vary in shape.

1.5 Related work

In this section, related works on tasks similar to ours are reviewed.

1.5.1 Annotation of 6D poses

As previously mentioned, existing methods for 6D pose annotation include careful
placement of an object on a board with markers [2] [8] and manual �tting of an
object model to a point cloud [9]. In the former case, the requirement set on the
pose placement and the use of the board makes such a method unfeasible in a setting
where no constraints are to be set on the environment. For the latter case, the
method is limited to scenes where the object is clearly visible in many images. This
is not the case when objects are occluded, and sets a restriction on the environment.

4

1. Introduction

1.5.2 Single-view 6D pose estimation

Traditionally, multiple methods for 6D pose estimation depended on template match-
ing techniques. For the 6D pose problem this usually means rendering object models
to an image and using a handcrafted template to compute a similarity score at each
image location [15] [16]. These methods are however sensitive to changes in appear-
ance and occlusions in the environment.

Another category of pose estimation methods are feature based methods which aim
to �nd local features of objects [17] [18] and match them between the image and an
object model. Such procedures yield 2D-3D correspondences which can be used to
solve the Perspective-n-Point (PnP) problem to �nd the pose. Traditional methods
within this category make use of handcrafted features and the approach is e�cient
for pose estimation even in the case of occlusion. The methods do however su�er
performance losses when an object lacks texture, or the image is blurry.

Recent years have shown a trend towards deep learning based methods, in particular
Convolutional Neural Networks, for learning features [19]. Breaking down the prob-
lem into the steps of keypoints detection, by utilization of a CNN, and solving the
PnP has been proven e�ective in multiple works. The work of [4] performs the three
steps of instance segmentation, pixel-wise regression of 3D coordinates for 2D-3D
correspondences and solving the PnP. A pipeline that regresses pixel-wise voting for
the direction to 2D keypoints, and utilized an uncertainty measure for solving an
alternate formulation of the PnP was proposed by [20]. This work currently achieves
state-of-the-art for numerous standard datasets [20] in the 6D pose localization task.

Other works propose to utilize a CNN to solve the problem in an end-to-end fashion
by directly regressing the pose parameters or a subset of them. A completely end-
to-end system was designed by [3] where a VGG network is combined with a region
proposal network that simultaneously classi�es and regresses the class, bounding
box, mask and pose of an object. [10] proposes to regress voting for each pixel in a
instance segmented area towards the center 2D point of the object, and the neural
network also estimates the depth of this point. The rotational part is also regressed
by the network.

1.5.3 Multi-view 6D pose estimation

To detect global poses given multiple viewpoints, multiple works have approached
the problem by using a single view pose algorithm and aggregation of the output.
The single view pose algorithm of [3] is extended by [6] to the multi view case. Pose
hypotheses for each image are estimated by using a sparse auto-encoder network
with RGB-D input, followed by a Hough forest classi�er. The pose hypotheses from
all images are transformed to a global coordinate system where the �nal poses are
determined by subtractive clustering [21] of the pose centers. They also handle the
case of multiple instances of the same class by the hypothesis veri�cation method

5

1. Introduction

proposed by [22]. The work of [23] integrates the output from several single-view
pose algorithms, that each provide pose hypotheses coupled with a con�dence score.
They predict poses by weighted Mean-Shift clustering in the state-space of the pose.
[5] uses semantic segmentation in conjunction with a created point cloud of the scene
by exploiting RGB-D data. The segmentation output from a CNN is projected to
the corresponding 3D points which yields a point cloud of 3D semantic points. The
point cloud of the object is adjusted to �t to the semantic 3D points by the Iterative
closest point algorithm.

1.6 Contributions

The main contributions of this thesis work are the following:

ˆ A new dataset for pose estimation in scenes with heavy occlusions between
multiple instances of the same objects.

ˆ A tool for 6D pose annotation of multiple RGB images capturing a general
environment.

ˆ A proposed framework for global object detection and pose estimation using
a sequence of RGB images, and an evaluation of said framework.

1.7 Report disposition

In this section, the contents of the remaining chapters are brie�y introduced.

The Theory chapter aims to present concepts within computer vision that are related
to our work. Understanding the concepts presented in this chapter is important to
understand our solutions. The chapter presents all theory, both that which is related
to the Annotation tool, and that which is related to the Detection Algorithm.

The Project Disposition & Data Acquisition chapter presents the disposition of the
project as a whole. It covers practical details such as choice of platforms and tools
used in the development of the solutions, details regarding the data acquisition and
the overarching structure of the solutions.

This project, as previously described, has two main purposes for which the tasks dif-
fer substantially. Therefore, method, results and discussion of the two sub-projects
are for clarity's sake reported in two separate chapters: Annotation Tool and De-
tection Algorithm.

Finally, in the conclusion chapter, the key takeaways from the development of the
Annotation Tool, and the resulting Detection Algorithm, are summarized and com-

6

1. Introduction

mented on.

7

1. Introduction

8

2
Theory

2.1 Geometric computer vision

The general �eld of Computer Vision deals with extraction of data from images and
includes several categories of problems. One particular �eld concerns modeling the
world as 3D points and how these are captured in an image in terms of geometrical
2D points. In these cases, linear algebra can be utilized for predicting e.g. the
position and shape of objects, the movement pattern of a moving camera and the
depth map in an image. Multiple models exist in this category and in this section
one of the most widely used is presented.

2.1.1 Pinhole camera model

The Pinhole camera modelmodels how a camera captures a 3D point in the world
on the sensor/�lm by projecting the 3D points onto a geometrical plane called the
image plane, resulting in 2D points. The 3D and 2D points are denotedobject
points and image pointsrespectively. The projection of a single object pointX can
be viewed in Figure 2.1.

9

2. Theory

Figure 2.1: Illustration of the pinhole camera model. A world coordinateX is
projected onto the image plane of distance 1 length unit from the camera center
C , resulting in the image point x . The camera is located in a coordinate system
(x; y; z) and has its own coordinate system(x0; y0; z0).

As the �gure depicts, a camera is located at a pointC . The orientation of the
camera is de�ned by acamera coordinate systemwhere the Z-axis, denoted the
principal axis, serves as the viewing direction of the camera. The camera �lm is
modeled by a plane orthogonal to the principal axis at distance1 from C . The
projection of an object point onto the image plane is done by taking the intersection

of the line de�ned by X � C and the image plane, resulting in a coordinate

x
1

!

,

wherex 2 R2 is the image point.

The camera coordinate system can be viewed as the local frame of reference of the
world as �seen� by the camera. The camera, along with the object points, may
however be described in an outerglobal coordinate systemwhich is more descriptive
of the world itself and is arbitrarily de�ned. As such, the position ofC denotes the
position of the camera in the global coordinate system while this point is de�ned to
be the origin of the camera coordinate system. See Figure 2.1

When dealing with the projections of object points into cameras in di�erent coor-
dinate systems, transformations need to be utilized. A Euclidian transformation of
an object point X from a global to a camera coordinate system is composite of a
rotational and translation operation which is performed with matrix operations

X 0 = RX + t (2.1)

where X 0 =

0

B
@

X 0
1

X 0
2

X 0
3

1

C
A is the object point in the camera coordinate system,R is a

10

2. Theory

rotational matrix (see Section 2.1.3.2) andt is a vector for translation. The projected
image point ofX 0onto the image plane is given by theperspective projection function

x
1

!

= � (X 0) =
X 0

X 0
3

: (2.2)

A more common way of writing the above equation is

�

x
1

!

= X 0 (2.3)

where � = X 0
3. Using the two equations (2.1) and (2.3) for transformation and

projection yields thenormalized camera equation(2.4) for capturing an object point,
residing in a global coordinate system, in a camera.

�

x
1

!

= RX + t (2.4)

In addition to the coordinate system transformation, a transformation needs to be
made to account for the intrinsic properties of the camera, such as pixel resolution.
This is done by a further multiplication by a matrix K which among other things
changes units from spatial image distance, e.g. meters, to pixels. This matrix is
added to (2.4) which gives us thecamera equation

�K

x
1

!

= K (RX + t) = K
h
R t

i

X
1

!

:

The matrix P = K
h
R t

i
is called thecamera matrix. K may be a known quantity,

in which case the camera is said to becalibrated, and it is often eliminated from the
problem. The normalized camera matrixmay then be de�ned asP =

h
R T

i
.

The points

x
1

!

and

X
1

!

are expressed inhomogeneous coordinateswhich are de-

�ned merely to express the equations in a compact and convenient way. Throughout
the rest of the report, the 1 will most often be omitted for brevity andX and x will
denote both the original and homogeneous versions of the points. A more compact
way to write the (normalized) camera equation is then

� x = PX = RX + t

which will also be denoted the camera equation throughout this report. Note that
the camera equation is in fact composed of three scalar equations

8
>><

>>:

�x = RT
1 X + t1

�y = RT
2 X + t2

� = RT
3 X + t3

11

2. Theory

whereRT
i denotes the i:th row ofR and t =

0

B
@

t1

t2

t3

1

C
A .

2.1.2 Inference from camera equation

The camera equation serves as a basis for inferring di�erent quantities depending
on the known data. In the general case the known data includes multiple pointsN
which give rise to an equation system of the following form:

� i x i = PX i ; i = 1; ::; N : (2.5)

The following problems are relevant for this work.

2.1.2.1 Structure from motion

When a set ofN corresponding (belonging to the same object point) image points
f x i ; �x i gN

i =1 are known in two di�erent images, the unknowns of the problem are the
normalized camera pairsP1 = [R1 t 1] and P2 = [R2 t 2], the set of object points

f X i g
N
i =1 and the set of point depths

n
� i ; �� i

oN

i =1
in the following equation system:

8
<

:
� i x i = P1X i

�� i �x i = P2X i ; i = 1; ::; N :

There is an ambiguity in this equation system. As the cameras and object points
are unknown, a transformationH can be applied and solving an equivalent problem:

8
<

:
� i x i = P1X i = (P1H)(H � 1X i) = ~P1

~X i = ~R1
~X i + ~t 1

�� i �x i = P2X i = (P2H)(H � 1X i) = ~P2
~X i = ~R2

~X i + ~t 2 :

The transformation may be chosen to simplify the problem:

H =

"
R� 1

1 � R� 1
1 t 1

0 1

#

=) (2.6)

~P1 = [R1 t 1]H = [I 0] (2.7)
~P2 = [R2 t 2]H = [R2R� 1

1 � R2R� 1
1 t 1 + t 2] : (2.8)

As can be seen, the solution for one of the cameras is arbitrary and can be con-
structed to be the identity camera P =

h
I 0

i
. The solutions of the cameras do

in fact represent how they are oriented relative to each other. Note that there is
no connection in this problem to any global coordinate system. As such, a global
coordinate system may be de�ned to be aligned with sayP1, which is e�ectively
what is being done when it is transformed to be the identity camera.

12

2. Theory

There is also another ambiguity in the equation system (2.1.2.1). Since only the
image coordinatesx i are known for each camera, an equivalent equation system can
be acquired by multiplying each equation by a scalars

8
<

:
� i sx i = sR1X i + st 1

�� i s �x i = sR2X i + st 2 =)

8
<

:
� 0

i x i = R1X 0
i + t 0

1
�� 0

i �x i = R2X 0
i + t 0

2

which is called ascale ambiguity. Given no other information regarding the scenery,
s will be a unknown parameter.

In a more general case, the structure from motion consist of image point correspon-
dences inm images and the unknowns will include the camerasf P1; P2; :::; Pmg.
Similar to the two-view case, a transformationH may be applied to align a global
coordinate system with the �rst camera, as seen in eq. (2.10).

f P1H; P2H; :::; PmH g =
nh

I 0
i

; P0
2; :::; P0

m

o
(2.9)

This set of cameras is denoted amotion object. In the case that the scales is
unknown, the set of cameras is denoted anunscaled motion object

nh
I 0

i
;

h
R0

2 st 0
2

i
; :::;

h
R0

m st 0
m

io
: (2.10)

2.1.2.2 Perspective-n-point

When the image points in a single image and the object points are known, in which
case they are said to be2D-3D correspondences, the unknowns of the camera equa-
tion are � i and P. This problem is called thePerspective-n-point (PnP) problem.
Two variations of the problem exist

ˆ The object points are de�ned in a given global coordinate system, in which
case the solution to the problem will be the camera matrix.

ˆ The object points are de�ned in a local coordinate system (e.g. for an object
model, see 2.1.6) in which case the solution will be to �nd the position and
orientation of the object relative to the camera.

In the latter case, the global coordinate system is unde�ned and the problem may be
viewed in two equivalent ways. Either the global coordinate system can be de�ned
to be aligned with the object local coordinate system and the problem is to �nd the
camera matrix. Or it can be aligned with the camera coordinate system (similar to
the operations in (2.6), resulting in the identity camera) and the problem is �nding

a transformation T =

"
Rp t p

0 1

#

from the object coordinate system to the global

13

2. Theory

coordinate system such that it projects to the image points in cameraP =
h
I 0

i

according to eq. (2.11).

� x = PTX = [I 0]

"
Rp t p

0 1

#

X = [Rp t p]X (2.11)

As can be seen this equation has the same form as the camera equation, showing
that the two ways of looking at the problem are equivalent.

When solving the equations that arise, numerical methods need to be resorted to
since exact solutions rarely occur due to noise in the data. One of several ways of
solving the PnP problem is minimizing thereprojection error

E =
KX

k=1

r T
k r k (2.12)

r k = � (RX k + t) � x k (2.13)

where� is the perspective projection function from (2.2),K is the total number of
point correspondences andr k is denoted aresidual vector.

An extension to this problem is the case of having 2D-3D correspondences in multiple
images of a motion object and �nding a solution forT to the following equation
system: 8

>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

� x 1 = P1TX = [I 0]

2

4Rp t p

0 1

3

5 X

� x 2 = P2TX = [R2 t 2]

2

4Rp t p

0 1

3

5 X

:::

� x m = PmTX = [R3 t 3]

2

4Rp t p

0 1

3

5 X :

Solving this can be done by minimizing themulti-view reprojection error

Emulti =
X

i 2M

X

k2K i

r T
i;k r i;k (2.14)

r i;k = � (Ri X k + t i) � x i;k (2.15)

whereM is the set of camera indices in the motion object, andK i is the set of point
correspondence indices available for camerai .

2.1.3 Pose representation

As was described by (2.11), the projection of an object pointX in some local
coordinate system onto a camera is performed by multiplication by a matrixPp =

14

2. Theory

[Rp t p]. Pp is commonly referred to as thepose of an object and represent the
location and orientation relative a particular camera. Note thatt represents the
placement of the local coordinate system origin in the global coordinate system.
This can be seen by transforming the origin point

X 0 = RpX origin + t p = Rp0 + t p = t p : (2.16)

In the case of representing a pose relative to a motion object, where it makes more
sense to use a global coordinate system, aglobal poseis de�ned to the pose relative
to the �rst camera. For the posePp = [Rp t p] in a cameraP = [R t] of the motion
object, the poseP0

p = [R0
p t 0

p] relative any another cameraP0 = [R0 t 0] can be
calculated by

P0
p = P0

"
R� 1 � R� 1t

0 1

"
Rp t p

0 1

#

: (2.17)

2.1.3.1 Global pose with unscaled motion object

When the motion object does not share the scale units with the object point clouds,
the pose transformation as given by equation (2.17) between cameras is invalid.
Consider two cameras

nh
R1 st 1

i
;

h
R2 st 2

io
of an unscaled (s unknown) motion

object for which a global coordinate system is de�ned. For known image points
f x 1; x 2g and a given object modelf X i gm

i =1 the global pose has a transformation

T =

"
RT t T

0 1

#

to the global coordinate system which needs to ful�ll the equations

� 1x 1 = P1TX =
h
R1 st 1

i
"
RT t T

0 1

#

X =
h
R1RT R1t T + st 1

i
X (2.18)

� 2x 2 = P2TX =
h
R2 st 2

i
"
RT t T

0 1

#

X =
h
R2RT R2t T + st 2

i
X : (2.19)

The two equations can be solved individually forPsol1 = P1T and Psol2 = P2T. The
translational part of the solutions t sol1 and t sol2 can be used to determine the value
for s by

t sol1 = R1t T + st 1 (2.20)

t sol2 = R2t T + st 2 =) (2.21)

RT
1 t sol1 = t T + sRT

1 t 1 (2.22)

RT
2 t sol2 = t T + sRT

2 t 2 =) (2.23)

(RT
1 t sol1 � RT

2 t sol2) = s(RT
1 t 1 � RT

2 t 2) =) (2.24)

(RT
1 t 1 � RT

2 t 2)T (RT
1 t sol1 � RT

2 t sol2)
jj (RT

1 t 1 � RT
2 t 2)jj 2

2
= s : (2.25)

15

2. Theory

This provides a way to determines given an unscaled motion object, image points
and model points. It also shows that it is necessary to determines before the pose
transformation (2.17) is used.

2.1.3.2 Rotation representation

A rotation matrix R 2 R3� 3 performs geometrical rotations of a vectorx in 3D which
is an operation of three degrees of freedom that imposes the following constraints
on R:

RR � 1 = I

det(R) = 1 :
(2.26)

For avoiding unnecessary constraints or leveraging known data for the rotation,
it may be convenient to represent the orientation of the pose or camera by an
alternative representation of fewer degrees of freedom.

One such representation is byEuler angleswhich consist of three parametersf ; �; � g,
which describe three successive rotations around each of the three coordinate axes
most often with the convention of the Z-Y-X order. For a given set of Euler angles,
R is given by

R = Rz(�)Ry(�)Rx ()

Rz(�) =

2

6
4

cos(�) � sin(�) 0
sin(�) cos(�) 0

0 0 1

3

7
5

Ry(�) =

2

6
4

cos(�) 0 sin(�)
0 1 0

� sin(�) 0 cos(�)

3

7
5

Rx () =

2

6
4

1 0 0
0 cos() � sin()
0 sin() cos()

3

7
5 :

(2.27)

Another representation isaxis-angle, which describes rotation about an axis de�ned

by a unit vector û =

0

B
@

ux

uy

uz

1

C
A with an angle � .

R =

2

6
4

cos� + u2
x (1 � cos�) uxuy(1 � cos�) � uz sin� u xuz(1 � cos�) + uy sin�

uyux (1 � cos�) + uz sin� cos� + u2
y(1 � cos�) uyuz(1 � cos�) � ux sin�

uzux (1 � cos�) � uy sin� u zuy(1 � cos�) + ux sin� cos� + u2
z(1 � cos�)

3

7
5

(2.28)

16

2. Theory

When solving for the pose or camera matrix, the solution is carried out by making
the substitution R = R(; �; �) or R = R(ux ; uy; uz; �) for the two cases respectively
in (2.14).

2.1.4 Pose optimization with plane constraint

When an object is lying on a �at surface, the scenery can be modeled as an object
model being attached to a plane. When solving the PnP problem, this can be
exploited by constraining the solution, for which the degrees of freedom are reduced
from 6 to 3. Such a plane can be inferred from an object with known pose, and
which is known to also be attached to the same plane, by the following procedure.

Consider the pointsf X kgK
k=1 of the object model which are known to be attached

to the plane. The global locationf X 0
kgK

k=1 of these points are given by using the
known pose

X 0
k = RX k + t : (2.29)

The attached plane� is then acquired by �tting the coordinates f X 0
kgK

k=1 . The
plane may be represented by a single pointp0 belonging to it together with either
the plane normaln or two vectorsf u; vg spanning it. The plane is used to constrain
the pose problem in the following way.

Consider another object with unknown pose but for which the model pointsf ~X lgL
l=1

that are attached to the plane� are known in the object speci�c coordinate system.
A plane ~� is �tted to f ~X lgL

l=1 in the object coordinate system and represented by
~p0, ~n,f ~u; ~vg. Note that the distance ~d between~� and the origin is ~d = ~p0

T ~n and is a
known quantity. This plane is expected to align with the known plane� when the
object is transformed by the correct pose since it is known that

R ~X l + t 2 � 8 ~X l (2.30)

This imposes the following two constraints on the PnP problem:

~p0 = R~p + t 2 � 8~p 2 ~� (2.31)

R~n = n : (2.32)

These constraints can be used to remove one DoF fort by writing it on the form
t = ~p0+ nd, and inferring d which is the orthogonal distance to� according to

t = p0 + nd =) (2.33)

nd = t � p0 =) (2.34)

d = (t � p0)T n = (R ~p0)T n = (2.35)

~p0
T RT n = ~p0~n = ~d : (2.36)

17

2. Theory

The constraint R~n = n can be exploited in the following way. Note that a particular
solution to the equation is given by representingR with an axis-angle rotationR1(~n)
with the parametersû1 = ~n � n and � 1 = arccos ~nT � n. This solution is not unique
however since any subsequent rotationR2(n) around the n axis, i.e. û2 = n, will
still ful�ll the equation. R is therefor represented as the two sequential axis-angle
rotations

R(~n) = R2(R1(~n)) = R2(n) : (2.37)

Since there is only a single unknown parameter� in this function, the DoF are 1.

2.1.5 Inferring the image projection

Utilizing the pose transformation (2.17) for a known pose and a particular object
model point, it is possible to predict the placement of the image projection for any
image in the motion object. The expected image point in a camera is given by

� (P0
pX) = �

P0

"
R� 1 � R� 1t

0 1

"
Rp t p

0 1

#

X

!

(2.38)

This can for instance be used in conjunction with object-models to predict which
pixels in an image will belong to the object. Although the simple procedure of
projecting all object points into an image does not incorporate the possibility of
objects being occluded, more intricate algorithms exist which accurately predicts
object pixels. The output of such an algorithm could both be rendered images (in
the case of colored meshes of objects), and instance segmentation data for each
object.

2.1.6 Object model representation and keypoints

An object can be modeled by apoint cloud which is a collection ofN 3D coordinates
f X i g

N
i =1 (usually labeled "vertices") de�ned in an object speci�c coordinate system

[24]. The coordinate system is usually de�ned to have its origin in the geometrical
centre of the object, and axes such that thez-axis points in a direction that one
could naturally think of as the "up"-direction of the object (although this choice is
arbitrary).

The diameter D of a point cloud is de�ned to be the maximum Euclidian distance
between any two points in the point cloud [25].

In addition to the vertices, a model may also have a set of facesf Fi g
F
i =1 which de�ne

a piece-wise continuous surface of the object. Each faceFi is de�ned by a number
of vertex indices which span a simple geometric surface shape (usually 3 vertices

18

2. Theory

spanning a triangle). Having model faces de�ned is important when rendering 3D
models in an image, to �ll the space between projected image points.

In addition to the point cloud, the model may also be accompanied in some scenar-
ios by a set ofK keypoints f X kgK

k=1 also de�ned in the object speci�c coordinate
system. Note that keypoints may also be de�ned as indices of certain points in
the already existing point cloud. Properly sampled keypoints may serve to simplify
pose estimation problems by reducing the number of 2D/3D point correspondences
needed to solve for the pose [26]. Furthermore, properly sampled keypoints may
also have semantic indication in the object model surrounding them, which can be
exploited in learning based approaches [20] [27] [28]. Keypoint sampling is usually
carried out either in an e�cient automated fashion, such as farthest point sampling
[20], or by manually selecting keypoints which appear useful, such as sharp edges or
distinct textures [29].

2.2 Deep learning

Arti�cial Neural Networks (ANN) most commonly refer to input-output models
inspired by the human brain [30] which act as universal function approximators
[31]. The ANN architecture consists of a number ofneurons which are sequentially
connected, each of which accepts a multi-dimensional input and produces a one-
dimensional output. See Figure 2.2 for a visual representation of a standard feed-
forward neural network model. Deep learning refers to ANN's which are "deep", i.e.
consisting of a large number of neurons and layers.

19

2. Theory

Figure 2.2: Schematics of a feed-forward arti�cial neural network.

The most common neural network model, the Feed Forward neural Network, consists
of L sequential layers, where layerl contains N l neurons. First, a weighted linear
combination z (1) is computed from the inputx 2 Rd by multiplication with a weight
matrix � (1) 2 Rd� N1 and addition of a bias vectorb(1) 2 RN1 (2.39). The activation
a (1) of the �rst layer is then given by the activation function f a(z (1)) (2.40). The
activation function serves the important purpose of introducing non-linearity to the
model. Without a non-linear activation function, the �nal output will only depend
linearly on the input, limiting the complexity and applicability of the model [32].
Popular choices of activation functions include ReLU [33] and the hyperbolic tangent
function. For each of the subsequent layers, the same two steps are taken, but with
the activation of the previous layer as the input rather thanx (2.41). The output
of y is simply taken to be the activation of the �nal layer l = L.

z (1) = � (1) x + b(1) (2.39)

a (l) = f a(z (l)) (2.40)

z (l) = � (l)a (l � 1) + b(l) (2.41)

Deep learning models are commonly used to model unknown systemsf (x) for

which data in the form of N input-output pairs
n
(x ; y t)

(i)
oN

i =1
are given. The

subscript t denotes that this is the target output. By tweaking the parameters

� =
n�

� (l) ; b(l)
�o L � 1

l=1
of the neural network f̂ � (x), the complexity of a su�ciently

20

2. Theory

deep neural network allows for the model to match a vast set of input-output pars
to a high degree. The parameters are tweaked by gradient-based methods such as
Stochastic Gradient-Descent, or more sophisticated methods such as ADAM [34],
minimizing an appropriate objective functionE (� ; y t) (loss function). To compute
the gradient of the loss function w.r.t� , the backpropagation algorithm is used. The
details of backpropagation is omitted here, but it essentially boils down to applying
the chain rule in several steps, assuming the loss function is di�erentiable [35].

The appropriate loss function varies from task to task, but is always chosen such
that outputs produced by f̂ � which are similar to y t yield lower loss values. For
example, in the task of binary classi�cation, the loss function is usually taken to be
the Cross-Entropy loss (2.42). Note that the dependence of� is incorporated into
the output y .

E (� ; y t) = �
1
N

NX

i =1

y(i)
t � log

�
y(i)

�
+

�
1 � y(i)

t

�
� log

�
1 � y(i)

�
(2.42)

Deep learning has been successfully deployed in numerous tasks within computer
vision, such as image depth estimation [36] and object classi�cation [37], where the
deep learning models outperformed the traditional methods. Deep learning based
methods have the ability to capture semantics in data to solve tasks for which
humans have no di�culty solving (e.g. stating whether or not an image contains a
dog), but for which it is very di�cult to formulate a rule-based algorithm which
solves it.

2.2.1 Convolutional neural networks

A Convolutional Neural Network (CNN) is a deep learning model which processes
data through convolutions. CNN's are particularly useful within Computer Vi-
sion, where the grid-like structure and spatial coherence of images is exploited [32].
Speci�cally, this is accomplished byweight sharingwhich reduces the number of
parameters of the network. Similar to the Feed Forward neural Network, a CNN
successively performs a linear operation on the inputx followed by an activation
function and repeats these two operations a set number of times. The matrix multi-
plication � (l)a (l � 1) in equation 2.39 is replaced by a discrete convolution operation,
see Figure 2.3 for a visualization of this operation.

In the case of images, the input is usually a tensor of dimension(hx � wx � d) which
is the height,width and number of channels of the image. The discrete convolution
is a function associated with a tensorK denoted akernel, which in this case is of
dimension(hK � wK � d). The convolution is performed by taking the inner product
between the two tensorsx and K in a sliding window fashion. The elements of the
output tensor z are de�ned by

21

2. Theory

Figure 2.3: Depiction of discrete convolution between an image(6 � 6) and a �lter
(3 � 3).

z(i; j) =
X

m;n;o
K (m; n; o) � x (m + i � 1; n + j � 1; 0) (2.43)

m = 1; 2; :::; hK (2.44)

n = 1; 2; :::; wK (2.45)

o = 1; 2; :::; d (2.46)

z is of dimension((hx � hK + 1) � (wx � wK + 1) � 1). Usually the input x is padded
in such a way that z gets the same height and width asx . Padding means that the
input is extended in the relevant dimensions by adding zeros in the beginning and
end of it.

A typical layer in a CNN consists ofn di�erent kernels f K gn
k=1 , wheren may di�er

between the layers. Each of the kernels produces an outputzk which are stacked
together to produce the complete output tensorZ (i; j; k) = zk(i; j) for a layer. A
bias vector b is added toZ and used as input to the activation function similarly
as in the Feed Forward case.

CNN's have been proven e�cient in object detection on pixel level, i.e.segmentation
problems[38]. The segmentation problem consist of classifying pixels into a number
of categories, of which one usually represents background or lack of an object.

2.3 Object detection and 6D pose estimation

The problem of object detection is the problem of identifyingn objects where each
object is labeled as one ofm classes, and �nding their locations in some space,
given some input. The input contains no information regarding the inventory of
objects. (As opposed to the related problem of object localization [39]) In the more
researched area of 2D object detection, the location is typically represented by a
bounding box in the image, de�ned byx and y coordinates of a corner, and side
lengths h and w [40] [41]. In 6D pose estimation and object detection, the location
is represented by the 6D pose relative some reference camera.

22

2. Theory

The ground truth data G is speci�ed as a set ofn objects Oi which are de�ned by
one ofm available class labels, and a posePi .

G =
n
Oi =

�
classi 2 f Cj g

m
j =1 ; Pi 2 R3� 4

�o n

i =1

The goal of a 6D pose estimation and object detection algorithm is to, given some
input data x, produce a detection setD which is speci�ed as a set ofn0 objectsO0

i ,
de�ned as for the ground truth data.

D =
n
O0

i =
�
classi 2 f Cj g

m
j =1 ; Pi 2 R3� 4

�o n0

i =1

Usually one includes a "con�dence" metric to the output objectsO0
i in addition to

the pose and class label. Con�dence can be used as an intermediate step in �ltering
detections before deciding upon the �nal setD [42], and the con�dence of the �nal
detections are typically used while calculating one of the most popular evaluation
metrics, Mean Average Precision [39].

2.3.1 Evaluation

An object detection algorithm is evaluated by comparing the detection setD to the
ground truth set G.

A detected object O0
i in D is referred to asmatched with an object Oi in G if

they belong to the same class and are su�ciently close according to some metric
as described in Section 2.3.1.2. Depending on the choice of metric, there may also
be multiple detected objectsf O0

i ji = 1; 2; :::; kg matched with the same ground
truth object or vice versa. Object detection algorithms are typically evaluated using
classi�cation metrics [43] [44] where the number oftrue positives(TP), false positives
(FP) and false negatives(FN) are counted by the following de�nitions.

A FP is counted for each object in the detection setD that is not matched with
any object in G. A TP is counted for each matched detectionO0

i , in which case it
is said to beassignedto the ground truth object it is matched with, except in the
case of multiple detectionsf O0

i ji = 1; 2; :::; kg being matched with the same ground
truth object Oi . In this case only one of the detectionsO0

i will be counted as a TP,
and furthermore assigned toO0, and the rest will be counted as FP. For each object
in G that was not matched, a FN is counted. In typical classi�cation evaluation,
there is also the concept oftrue negatives, but this is not applicable for the object
detection problem, since there are an in�nite amount of locations where there is no
object in a scene.

One of several evaluation metrics for pose detection is the F1-score, which may be
written on the form

F1 =
2TP

2TP + FP + FN
=

TP
n + n0

(2.47)

23

2. Theory

wheren and n0 are the number of objects in the setsG and D respectively.

2.3.1.1 Assigning the matches

There is an ambiguity when using theF1-score for this problem which is a conse-
quence of the fact that TP will depend on how the object assignment is performed.
Since the choice of assignment is ambiguous, di�erent approaches exist which specify
how it is to be carried out. One approach is by assigning the detection matches in
the most pro�table way as to maximize TP [39]. This approach result in a variation
of the assignment problem[45], for which multiple algorithms provide the solution
[45] [46] [47]. One way of assigning the matched instances in the most pro�table
way is by the use of theHungarian Algorithm [45] with a binary cost matrix; Either
detection i is a match with ground truth j or it is not.

2.3.1.2 Matching between ground truth and detections

The concept of "closeness" can be de�ned in di�erent ways depending on the problem.
In 2D object detection, a detected object is taken to be su�ciently close to the
ground truth if the Intersection over Union (IoU) between their bounding boxes
is greater than a set threshold (typically 0.5 or 0.9) [48]. The metric is simply
the fraction between the area of the intersection of the boxes, and the area of the
union of the boxes. For our problem of detection of objects in 3D space, the IoU
metric generalizes by using 3D bounding boxes which encloses the CAD-models of
the objects. Alternatively, one can use other metrics such as the5� -5cm metric
[49] where a pose is correct if it is within5� rotational and 5cm translational error.
Another alternative is ADD which is the average distance of CAD-model points
transformed with the estimated and ground truth poses [2], for which the threshold
of detection typically is 10% of the object diameter.

2.4 Clustering algorithms

Clustering is the problem of �nding structure in data and dividing the data into
a number of groups according to some measure of similarity. The intention might
be to categorize the data or acquire a more sparse representation of it. Di�erent
clustering algorithms may furthermore depend on carefully selected parameters to
function properly.

24

2. Theory

2.4.1 K-Means clustering

K-Means is an algorithm for clustering dataf x i ji = 1; 2; :::; ng into a prede�ned
K number of clustersf Ck jk = 1; 2; :::; K g. The idea is to �nd the meansf � k jk =
1; 2; :::; K g of the data clusters and group the data according to the closest mean
point they belong to. Di�erent measures of distance may be applied and in this
section the euclidean distanced = jjx � � jj 2 is used.

The K-Means algorithm consists of the following steps

Result: A set of K means
Initialize K meansf � kgK

k=1 ;
while not convergeddo

for x i 2 f x i g
n
i =1 do

Calculate k from mink jj x i � � k jj 2

Set x i 2 Ck
end
if f Ck jk = 1; 2; :::; K g equal to last iterationthen

converged
end
for � k 2 f � kgK

k=1 do
� k = 1

Sk

P
x 2 Ck

x i

Sk =
P

x 2 Ck (1)

end
end
Di�erent schemes exist for initialization of f � kgK

k=1 , a common one being random
selection in the set of data;

Algorithm 1: K-means algorithm

2.4.2 Mean-shift clustering

The Mean-shift algorithm is a method used to �nd modes of a density function from
discretely sampled data of the distribution [50], and can easily be extended to be
used for clustering tasks [51]. Mean-shift has been used for tasks in computer vision
such as segmentation or object tracking [52].

The underlying idea of the method is to estimate the gradient of the density function
f (x) at point x to be proportional to the mean-shiftm (x). By initializing a number
of centroidsin the feature space and iteratively taking steps in the estimated gradient
direction, properly initialized centroids will converge to the various modes of the
distribution.

The mean-shift may be de�ned as di�erence betweenx and the mean of the samples

25

2. Theory

weighted by a kernelK (x i � x) in the neighborhoodN (x). (2.48)

m (x) =
P

x i 2 N (x) K (x i � x)x i
P

x i 2 N (x) K (x i � x)
� x (2.48)

The kernel K (x i ; x) is often chosen to be a �at kernel with bandwidthh, in which
case the neighborhoodN (x) is automatically inferred, and the mean of points within
the neighborhood is unweighted.

K (x � x 0) =

(
1 if kx � x 0k < h
0 otherwise

(2.49)

Intuitively, the idea behind using the mean-shift on data sampled from a density
function as an estimate of the gradient is motivated by the expectation of observing
more samples in a neighbourhood aroundx where the density is greater. Further-
more, it has been mathematically proven that the mean-shift atx is proportional to
a kernel gradient density estimate under reasonable assumptions. The Mean-shift
algorithm for mode detection is described below:

Result: A set of m mode coordinates
Initialize n centroids f x i g

n
i =1 ;

for x i 2 f x i g
n
i =1 do

while not convergeddo
Calculate m = m (x i) according to eq. (2.48);
Set x i ! x i + m ;
if km k < � then

converged
end

end
end
Filter out duplicates amongn �nal centroid locations to obtain m � n mode
coordinates;

Algorithm 2: Mean-shift algorithm

A strength of the Mean-shift algorithm is the lack of parameters. With the most
common choice of kernel functions, only one parameterh, the bandwidth of the
kernel needs to be decided upon. This parameter has a physical interpretation for
many applications [50], making the decision easier.

26

3
Project disposition & dataset

acquisition

Since the purpose of the project was partially object detection in a supermarket
setting, and partially development of a data Annotation Tool, a natural inclusion
into the project was the creation of an annotated dataset of labeled object poses in
a supermarket setting. That way, the development of the Annotation Tool could
bene�t from continuous testing/iteration, our detection algorithm could be trained
and tested on a new dataset, and we would produce a dataset relevant to the afore-
mentioned research project. A �owchart of the project disposition is shown in Figure
3.1.

Figure 3.1: Flowchart diagram of project tasks.

27

3. Project disposition & dataset acquisition

3.1 Project planning and execution

The project started out by an extensive literature study which would shape the
structure of the project. The goal of the study was partly to decide upon a state-of-
the-art, deep-learning based method for single-view 6D pose estimation and object
detection which we could extend to a multi-view framework. The method had to
satisfy our constraint on legal inputs to our �nal algorithm (RGB images, object
models and motion), and we also needed to be able generate the corresponding labels
for the trainable part of the method.

Among the existing literature, one method, PVNet by S. Peng et al. [20], stood
out for several reasons. Particularly due to their state-of-the-art performance on
a well known dataset. We decided to build upon their work since a) they had
source code published, b) their deep learning component produced interesting out-
put which could enable �exibility, c) they claimed their method to be robust to
occlusions and truncations, d) they proposed a method for extending their algo-
rithm to enable detection of multiple instances, e) their performance on the popular
occluded-LINEMOD Dataset [2] [53] was among the best reported at the time, and
f) their model required labeled data which we would be able to produce with little
e�ort from the labels generated using our tool.

The development of the Annotation Tool complemented the labeling of our dataset
well, as we (expectedly) encountered bugs and �aws of the tool in practical use.
Furthermore, we were able identify and to implement additional features which
would make the software more e�cient.

The �nalized dataset was partitioned into a set of training scenes, and a set of
validation scenes. The former set was used during development of the Detection
Algorithm, manual parameter tweaking and deep learning model �tting. The latter
set was used to assess the performance of the algorithm on new, unseen data, the
values of which are reported.

3.2 Dataset creation

To acquire our datasets, we placed various objects in di�erent environments of vary-
ing lightning, and recorded the scenes with a video camera.

The dataset included objects one could typically �nd in a supermarket setting, and
also exhibited the same type of occlusions one could expect. The �nal list of objects
used in our datasets included: Soap (green), Soap (blue), Paper cup, Box of Lentins,
Box of Macaroni, Deciliter Measure, Can of Coconut Milk. The types of occlusions
we took into account during creation included:

ˆ Objects (partially) out of frame.

28

3. Project disposition & dataset acquisition

ˆ Objects occluded by other inventory objects. This is common in supermarket
shelves where items are typically lined up.

ˆ Objects occluded by the environment. This could typically be the shelves
themselves from some viewing angles.

These types of occlusions need to be handled di�erently in some scenarios, e.g.
when producing segmentations by rendering objects. Note that our dataset lacks
images with environmental occlusions due to the lack of a proper method to produce
accurate segmentation labels taking that into account. That said, the Detection
Algorithm may be able to produce decent results on test data in which environmental
occlusions are present, if it is capable of dealing with the other types of occlusions.

Furthermore, each scene in the dataset was labeled with a "di�culty" with respect
to occlusions to enable discussion of how occlusion a�ected the performance of our
algorithm. Each scene was labeled as "Easy", "Medium" or "Hard" depending on the
fraction of objects for which the video lacked viewpoints where they were clearly
visible. For example, scenes most resembling an actual store shelf would be labeled
as di�cult, since objects are typically stacked tightly in a row, limiting the visibility
of most items greatly.

The motion was calculated using the structure-from-motion framework COLMAP.
The COLMAP pipeline required only the RGB images to calculate this.

The object models were obtained either by creating simple geometric shapes pro-
grammatically (for cuboids and cylinders), or by scanning them with HandyScan3D
[54] and processing the data in VXmodel [55].

3.2.1 Resulting dataset

In Tables 3.1 and 3.2, statistics for the resulting datasets are presented. In total,
data for 22 scenes were generated, 19 of which are used as the training set, and 3 of
which as the validation set. The di�culty distribution of the training set is uniform,
whereas the validation set consists of one medium, and two hard.

Unfortunately, many of the recorded scenes had to be discarded due to COLMAP
either failing to generate motion objects which remotely represented the camera
motion, or generating motion objects which simply were not accurate enough. Fur-
thermore, among the scenes included in the datasets, many of the images were
inexplicably ignored by COLMAP, resulting in fewer images on which to train the
deep learning model. We approximate that 75% of the actually recorded frames
were lost.

A sample of the scenes can be seen in Figure 3.2. For an overview of all the scenes,
Figure B.1 in Appendix B presents a single frame for every scene which aims to give
a good overview.

29

3. Project disposition & dataset acquisition

Table 3.1: Statistics of training dataset. The �nal 7 columns are the number of
instances of each class as indexed in Table 3.3.

Idx #Images #Objects Di�culty #1 #2 #3 #4 #5 #6 #7
1 555 13 Easy 2 2 2 3 0 2 2
2 345 35 Hard 5 6 7 3 1 5 8
3 267 52 Hard 6 10 9 8 6 5 8
4 227 20 Easy 4 3 3 3 4 3 0
5 201 13 Easy 0 3 3 0 4 3 0
6 611 52 Hard 6 10 9 8 6 5 8
7 364 23 Medium 4 4 3 4 0 5 3
8 536 11 Easy 2 2 2 2 1 0 2
9 400 29 Hard 4 4 3 7 4 4 3
10 463 30 Hard 4 6 0 6 3 5 6
11 422 30 Hard 4 6 0 6 3 5 6
12 346 16 Easy 4 4 0 0 3 3 2
13 569 17 Medium 0 2 0 4 4 4 3
14 387 12 Medium 0 2 0 2 3 2 3
15 529 19 Medium 4 4 2 2 1 3 3
16 637 21 Medium 3 3 2 4 5 2 2
17 528 52 Medium 6 10 9 8 6 5 8
18 656 13 Easy 0 2 0 2 4 2 3
19 165 36 Hard 6 5 7 4 1 5 8
- 8208 494 - 64 88 61 76 59 68 78

Figure 3.2: Two of the scenes in the dataset.

30

3. Project disposition & dataset acquisition

Table 3.2: Statistics of validation dataset. The �nal 7 columns are the number of
instances of each class as indexed in Table 3.3.

Idx #Images #Objects Di�culty #1 #2 #3 #4 #5 #6 #7
1 260 29 Medium 4 5 7 5 4 0 4
2 385 26 Hard 3 4 4 4 4 4 3
3 981 30 Hard 4 6 0 6 3 5 6
- 1626 85 - 11 15 11 15 11 9 13

Table 3.3: Table of classes used in our dataset, and their corresponding numeric
indices for future reference.

Class Idx Class Name
1 Deciliter Measure
2 Coconut Can
3 Paper Cup
4 Box of Macaroni
5 Soap Bottle (Green)
6 Soap Bottle (Blue)
7 Box of Lentils

31

3. Project disposition & dataset acquisition

32

4
Annotation Tool

This chapter covers the development of the Annotation Tool. It starts with an intro-
duction and motivation of the core idea behind the tool, followed by a speci�cation
of user requirements and features. In the method section, the programming frame-
work used to create the tool is presented, and the underlying mechanisms utilized
are explained and motivated. Additionally, experiments which aim to evaluate the
e�ciency and quality of the core method are formulated. In the section labeled
"Resulting Software", the features of the �nal product are presented along with dis-
cussion regarding usability of the tool. Thereafter, the results of the experiments are
presented. Finally, the chapter closes with a section of discussion of the experiment
results, and also regarding the quality of the method as a whole, with suggestions
for future improvements and features.

4.1 Core idea and speci�cation

Consider an RGB image sequencef I tg
T
t=1 of a scene containing a number ofobjects

of interest (OoI). The image sequence is accompanied by itsrelative motion f Ptg
T
t=1

as de�ned in Section 2.1.2.1. Assume the objects of interest belong to one ofN
object classes (e.g. Box of macaroni, Box of lentils, etc.). The goal is to obtain, for
each imageI t in the sequence, the poses relative the image camera of all objects of
interest speci�ed with the class of the object as described in Section 2.3. Note that
this includes poses of objects relative a camera for images in which the object may
not be visible.

The core idea of the Annotation Tool is for the user to manually identify and label
the poses of each object in the scene once, by identifying keypoints of the objects in a
small subset of the images. The global pose of an object, which can be transformed
to poses relative any camera, is calculated using reprojection error minimization
across the di�erent viewpoints. The user continuously assesses the quality of the
pose annotations by observing the projections of the models onto the images from
multiple viewpoints.

The utility of the tool lies in its ability to produce thousands of annotated images

33

4. Annotation Tool

from the manual e�ort of partial annotation in only a few, while allowing the user to
seamlessly get an overview for the quality of �t of all labeled data. The tool makes
no explicit assumptions regarding the environments in which the images have been
captured, making it versatile for labeling new datasets for any new scenario.

The data provided by the user is the following:

ˆ An RGB image sequence of the scene in question

ˆ Pre-calculated camera motion

ˆ The inner parameter matrixK of the camera which captured all images of the
sequence

ˆ Point cloud CAD models of the inventory objects, complete with vertices and
faces

ˆ (Optional) Keypoints associated with the CAD models

4.2 Method

4.2.1 Software development framework

The Annotation Tool was built using the MATLAB App Designer. This choice of
platform was motivated by a number of reasons. Firstly, we had great familiarity
with the MATLAB programming language, and the it includes e�cient tool for
matrix algebra and optimization, which are important concepts within computer
vision. Secondly, MATLAB supports object-oriented programming, which provides
�exibility when developing a user friendly tool. Finally, the App Designer allowed
for easy user interface generation through its click-and-drag capabilities, which was
especially useful considering our lack of experience with front-end development.

4.2.2 Underlying mechanisms

4.2.2.1 De�ning the global coordinate system

In order to simplify things, it is useful to de�ne a global coordinate system. There-
fore, before any calculations are made in the tool, the motion object is transformed
to a coordinate system where the �rst cameraP1 is the identity camera [I; 0]. We
denote the global pose of an object asPpose, and it is expressed in this coordinate
system.

34

4. Annotation Tool

The provided motion object is not necessarily de�ned in a coordinate system which
shares the scale of the object speci�c coordinate systems. (Recall that scale is
ambiguous from Section 2.1.2.1) As a result, the posePpose of an object when trans-
formed to a viewpoint t will be improperly scaled as explained in Section 2.1.3.1.

Therefore, we also introduced a multiplicativescaling factor s which scales the
global coordinate system such that it is expressed in the same units as the objects'
coordinate systems. The scaling factor can either be set manually by the user, or it
can be speci�ed to be a free parameter in the optimization procedure.

When navigating the di�erent viewpoints, it is important that the user is able to
visually assess the quality of the pose in the current image. This is enabled by
simply transforming the global pose to a pose relative the current camera according
to eq. (2.17), and then projecting the model point cloud onto the image.

4.2.2.2 Pose optimization

For a single object instance, given a collection of 2D coordinatesf x t;k g wheret is the
viewpoint index, andk denotes the keypoint type, we optimize for a posePpose such
that the multi-view reprojection error Emulti (2.14) of the keypoints are minimized
in all image planes. The optimization is carried out every time the user updates the
set of 2D keypoint locations in the step described in Section 4.3.2.

In the case that the scaling factors is a free parameter, the translation component
t t of Pt = [Rt ; t t] is replaced bystt . Note that this implies that scaling factor
optimization is only carried out with respect to one object instance at a time.

The optimization procedure, like most optimizers, requires an initial solutionP init
pose.

This was obtained by using a 3-point minimal solver on three randomly selected
point correspondences. The solver results in two pose candidates, from which the
most appropriate one must be manually assessed. The 3-point minimal solver was
written by Olof Enqvist of the Computer Vision Group at Chalmers.

Once an initial solution has been obtained, the optimization is carried out using
the function fmincon which is available in MATLAB's Optimization Toolbox. For
a new pose solutionP �

pose = [R� ; t �] to be valid, R� must be a rotational matrix. To
avoid implementing the rotational constraint (2.26) during optimization, we utilized
an Euler angle representation ofR (2.28) and optimized w.r.t the Euler angles.

4.2.2.3 Pose optimization with plane constraint

In many cases, multiple objects lie on the same �at environment surface. Some of
our objects have parts which are �at and may rest with that part on the underlying
environment. To aid in the annotation, we model the underlying surface as a plane
and make use of the plane constraint de�ned in Section 2.1.4.

35

4. Annotation Tool

As explained in 2.1.4, we need a set of pointsf X kgK
k=1 on the object model which

are known to be attached to the plane. To acquire such a set we associate with each
object a number oflying positions (such as a macaroni box standing upright) where
a particular set of points is de�ned. In the case of macaroni in upright position,
the bottom four corners of macaroni are taken to be such a set. We choose the set
of points associated with the lying positions so that the planes they de�ne always
are orthogonal to one of the coordinate axes. This simpli�es our problem since the
normal vector to the plane in the object coordinate system will always be equal
to one of the coordinate axis~n 2 f x̂; ŷ; ẑg. The user can then specify the lying
position by specifying which coordinate axes is equal to the plane normal, e.g.ẑ
when the macaroni is standing upright. A plane in the global coordinate system
is then acquired by �tting the set of points, as explained in Section 2.1.4, and is
represented byp0 and n. The user may also specify multiple such known objects,
in which case the set of keypoints de�ning the plane is the union of the objects
individual sets.

The plane can then be used to �rst detect the lying position. The pose problem is
initially solved without the aid of the plane by the normal solver, which will yield
an initial solution Pi = [Ri t i]. One of the coordinate axes will be similar ton after
transformation, i.e. (Ri ~n)T n � 1.

Since the transformed coordinate axes are equal to the rows of the transformation
R = RI = R(x̂; ŷ; ẑ), we can �nd the relevant coordinate axis by �nding which row
of R produces the larges inner product withn

max
i

RT
i n (4.1)

whereRT
i denotes rowi of R. i identi�es the index for the correct coordinate axis.

Since ~n is now known, we can use equation (2.37) and solve the problem for the
single parameter� in an axis-angle representation.

4.2.3 Experiment 1: Assessing quality of labels

In order to assure that the pose labels generated using the tool are reasonable for each
of the images inf I gT

t=1 , we needed to e�ciently measure their quality-of-�t across all
data. Since no ground truth labels were available prior to the annotation, we opted
for a visual inspection. This was done by rendering transparent segmentations of the
CAD models onto each frame in every video, and checking that they overlapped well
with their respective objects in the images. For this report, we include a random
sample of the frames across all videos. Although the user should be able to assess the
quality of their labels during annotation using the tool, some systematic errors in the
method may not always be apparent while using the tool, or some implementation
errors during the exportation of the labels may occur. A comprehensive visual
inspection of the scene is necessary to con�rm that the ground truth labels produced
are reasonable.

36

4. Annotation Tool

4.2.4 Experiment 2: Assessing the e�ciency of annotation

Since the tool revolves around the user manually identifying keypoint locations in
images, the number of identi�cations per object instance measures in a sense the
manual e�ort of generating the data with our tool. To provide ground for discussion
of how our tool facilitates data labeling, we retroactively counted this quantity
from the labeling of our dataset. The histogram of the number of identi�cations
per object, and the number of viewpoints utilized are reported. Furthermore, this
experiment was formulated after the annotation had been performed. Therefore,
we were not in�uenced to deliberately minimize the visible e�ort, and the data is a
better representation of a typical use case.

4.3 Resulting software

In this section, the �nal Annotation Tool is presented. The usage of each feature of
the tool is explained along with a discussion pertaining to strengths and weaknesses
from a user perspective. Screenshots of the various user interfaces the tool consists
of are shown in Figures 4.1, 4.2, 4.3 and 4.4 where Figure 4.1 shows the main view.
Note that some of the screenshots have been cropped to better �t the report.

4.3.1 Main view

In the main view, the user may navigate between the imagesf I tg
T
t=1 and select the

active object instance among the available. The active instance is the instance for
which all operations are performed. The current image is the image in which the
user may identify keypoints of the selected object by pressing "Click Points". The
list of available object instances is initially empty. The user adds an instance of
every object they identify in the images. Each object instance has an associated
object class, with an associated CAD model and list of keypoints.

37

4. Annotation Tool

Figure 4.1: Main view after loading data of a scene. In this example, the projected
point cloud of a green soap bottle is shown which was generated with a pose �tted
by the user.

4.3.2 Point identi�cation

The point identi�cation window is opened when the user presses "Click Points" in
the main view. In this window, the user is presented with a view of the CAD model
of the selected OoI along with markers for its current set of keypoints. The user is
also presented with the image of the selected viewpoint.

In this window, the user may select one of the de�ned keypoints as active by either
selecting it from the list of de�ned keypoints, or by marking it graphically in the
model view. When a keypoint is marked as active, the user may mark a pixel
coordinate in the viewpoint image by simply clicking it. This creates a 2D keypoint
coordinate x t;k and adds it to the set of coordinates associated with the selected
object instance.

The user is also able to add new object keypoints by marking them graphically on
the CAD model. This is useful in case no keypoints have been de�ned a priori, or if
the user discovers a new particularly helpful set of points. The new keypoints can
also be exported for future use.

The user is able to use MATLAB's integrated tools for plot view manipulation, such

38

	List of Figures
	List of Tables
	Introduction
	Background
	Purpose
	Specification of issues under investigation
	Limitations
	Related work
	Annotation of 6D poses
	Single-view 6D pose estimation
	Multi-view 6D pose estimation

	Contributions
	Report disposition

	Theory
	Geometric computer vision
	Pinhole camera model
	Inference from camera equation
	Pose representation
	Pose optimization with plane constraint
	Inferring the image projection
	Object model representation and keypoints

	Deep learning
	Convolutional neural networks

	Object detection and 6D pose estimation
	Evaluation

	Clustering algorithms
	K-Means clustering
	Mean-shift clustering

	Project disposition & dataset acquisition
	Project planning and execution
	Dataset creation
	Resulting dataset

	Annotation Tool
	Core idea and specification
	Method
	Software development framework
	Underlying mechanisms
	Experiment 1: Assessing quality of labels
	Experiment 2: Assessing the efficiency of annotation

	Resulting software
	Main view
	Point identification
	Manual pose manipulation
	Plane identification

	Experiment results
	Discussion
	Summary of key features
	Workload analysis
	Visual assessment of pose label quality
	Flaws of the tool
	Future work

	Detection Algorithm
	Method
	Single-view pose estimation using PVNet
	Our single-view pipeline
	Aggregation

	Results
	Discussion
	Design choices and potential improvements

	Conclusions
	References
	Voting field prediction for tightly packed objects
	Dataset overview
	Samples of annotation segmentations

