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Bayesian Multi-Lane Road Geometry Estimation
OSSIAN ERIKSSON
Department of Some Subject or Technology
Chalmers University of Technology

Abstract
Advanced Driver Assistance Systems (ADAS) are automotive technologies that im-
prove driver comfort and road safety. Many such features, like adaptive cruise con-
trol and automatic lane keeping rely on knowledge about the geometry of the road
around the ego vehicle. This purpose of this work is to design and evaluate a model
based algorithm to estimate the center curves of highway lanes as well as on ramps
and off ramps based only on internal vehicle sensors and a front camera system
detecting lane markings. In particular, we design a novel road model with support
for describing any number of lanes of the ego road, on ramps and off ramps within
some range of the ego vehicle. To evaluate whether this road model is suitable for
tracking with a Bayesian filter, a multiple hypothesis coupled multi object tracking
filter is designed specifically for the chosen road model. Multiple hypothesis are used
to deal with data association for detections of lane markers and coupling lanes is
useful for modeling parallel lanes. The filter additionally deals with object spawning
and death in a way inspired by multi-Bernoulli mixture filters by giving each lane
within each hypothesis a probability of existence. The filter is evaluated on highway
driving scenarios provided by the Zenseact company and is demonstrated to track
the ego lane and parallel lanes well, but sometimes struggles to distinguish main
road lanes from on or off ramps since the filter only knows about lane markings and
not e.g. road edges or guard rails. The current filter implementation is also com-
putationally intensive and does not reliably run in real time on consumer hardware,
but demonstrates the potential of the road model used to track multiple lanes and
branching roads.

Keywords: Multi-Lane Road Geometry, Sensor Fusion, Bayesian Filtering, Coupled
Multi-Object Tracking.
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1
Introduction

As computer hardware in cars continue to progress, it allows for an increasing
amount of e�ort to be put into the development of Advanced Driver Assistance Sys-
tems (ADAS). Features such as driver drowsiness detection and automatic breaking
are becoming ever more important to drivers and are in some cases starting to be
required features in new sold cars [1].

Many active safety systems such as adaptive cruise control and automatic lane keep-
ing are reliant on having some knowledge of the road surrounding the vehicle. Thus,
increasing the accuracy and redundancy in road estimation systems is therefore cru-
cial to improving driver safety and comfort. On the other hand, faulty road geometry
estimation could have potentially fatal consequences for people on the road.

There are multiple approaches to road geometry estimation, such as using an o�ine
[2] or crowd sourced map [3], or using on board sensors such as cameras to get a live
view of the space around the vehicle [4]�[7]. Having multiple approaches to the same
problem is good for redundancy. For map based descriptions of the road geometry, it
is natural to include all lanes surrounding the vehicle. However, for on-board sensor
systems many algorithms such as the ones discussed in [5], [8] are only concerned
with estimating the ego vehicle lane, sometimes also including directly neighboring
lanes [9]. The aim of this work is to develop a model based technique for estimating
an arbitrary number of lanes on the ego road in highway scenarios, as well as any
merges or diverges from the main road.

1.1 Structure of This Work

This works purpose is to investigate a Bayesian approach to multi-lane tracking in
highway scenario. To this end, the Zenseact company has provided a closed data set
of highway drives in various European countries. From this data set, the scope of this
work is limited to focus on two groups of data: Internal vehicle signals such as speed
and angular velocity, and lane marking detections originating from an algorithm
processing images from a front facing camera. The desired output of the proposed
algorithm is a representation of the centers of the lanes of the ego road and merges
and diverges up to200 min front of the ego vehicle.

To this end, a state representation of highway road is �rst constructed. Also, a
motion model describing the motion of the ego vehicle over the road is presented
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1. Introduction

and a measurement model describing the expected output from the lane marking
detection algorithm given parameters of the road are needed. The model chosen is
a coupled one, where all lanes are represented by a joint state vector and covariance
matrix. Second, a multiple hypothesis multi object tracking �lter is designed to
track the state. This �lter has multiple interesting features which arise from the
speci�c tracking scenario, for example the way that lane markings detections are
not connected to the tracked objects (lanes) directly, but to borders between these
objects. Finally, the designed approach is evaluated on the data set provided by
Zenseact.

This report is split into �ve chapters. In this �rst chapter the problem is introduced
and related work is reviewed. In the theory chapter, relevant theory on Bayesian �l-
ters, object tracking in clutter and multi object tracking are reviewed. The methods
chapter describes the design of the road model, motion and measurement models as
well as the �lter algorithm. Finally, evaluation results are presented in the Results
chapter, and the �nal chapter discusses the implications of the results and areas of
possible improvement.

1.1.1 Notation

Some common typesetting rules used throughout this report are as follows: Random
variables are displayed in upright sans serif fonts. Vector variables are displayed as
lower case boldface italic symbols, and matrix variables as uppercase upright letters.
Sets are denoted by calligraphic uppercase letters. For example,x is a scalar random
variable and its realization x. Additionally, x is a vector random variable and its
realization x . Furthermore, X is a matrix, and X a set. Random matrices are not
used in this work, but random �nite sets are and are denoted likeX. Finally, a
sequence of values(x i )N

i =1 may alternatively be written as x1:N .

1.2 Related Work

Road geometry estimation methods based on on board sensors can be roughly split
into three categories: Those based fully on Bayesian �lters such as the Kalman �l-
ter, those using other methods of estimation such as polynomial �tting or neural
networks and those using a hybrid of Bayesian �lters and other methods. Addition-
ally, the methods can be categorized by whether multiple lanes or only the ego lane
geometry is estimated, and by whether the algorithm tracks lane marking lines or
lane center lines.

A purely Bayesian approach to estimating the ego lane center is presented in [5].
Here the curve of the lane is parameterized, and those parameters estimated by
means of a Kalman �lter based tracker. Input to the �lter is left and right lane
marking detections as well as static radar detections and dynamic objects detected
by a camera-radar fusion system. Multiple hypothesis are introduced in order to deal
with the static radar observations. This work is built upon in [4], which extends the
scope of [5] by also tracking on and o� ramps in highway scenarios. To this end, the
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1. Introduction

multi object tracking GM-PHD [10] and PMBM [11] �lters are employed, however
the �lters presented do not also track lanes adjacent to the ego lane.

A novel hybrid Bayesian approach to tracking multiple lane marking lines of the
ego road and also supporting on and o� ramps is presented in [12]. This method is
interesting and illustrative in a couple of ways. Firstly, it tracks lane marking lines
which is a simpler tracking problem than tracking lane centers since the marking
lines can be detected directly and are more easily de�ned, whereas lane centers can
often only be described indirectly by multiple marking lines. It is not always easy
to extract lane centers from a representation of the lane marking lines if one does
not know which lines are supposed to de�ne the left and right border respectively
of each lane. Second, it identi�es the concept of parallel lanes or lane markings as a
topic of consideration. Lanes are often, but not always parallel, and in cases where
they are this can be used to improve the road geometry estimation. In [12] each
marking line is independently tracked by and extended Kalman �lter, and as a post
process step lane markings believed to be close to parallel are adjusted to be more in
line with each other. Other methods taking alternate approaches to lane parallelism
are [7] where parallelism is always assumed, and [13] where lane parallelism is not
considered.

3
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2
Theory

2.1 Bayesian State Estimation

What is the true state of a control system? This is the question which the methods
of state estimation set out to answer. One may be able observe some properties
of the system, like the pressure of gas in a container, without explicitly knowing
other properties, like the temperature of the gas. However, knowing the pressure
should let us narrow down the possible range of temperatures, even if we do not
know all properties of the gas and even if we know that the pressure sensor is not
perfectly reliable in that it adds noise to the measurements. Thus between some
uncertainty in the inner workings of the control system and the uncertainty in the
measurements, the state estimation game becomes one of probability. This section
is dedicated to introducing the concept of Bayesian State Estimation as explained
by [14].

There are multiple interpretations of the concept of probability, of which Bayesian
probability is one. In this framework, all events have a prior probability of occurring
which allows for expressing the probability of an event even when none or �nitely
many experiments have been done to test the ratio between positive and negative
outcomes. Crucial to Bayesian probability is Bayes theorem

p(ajb)p(b) = p(bja)p(a) (2.1)

which may be derived fromp(a; b) = p(ajb)p(b).

For the purpose of state estimation, we assume our control system is described by
a discrete state space model. In each time stepk we typically represent the state
estimate by a random variablexk and receive measurements also in the form of
a random variableyk . A Bayesian network representation of a state space model
with the Markov property is shown in Figure 2.1. The Markov property means
that future states are in�uenced only by the current state, and not by any past
states. The network of Figure 2.1 visualizes this fact, along with the assumption
that measurements only depend on the current state. These two properties can be
written as

p(xk jxk� 1; y1:k� 1) = p(xk jxk� 1) (2.2)

and
p(yk jxk ; y1:k� 1) = p(yk jxk): (2.3)

5



2. Theory

x0 x1

y1

x2

y2

: : : xk

yk

: : :

Figure 2.1: Bayesian network description of a state space model.

The goal of recursive Bayesian state estimation is to express the posterior state
density p(xk jy1:k) given a prior p(xk� 1jy1:k� 1) (and measurements from time1 to
k). However, to �nd p(xk jy1:k) we �rst seek an expression forp(xk jy1:k� 1). Using
(2.2) and the law of total probability we arrive at what is known as the Chapman-
Kolmogorov equation

p(xk jy1:k� 1) =
Z

p(xk jx k� 1)p(x k� 1jy1:k� 1) dx k� 1 ; (2.4)

where we have made use of equation (2.2).

Further, (2.3) in combination with Bayes theorem (2.1) gives

p(xk jy1:k) =
p(yk jxk ; y1:k� 1)p(xk jy1:k� 1)

p(yk jy1:k� 1)
/ p(yk jxk)p(xk jy1:k� 1): (2.5)

Herep(yk jxk) is known as the measurement likelihood. Since we are only interested
in the density with respect to xk , we may view the denominator as a constant
normalization factor and discard it. It can later be recreated by enforcing that
p(xk jy1:k) should integrate to one.

Thus, the basic building blocks of a generic Bayesian state estimator have been laid
down. In time step k given a prior densityp(xk� 1jy1:k� 1) one �rst performs what is
known as the prediction step of the estimator by applying the Chapman-Kolmogorov
equation (2.4) to obtain p(xk jy1:k� 1). From a known likelihood, one next performs
what is known as the update step by applying (2.5) to obtainp(xk jy1:k). This
procedure is then repeated recursively for time stepsk + 1, k + 2 and so on. For the
initial time step, an expression for the initial prior p(x0) needs to be provided.

2.2 The Kalman Filter

The Kalman �lter is a Bayesian state estimator specialized for linear and Gaussian
systems [15]. A linear Gaussian state space model is given by

xk = A kxk� 1 + B ku k + qk (2.6)

yk = Ckxk + D ku k + rk (2.7)

where A k , B k , Ck , D k are constant matrices,u is a control signal andqk �
N (0; Qk), rk � N (0; R k), x0 � N (x̂ 0j0; P0j0) are independent random vector vari-
ables. Here, (2.6) and (2.7) are known as the motion and measurement model
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2. Theory

respectively, whileqk and rk are known as the process noise and measurement noise
[14].

It can be shown [14] that the state estimates will also be Gaussian distributed for
all time steps, i.e.

p(xk jy1:k) � N (x̂ kjk ; P kjk) (2.8)

p(xk jy1:k� 1) � N (x̂ kjk� 1; P kjk� 1); (2.9)

where x̂ kjk ; P kjk and x̂ kjk� 1; P kjk� 1 are the means and covariance matrices of the
prior and predicted state densities respectively. As such, the Kalman �lter is a
conjugate prior �lter, meaning the prior and posterior densities are of the same
family, Gaussian in this case. For linear and Gaussian systems, it can also be shown
[14] that the Bayesian state estimation equations discussed in Section 2.1 specializes
to

Prediction:

x̂ kjk� 1 = A k x̂ k� 1jk� 1 + B ku k (2.10a)

P kjk� 1 = A kP k� 1jk� 1A >
k + Qk (2.10b)

Update:

ŷk = Ck x̂ kjk� 1 + D ku k (2.10c)

Sk = CkP kjk� 1C>
k + R k (2.10d)

K k = P kjk� 1C>
k S� 1

k (2.10e)

x̂ kjk = x̂ kjk� 1 + K k(yk � ŷk) (2.10f)

P kjk = P kjk� 1 � K kH kP kjk� 1: (2.10g)

2.2.1 The Extended Kalman Filter

The extended Kalman �lter (EKF) is a variation of the Kalman Filter adapted for
nonlinear state space models given by

xk = f k(xk� 1; u k) + qk (2.11)

yk = hk(xk ; u k) + rk : (2.12)

The process and measurements noisesqk and rk are as in the ordinary Kalman
Filter. In every time step the motion and measurement models are linearized around
the mean of the prior. The ordinary Kalman �lter equations are the applied to
the linearization. This results in an approximate solution to the state estimation
problem where all densities are assumed to be Gaussian. According to [14], the full
EKF equations are

Prediction:

x̂ kjk� 1 = f k(x̂ k� 1jk� 1; u k) (2.13a)

P kjk� 1 = FkP k� 1jk� 1F>
k + Qk (2.13b)

7



2. Theory

Update:

ŷk = hk(x kjk� 1; u k) (2.13c)

Sk = H kP kjk� 1H >
k + R k (2.13d)

K k = P kjk� 1H >
k S� 1

k (2.13e)

x̂ kjk = x̂ kjk� 1 + K k(yk � ŷk) (2.13f)

P kjk = P kjk� 1 � K kH kP kjk� 1 (2.13g)

where

Fk =
@fk
@x

�
�
�
�
�
x = x̂ k � 1j k � 1 ;u= u k

; H k =
@hk
@x

�
�
�
�
�
x = x̂ k j k � 1 ;u= u k

: (2.14)

2.3 Tools of Object Tracking in Clutter

Filters such as the Kalman �lter and its variants are suitable for tracking the state of
a single object, such as a car or other vehicle, in environments with no clutter [14], i.e.
where every measurement is known to originate from the tracked object. However,
many real world scenarios involve sensors which introduce clutter, or sometimes
doesn't detect the real object [16].

A typical example to illustrate clutter and the possibility of not detecting the tracked
object is the use of a radar sensor to track a single airplane. Every time the radar is
polled it returns a variable length list of distance angle detection pairs made since
the last time step. Even given that we know for sure that only one airplane is present
within the �eld of view of the radar, the sensor when polled may yield zero, one, or
multiple detections due to disturbances. This stands in contrast to simple sensors
such as IMUs and encoders which always return a �xed size data structure when
polled. Those radar detections which are due to disturbances and not associated to
the object we desire to track are called clutter. Given a set of detections from the
radar, it is possible that none of them correspond to the true object. This would
obviously be the case if the radar did not detect anything at the current time step,
and could for example be the result of the object holding an unfavorable angle to
the radar, or that something is blocking the view from the radar to the object. In
order to make use of such sensors as the radar in a tracking system, methods of
handling clutter and missed detections need to be formulated.

2.3.1 Gating

One way to deal with clutter is to simply discard detections that are unlikely to
originate from the plane given the prior. This is known as gating, and forms an
important part of clutter rejection measures in many more complex �lters [16].

For single object tracking in scenarios with low clutter intensities and high probabil-
ity of detecting the object, using a simple Kalman �lter in combination with gating
may be enough to achieve good tracking performance [14]. To illustrate the concept
of gating, we thus start from an ordinary Kalman �lter. Now however, at each time
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step the object we desire to track may sometimes not be detected, and sometimes
we receive extra measurements due to clutter.

At the start of the time step the ordinary Kalman �lter update step is performed.
Then, assuming that the object was in fact detected at timek, the Kalman �lter
gives us the likelihood of measuring datayk as

p(yk jx k) = N (yk ; ŷk ; Sk) =
1

q
(2� )djSk j

exp
�

�
1
2

(yk � ŷk)> S� 1
k (yk � ŷk)

�

(2.15)

whered = dim yk . One may then discard measurements wherep(yk jx k) < � where
� is some threshold. However, it is often better to drop the �rst factor of (2.15)
when performing gating such that the gate does not discard measurements because
of uncertainty in the prior state [17]. We are left with the condition

exp
�

�
1
2

(yk � ŷk)> S� 1
k (yk � ŷk)

�

< � (2.16)

or equivalently
dM (yk) =

q
(yk � ŷk)> S� 1

k (yk � ŷk) < � (2.17)

wheredM (yk) is known as the Mahalanobis distance [17]. If there are no remaining
measurements after gating, no update step is performed at timek. This corresponds
to the sensor not detecting the object at timek. Otherwise, one of the remaining
measurements corresponds to the real object. In the case with low clutter intensity,
you would expect there to only be one remaining measurement in most timesteps.
In this case, it may be su�cient to perform the Kalman �lter update with the most
likely of the remaining measurements, discarding the rest.

2.3.2 The Poisson Point Process

Using gating on its own to deal with clutter may be feasible in scenarios with low
clutter intensities, however as the amount of clutter increases it becomes more impor-
tant to model the clutter in order to reject it with higher accuracy. One commonly
used model of clutter is the Poisson Point Process (PPP). In this model, the clutter
measurements are independent and identically distributed. At each time step, the
number of clutter measurementsn in the volume V surveillance by our sensors is
Poisson distributed with expected value

�� =
Z

V
� (y ) dy (2.18)

where� (y)=�� is the probability density function of each of the clutter measurements
[18]. Here� (y) is known as the intensity of the Poisson point process.

Given that we receivedn = n clutter measurements

YC =
n
yC

1 ; : : : ; yC
n

o
; (2.19)

the joint probability density function of the set of those measurements would be

p
�
YC

�
�
�n

�
= n!

nY

j =1

p(yC
j ) =

n!
�� n

nY

j =1

� (yC
j ); (2.20)

9
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where we note the addition of then! factor to account for the disregarding of the
ordering of the clutter measurements. Sincen itself is Poisson distributed with
parameter �� ,

p(n) =
�� n

n!
e� �� ; (2.21)

the complete probability density of measuring the setYC is [18]

p
�
YC

�
= p

�
YC

�
�
�n

�
p(n) = e � ��

nY

j =1

� (yC
j ): (2.22)

Sets such asYC wheren =
�
�
�YC

�
�
� < 1 is a random variable are generally known as

Random Finite Sets (RFS) [18]. In particular,YC is a PPP RFS.

2.3.3 The Bernoulli Process

In addition to introducing clutter measurements, an imperfect sensor may also not
detect the tracked object at each time step. This property is nicely modeled with a
Bernoulli Process. Using the Bernoulli Process model, at time stepk, the object is
detected with probability � and undetected with probability 1 � � . Given that the
object is detected, it is distributed according to some distribution with probability
density function g(y) [11].

The set of detections originating from the object is also a random �nite setYD with
probability density

p(YD ) =

8
>><

>>:

� g (y D ) if YD =
n
y D

o

1 � � if YD = ;

0 otherwise:

(2.23)

2.4 Gaussian Sum Filtering

The Gaussian sum �lter is a �lter capable of tracking a single object in scenar-
ios with high clutter intensities. In the �lter, the state densities are represented
as as superposition of multiple Gaussian densities [19]. For example, the prior is
parameterized by

�
hwh

k� 1jk� 1; x̂ h
k� 1jk� 1; Ph

k� 1jk� 1i
� H k � 1j k � 1

h=1
(2.24)

where thewh
k� 1jk� 1, x̂ h

k� 1jk� 1 and Ph
k� 1jk� 1 are the weight, mean and covariance of

the h:th component in the Gaussian mixture [20]. One way to interpret the prior is
to view the mixture components as hypotheses, where within each hypothesis the
density is Gaussian. As such, the Gaussian sum �lter is an example of a multiple
hypothesis tracker (MHT).

In the prediction step of the linear Gaussian sum �lter, the number of hypoth-
esis stays constant, i.e. Hkjk� 1 = Hk� 1jk� 1. The weights are also unchanged,
wkjk� 1 = wk� 1jk� 1, while the ordinary Kalman �lter prediction step is applied to
each hypothesis separately to acquirêx h

kjk� 1 and Ph
kjk� 1 [20].

10
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For the update step, one is given a set ofJ measurement vectors,

Yk = f yk;1; : : : ; yk;J g: (2.25)

Now, assuming point object tracking, that is there is at most one detection corre-
sponding to the real object, there areJ + 1 di�erent possible cases: Either one of
the measurementsyk;j correspond to the real measurement and the rest are clutter,
or all measurement vectors are clutter.

To perform the update step, for each prior hypothesish, each of theseJ + 1 so
called data association hypotheses are considered. In total,Hkjk = Hkjk� 1 (J + 1)
new hypothesis will be created from these combinations of possibilities. For the case
where measurementyk;d corresponds to the real object in hypothesish, the weight
of the resulting hypothesis is

wh0

kjk / wh
kjk� 1PD

k N (yk;d; Ck x̂ h
kjk� 1; Sh

k )f C
k (Yk n f yk;dg) (2.26)

where PD
k is the probability of detecting the object in time stepk, and f C

k is the
clutter probability density function, and the hypothesis mean and covariance may
be updated according to the standard Kalman �lter update withyk;d as measure-
ment vector. For the case where no measurement correspond to the real object in
hypothesish, the weight of the resulting hypothesis is given in [20] as

wh0

kjk / wh
kjk� 1(1 � PD

k )f C
k (Yk); (2.27)

while the hypothesis mean and covariance remain the same. The updated weight
are then normalized to sum to one in order to account for the denominator in (2.5).

With PPP clutter, (2.26) and (2.27) become

wh0

kjk / wh
kjk� 1PDN (yk;d; Ck x̂ h

kjk� 1; Sh
k )e� ��

Y

j 6= d

� (yk;j ): (2.28)

and
wh0

kjk / wh
kjk� 1(1 � PD

k )e� ��
Y

j

� (yk;j ): (2.29)

respectively. When implementing the �lter, it is often more e�cient to divide (2.28)
and (2.29) with e� �� Q

j � (yk;j ), since this does not a�ect the normalized weights.

2.5 Pruning, Merging and Capping

When making a naive implementation of a MHT such as a basic Gaussian sum �l-
ter, one quickly runs into the problem of an exploding number of hypothesis. In
the update step of the �lter discussed in Section 2.4 the number of hypothesis is
multiplied by J + 1 every time step whereJ is the number of measurements. To
combat this exponential growth in computational complexity some approximations
are introduced to make �lter implementations more tractable. The techniques dis-
cussed here, pruning, merging and capping, are general techniques which are used
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in many di�erent MHT algorithms for reducing the number of hypothesis, often in
combination with each other [21].

Pruning is the process of discarding those hypothesis which are relatively unlikely. If
for example the posterior consists ofHkjk hypotheses with weightswh

kjk , one simply
discards the hypotheses which does not ful�ll

wh
kjk > � prune max

h0
wh0

kjk ; (2.30)

meaning the most probable hypothesis needs to be at least1=� prune times more
likely then hypothesish for h to survive. After pruning, the remaining weights are
renormalized.

Merging is the process of summarizing two or more similar hypothesis in a single
hypothesis [22]. First, similar hypothesis are identi�ed using some criteria. Then
these hypothesis are merged into a single hypothesis. For example, with Gaussian
hypothesisH = f h1; : : : ; hH g with weights wh, meanx̂ h and covariancePh merging
consists of approximating this Gaussian mixture with a single Gaussian with mean
x̂ merge, and covariancePmerge. This can for example be done with moment matching
[22], resulting in

x̂ merge =
X

h2H

wh x̂ h; Pmerge =
X

h2H

wh
�
Ph + ( x̂ h � x̂ merge)( x̂ h � x̂ merge)>

�
: (2.31)

The weight of the merged hypothesis is the sum of the weights of the individual
hypotheses,

wmerge =
X

h2H

wh: (2.32)

Finally, capping is perhaps the most straightforward way of reducing the number of
hypothesis. If the number of hypotheses exceeds� cap, we discard all but the � cap

most likely hypotheses. The remaining weights are then renormalized. Capping
guarantees that the number of hypotheses will always be bounded by� cap.

2.6 The Multi-Bernoulli Mixture Filter

The Multi-Bernoulli Mixture (MBM) �lter is an algorithm for tracking multiple
separate objects in the presence of clutter, a so called Multi-Object Tracking (MOT)
problem. So far, the examples discussed in this work have mostly focused on single
object tracking, like tracking a single airplane using radar. A natural extension is to
also consider the possibility of multiple object, and an unknown number of objects.
This section is dedicated to a brief explanation of the MBM �lter as described by
[23].

The �lter represents the state as a superposition of hypothesis, where each hypothe-
sis is a union of Bernoulli processes. Each such Bernoulli process may be interpreted
as one possible object track. For Gaussian Bernoulli densities, the prior is a can be
represented by

��

wh
k� 1jk� 1;

�D
� h;i

k� 1jk� 1x̂ h;i
k� 1jk� 1; Ph;i

k� 1jk� 1

E� N h
k � 1j k � 1

i =1

�� H k � 1j k � 1

h=1
: (2.33)
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Here� h;i are the Bernoulli existence probabilities. In each hypothesish the expected
number of objects is the sum of� h;i over i . Here each hypothesis represents a
Bernoulli mixture RFS, that is a union of Bernoulli RFS. Within hypothesish each
Bernoulli RFS i contains an element with probability � h;i , and if the element exists
it is distributed according to N (x̂ h;i ; Ph;i ).

The prediction step of the MBM �lter is very similar to Gaussian sum �ltering in
that the number of hypothesis and hypothesis weights are unchanged, while the ordi-
nary Kalman �lter prediction step is applied to each object of each prior hypothesis
separately. However, the MBM also includes two new features as part of the predic-
tion step, both connected to the fact that the number of objects in each hypothesis
may change. First, some of the previously tracked objects may have disappeared
between the previous time step and the current one. This property is called object
death. Let the probability that each object survives from one time step to the next
be PS. We call this quantity the probability of survival. Then we may update the
existence probabilities of the previously tracked objects as

� h;i
kjk� 1 = PS� h;i

kjk� 1: (2.34)

Additionally, some new objects may have appeared from the previous time step to
the current one. This is handled by adding some new components to the Bernoulli
mixture of each hypothesis where we believe new objects may have appeared. This is
called object birth, and the number of birth componentsN b as well as their density
and probability of existence can be arbitrarily chosen to best represent the birth
density of the speci�c scenario one is designing a �lter for. Thus the number of
Bernoulli components is increased in the prediction step,N h

kjk� 1 = N h
k� 1jk� 1 + N b.

The update step of the MBM �lter is also similar to Gaussian sum �ltering. In its
most basic form, for every hypothesis one considers every possible valid combination
of assigning measurement data to either one of the objects in the Bernoulli mixture,
or to clutter. With the point object assumption, a data association is only valid if no
object has multiple measurements associated to it. Consider for example the prior
hypothesish and one of the possible data associations under it. Assume also that
we use a PPP clutter model with intensity� C. We are given a set ofJ measurement
vectors

Yk = f yk;1; : : : ; yk;J g: (2.35)

Let i (j ) = 0 if measurementj was associated to clutter and the index of the Bernoulli
mixture component associated to measurementj otherwise. Then we may add one
hypothesish0 to the posterior where the mean and covariance of each object is either
updated independently according to the standard Kalman �lter update if it had a
measurement associated to it, in which case we say it was detected, or copied straight
from the prior if no measurement was associated to it. The existence probability
� h0;i

kjk is set according to

� h0;i
kjk = 1 If object i was detected (2.36)

� h0;i
kjk =

� h;i
kjk� 1PD

1 � � h;i
kjk� 1 + � h;i

kjk� 1PD
If object i was not detected; (2.37)
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wherePD is the probability of detecting each object as introduced for Gaussian sum
�ltering in section 2.4. The number of objects will be the same as in the prior, i.e.
N h0

kjk = N h
kjk� 1. Finally, the weight of the resulting hypothesis is set according to

wh0

kjk / wh
kjk� 1

Y

i 2I D

PD � h;i
kjk� 1N (yk;j ; Ck x̂ h;i

kjk� 1; Sh;i
k )�

Y

i 2InI D

�
1 � PD � h;i

kjk� 1

� Y

j 2J C

� C(yk;j )
(2.38)

where I = f 1; : : : ; N h0

kjkg are the indices of all objects,I D = f i (j ) : j 2 J g are the
indices of the detected detected objects andJ C = f j 2 J : i (j ) = 0 g is the set
of clutter measurement indices whereJ = f 1; : : : ; Jg. Finally, the weights of all
posterior hypothesis are normalized.

It should be noted that when implementing the �lter on a computer, one should not
directly apply the methods presented here, but instead look to a more optimized for-
mulation such as a track oriented one instead of the hypothesis oriented formulation
given here. It is also often not desirable to consider all possible data associations
for each hypothesis, it is enough to consider only the most likely, and these can be
computed very e�ciently using a cost matrix. It is also recommended to periodically
remove objects with low probability of existence from each hypothesis to improve
computational performance.

2.7 Normalized Estimation Error

An important property of Bayesian �lters is that the state of the �lter is a probability
density. Thus it is possible to not only extract parameter value estimates from the
state density, but also the uncertainty in those extracted values. When evaluating
tracking performance of a �lter, it is important not only to evaluate the accuracy of
the extracted parameters, but also the accuracy of the uncertainty estimates.

Only method of testing the accuracy of uncertainty estimates of Gaussian �lters
is by computing a quantity known as the Normalized Estimation Error Squared
(NEES). Given a sequence of means and covariance matrices(hx̂ k ; P k i )K

k=1 of the
estimated state density and a corresponding ground truth state sequence(x k)K

k=1
we may compute the NEES sequence

" k = ( x̂ k � x k)> P � 1
k (x̂ k � x k): (2.39)

If the the state estimate x̂ k is consistent with P k , " k should be samples from a� 2

distribution with n = dim( x k) degrees of freedom [24]. If this is indeed true, then
the ratio of time steps such that" k lies within the con�dence interval [r1; r2] to all
time steps is approximately1 � � where

r1 = F � 1
� �

2
; n

�

; r2 = F � 1
�

1 �
�
2

; 2
�

(2.40)

whereF is the cumulative density function of the� 2 distribution [24].
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Methods

The method of this work is split into three steps. First, the data sources to be used
for geometry estimation is surveyed. Second, a model of the road is chosen to suit
the aim of the project and the available input data. Finally, a �lter is designed to
estimate the parameters of the road model.

3.1 Input data

This work uses two main sources of input data provided by Zenseact, internal vehicle
signals and lane marking detections. Understanding of the available input data is
needed for the design of a suitable road model as well as the �ltering algorithm.

3.1.1 Internal Vehicle State

A Zenseact algorithm provides a set of preprocessed internal vehicle signals, the
most interesting of those being vehicle speed and angular rates. As these signals are
already �ltered, they are almost free from noise and can be considered very accurate.
Therefore this data will be used as the control signal input for the update step of
the proposed �lter, thus eliminating the need for states to track the rate of change
of the vehicle pose in relation to the road.

3.1.2 Lane Marking Detections

The other main data source are lane marking detection, a set of world coordinates
corresponding to the position of lane markers produced by a neural network based
on camera images from a front mounted camera. An illustration of a typical front
camera image and the output of the lane marking algorithm are shown in Figure 3.1.
In more detail, the output of the lane marking detection algorithm is a set of 3D
coordinates along with uncertainty estimates of these coordinates. As uncertainty
estimates are provided, this motives the choice of using lane marking detections as
measurements in the update step of the proposed �lter.
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Figure 3.1: The top image show an example front camera image taken from the
Zenseact Open Dataset (ZOD) [25] with the addition of reprojected manually placed
lane marker detections. The detections illustrate typical output of a 3D lane marking
detection algorithm. The bottom �gure shows a birds eye view of the same 3D lane
marking points which were reprojected into the top image.
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Figure 3.2: An example clothoid curve, a curve with a constant rate of curvature
change.

3.2 Road Model

As the goal of this work is to estimate lane centers, the description of lane center
curves is central in the choice of model. Additionally, since the lane markings are
measured, it should also be possible to extract the possible locations of lane markings
from the model.

3.2.1 Clothoid Splines and Their Extension to 3D

Many previous works have focused on describing only the ego lane center, or de-
scribing the lane center or marking lines of the road as independent objects. There
are multiple common ways to parameterize the curve of a lane center of marker
line, such as polynomials [12], lateral o�sets at �xed longitudinal points [26], [27] or
clothoid splines [4], [5]. In this work, clothoid splines are used as a building block
in the road model. A clothoid, illustrated in Figure 3.2 is a 2D curve with constant
rate of curvature change along the curve. A clothoid spline is thus a chain of multi-
ple connected clothoid curves constrained such that the curvature is continuous. To
�nd the geometry of the clothoid spline, the following di�erential equation is solved:

d
dl

2

6
4

x(l)
y(l)
� (l )

3

7
5 =

2

6
4

cos� (l)
sin� (l)

� (l )

3

7
5 ; (3.1)

where x(l), y(l) are the Cartesian coordinates of the point a distancel along the
curve, � (l ) is the heading angle of the curve and� (l) is a continuous piecewise linear
function describing the curvature of each segment � within each segment the slope
of � , i.e the curvature rate, is constant.

In this work, after some initial testing with a 2D road model it was decided to
attempt a 3D model since lane marking detection coordinates are given in 3D. To
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this end, the 2D clothoid described by (3.1) was extended to 3D according to

d
dl

2

6
6
6
6
6
6
4

x(l)
y(l)
z(l)
� (l )
� (l )

3

7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
4

cos� (l) cos� (l)
sin� (l) cos� (l)

sin� (l)
� (l )

 (l )

3

7
7
7
7
7
7
5

(3.2)

where we have introduced the elevation angle� (l) with its corresponding piecewise
linear curvature 
 (l).

3.2.2 Parameters of the Road Model

A visualization of the proposed road model and its parameters is shown in Figure 3.3.
Starting from the description of the ego lane center as a 3D clothoid parameterized
by curvatures � n

0 at the edge of each segment (these curvatures are then varied
linearly in between the segment edges), we then move on to describe the width of
the lane in order to describe the possible locations of lane markers. The ego lane
markers would be located next to the ego lane center, at a parallel o�set to the lane
center by half the lane width. We here notice the opportunity to also model other
lanes next to the ego lane by the same method: By using their width to describe
them as parallel o�sets from the ego lane. Each so called main road lanem is given
its own width pro�le as a piecewise linear function parameterized by segment edge
widths wn

0m . The length of both the clothoid and width segments areLn
0 , and there

are N0 main road segments in total. Finally, the number of main road lanes isM
and the index of the ego lane within thesem lanes ism0.

This work also aims to estimate the center of lanes merging into or diverging from
the main road. To this end, we introduce branches to our road model. A branchb
can attach to any one of the main road lanes,mb, at a parameter controlled distance
� b along and angles� b (azimuthal) and � b (elevation) to the lane. From the root
of the branch, its curve can similarly to the ego lane be described by a 3D clothoid
spline with curvatures� n

b . The width of the branch is also described by a piecewise
linear function, parameterized bywn

b , but constrained to have the same width as the
main road lane it connect to at its root. Thus we omitw0

b. The length of both the
branch clothoid and width segments areLn

b , and there areNb main road segments
in total. The number of branches isB .

Finally, the pose of the ego vehicle in relation to the road needs to be parameterized.
This is done by describing the vehicle pose in relation to the initial point of the ego
lane. The vehicle is given three spatial coordinatesx, y and z as well as three Tait-
Bryan angles� , � and  representing yaw, pitch and roll respectively. Note that
while the ego vehicle thus is allowed roll in relation to the road, the road itself is
entirely �at and does not change its banking angle. Neglecting road banking is done
in order to limit the number of road model parameters somewhat.
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Figure 3.3: Visualization of the road model. Each sub�gure shows a di�erent
subset of the parameters used. This example road has two main road lanes and
one branch. The curvature and width of the ego lane and branches are described
by continuous splines being linear interpolations between set values at the edge of
each spline segment. Here, the main road splines have four segments and the branch
two as illustrated in the top right sub�gure. In this birds eye view, the parameters
controlling the vertical position of the road as well as roll and pitch of the ego vehicle
are omitted for visual clarity.
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3.2.3 Multi-Lane Dynamic Model

To formulate the dynamic model we �rst de�ne the state space representation of
the road model. All continuous parameters of the road model, those beingx, y,
z, � , � ,  , � b, � b, � n

i , 
 n
i , wn

0m , wn
b and � b, are concatenated into the state vector

x . Furthermore, all discrete parameters of the road model,Ln
i , M , B , N i and

mi are concatenated into a metadata vector� . Finally, the road model is also
extended with auxiliary variables� c 2 [0; 1] which model the existence of each lane
c = 1; : : : ; M + B, main road lanes and branches, of the road geometry. This in the
sense that given the rest of the road model, lanec only exists with probability � c

independent of the existence of the other lanes. This is inspired by the existence
probabilities introduced for the MBM �lter, but note that in contrast to the MBM
�lter the object state of the proposed �lter is not described by Bernoulli random �nite
sets. These existence variables are concatenated into the vector� . The complete
augmented road model state is thus[x > � > � > ]> . The control signalu k at time
step k consists of vehicle speedvk , as well as roll, pitch and yaw rates! x;k , ! y;k and
! z;k .

3.2.3.1 Geometry Transition Model

The purpose of the geometry state transition model is to describe the expected
change in parameter values from one time step to the next based on the control
signal. Neglecting process noise, the motion model only consists of updating the ego
vehicle pose,

xk = xk� 1 + � t vk cos� k� 1 cos� k� 1 (3.3a)

yk = yk� 1 + � t vk sin� k� 1 cos� k� 1 (3.3b)

zk = zk� 1 + � t vk sin� k� 1 (3.3c)

� 0;k = � 0;k� 1 + � t ! z;k (3.3d)

� 0;k = � 0;k� 1 + � t ! y;k (3.3e)

 0;k =  0;k� 1 + � t ! x;k (3.3f)

where� t is the time step, and with all the other components ofx remaining constant
except for process noise.

To compensate for motion of the ego vehicle along the main road, whenever the
vehicle has progressed far enough along the main road a segment is removed from
the back of the road and simultaneously one is added to the front. When this
happens, all the state variables connected to segments of the main road are shifted
backwards in the state vector and� b are reduced by the segment length to re�ect
the new segment layout. In order to aid with merging, branches do not change
their length or number of segments, and instead always retain the length they were
initialized with.

3.2.3.2 Lane Spawning Model

To account for that the number of lanes in the road may increase from one time
step to the next, the state transition adds some new lanes to the state every time
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step. As we do not expect the number of lanes to grow very rapidly, these new
lanes are given very low probabilities of existence� c. In this work, we choose to
spawn one additional main road lane at the very left and very right of the main
road. The state parameters controlling the width of the main road lanes as well as
the indicesmi are shifted over accordingly. Furthermore, we spawn one diverging
and one merging branch starting from the rightmost main road lane with su�cient
width and existence probability. For computational performance reasons we neglect
spawning of branches to the left of the main road. Such on ramps or o� ramps are
not common in countries with right hand tra�c.

3.2.3.3 Lane Death Model

Inspired by the MBM �lter we introduce a probability of survival PS representing
the probability that each individual lane survives from one time step to the next.
The probability of survival is then used to update the probabilities of existence of
each lane according to

� c;k = PS� c;k� 1 c = 1; : : : ; Mk� 1 + Bk� 1: (3.4)

Additionally, lanes whose widths are entirely less than some threshold, as well as
branches where� b has become negative are removed from the state.

3.2.3.4 Dynamic Model Summarized

Finally, we summarize the geometry transition model of Section 3.2.3.1, the spawn-
ing model of Section 3.2.3.2 and the death model of Section 3.2.3.3 into three tran-
sition equations

x k = f x (x k� 1; � k� 1; � k� 1; u k) (3.5a)

� k = f � (x k� 1; � k� 1; � k� 1; u k) (3.5b)

� k = f � (x k� 1; � k� 1; � k� 1; u k) (3.5c)

where process noise have been excluded. In particular,f x is mostly given by (3.3),
disregarding spawning and cases where the road segments are shifted to avoid neg-
ative Ln

0 and when the number of segments in a branch is increased. The complete
dynamic model including noise is

xk = f x (xk� 1; � k� 1; � k� 1; u k) + qk (3.6a)

� k = f � (xk� 1; � k� 1; � k� 1; u k) (3.6b)

� k = f � (xk� 1; � k� 1; � k� 1; u k) (3.6c)

whereqk � N (0; Qk) is the process noise.

3.2.4 Multi-Lane Measurement model

The measurement model describes the measurementsy , here the coordinates of
points on the lane markings, one would expect to receive given a value of the state
vector. In the proposed model, except for clutter, lane marking measurement may
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Figure 3.4: Illustration of lane delimiters. Each di�erently colored dashed line is
considered a separate delimiter.

only occur on either edge of a lane, separated from the lane center by half the width
of the lane, i.e. on the dashed lines indicated in Figure 3.4. These lines will be
known as delimiters. For the measurement model, we will describe the expected
position of one lane marking coordinate given that it is known which delimiter it
is associated to. The process of associating real measurement to delimiters of the
model will be handled by the �lter discussed further on in this work. For notational
brevity, we drop the time step indexk in this section.

First, a discussion on which delimiters are detected. We begin by noticing that only
existing delimiters can be detected. From� we can only directly get the probability
that each lane center exists, but here we assume that given that a lane exists, both its
right and left delimiter also exists. Of the existing delimiters, each has probability
PD of being detected. A detected delimiter produces at least one measurement,
while an undetected delimiter gives rise to no measurements. We next need to
describe the measurements produced by each detected delimiter.

We start by describing the geometry of the delimiters in the local coordinate frame
of the ego road. As the delimiters of the main road are described in relation to
the ego lane center, we �rst need the geometry of this center line. This is done by
integrating (3.2) for the lane center parameters using the Euler method with step
size� l , with the initial conditions for coordinates and angles set to zero as we are
working in the local coordinate frame of the ego road. We get
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; i = 1; 2; : : : (3.7)

where � 0(l ) and 
 0(l ) represent linear interpolation over the� n
0 and 
 n

0 parameters
respectively.

In order to get the sequences of widths(w0m;i ) i corresponding to the previously com-
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puted (hx0;i ; y0;i ; z0:i ; � 0;i ; � 0;i ; l0;i i ) i of the di�erent main road lanes, the parameters
wn

0m are simply interpolated at distances(l0;i ) i similar to how � 0(l ) is an interpo-
lation of � n

0 . We are now able to give the coordinates of points on the main road
delimiters as

r d;i =
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z0;i
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5 + R z(� 0;i )

2

6
4

0
A d

0

3

7
5

2

6
6
4

w01;i
...

w0M;i

3

7
7
5 (3.8)

where R z(� ) 2 R3� 3 is the rotation matrix representing rotation an angle of�
around the z axis, and A d 2 R1� M is a matrix used for calculating the o�set of
delimiter d from the ego lane. Since we haveM main road lanes, we haveM + 1
main road delimiters. For M = 2 and the ego lane indexm0 = 2 we would for
example have

A 1 =
h
� 1 � 0:5

i
; A 2 =

h
0 � 0:5

i
; A 3 =

h
0 0:5

i
: (3.9)

The coordinates of point on the branch lanes are computed in a very similar fashion
by �rst solving the di�erential equations of the center line clothoid and lane width
using the Euler method. As initial condition for the clothoid, the position is cal-
culated by linear interpolation of the center polyline of the parent main road lane
(which is computed similarly to (3.8) but with the A matrix modi�ed accordingly)
a distance� b along the ego lane center (see the bottom left subplot of Figure 3.3).
The initial angle is similarly computed by interpolating the main road lane angles,
and then adding the initial angles� b and � b of the branch. The initial curvatures
are directly given as� 0

b and 
 0
b. For the initial width of the branch, this is also

interpolated from the width of the parent main road lane. In total, counting both
the main road and branch delimiters there will beD = M + 1 + 2 B delimiters with
coordinate sequences(r d;i ) i .

So far, the description of the road geometry has all been in relation to the road
frame. Our measurements, however, are given in the ego vehicle frame. This frame
is aligned with the vehicle with its origin on the center of the rear axle, thex
axis pointing forward, the y axis left along the axle, andz upwards. However,
the parameters of the ego vehicle pose,x, y, z and � , � ,  it is relatively easy to
transform the road-aligned lane delimiter geometry(r d;i ) i into the ego vehicle frame,
giving us the sequences(r 0

d;i ) i .

Finally, some additional notes about the measurement model. Lane marking de-
tections are assumed to be produced by the points along the polylines de�ned by�
r 0

d;i

�

i
. Throughout this work, we will assume that given a lane marking measure-

ment coordinatey j originating from delimiter d, it was produced by the point on
the delimiter polyline closest toy j . Also, as previously mentioned, the raw mea-
surements come in the form of 3D coordinates. In order to reduce the dimension
of the measurement vector, we seek to �nd a more compact representation of the
innovation than the di�erence between 3D points. The chosen representation of the
innovation is the vector of distances between the measured lane marking coordinates
and their corresponding delimiter polylines. The measurement functionh(x ; � ) is
thus always the zero vector. The measurement model does, however, also include
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additive measurement noiser � N (0; TRT > ), where R is the covariance matrix
of the 3D coordinatesy j and T is an association dependent matrix which is used
to transform R into the covariance of the distance betweeny j and the delimiters,
further de�ned in Section 3.3.2.

3.3 Filter Design

With the road model de�ned we turn to the design of a �lter to estimate the pa-
rameters of the model. The proposed �lter is a multiple hypothesis tracker. In each
hypothesish, the x portion of the state is represented by a single Gaussian density
with mean x̂ h and covariance matrixPh, drawing inspiration from Gaussian sum
�ltering. Thus, all the lanes of the road are coupled. The rest of the state,� and
� are assumed to be known and equal tô� and �̂ respectively within each hypoth-
esis. The uncertainty in these variables is instead represented by the ensemble of
hypotheses.

The prior state density of the �lter is described by

�D
wh

k� 1jk� 1; �̂ h
k� 1jk� 1; �̂ h

k� 1jk� 1; x̂ h
k� 1jk� 1; Ph

k� 1jk� 1

E� H k � 1j k � 1

h=1
(3.10)

wherewh
k� 1jk� 1 are hypothesis weights.

For simplicity, we assume that the probability of survivalPS is constant and lane
independent, and a PPP clutter model is used with constant intensity� C. The �lter
algorithm itself does however support state dependent probabilities of survival and
other clutter models than the PPP. For the probability of detection, we let it be
state dependent such that it is greater for lanes in front of, and near, the ego vehicle
and trails o� outside this region. Again for simplicity, we do not bother evaluating
the probability of detection for the entire state density, but only evaluate it for the
estimation meanx̂ .

3.3.1 Prediction Step

The prediction step is relatively simple as it simply consists of for all hypotheses,
making an EKF prediction of (x̂ ; P) according to the motion model (3.6a), while�
and � are updated according to (3.5b) and (3.5c) respectively. The weight of each
hypothesis is unchanged.

3.3.2 Update Step

The input to the update step is a set of prior hypotheses, coordinates of lane marking
detections and their corresponding covariances. Here, the update step for a single
hypothesis is described. The same procedure gets applied in all hypotheses, and the
resulting posterior hypotheses are concatenated at the end of the update step. For
the update, we are suppliedJ lane marking coordinate measurementsy j 2 R3 and
their joint covariance matrix R 2 R3J � 3J .
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The �rst half of the update step is to produce a number of data association hy-
potheses. To simplify this work, the measurement pointsy j are �rst gated. This is
done �rst by considering each point individually and comparing it to all available
delimiters d. The point is only allowed to be associated to the delimiters where
the Mahalanobis distance is below a threshold, and only to a capped number of
delimiters determined by maximizing the likelihood of association as approximated
by N (� j;d ; 0; Sd

j ), where� j;d is the closest distance betweeny j and delimiter d and
Sd

j the corresponding innovation covariance. Next, the points are clustered using a
con�dential Zenseact provided algorithm, and a similar gating process takes place
for each cluster. Clusters are however also allowed to be associated to both a branch
delimiter, and the main road delimiter of the parent lane of the branch at the same
time. In this work, we do not make the point object assumption. Thus it is possible
to associate multiple lane marking detections to each delimiter. After performing
these step, each cluster has a set of possible associations of points within the cluster,
either to delimiters or to clutter. Next, all possible combinations of cluster associa-
tions are produced to create a �rst set of data association candidates. Finally, these
candidates are then restricted further by not allowing two likely incompatible lane
marking points to be associated to the same delimiter. Compatibility between lane
marking clusters is checked by �tting a third degree polynomial to the markers of
the two clusters and checking the fraction of inliers from each cluster.

Now, focus on a single data association hypothesis. Assign a unique index to all the
delimiters of the road model and letd(j ) be the index of the delimiter associated to
measurementy j in this hypothesis,d(j ) = 0 if y j is associated to clutter. First, the
goal is to perform an EKF update step. In order to reach this point, we construct
the innovation vector � by concatenation of� j;d (j ) for d(j ) 6= 0. The matrix H
(see (2.14)) is constructed by �nding the gradient of the point on delimiterd(j )
closest toy j in the direction a j;d (j ) of y j . Finally, the measurement noise isTRT >

whereT is the subset of rowsj such that d(j ) 6= 0 of the block diagonal matrix of
a>

j;d (j ) . Using these vectors and matrices, we can compute the innovation covariance
S and the posterior mean and covariancêx h0

kjk , Ph0

kjk . Here h0 is the index of the
posterior hypothesis which originated fromh and the data association considered in
this section. Note that because of the coupledness of the state, it is not possible to
reuseSd

j from the gating stage when computingS, however it is possible to reuse
the H d

j matrices also computed in the gating stage in order to �ndSd
j .

It now only remains to compute the updated hypothesis weightwh0

kjk and existence
probabilities � h0

c;kjk . Given the data associations, it is known which subset of all
delimiters D where detected, namely

DD = f d(j ) : j 2 J ; d(j ) 6= 0g (3.11)

where J = f 1; :::; Jg. If we let C be the set of all lanesc, then the possible com-
binations of lanes which could have existed for us to get measurements from the
delimiters in DD are

CD =
n
CE 2 P (C) : DD � d(CE)

o
; (3.12)
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whereP(C) is the power set of setC and d(CE) is the set of delimiters belonging to
any of the lanes inCE. The probability that exactly the lanes in subsetCE 2 CD

exist and that out of the delimiters of those lanes, exactlyDD were detected is

~uCE
=

�
PD

� jD D j �
1 � PD

� jd(CE )nDD j Y

c2CE

� c;kjk� 1

Y

c2CnCE

(1 � � c;kjk� 1): (3.13)

Note that we have assumed delimiter independent probability of detection in this
equation, while the evaluated �lter does have di�erent probability of detection for
each delimiter. Given that we know that CE must be an element ofCD we can
calculate the corresponding conditional probabilities by normalizing

uCE
=

~uCE

P
CE 02CD ~uCE 0 : (3.14)

To summarize the progress so far,CD contains the possible combinations of lanes
which are compatible with our data association. Each combination has weightuCE

.
However, to obtain recursive �ltering recursions we would like the existence of lanes
in the posterior to be independent. We can either add new hypotheses for all the�
�
�CD

�
�
� cases, but since the state density in these hypotheses would all have the same

mean and covariance this seems ine�cient. Therefore we summarize all the cases in
a single hypothesis where we approximate the lane existences as independent. The
updated existence probabilities are computed as

� h0

c;kjk =
X

CE 2CD

uCE
1CE (c); (3.15)

where1CE is the indicator function on CE.

For the completion of the update step, it now only remains to compute the new
hypothesis weightwh0

kjk . To it we have four contributing factors: The prior weight,
~uC , the probability of the data association, the clutter intensity and the measurement
likelihood. Putting these together we get

wh0

kjk / wkjk� 1

0

@
X

CE 2CD

~uCE

1

A
�
� C

� jf j 2J : d(j )=0 gj
N (� ; 0; S): (3.16)

Combining all the resulting hypotheses, and normalizing the weightswh0

kjk such that
they sum to one, we get our posterior density.

To keep the number of hypotheses manageable, capping and pruning and merging
are employed after the update step. For the merging step, all pairs of hypothesis with
compatible geometry and similar values of the continuous road model parameters
are merged. Geometries are considered compatible if they contain the same number
of main road lanes and branches, all lanes have the same number of segments,
and whether those branches are either merges and diverges (determined by the
magnitude of � b) matches. Merging of hypotheses is done according to (2.31).
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3.3.3 Additional Lane Housekeeping

Some additional housekeeping is done to make the �lter more stable when evaluating
it's performance on real world data: Lanes with low probability of existence are
removed. Lanes spawned just prior to the update step which did not get associated
to any data are also immediately removed after the update step. Main road lanes
that are too wide get automatically split into two lanes. Pairs of neighboring main
road lanes whose common width is too small get merged. Branches that are too wide
or too thin are pruned. Additionally, if at some point the ego vehicle is deemed to
be traveling on a branch instead of the main road, the entire model is reinitialized
to replace the branch with a the new main road. Whether the vehicle is traveling
on a branch is determined by checking whether the distance between the branch
center and ego vehicle is closer than between the current ego lane and ego vehicle,
and whether the vehicle is a minimum distance away from the current ego lane.
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4
Results

This chapter presents evaluation results for the proposed model and also compares
these results to alternate methods when possible. For these evaluation, the main
road is con�gured to always contain seven segments, each50 m long for a total of
350 mof estimated road. Of this distance,200 mlies in front of the ego vehicle and
the rest behind. The road behind the vehicle is not observed by any sensor, but
serves as attachment points for branches. Each branch is given a �xed length of
300 msplit over six segments, also making each branch segment50 m long.

4.1 Evaluation Data Sets and Methodology

The �lter is evaluated on closed source data sets provided by Zenseact. For each
data set there is high accuracy ground truth geometry available for the ego lane as
produced by a smoothing �lter applied to on-board sensor data. This ground truth
data will be used for evaluating tracking performance on the ego lane. Additionally,
for some data sets there is also a full ground truth map available, which is less
precise but contains not only the ego lane but all lanes around the ego vehicle. This
data set will be used to evaluate the estimated road topology. Since only 2D ground
truth data has been provided, all evaluations will consider the estimated 3D road
geometry projected onto a horizontal �at plane aligned with the ego vehicle.

4.1.1 Extracting Parameter Estimates

As the �lter to be evaluated outputs is a distribution, a method of extracting single
parameter values from this distribution is needed. This is done by �nding the
most likely hypothesis in the posterior, and selecting the lanes of this hypothesis
with probability of existence greater than a threshold. This approach to parameter
extractions has some problems, namely that the most likely hypothesis may not
be representative of the density as a whole. But due to the di�culty of merging
hypothesis with varying state lengths (and minor di�erences in state representation),
this method was deemed acceptable.

4.1.2 Ego Lane Evaluation Methodology

In order to put the evaluation results into context, a comparison will be made two
another ego lane tracking algorithms developed at Zenseact by [27]. The �rst method
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is a simple baseline algorithm, and the second a deep learning based approach.

4.1.2.1 Baseline RANSAC Lane Estimator

This simple baseline ego lane estimation method developed by [27] uses RANSAC
to �t straight lines to the lane marking detections, then applies a basic criterion
to identify the ego lane left and right marker lines and �nally computes the center
between these lines. In case only one of the ego lane markers are detected, the other
marker is assumed to be parallel to the �rst with the ego vehicle driving perfectly
in the middle of the road. If no ego lane markers are found, the estimated lane is
completely straight and aligned with the ego vehicle.

4.1.2.2 Learning Based Lane Estimator

The learning based approach to estimating the road geometry by [27] takes in ego
vehicle signals and lane marking detections, the same as the method proposed in this
work, as well as the median heading angle of nearby vehicles, and outputs deviations
of the ego lane center from a straight line at �xed anchor points0� 100 min front of
the ego vehicle. This method is thus specialized for estimating the ego lane center,
and does not also estimate other lane centers or lane delimiters. The neural network
architecture mainly consists of convolutional layers which act upon a 2D occupancy
grid representation of the lane marking detections from a birds-eye view, followed
by LSTM layers to provide temporal information.

4.1.3 Topology Evaluation Methodology

In order to compare the estimated road topology to a ground truth map, the fol-
lowing method is used: First the evaluation is restricted to only concern the parts
of the estimated road geometry which falls inside a rectangular region of interest
centered in front of the ego vehicle as illustrated in Figure 4.1. This restriction is
introduced in order for the estimation uncertainty within the region of interest to
be relatively low so that the matching of estimated lanes to ground truth lanes is
less ambiguous. The lateral extent of the region of interest is denotedb and its
longitudinal extent a. Then, around every ground truth lane center a gate of half
width g is created. For every point on the ground truth lane, if any estimated lane
falls within this gate then this point is said to be detected. Otherwise it is missed.
Again, refer to Figure 4.1 for an illustration of this methodology. We then compute
the fraction of the length of detected ground truth lanes to the total length of the
ground truth lanes within the region of interest, as well as the fraction of estimated
lane length that does not fall within any ground truth lane gate. In this context we
call the former quantity the true positive rate (TP) and the latter the false positive
rate (FP). These quantities may then be averaged over a time sequence.
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Figure 4.1: Illustration of topology evaluation methodology. Evaluation is per-
formed within a rectangular region of interest area with side lengthsa and b aligned
with and centered in front of the ego vehicle. Ground truth lanes with an estimated
lane center within the gate distanceg are considered detected. Estimated lanes not
within a distance g of any ground truth lanes are considered false positives.
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4.2 Road Topology

To illustrate the tracking performance of the �lter, Figure 4.2 shows the �lter track-
ing an o� ramp at an intersection. The o� ramp is �rst modeled as a new main road
lane, before this new main road lane spawns a branch which then takes over the o�
ramp. A merge from the same intersection is shown in Figure A.1 of Appendix A.
From visual inspection in general, the �lter does well with tracking many main road
lanes, both in simple scenarios with a one or two lanes, as well as more complex
scenarios with many (�ve or six) lanes. The �lter also performs well even the main
road is particularly curved, or when the line of sight more than just a couple of
meters in front of the ego vehicle is blocked such as in queuing scenarios. However,
while the �lter does manage to also track merges and diverges using branching lanes,
the branch tracking is not very robust. In particular, there are many false positive
branch detections. This among other typical failure cases will be discussed further
in Section 4.2.1.

Next, we look at the topology evaluation according to the metric de�ned in section
4.1.3. The evaluation is performed with the lateral extent of the region of interest
(ROI) �xed to b = 80 m, while the longitudinal extent a was either 50, 100 or
150 m. Data used for this evaluation is a set of drives totaling15 minutes of driving.
About 60 percent of this duration is on two lane highway, with the rest on three
lane. In approximately27percent of the data, there is queuing on the road and poor
visibility as a result of densely packed cars. In total, it contains four merges and four
diverges, all to the right. The results of this evaluation are shown in Table 4.1. In
this table we for example see that the true positive fraction decreases as we expand
the region of interest. This is largely due to less accurate lane estimates at longer
ranges, increasing the likelihood that the estimated lanes are outside the ground
truth lane gates. Therefore, the smaller regions of interest may be more useful when
gauging the �lters ability to detect multiple lanes. However, even at shorter ranges,
the fraction of true positives is very much decided by the intersections present in
the evaluation data set. The �lter is very good at tracking main road lanes when
there are no on or o� ramps present, but tends to struggle more with intersections.
The false positive fraction is mainly in�uenced by three factors: The �rst is that the
�lter sometimes spawns �ghost� branches when there is no corresponding lane in
the real world. This phenomenon will be discussed more further on in Section 4.2.1.
The other factor is model mismatches. For example, when two lanes merge into one,
the �lter might for a while still report two lanes, only where one of the lanes has a
very small width. This extra lane will be counted towards false positives. Another
example is that a main road lane either exists as a whole or doesn't exist. This
becomes a problem when a branch splits o� from a main road lane where after in the
real world the main road lane doesn't continue, but in the model it still has to. The
third factor is similar to model mismatches, and is due to di�ering representations
of the lane center by the model and ground truth. For example, exactly where a two
lanes merge may be ambiguous, and depending on how you choose to represent the
two lanes merging, they may either be two slowly joining lanes or one wide, slowly
narrowing lane. Finally, it is worth noting that all these results also depend on the
accuracy of the lane marking detections and their corresponding uncertainties as
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Figure 4.2: Snapshots from the �lter tracking an o� ramp, overlayed over satellite
images of the intersection fetched from Google Maps. First, the o� ramp is repre-
sented by an extra main road lane which then gets replaced by a branch. Only lanes
with su�ciently high probability of existence are shown.
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