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Fast Fourier Transform using compiler auto-vectorization
DUNDAR GÖC
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
The purpose of this thesis is to develop a fast Fourier transformation algorithm
written in C with the use of GCC (GNU Compiler Collection) auto-vectorization in
the multiplicative group of integers modulo n, where n is a word sized odd integer.
The specific Fourier transform algorithm employed is the cache-friendly version of
the Truncated Fourier Transform. The algorithm was implemented by modifying an
existing library for modular arithmetic written in C called zn poly. The majority
of the thesis work consisted of changing the code in a way to make integration
into FLINT possible. FLINT is a versatile library, written in C, aimed at fast
arithmetic of different kinds. The results show that auto-vectorization is possible
with a potential speedup factor of 3. The performance increase is however entirely
dependent on the task at hand and the nature of the computation being made.

Keywords: Fast Fourier Transform, Truncated Fourier Transform, Polynomial
multiplication, Auto-vectorization.
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1
Introduction

1.1 Background

The Fast Fourier Transform is an important algorithm that is present in many areas
of modern life. It was popularized in 1965 and has been heavily used in science,
technology and scientific computing ever since [1]. It is therefore an important
algorithm to study and improve. It has been extensively developed due to this and
there are today countless variations of FFT.

An important development was made in 2004 by Joris van der Hoeven [2] [3]. He
developed what he called the Truncated Fourier Transform (TFT). The TFT is a
truncated version of the FFT which eliminates the computational ”jump” for each
sequence length of a power of two. This makes the computational complexity to
increase smoothly with increasing sequence length.

A second important development to the TFT, and by extension the FFT, was done in
2008 by David Harvey [4]. He modified the TFT developed by Hoeven to be better
suited for large sequences by improving the locality of the transformations. This
modification speeds up the algorithm by allowing an entire sequence take advantage
of the CPU cache.

1.2 Purpose

The thesis consists of developing a fast computer implementation of FFT as well
as researching how compiler auto-vectorization can be used to achieve this. The
implementation is to be written in ANSI C and used in conjunction with the Fast
Library For Number Theory (FLINT). The purposes of this thesis may be
summarized as following:

• Develop a computer program in C in which performs FFT for integers modulo
an odd number up to a word size with focus on speed and performance.

1



1. Introduction

• Research if and how compiler auto-vectorization can be used in program and
what current limitations exist.

• Designing the program in a way to make a full integration into FLINT. This
means the program has to be written in ANSI C and that it must be
architecture and compiler independent. The program should also implement
FLINT:s functions whenever possible and avoid creating duplicate functions.

1.3 Scope

This thesis will only research FFT in integers modulo n, where n is an odd, word-
sized integer. The reason for this is simply because that was the specific request
given by the person proposing the thesis. The program is written purely in C,
since it has to be designed in such a way that integrating it into FLINT should be
possible. The auto-vectorization will only be researched with the GCC compiler.
The reason for this choice is that GCC is currently the most popular C compiler
and that further insights would benefit a large number of people.

1.4 Thesis outline

The theory of FFT, TFT and auto-vectorization is covered in chapter 2. This is
to make sure the reader has the theoretical foundation needed to understand the
thesis.

The used methods and chosen solutions to tackle the problems are explained and
motivated in chapter 3.

The results are presented in chapter 4 by showing the comparison of performance
between the vectorized and non-vectorized TFT.

A full analysis and discussion of the results is provided in chapter 5. The discussion
will provide further insights not only into the results themselves but also the reasons
behind the results.

1.5 Code Repository

The source code is available in a GitHub repository with the URL
https://github.com/DundarGoc/Schonhage-Strassen-algorithm. The benchmarks
done in this thesis are available on the branch named ”fourier-transform”. The

2



1. Introduction

main file for benchmarking is benchmarkVectorization.c file. The other files include
the algorithms that were benchmarked. The benchmarking was done with GCC
version 8.3, FLINT version 2.5.2 and GMP version 6.1.2.

3
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2
Theory

2.1 Polynomial multiplication using Fourier
transform

Polynomial multiplication is not the primary focus of this thesis. It is however the
primary reason for why achieving fast FFT in integers modulo n is desirable. An
explanation of how polynomial multiplication can be achieved by using FFT will be
provided in this section.

A polynomial length of n will be defined as a polynomial of degree n − 1 (since n
coefficients are needed to represent it). Suppose there are two polynomials g and h

we wish to multiply and that the result is u = gh. If the lengths of g and h are zg
and zh then the resulting polynomial will have the length n = zg + zh − 1.

Polynomial g and h are first individually transformed i.e. G = DFT (g) and H =
DFT (h), both with length n. The pointwise product is then Ui = GiHi for 0 ≤
i < n, where xi is the ith coefficient of polynomial. The polynomial U is then
transformed back i.e. u = IDFT (U). [5]

2.2 Fourier transform

2.2.a Discrete Fourier Transform (DFT)

Recall that, given a sequence of complex numbers x0, . . . , xN−1 of length N , the
DFT yields a sequence X0, . . . , XN−1 defined by

Xk =
N−1∑
n=0

xne
− 2πi

N
kn, for n, k = 0, 1, . . . , N − 1 [6]. (2.1)

5



2. Theory

Observe that ω = e−
2πi
n is a primitive N–th root of unity. We can rephrase (2.1)

using matrix notation. Writing x = ( x0 ··· xN−1 )T and X = (X0 ··· XN−1 )T, we have

X =


ω0·0 ω0·1 . . . ω0·(N−1)

ω1·0 ω1·1 . . . ω1·(N−1)

... ... . . . ...
ω(N−1)·0 ω(N−1)·1 . . . ω(N−1)·(N−1)

x. (2.2)

We write FN for the transformation matrix in (2.2), commonly referred to as the
DFT-matrix. The time–complexity of a naive matrix multiplication of two matrices
of size n × m and m × p is O(nmp), which gives the naive multiplication a time
complexity of O(N ·N · 1) = O(N2). This causes the computation time to increase
quickly as the sequence length N increases. This complication is the rationale for
the FFT algorithm, which utilizes the specific structure of FN as a Vandermonde
matrix associated with power of ω.

The IDFT may be computed in the same way as DFT apart from an additional
constant [7] i.e.

x = 1
N

FNX, (2.3)

where each variable is identical to those defined in equation (2.2). This is the reason
why it’s a common practice to only implement an algorithm for the discrete Fourier
transform and reuse the same algorithm to compute the inverse.

2.2.b Fast Fourier Transform (FFT)

The most common FFT algorithm is the radix-2 decimation-in-time FFT where the
input sequence is divided into two separate, evenly sized sequences. The DFT of
these two sequences are computed separately and the results are then combined to
compute the DFT of the main sequence. The same principle can then be applied
to each divided sequence in a recursive manner until only two elements are left in a
sequence. This reduces the time complexity to O(N logN), where N is the sequence
length. This requires the input sequence length to be a power of two. If the sequence
length isn’t a power of two then the end of the sequence is padded with zeroes until
it is.

In each recursion the input sequence length n = 2l can be thought of as a L1 × L2

matrix, where L1 = 2b
l
2c and L2 = 2d

l
2e and sorted in row-major order. The

6



2. Theory

function is then recursively called with each column as the input sequence. The
same procedure is then applied to all rows as the input sequence. This concludes
the algorithm. Pseudocode of this is shown in algorithm 1. The n–th roots of unity
is denoted as ωn, the ith column of the matrix as ci and the ith row as ri, starting
from 0. The function is initially called as RecursiveFFT(n, 1,x).

Algorithm 1 RecursiveFFT(n, ζ,x)

Base case
1: if n = 2 then
2: (x0, x1)← (x0 + x1, ζ (x0 − x1))
3: return

Recursive case
4: l← log2 (n)
5: L1 ← 2bl/2c, L2 ← 2dl/2e

Column transforms
6: for 0 ≤ u < L2 do RecursiveFFT(L1, ω

u
nζ, cu)

Row transforms
7: for 0 ≤ u < L1 do RecursiveFFT(L2, ζ

L1 , ru)

2.2.b.1 FFT example

Suppose we want to transform the sequence {1, 2, 3, 4}. The function is initially
called as RecursiveFFT(n, 1,x), where n = 4 and x = ( 1 2 3 4 )T .

We skip the base case since n 6= 2. The recursive case in steps 4 and 5 gives

l← log2 (n) = log2 (4) = 2, (2.4)
L1 ← 2bl/2c = 2b2/2c = 2, (2.5)
L2 ← 2dl/2e = 2d2/2e = 2. (2.6)

We may now think of the sequence as a row-major order matrix:

1 2 3 4
1 2

3 4

7



2. Theory

We now iterate through the columns of the matrix and recursively call the function
for each column as in step 6 of the algorithm.

The primitive 4–th root of unity is ω4 = exp
(
−2πi

4

)
= −i. The reasoning behind

this is explained in section 2.2.e and will be omitted in this section for brevity.

We set u = 0 and invoke the function as RecursiveFFT(L1, ω
0
4ζ, c0) =

RecursiveFFT
(
2, 1, ( 1 3 )T

)
. Since n = 2 in the recursive call then we only need to

consider the base case of the algorithm. Our new input sequence becomes
x = ( x0 x1 )T = ( 1 3 )T. Performing the calculation on step 2 gives

(x0, x1)← (1 + 3, 1(1− 3)) = (4,−2) . (2.7)

We then return and replace the new values for x0 and x1 in the matrix.

1 2

3 4

4 2

-2 4

We repeat the same procedure but with u = 1, which corresponds to the second
column. This leaves us with

4 2

-2 4

4 6

-2 2 i

The only part left now is step 7, the row transformations. The principle is the
same as with the column transformations, the only difference are the input values.
We set u = 0 and call the function as RecursiveFFT

(
L2, ζ

L1 , r0
)

=
RecursiveFFT

(
2, 1, ( 4 6 )T

)
.

4 6

-2 2 i

10 -2

-2 2 i

8



2. Theory

We repeat the same procedure for the second row, which results in

10 -2

-2 2 i

10 -2

-2 + 2 i -2 -2 i

We now have the FFT of the initial sequence sorted in column major order, i.e. the
output sequence is {10,−2 + 2i,−2,−2− 2i}. This concludes the example.

2.2.c Truncated Fourier Transform (TFT)

2.2.c.1 Reason for existence

The drawback of the standard radix-2 FFT is as previously mentioned that it
needs to have an input sequence length that is a power of two. This causes a jump
in computation time each time the input sequence length surpasses a power of two.
TFT is designed to counteract this flaw by presenting an algorithm where the
execution speed is proportional to the input size without massive jumps in
computations. An important clarification to make is that TFT is fundamentally
different from FFT in that it gives different output. The results are only correct if
TFT is used in conjunction with ITFT. This means that using the conventional
inverse fast Fourier transform (IFFT) after using TFT will give wrong results. The
reasons and mechanisms for this is explained in this section.

2.2.c.2 TFT

The TFT may be thought of as an extension of the recursive FFT algorithm
described in algorithm 1. The difference is that only the relevant calculations are
made. TFT is identical to the aforementioned FFT for input sequences of length a
power of two. The algorithm is best visualized as with FFT, i.e. by imagining the
input sequence as a matrix. Assume there is an input sequence of length n, which
isn’t necessarily a power of two. This sequence is padded with zeros until its length
is a power of two. We’ll call this length L = 2l. The sequence is then thought to be
transformed into a L1 × L2 matrix, where L1 = 2b

l
2c and L2 = 2d

l
2e and sorted in

row-major order as with the FFT. A pseudocode is shown in algorithm 2 [4].

9



2. Theory

Algorithm 2 TFT(L, ζ, z, n,x)
L = 2l ≥ 2, 1 ≤ z < L, 1 ≤ n < L

xi = ai for 0 ≤ i < z

Base case
1: if L = 2 then
2: if n = 2 and z = 2 then (x0, x1)← (x0 + x1, ζ (x0 − x1))
3: if n = 2 and z = 1 then x1 ← ζx0
4: if n = 1 and z = 2 then x0 ← x0 + x1
5: return

Recursive case
6: l← dlog2 (n)e
7: L1 ← 2bl/2c, L2 ← 2dl/2e

8: n2 ← n mod L2, n1 ← bn/L2c, n′1 ← dn/L2e
9: z2 ← z mod L2, z1 ← bz/L2c

10: if z1 > 0 then z′2 ← L2 else z′2 ← z2

Column transforms
11: for 0 ≤ u < z2 do TFT(L1, ω

u
Lζ, z1 + 1, n′1, cu)

12: for z2 ≤ u < z′2 do TFT(L1, ω
u
Lζ, z1, n

′
1, cu)

Row transforms
13: for 0 ≤ u < n1 do TFT(L2, ζ

L1 , z′2, L2, ru)
14: if n2 > 0 then TFT(L2, ζ

L1 , z′2, n2, rn1)

2.2.c.3 ITFT

The ITFT is similar to TFT but a few modifications are required. These
modifications are needed to build up the necessary information that is missing
during the TFT by skipping the calculations done in FFT [8]. This procedure may
be thought of as ”going back in time”, in which the correct input for the ITFT is
built up reverse-engineering the calculations done in TFT for a specific chosen
coefficients [9]. This is done with what may be referred to as a reverse butterfly. A
pseudocode is shown in algorithm 3 [4].

10



2. Theory

Algorithm 3 ITFT(L, ζ, z, n, f,x)
L = 2l ≥ 2, f ∈ {0, 1}, 1 ≤ z < L

1 ≤ n+ f < L, xi = âi for 0 ≤ i < n

Base case
1: if L = 2 then
2: if n = 2 then (x0, x1)← (x0 + ζ−1x1, x0 − ζ−1x1)
3: if n = 1 and f = 1 and z = 2 then (x0, x1)← (2x0 − x1, ζ (x0 − x1))
4: if n = 1 and f = 1 and z = 1 then (x0, x1)← (2x0, ζx0)
5: if n = 1 and f = 0 and z = 2 then x0 ← 2x0 − x1
6: if n = 1 and f = 0 and z = 1 then x0 ← 2x0
7: if n = 0 and z = 2 then x0 ← (x0 + x1) /2
8: if n = 0 and z = 1 then x0 ← x0/2
9: return

Recursive case
10: l← dlog2 (n)e
11: L1 ← 2bl/2c, L2 ← 2dl/2e

12: n2 ← n mod L2, n1 ← bn/L2c
13: z2 ← z mod L2, z1 ← bz/L2c
14: if n2 + f > 0 then f ′ ← 1 else f ′ ← 0
15: if z1 > 0 then z′2 ← L2 else z′2 ← z2
16: m← min (n2, z2), m′ ← max (n2, z2)

Row transforms
17: for 0 ≤ u < n1 do ITFT(L2, ζ

L1 , L2, L2, 0, ru)

Rightmost column transforms
18: for n2 ≤ u < m′ do ITFT(L1, ω

u
Lζ, z1 + 1, n1, f

′, cu)
19: for m′ ≤ u < z′2 do ITFT(L1, ω

u
Lζ, z1, n1, f

′, cu)

Last row transform
20: if f ′ = 1 then ITFT(L2, ζ

L1 , z′2, n2, f, rn1)

Leftmost column transforms
21: for 0 ≤ u < m do ITFT(L1, ω

u
Lζ, z1 + 1, n1 + 1, 0, cu)

22: for m ≤ u < n2 do ITFT(L1, ω
u
Lζ, z1, n1 + 1, 0, cu)

2.2.d Number Theoretic Transform (NTT)

FFT may also be generalized to work on the multiplicative group of integers modulo
n. This is most commonly referred to as Number Theoretic Transform. NTT is

11



2. Theory

especially useful for when integer multiplication or polynomial multiplication with
positive integer coefficients. It is possible to use FFT over the complex numbers to
calculate integer multiplication. This method is however undesirable as it introduces
round-off errors. Another advantage of using NTT over FFT is the flexibility of
parameter choice, meaning it’s possible to choose parameters such that it becomes
possible to replace many multiplications with bit shifts and additions [5].

The practical difference is that the roots of unity are in Z/nZ instead of C. This
change in field causes all arithmetic in the algorithm to be modular. An operation
between a and b changes from a◦b to (a◦b) mod n, where ◦ is an arithmetic operator
such as addition, subtraction, multiplication or division. The biggest difference
however is the change in the primitive n–th roots of unity and how it is calculated.

2.2.e Primitive n–th roots of unity

The n–th roots of unity in a complex field are the complex numbers that are the
solutions to the equation xn = 1, where n is a positive integer. The n–th roots of
unity are simply exp(−2πki/n) for k = 0, 1, . . . , n− 1.

A primitive n–th root of unity is a root of unity that satisfies the relation xk 6=
1, k < n. In a complex field this equates the roots of unity where k and n are
coprime, meaning their greatest common denominator is 1. Since 1 is coprime to all
integers then a possible primitive n–th root of unity regardless of n is exp(−2πi/n).
This procedure makes choosing a primitive n-th root of unity a straightforward task
when performing FFT in complex fields.

The concept of roots of unity is not limited to complex fields and can be defined in
any field. The type of field that is relevant is the ring of integers modulo m. The
difficulty of finding a primitive n–th root of unity modulo m is a significantly harder
task.

A n–th root of unity modulo m, where m is a positive integer, is an integer that
satisfies the equation xn ≡ 1 (mod m). In a similar manner, a primitive n–th root
of unity modulo m is a n–th root of unity modulo m that also satisfies xk 6≡ 1 (mod
m) for k < n.

2.2.f Example

Suppose we’re searching for the primitive 6–th root of unity modulo 9. This
corresponds to n = 6 and m = 9 in the previous section. A simple, although not
necessarily the most efficient, method is to simply iterate over the values
2, 3, . . . , p − 1 one by one and test if it satisfies the mentioned constraints. The

12
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first step is to check if it is a root of unity, and if so test if it is a primitive roots of
unity. If the number isn’t a root of unity then there’s no need to check if it’s a
primitive one since it’s a necessary condition.

Let’s test if 3 is a primitive 6–th root of unity modulo 9. We first need to test if it’s
a regular root by computing

36 = 729 ≡ 0 (mod 9). (2.8)

Since the computation didn’t yield a 1 we know 3 isn’t a root of unity and can stop
testing it.

Next let’s test 4:

46 = 4069 ≡ 1 (mod 9). (2.9)

This shows that 4 is a root of unity since the result is equal to one. Next we need
to determine if it’s a primitive root of unity:

41 = 4 ≡ 4 (mod 9) (2.10)
42 = 16 ≡ 7 (mod 9) (2.11)
43 = 64 ≡ 1 (mod 9) (2.12)
44 = 256 ≡ 4 (mod 9) (2.13)

45 = 1024 ≡ 7 (mod 9). (2.14)

4 is not a primitive 6–th root of unity modulo 9 since 43 ≡ 1 (mod 9) which breaks
the second constraint that no power less than 6 should result in 1.

Lastly, let’s test the number 2:

26 = 64 ≡ 1 (mod 9). (2.15)

The test confirms that 2 is a root of unity. We then test if it’s a primitive one:

13
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21 = 2 ≡ 2 (mod 9) (2.16)
22 = 4 ≡ 4 (mod 9) (2.17)
23 = 8 ≡ 8 (mod 9) (2.18)
24 = 16 ≡ 7 (mod 9) (2.19)
25 = 32 ≡ 5 (mod 9). (2.20)

Since none of the answer equal 1 then we know for sure that 2 is a primitive 6–th
root of unity modulo 9. This concludes the example.

2.3 Auto-vectorization

Parallel computing and vectorization plays a central role in high performance
computing. There are different types of parallelism but the one that is relevant for
this thesis is the Single Instruction, Multiple Data (SIMD) class. A SIMD
instruction performs the same operation on multiple data points at the same time
[10].

It is possible to manually vectorize a loop or an instruction with the help of
intrinsic functions or intrinsics. An intrinsic function is a built-in function [11]
defined by the compiler itself which allows for increased performance due to
compiler specific optimizations. The downside of manually implementing intrinsics
is that it is entirely architecture dependent. Different computer architectures
supports different SIMD instruction sets. In other words, using intrinsics to
increase the performance is only possible if that specific hardware supports it.
Multiple implementations of the same function has to be defined in order to
guarantee that intrinsics are used in all computer architectures. This makes
intrinsics difficult, error-prone and time-consuming [12] to implement and requires
in-depth knowledge of compilers, computer architecture and SIMD instruction sets.

One possible solution to circumvent this problem is to use automatic vectorization,
or auto-vectorization. Many modern C compilers have built-in auto-vectorization
that can be taken advantage of if the program is compiled with the compiler flag
ftree-vectorize. The compiler will then attempt to vectorize loops if possible by
using the available intrinsics the hardware supports. The main benefit of this, aside
from the obvious performance gains, is that the user is able to take advantage of
the performance gains of using intrinsics without needing learn complicated intrinsic
functions which differ wildly from each other in both function and form depending
on architecture. The user can instead focus on designing a program code without
architecture dependence in mind.
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3.1 Materials

The two main software programs used are the two C libraries zn poly and FLINT.
Other software used were mainly dependencies for these libraries to function
properly. This section will aim to give a thorough description the two libraries and
their dependencies.

3.1.a zn poly

zn poly is a C library developed by David Harvey, Associate Professor at University
of New South Wales. He himself describes it as . . . ”a C library for polynomial
arithmetic in Z/nZ[x], where n is any modulus that fits into an unsigned long.”
The main dependency of this library is the ”The GNU Multiple Precision Arithmetic
Library” (GMP), a C library for arbitrary precision arithmetic designed to be as fast
as possible.

The developed TFT program in this thesis is a rework of the zn poly library.
Although the employed algorithms are fundamentally unchanged the entire library
had to essentially rewritten in order to make full integration into FLINT possible.
More on this procedure is described in section 3.2.a.

The are a few reasons why zn poly was chosen to be main inspiration for the
developed code for this thesis. The first and foremost reason was that it’s a
developed library for arithmetic in Z/nZ[x], including fast TFT, which is precisely
what is sought after in this thesis. It’s also inspired parts of both the NTL and
FLINT library, both of which are widely used arithmetic libraries in C and C++
which adds further credibility to the quality of the code.
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3.1.b FLINT

This thesis is aimed at developing a fast TFT algorithm for FLINT. The most
relevant sections of FLINT is the nmod vec and nmod poly sections, which are the
sections of the library used to make arithmetic operations of vectors and polynomials
over Z/nZ where n is a word-sized modulo meaning that it fits in an unsigned long
as with the zn poly library.

FLINT requires either GMP or Multiple Precision Integers and Rationals (MPIR).
This thesis will use the MPIR library for benchmarking. The only reason for this
is for convenience since it already was installed and configured on Gantenbein, the
system where the benchmarking is performed.

The other dependency FLINT has is the GNU MPFR library. On their website they
describe it as ”. . . a C library for multiple-precision floating-point computations with
correct rounding.”.

3.1.c Gantenbein

The benchmarking is done on a computer system called Gantenbein. It is a super
computer with 120 cores and is designed with high performance computing in mind.
The main reasons for choosing to test performance on it was partly because it’s
designed to perform heavy calculations which is fits with the theme of this thesis
perfectly. Another reason was also that it’s a system used by many people. This
means an improvement to FLINT in Gantenbein will ensure that as many as possible
will be able to benefit from the improvements done in this thesis.

3.2 Procedure

The thesis work has can be roughly sectioned into the following parts.

• Using the existing library zn poly and use it to construct a fast TFT algorithm
that can be fully integrated into FLINT.

• Investigating the auto-vectorization capabilities of the GCC compiler in order
to boost the performance of the TFT algorithm.
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3.2.a Modifying zn poly

zn poly is an extensive library with a many functions that interact with each other
in a complex manner. Configuring the code to suit the needs of the thesis consisted
of many parts.

The zn poly library is made up of various separate program files, header files and
test files to name a few. All programs related to testing and tuning as well as files
related to configuration, demonstration of the program, separate documentation,
profiling and other administrative texts were removed. Essentially, any file that
wasn’t directly part of a algorithm was removed.

3.2.a.1 Removing unrelated files

After this procedure there the task of removing any functions that wasn’t used
by the TFT algorithm remained. The zn poly is a fairly extensive library capable
of performing a variety of arithmetic operations Fourier transform. This required
learning the library structure and how the various functions interacted with each
other. This was done manually in a naive fashion by inspecting each function and
checking all possible program outcomes and removing the functions that were never
called. This was in hindsight not a efficient move since this procedure is already
automated by numerous programs, one notable example being doxygen, that does
this in an instant.

Many functions in the zn poly library had similar or identical ones in FLINT which
meant they had to be replaced. This helped reduce the complexity of the code
since the functions in FLINT could be used, which meant that troubleshooting the
code became much easier since the opportunities for mistakes lessened. This doesn’t
guarantee that mistakes are ruled out in those replaced functions since the FLINT
library itself might be flawed. The risk is however mitigated since it’s been tested
and used by several users.

3.2.a.2 Changing function names/documentation

The later part of the thesis work entailed in writing quality documentation and
rewriting the code to ensure that any potential user in the future will be able to
use and understand the program as easily as possible. This documentation
includes a quick summary of each function and its role in the overall algorithm.
Each function and variable was named to eliminate any potential ambiguity and
misunderstandings. This also entails adhering to a consistent coding standard.
Each function name is a verb e.g. ”GetFudgeFactorFromFFT” to explicitly tell the
user what a function does in a single sentence. Each variable is explicitly named

17



3. Methods

unless in clear obvious cases. All iteration constants starts with the letter ”i”, ”j”
and ”k” to signify its intent. There isn’t a de facto or a universally recognized
coding standard. Instead each standard is chosen depending on programming
language, purpose and preference. This particular standard was chosen to make
the code as understandable as possible and to maximize maintainability of the
code. The intent is to make a new user to be able to quickly understand the
program structure and function interaction.

3.2.b Auto-vectorization

The auto-vectorization was primarily tested with the GNU Compiler Collection
(GCC). The reason for this choice was due to its widespread popularity which would
ensure auto-vectorization for most users. The auto-vectorization in C language is
enabled by compiling the program with the compiler flag -ftree-vectorize.

GCC has in theory a vectorization report, enabled with the flag fopt-info-vec, which
shows explicit information about which sections the compiler succeeded and failed
to vectorize. The excessive amount of information and the ambiguous messaging
made this a near impossible task in practice.

Another way to study the auto vectorization is to look at the assembly output
by using the compiler flag -S. The advantage of this is that there is no ambiguity
involved as with the vectorization report. The disadvantage is that the assembly
language is a low-level programming language that requires extensive knowledge
about computer architecture as well as the myriad of instructions available. The
amount of code also dramatically increases which makes it more difficult to gain an
understanding of the program structure.

This method was used in the beginning of the thesis work to investigate the
vectorization. The vectorization was investigated in a ”trial-and-error” fashion.
The assembly output of two nearly identical versions of the same program was
compared to each other. The goal was to study how each minute change affected
the vectorization. Predicting the compiler behavior beforehand wasn’t a viable
option due to its complex and often times volatile nature, where seemingly
insignificant changes had significant results.

Studying the assembly code yielded moderate success. The primary limitation was
the mentioned disadvantages and by extension the author’s lack of expertise in
assembly programming. A complementary solution was to simply benchmark the
vectorization. Two identical versions of a code was compared with each other, with
one version having vectorization enabled. This made it possible to study to what
extent the compiler vectorized and how effective it was in practice.

Three primary code sections was chosen for benchmarking: the TFT algorithm,
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the ITFT and the butterfly operation. TFT and ITFT were obvious choices since
they’re a core part of this thesis. The butterfly operation was chosen because it’s the
most time-consuming, and therefore the most interesting, part of both algorithms.

3.2.b.1 Comparison of assembly output

It is possible to confirm that vectorization works as intended by comparing the
assembly output of regular C code with vectorization enabled against the assembly
output of intrinsic functions. In this example we will perform vector subtraction
between two vectors of legnth 8. In regular C code the vector subtraction function
would look like the following:

void sub(int c[], int const a[], int const b[])
{

for(int i=0; i <8; ++i){
c[i]=a[i]-b[i];

}
}

Performig vector subtraction with intrinsics would instead take the following form:

# include " immintrin .h"
void sub_intrinsics (int c[], int const a[], int const b[])
{

__m256i ar = _mm256_loadu_si256 (( __m256i const *)a);
__m256i br = _mm256_loadu_si256 (( __m256i const *)b);
__m256i cr = _mm256_sub_epi32 (ar , br);
_mm256_storeu_si256 (( __m256i *)c, cr);

}

Converting both codes to assembly yields the same core vector operations.

vmovdqu ymm0 , YMMWORD PTR [rsi]
vpsubd ymm0 , ymm0 , YMMWORD PTR [rdx]
vmovdqu YMMWORD PTR [rdi], ymm0
vzeroupper

The regular C code has some additional assembly instructions it performs that is
absent from the intrinsic version. The additional code is simply a non-vectorized
version of the subtraction the compiler can choose to use instead of the vectorized
version. The important part, that is the vectorization, is identical which shows that
auto-vectorization was successful.
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4
Results

The results of the benchmarks between auto-vectorized compared to non
auto-vectorized code is presented in this section. In the following tables in this
section, k indicates the number of bits the modulus has and n indicates the
maximum possible polynomial length that is randomized. The numbers shown are
ratios between the time it takes to execute each implementation, that is

non-vectorized execution time
vectorized execution time . (4.1)

Ratios greater than 1 means that vectorization is faster and less than 1 means non-
vectorized implementation is faster. The ratios are color-coded into three colors:
green if ratio is above 1.5, red if ratio is below 1/1.5 and black if it’s in between.

4.1 TFT

The ratio of execution time between vectorized and non-vectorized TFT is presented
in table 4.1. The average ratio of execution time for each value of k is presented in
table 4.2 and the average execution time for each value of n is presented in table
4.3. The average performance increase with auto-vectorization over all parameters
is 2.23.

4.2 ITFT

The ratio of execution time between vectorized and non-vectorized ITFT is presented
in table 4.4. The average ratio of execution time for each value of k is presented in
table 4.5 and the average execution time for each value of n is presented in table
4.6. The average performance increase with auto-vectorization over all parameters
is 1.64.
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Table 4.1: Execution time ratio of TFT with and without auto–vectorization. k
denotes the number of bits in modulo and n denotes the maximum randomized
polynomial length.

k n/1024
1 2 4 8 16 32 64

5 1.63 2.04 2.08 2.06 2.03 2.27 2.27 2.35 2.45 2.15 2.38 2.09 2.24
10 2.05 2.03 2.09 2.14 2.22 2.26 2.33 2.31 2.51 2.35 2.38 2.30 2.34
15 2.07 2.06 2.12 2.12 2.22 2.23 2.30 2.40 2.34 2.23 2.41 2.24 2.43
20 2.06 2.04 2.09 2.15 2.20 2.33 2.33 2.33 2.25 2.38 2.24 2.24 2.16
25 2.07 2.04 2.13 2.13 2.21 2.26 2.32 2.20 2.40 2.33 2.33 2.25 2.20
30 2.05 2.03 2.11 2.12 2.23 2.23 2.31 2.34 2.39 2.33 2.30 2.27 2.27
35 2.05 2.06 2.10 2.11 2.20 2.24 2.34 2.30 2.43 2.31 2.33 2.30 2.40
40 2.06 2.05 2.09 2.17 2.21 2.24 2.34 2.36 2.36 2.24 2.44 2.28 2.36
45 2.07 2.06 2.11 2.12 2.21 2.27 2.33 2.28 2.37 2.26 2.46 2.27 2.19
50 2.07 2.06 2.11 2.13 2.22 2.29 2.28 2.30 2.29 2.30 2.41 2.21 2.30
55 2.06 2.04 2.08 2.15 2.23 2.30 2.30 2.26 2.38 2.34 2.16 2.50 2.33
60 2.06 2.03 2.07 2.15 2.23 2.27 2.31 2.31 2.40 2.30 2.47 2.20 2.24

Table 4.2: Average execution time ratio of TFT with and without auto–
vectorization over k, the number of bits of modulo.

k

5 10 15 20 25 30 35 40 45 50 55 60
2.16 2.25 2.24 2.22 2.22 2.23 2.24 2.25 2.23 2.23 2.24 2.23

4.3 Butterfly operation

The ratio of execution time between vectorized and non-vectorized butterfly is
presented in table 4.7. The average ratio of execution time for each value of k is
presented in table 4.8 and the average execution time for each value of n is
presented in table 4.9. The average performance increase with auto-vectorization
over all parameters is 2.88.
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Table 4.3: Average execution time ratio of TFT with and without auto–
vectorization over n, the maximum randomized polynomial length.

n/1024
1 2 4 8 16 32 64

2.03 2.04 2.10 2.13 2.20 2.27 2.31 2.31 2.38 2.29 2.36 2.26 2.29

Table 4.4: Ratio of execution time of ITFT with and without auto–vectorization.
k denotes the number of bits in modulo and n denotes the maximum randomized
polynomial length.

k n/1024
1 2 4 8 16 32 64

5 1.44 1.40 1.46 1.46 1.55 1.65 1.72 1.76 1.78 1.68 1.80 1.85 1.89
10 1.39 1.41 1.49 1.51 1.59 1.58 1.67 1.70 1.82 1.65 1.84 1.62 1.85
15 1.40 1.40 1.47 1.50 1.59 1.62 1.70 1.68 1.79 1.71 1.78 1.76 1.81
20 1.40 1.40 1.44 1.50 1.62 1.62 1.69 1.67 1.74 1.77 1.84 1.68 1.79
25 1.41 1.40 1.47 1.50 1.61 1.65 1.70 1.70 1.80 1.69 1.74 1.79 1.83
30 1.41 1.42 1.47 1.49 1.59 1.62 1.72 1.70 1.79 1.70 1.81 1.92 1.93
35 1.41 1.43 1.49 1.51 1.61 1.61 1.72 1.70 1.75 1.76 1.73 1.81 1.94
40 1.41 1.40 1.47 1.52 1.63 1.61 1.69 1.66 1.75 1.68 1.78 1.72 1.92
45 1.41 1.43 1.47 1.53 1.61 1.57 1.68 1.69 1.75 1.70 1.84 1.84 1.81
50 1.43 1.43 1.48 1.49 1.62 1.64 1.70 1.73 1.81 1.70 1.86 1.76 1.88
55 1.41 1.41 1.48 1.51 1.59 1.63 1.72 1.70 1.79 1.70 1.74 1.74 1.72
60 1.41 1.43 1.46 1.52 1.61 1.61 1.70 1.63 1.77 1.81 1.81 1.75 1.81

Table 4.5: Average execution time ratio of ITFT with and without auto–
vectorization over k, the number of bits of modulo.

k

5 10 15 20 25 30 35 40 45 50 55 60
1.65 1.63 1.63 1.63 1.64 1.66 1.65 1.63 1.64 1.65 1.63 1.64

Table 4.6: Average execution time ratio of ITFT with and without auto–
vectorization over n, the maximum randomized polynomial length.

n/1024
1 2 4 8 16 32 64

1.41 1.41 1.47 1.51 1.60 1.62 1.70 1.69 1.78 1.71 1.80 1.77 1.85
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Table 4.7: Ratio of execution time of butterfly with and without auto–
vectorization. k denotes the number of bits in modulo and n denotes the maximum
randomized polynomial length.

k n/1024
1 2 4 8 16 32 64

5 2.72 2.93 3.01 3.04 2.93 2.87 2.83 2.84 2.80 2.87 2.85 2.86 2.79
10 2.72 2.86 2.96 2.98 2.96 2.87 2.91 2.92 2.84 2.90 2.86 2.93 2.85
15 2.74 2.87 2.95 2.98 2.91 2.87 2.85 2.84 2.87 2.78 2.94 2.86 2.91
20 2.74 2.87 2.94 2.94 2.93 2.89 2.84 2.84 2.86 2.88 2.86 2.93 2.87
25 2.73 2.86 2.96 2.96 2.92 2.87 2.86 2.92 2.88 2.85 2.96 2.84 2.94
30 2.73 2.87 2.94 2.99 2.94 2.87 2.83 2.82 2.86 2.74 2.83 2.95 2.83
35 2.71 2.85 2.94 2.99 2.98 2.89 2.90 2.85 2.91 2.91 2.85 2.85 2.77
40 2.73 2.88 2.95 3.02 2.96 2.87 2.90 2.88 2.84 2.84 2.88 2.88 2.86
45 2.75 2.84 2.96 2.99 2.95 2.87 2.86 2.87 2.91 2.86 2.84 3.04 2.76
50 2.75 2.85 2.95 2.96 2.98 2.85 2.88 2.85 2.83 2.94 2.80 2.82 2.85
55 2.71 2.87 2.95 2.99 2.97 2.87 2.85 2.84 2.90 2.87 2.89 2.86 2.82
60 2.72 2.85 2.95 2.95 2.96 2.92 2.90 2.87 2.86 2.87 2.86 2.86 2.75

Table 4.8: Average execution time ratio of butterfly with and without auto–
vectorization over k, the number of bits of modulo.

k

5 10 15 20 25 30 35 40 45 50 55 60
2.87 2.89 2.88 2.88 2.89 2.86 2.88 2.88 2.89 2.87 2.88 2.87

Table 4.9: Average execution time ratio of butterfly with and without auto–
vectorization over n, the maximum randomized polynomial length.

n/1024
1 2 4 8 16 32 64

2.73 2.87 2.96 2.98 2.95 2.88 2.87 2.86 2.86 2.86 2.87 2.89 2.83
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The results presented in section 4 as well as how they relate to the theory is discussed
and analyzed in this section.

5.1 General outcome

The results show that auto-vectorization increased performance not only on average
but for all tested parameter ranges for both the number of bits of modulo as well
as polynomial length. It’s important to note that this does not automatically imply
parallelization by default is more performant than serialization. This is due to the
overhead costs of associated with parallelization such as splitting calculations and
combining results. The GCC compiler performs pre–calculations before attempting
to parallelize to determine if it’s efficient to do so. Determining if the increased
performance is the result of the chosen algorithms always benefiting parallelization
or the quality of the pre–calculations, or both and if so to what degree, is a difficult
if not impossible question to answer given the current data.

The best average performance increase was the butterfly benchmark with a factor
of 2.88, followed by the benchmark of TFT with a factor of 2.23 and lastly
benchmark of ITFT with a factor of 1.64. The butterfly benchmark having the
best performance increase is not surprising. Iterating over a sequence and
performing butterfly operations on two pairwise data points is a perfect candidate
for parallelization since the iterations are independent of each other. This
essentially means that loop order does not matter and the task can be divided into
multiple smaller tasks without affecting the result.

Why the TFT had worse performance improvements compared to butterfly could
depend on multiple factors. One reason could be the presence of control flow,
meaning the multiple if statements in TFT as can be seen in algorithm 2. Control
flow hinders parallelization since the compiler has to perform a so-called
if-conversion to convert the if statement to a vectorized instruction. Such
conversions may be difficult or even impossible which may be the reason why the

25



5. Discussion

improvements to TFT are poorer than for butterfly.

The ITFT is likely suffers from the same limitations to parallelization due to the
similarity of the algorithms. The performance increase is however markedly worse
compared to TFT. It’s likely that this difference is due to the quantitative rather
then the qualitative difference between TFT and ITFT since they’re very similar
algorithms. In essence, there are more if statements and recursive operations in
ITFT compared to TFT which could be the reason for the slowdown.

5.2 Limitations

A big limitation of this study is that it was only implemented on a single computer
architecture. This is important since auto-vectorization is entirely dependent on
which architecture it’s run on. It’s very possible that the results in this thesis is
only relevant for that on specific computer system and that auto-vectorization isn’t
beneficial in others.

Another drawback of the thesis is the lack of sophisticated statistical analysis. It
measures only the average performance increase and says nothing about its
reliability. Data such as the standard deviation over many measurements would
help solidify the results further.

5.3 Future work

There are multitude of ways the work in this thesis can be improved and built upon.

Researching how different architectures affect auto-vectorization is an important
aspect to consider in future studies. It may however be a difficult task to study in
a consistent manner since it requires resources to acquire the necessary hardware as
well as in-depth computer architecture knowledge.

Another possible course of action is to study how different compilers such as GCC,
clang and ICC utilizes auto-vectorization and compare their strengths and
weaknesses.
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