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Abstract
In this thesis, we explore the idea of using locality sensitive hashes as input features
to a feedforward neural network to perform static analysis to detect JavaScript
malware. An experiment is conducted using a dataset containing 1.5M evenly
distributed benign and malicious samples provided by the anti-malware company
Cyren, which is the industry collaborator for this thesis. Four different locality sen-
sitive hashing algorithms are tested and evaluated: Nilsimsa, ssdeep, TLSH, and
SDHASH. The results show a high prediction accuracy of 98.05% and low false pos-
itive and negative rates of 0.94% and 2.69% for the best performing models. These
results show that LSH based neural networks are a competitive option against other
state-of-the-art JavaScript malware classification solutions.

Keywords: locality sensitive hashing, static analysis, malware detection, artificial
neural networks, machine learning, feature extraction
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1
Introduction

Software Engineering encompasses a lot of different research fields, from finding the
best way to write requirements to static code analysis. This thesis will focus on
exploring a new method to perform static analysis to classify script files, or more
explicitly JavaScript files where a JavaScript file’s locality sensitive hash will be used
as a feature to predict whether it is malicious or benign.

The method proposed in this thesis entails combining locality sensitive hashing with
machine learning. Locality sensitive hashing (LSH ) is a family of dimensionality
reducing algorithms which are widely used in different fields like computer vision,
recommendation systems, and more. In this thesis, LSH algorithms will be applied
to static code to produce a new representation of the original script file, which will
be more applicable for statistical learning.

Locality sensitive hashing has potentially many real-world applications where one of
them is in the field of malware identification. There are two main approaches used
to identify malware: static analysis and dynamic analysis. Static code analysis is
a form of analysis where analysis is done on the malware (source code or compiled
executable) directly without executing it, and the other is dynamic analysis where
the malware is executed, and its behaviour monitored and judged. Static analysis
is preferred as it minimises risks of malware spreading as well as potentially being
a quicker way to classify files compared to dynamic analysis. Static analysis might
be preferred when analysing large datasets of scripts since some might not be easy
to execute correctly. Dynamic analysis in comparison can be harder to apply when
analysing large datasets or unknown files since it requires sandbox environments or
emulation, certainly in the circumstance of malware detection.
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1. Introduction

This thesis is done in collaboration with Cyren, an internet-based security company,
focusing on anti-spam, anti-malware, and more. They are known for providing
the anti-malware scanner that Gmail uses for attachments along with having their
services integrated into the Microsoft Office 365 network to help combat malicious
email.

Currently, Cyren’s approach to JavaScript classification is dynamic analysis. Thus
there is a demand to find a general way to identify JavaScript malware statically.
As will be shown in the related work’s sections, others have attempted to classify
JavaScript malware using static analysis, but more commonly, dynamic analysis is
used or in some cases both (hybrid analysis).

This thesis will focus on using LSH together with neural networks to classify JavaScript
malware using data provided by Cyren, leading into the following research questions
that are the focus of this thesis:

• Do neural network models with locality sensitive hashes as input features yield
high accuracy along with low false positive and false negative rates when clas-
sifying JavaScript malware?

• How well do different LSH methods compare to each other as input into neural
networks?

• How well do LSH based neural network models compare to other state-of-the-
art techniques for detecting malicious JavaScript files?

2
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2
Background

This chapter will go through the theoretical background this thesis encompasses.
Beginning with a summary of JavaScript malware, then locality sensitive hashing
methods, and lastly artificial neural networks, which is the machine learning method
this thesis utilizes.

2.1 JavaScript malware

Malicious software or malware is a term that describes software with intent to har-
m/intrude/spy on systems or people. It is not uncommon for malware to also
be self-replicating, automatically distributing the attacks among multiple targets
(hence malware commonly being known as Computer viruses).

There exist numerous attack vectors for introducing malware to victims, e.g. e-
mail attachments, shellcode etc. This thesis focuses on one attack vector, and that
is JavaScript files. Almost all web pages today utilizes JavaScript in some form,
whether to display fancy animations or to send data to web servers. These new
services have thus become common attack vectors, as browsers often run these script
files automatically when loading a website.

There exist numerous types of malware and a defined terminology of the most com-
mon JavaScript malware can be found in table 2.1. Since JavaScript is an interpreted
language, the code does not go through a compiler that optimizes the code to byte
code, in a way normalizing it. Instead, it is always represented precisely as it was
written, this becomes a problem when malicious actors add obfuscation to the code
to make it harder to analyse and detect. Obfuscation is a problem covered in the
next section.
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2. Background

Table 2.1: Basic terminology for JavaScript malware

Category Description
Adware Malware that serves the victim unwanted advertise-

ments.
Cryptominer Malware that mines cryptocurrencies like Monero,

Bitcoin and others. Can sometimes be used legiti-
mately, so it is in some cases classified as a poten-
tially unwanted application. The most popular JS
based crypto miner is CoinHive.

Downloader Overall family of malware that executes drive-by-
download attacks. Where it tries to download mal-
ware on to the victim’s computer. The malware type
can be anything, e.g. Ransomware, Trojans, Adware
and more.

Faceliker Malware that manipulates "Likes" on Facebook.
FakejQuery Malware that tries to disguise themselves as the pop-

ular jQuery library. Is often a downloader type mal-
ware.

IFrame Malware that injects code into HTML sites using the
<iframe> tag.

Ransomware A family of malware downloaders that tries to in-
stall ransomware. Ransomeware encrypts and locks
the victim’s computer and then demands a ransom
to open it again. Common ransomware is LOCKY,
Crypted, and Ramnit.

REDIR Malware that tries to redirect the victim on to a ma-
licious website.

SEOHide JavaScript trojan that spies on its victim.

4



2. Background

2.2 Obfuscation

Obfuscation in JavaScript is a large problem in malware identification as it is not
necessarily an indicator of maliciousness. Companies often use JavaScript obfusca-
tion to protect their IP, hiding client-side logic or just want to keep file sizes at a
minimum. Thus obfuscation techniques are now often used on benign JavaScript
files. An example of this can be seen in figures 2.1 and 2.2.
function T(e, t) {

if (e) {
var i;
if (!_$af10650742) {

_$af10650742 = 0;
return

};
for (i = e.length - 1;

e > -1 && (!e[i] || !t(e[i], i, e));
i -= 1) {

;
}}}

if (_$af10650103 == true) {
if (_$af10650364 === true) {

_$af10650364(null);
_$af10650364 = null;
return

};
return

};
if (_$af10650742 == 1) {

_$af10650742();
_$af10650742 = false

};

function t(e, t) {
return fa.call(e, t)

}

function n(e, i) {
return t(e, i) && e[i]

}

Figure 2.1: Obfuscated code snippet
from malicious code

function p() {
if (!u) {

var n = s(g);
u = !0;
for (var e = d.length; e; ) {

for (l = d,
d = []; ++c < e; )

l && l[c].run();
c = -1,
e = d.length

}
l = null,
u = !1,

function(n) {
if (i === clearTimeout)

return clearTimeout(n);
if ((i === a || !i) && clearTimeout)

return i = clearTimeout,
clearTimeout(n);

try {
i(n)

} catch (e) {
try {

return i.call(null, n)
} catch (e) {

return i.call(this, n)
}

}
}(n)

}

Figure 2.2: Obfuscated code snippet
from CNN.com

These kinds of obfuscation techniques have become the standard when deploying
code as can be seen by the widely used tools webpack, uglifyJS, and more. Other
obfuscation techniques entail encrypting the code using various encryption methods
and trying to hide function calls by encapsulating them in an eval method and
more.
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2. Background

2.3 JavaScript classification

There are two major ways of doing JavaScript malware classification, through static
analysis and through dynamic analysis [14, p. 862].

2.3.1 Static analysis

The main theory behind static analysis is to not execute any of the code given within
the script. There are numerous ways to do static analysis, for instance, searching
for special keywords such as specific function calls or destinations. Another method
could be bag of words together with statistical learning. A clear benefit of using
static analysis is the fact that the analysis does not run the potentially malicious
code, protecting the system running the analysis. Static analysis might also be faster
since it is easier to batch the work, and in dynamic analysis, one might need to wait
for certain events to occur.

The main issue with static analysis methods for malicious JavaScript classification
is that they are often rendered unusable on well-obfuscated code, where the com-
promising keywords might be hidden within the code.

2.3.2 Dynamic analysis

What characterizes dynamic analysis is the fact that the code is executed during
analysis. A common way of doing this, to protect the analysts’ system as well
as gaining more control over the process is to run the targeted script inside of a
sandbox or virtual environment. For instance, using a sandbox we run the script
while monitoring the functions it tries to run, then if a specified security policy/rule
is triggered, e.g. the script should not do an unprompted file download, the analysis
will classify the file as malicious and terminate it.

The other way of doing a dynamic analysis that does not involve using sandbox
environments is to use emulators. Emulators only try to emulate the results from
system calls that a running browser (or operating system) would send for different
function calls. Emulation has the benefits of being less resource intensive and more
customized than sandboxes, which are virtual machines running entire operating
systems. The drawback is that more development time is needed to write functions
that emulate the various system/browser calls that a JavaScript file makes. Both of
these dynamic methods requires domain expertise as it is necessary to craft security
policies that only malware trigger, or in-depth knowledge of the running environment
when creating an emulator.

6



2. Background

2.4 Locality sensitive hashing

Locality Sensitive Hashing (LSH) is a relatively new family of dimensionality reduc-
ing algorithms. This family of algorithms focuses on producing condensed represen-
tations of the given input data which can later be used for comparison. This means
in practice that using LSH methods on almost identical files will output almost
identical hashes. Comparing this to cryptographic hashing techniques like SHA256
where hashing two almost identical files will yield two drastically different hashes
that are not comparable to each other.

There are a few methods for producing these representations or "hashes" and the
methods used in this project are described in the following subsections.

2.4.1 Nilsisma

One of the older locality sensitive hashing methods is Nilsimsa. The method has
been demonstrated as useful in the area of spam detection, which has been presented
in the paper An Open Digest-based Technique for Spam Detection by Damiani et
al[4]. The algorithm’s original publication is as of 2019 unavailable. However, there
is a description of the algorithms inner workings made by Damiani et al.

The algorithm works by traversing the byte strings of the input data and pairing
neighbouring characters into triples. These triples are then hashed with the tran53
algorithm which produces a key determining the locality that the triple belonged to.
The tran53 algorithm returns a value in the range of 0 and 255. All of the localities
found are then counted, and a vector is produced containing the amount of each
specific locality found. By mapping the vector to an array with positive bits where
the value is larger than the median, a 32-byte code can be produced.

The final hash produced is a simple 32-byte code which in base64 form consists of
64 characters.

2.4.2 TLSH

TLSH (Trend Micro Locality Sensitive Hash) is an LSH algorithm by Oliver et al.
from Trend Micro, first described in the paper TLSH - A Locality Sensitive Hash[18].
This LSH method was designed for malware detection and clustering. The hash is
constructed by digesting a byte string using a sliding window of size five and then
mapping the corresponding values to buckets using the Pearson hash, a fast non-
cryptographic hashing function. Next, the digest body which gets represented as a
hexadecimal string is constructed from the bucket array by splitting it into different
quartiles q1, q2, and q3 depending on the bucket counts. The first three bytes of

7



2. Background

the hash is the digest header. The final hash is thus represented as a 70 character
hexadecimal string.

In essence, this LSH method is similar to the Nilsimsa hashing method, where the sig-
nificant differences are in how the final hash is constructed from the bucket/feature
vector. In TLSH features are mapped after being divided into quartiles depending
on bucket occurrences, and in Nilsimsa they are mapped based on whether they are
larger than the median of the feature vector.

2.4.3 ssdeep

Ssdeep is an LSH algorithm (or as the author calls it, a context triggered piece-
wise hashing algorithm) by Jesse Kornblum, first described in the paper Identifying
almost identical files using context triggered piecewise hashing [17]. Ssdeep is a
continuation from the spamsum algorithm by Andrew Tridgell which was designed
for anti-spam purposes. Ssdeep has become the de facto LSH algorithm in use for
malware detection and is the only locality sensitive hash supported by the industry-
leading malware analysis repository VirusTotal[12].

The ssdeep hash is constructed using two hashing methods, one which is piecewise
hashing that is just an arbitrary hashing algorithm but is used on small sections of
byte string instead of the entire file. So, for example, a hash is made of the first 256
bytes, and then another for the next 256, and so on. The hashing algorithm ssdeep
uses for hashing is the Fowler-Noll-Vo hash function by Fowler et al.[5], it was
primarily chosen due to it being a non-cryptographic hash function with a focus on
speed. The other hashing method is the rolling hash, which is a hashing algorithm
that produces a pseudo-random value based on the current context of the input.
The rolling hash is used to determine when a suitable range of bytes of piecewise
hashing has occurred. When this trigger has gone off the accumulated piecewise
hash is appended to a final hash. The final hash has the following form:

block_size : hash1 : hash2

Block size is a calculated value that determines how large each block of code should
be before appending the accumulated piecewise hash to the final hash.

As can be seen, there are two different hashes. This is due to there being two triggers
for piecewise hashing. The first trigger is when the rolling hash produces a value
that is equal, modulo the block size, to the block size minus one. The second trigger
happens when the rolling hash produces a value that is equal, modulo twice to the
block size or twice to the block size minus one. However, as the triggers are based on
the block size of the file, the hashes do not have a fixed length, instead implementing
a maximum length of the entire hash, which is 148 base64 encoded characters.
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2. Background

2.4.4 SDHASH

The algorithm SDHASH originally proposed by Roussev in the paper Data finger-
printing with similarity digests[20] is a newer LSH-method.

SDHASH uses a somewhat different system to represent the given input compared
to the other methods in focus. It works by using a sliding window which traverses
the input while traversing the program calculates a normalized Shannon entropy of
each window to determine whether the contents of the window has any statistical
significance. If it is deemed statistically significant at this stage, it assigns the
window a feature number. After finding all of the features in the file, the program
filters out all features that are deemed weak. Once all features have been filtered,
the features are added to a bloom filter to avoid having duplicate features in the
final results. The bloom filter is then used to construct the hexadecimal hash string.

In practice, the most significant difference between SDHASH and the other LSH
algorithms is that SDHASH has no limit on the size of its hashes and that they vary
drastically in size depending on the input as large files might output a hash that
consists more than 10 thousand characters, which means that they are harder to use
in neural network models which require fixed input sizes that are not too large.

9



2. Background

2.5 Artificial Neural Networks

Artificial Neural Networks (ANNs)[7, p. 253] is a family of machine learning methods
inspired by how neural networks work in brains. Models based on neural networks
have revolutionized the industry in the last decade in most aspects of data analysis.
From image recognition to personal assistants, neural networks have become an
integral part of many complicated systems that are used by the population.

Typically, ANNs are multiple interconnected layers of nodes (also often known as
neurons) where the first layer is an input layer, and the last layer is the output layer
which produces the final result for the given input. In between the input and output
layers, there are hidden layers. In particular deep learning refers to ANNs that have
two or more hidden layers. An example of an ANN can be seen in figure 2.3

Figure 2.3: Example diagram of an ANN with one hidden layer

10



2. Background

There exist many types of artificial neural networks, the book Hands-On Machine
Learning with Scikit-Learn and TensorFlow by Aurélien Géron[7] describes some of
the more notable types:

• Feedforward Neural Networks (FNN)[7, p. 263]: These are the most standard
neural networks like the one pictured in figure 2.3. They are used in classifi-
cation and regression problems.

• Convolutional Neural Networks (CNN)[7, p. 353]: Most known for solving
image recognition problems or other problems that use high dimensional data.

• Recurrent Neural Networks (RNN)[7, p. 379]: Models that excel at Sequence
and Time-based data. A subcategory of RNNs is long short-term memory
(LSTM) models, which are the driving force behind technologies like Google
Assistant, Google Translate, and more. RNNs are usually applied in regression
tasks but can be used to classify as well.

11



3
Related Work

As of now there are no other published works combining artificial neural networks
with locality sensitive hashing methods as a form of feature extraction.

The field of malicious JavaScript classification has been active for a long time. How-
ever, when determining what kind of work can be deemed related to this thesis, a
couple of different things is taken into consideration. The method preferably has to
evaluate static JavaScript code, and it should show consistent results. The metrics
used in these publications rarely focus on precision and recall. Instead the focus is
mostly on false positives and to a lesser extent, false negatives. According to Cyren
this is due to false positives being deemed the worst kind of classification errors
made in the anti-malware industry.

The most promising competitor comes from a project made by Curtsinger et al.
(Microsoft Research), which is a mostly static JavaScript classifier. The static part
of the project is called ZOZZLE [3] and utilises a form of automated feature selection
and a Bayesian classifier to detect malware and the dynamic part is called NOZZLE
which deobfuscates JavaScript code before ZOZZLE can classify it. This project
seems to be the closest classifier to our classifier as it is purely static with the only
restriction being that the code has to be unobfuscated (a restriction our model does
not have). One noteworthy thing with the paper is that the dataset used by them
for training and testing is rather small and given that they are not focusing on
one family of malware, as with a larger more diverse dataset their results might be
different. Another noteworthy thing is the age of the paper, it was published in
2010, and a lot has changed in the industry since then. It is just in the last few
years that widespread use of obfuscation on benign files has become the norm.

In the table 5.3 we can see performance indicators given by ZOZZLE. Two perfor-
mance indicators are provided, one where they hand-picked the features based on
domain expertise, and then an automatically picked feature set which focuses on
minimising the false positive rate.

JStill by Xu et al. [21] is a project that focuses on statically detecting obfuscated
malicious JavaScript code. The tool tries to identify obfuscation and then by looking
at some key aspects, determine whether the script is malicious or not. A generous
dataset has consisting of 50k clean files selected from Alexas top sites [1], and 30k
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obfuscated malware was evaluated. A potential problem with this might be that the
method is limited only to detect obfuscated code.

CUJO by Rieck et al. [19] is an automatic detection system for drive-by-downloads
(defined as Downloader in Table 2.1). The system combines static and dynamic
analysis to generate features which then can be used to detect malware with the
help of support vector machines. Some of the problems we notice with the seemingly
great results where the quantity of malware’s is meagre, which might indicate that
the results presented could be somewhat optimistic. As CUJO only focuses on
Downloader malware, it might not be a good counter to this thesis’ classifier, which
is a general classifier.

JSAND/Wepawet by Cova et al. [2] is a hybrid classifier that detects malicious
JavaScript code belonging to the Downloader family. Their feature extraction results
in 10 different features where 3 of them are achieved through static analysis and the
rest from dynamic analysis (through browser emulation). They are thus working
on both obfuscated and deobfuscated code. Then the features are put into four
models belonging to the libAnomaly library and their results aggregated. The results
they got is impressive. However, their datasets might be a bit skewed as their
known malicious dataset was tiny at 823 samples compared to 11.2 thousand benign
samples. However, they then claimed to have a 0.01% false positive rate on another
benign dataset consisting of 115 thousand benign websites. This service was once
hosted openly as Wepawet but has since been acquired by Lastline defense and
become proprietary/private.

Wang et al. published a paper in 2016 called "A deep learning approach for detecting
malicious JavaScript code". In this paper, a couple of different machine learning
techniques were evaluated on a large test dataset and their ability to detect malicious
code recorded. The models using an RBF SVM or an ADTree method proved to
yield the most promising results and is used for comparisons. The dataset used for
training here consists of 12k benign files fetched from Alexas top websites [1] and
14k malicious files fetched by a web crawler named Heritrix [8].
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4
Research Methodology

This chapter describes the actual experiment, what will be measured, and what
research questions this thesis aims to answer.

The research approach in this thesis is a quantitative analysis where the data is
gathered from an experiment and the results evaluated by comparing them to results
from related works.

4.1 Research questions

The research questions are based on the problem formulated by Cyren and what
might benefit the fields of malware research and program analysis.

RQ 1: Do neural network models with locality sensitive hashes as input features
yield high accuracy along with low false positive and false negative rates when
classifying JavaScript malware?

RQ 2: How well do different LSH methods compare with each other as input into
neural networks?

RQ 3: How well do LSH based neural network models compare to other techniques
for detecting malicious JavaScript files?

14
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4.2 System structure

This section goes into how we combine the LSH methods and neural network models
as described in the background section. To the best of our knowledge of academic
literature, we are the first to combine ANNs and LSH methods in this way.

We take a locality sensitive hash and treat it as input to our neural network. To do
this we split the hash into character n-grams which then gets tokenized. The tok-
enization process assigns each different permutation of the n-grams a corresponding
integer token. This leads to the hash being represented as a sequence of integer
tokens. The input layer of the feedforward network is of a fixed size, and the hashes
that do not always have fixed length sequences get 0-padded so that the input size
stays fixed.

The reason for splitting the hash into n-grams is to find correlations between sub
hashes. Using probabilistic n-gram models to solve natural language problems is
common and have also been used in source code analysis models as can be seen in
the paper Naturalness of Software[9] by Hindle et al.

Figure 4.1 shows an example of how one locality sensitive hash traverses throughout
our system.

Figure 4.1: Example on how to classify a TLSH hash
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4.3 Neural network design and implementation

A supervised learning approach with a normal deep feedforward neural network is
used to classify each locality sensitive hash, as the dimensionality of the hashes is
pretty low and they have accompanying labels indicating maliciousness. The input
layer takes the tokens generated from each hash, and the output layer will return
one single value, presented on a scale between 0 and 1, determining the likelihood
of the input is malicious. The final network structure can be found in figure 4.2 or
in the table 4.1.

Figure 4.2: Abstract view over our network

Table 4.1: Neural network composition (where L is length of input vector)

Layer name Output dimensions
Embeddings 32xL
Flatten 1xL
BatchNormalization 1xL
Dense 1x256 activation: relu
Dropout 1x256 magnitude: 0.125
Dense 1x64 activation: relu
Dense 1x1 activation: sigmoid

We chose to have an embedding layer [6] which is a layer that turns positive integers
into dense non-zero vectors e.g. [0] → [[−0.2, 0.6]]. The reasoning for this is that
the input vectors can, in some cases, become mostly zero, especially in the case
of ssdeep that has a varying hash length, leading to a lot of 0-padding. Neural
networks can train on mostly zero vectors (also known as sparse vectors), but it is
computationally inefficient.
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When each layer of neurons propagates their input, an activation function is used to
determine the layer’s output. The ReLU function is used as the activation function,
which is one of the most frequently used activation methods due it its simplicity,
which can be seen in its definition in figure 2.5.

f(x) =

x if x > 0
0 if x ≤ 0

Figure 4.3: ReLU function and its plot

ReLU’s properties make it so that during backpropagation the derivative of ReLU
becomes

f ′(x) =

1 if x > 0
0 if x ≤ 0

Meaning that training networks utilizing ReLU activations are both computationally
easier and faster than other more complicated activation functions.

However, since all negative numbers become zero immediately, there is a possibility
that during training, the model will encounter the vanishing gradient problem, which
might stop the network’s training prematurely.

To combat this we utilize a Batch Normalization layer directly after our embedding
layer[13]. Which normalizes each batch to combat both the vanishing gradient
problem.

A dropout layer [10] is also used, this layer kills some of the previous layer’s neurons
during each training phase to prevent the model from overfitting (memorizing) the
data. However, due to the batch normalization layer, we have a pretty low dropout
rate of 12.5%, meaning that there is a 12.5% chance that a neuron is killed during
a training step.
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The last layer is a dense layer consisting of a single neuron with the sigmoid activa-
tion function. The sigmoid function is defined as the following:

f(x) = 1
1 + e−x

Figure 4.4: Sigmoid function and its plot

This means that the output of the sigmoid function is capped between 0 and 1.
Thus the output is the probability of a sample belonging to the class label 1, or in
this case, the probability of a sample is malicious. Using the sigmoid function is
common for binary classification problems.

4.3.1 Network training process

There are numerous things to keep in mind during the neural network training
process itself that influence the overall model performance, such as how to optimize
the backpropagation, what batch size to use, and the number of epochs to train on.

4.3.1.1 Optimizers and loss function

In terms of fitting the network to gain an accurate understanding of the given data
adam optimization[16] was used. Optimizing the network calls upon the procedure
of determining how much the weights should be tuned given the resulting output-
loss. Adam is an all-around good optimization technique which usually provides
good performance[16].

Binary cross-entropy was used for calculating the output-loss given by each predic-
tion, the function is expressed below where the variable p is the estimated probability
of the target being 1, and y is the actual binary target.

loss(y, p) = −(y · log(p) + (1− y) · log(1− p))
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4.3.1.2 Batch sizing

During neural network training, the dataset is often split into batches and sent
through the network instead of sending the entire dataset through the network at
once.

There has been much talk about what batch size leads to the best model. The smaller
the batch size is, the longer it takes to train, meaning that there is a trade-off in
model performance and model training speed. The consensus has been that larger
batch sizes lead to less general models which were then further proven by Keskar et
al. in their paper On Large-Batch Training for Deep Learning: Generalization Gap
and Sharp Minima[15] where larger batch sizes often leads to models converging at
sharp minima early on.

Thus we have opted for a batch size of 512, which is a relatively small batch size
but large enough that the training time on the largest datasets during the cross-
validation experiment will be acceptable without converging too soon at a sharp
minima.

4.3.1.3 Number of epochs

Another factor in training is the number of epochs to train the model on, where one
epoch is when all the training samples have gone through a forward and backprop-
agation pass once.

Generally, the more epochs a model is trained on, the higher the risk is that the
model overfits (memorizes) the data rather than generalizing the data. To combat
overfitting, a validation based early stopping approach is used. By splitting 15%
of the training set into a validation set, it is possible to monitor the changes in
validation accuracy and validation loss for each epoch during training. Monitoring
these metrics has the benefit of seeing that if the training loss is decreasing while
the validation loss is not decreasing, then the model is starting to overfit and thus
no need to further train the model. As the history of validation loss and accuracy
is kept for each epoch. The weights of the epoch that yielded the lowest validation
loss are restored for the model once early stopping has been applied.
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4.3.2 Other ANN architectures

As was stated in section 2.5 there exist numerous types of ANN types and for each
type there exist different architectures.

Many different architectures were considered, especially recurrent neural network
(RNN) architectures as they tend to work better with sequential data, which the
tokenized sequence of a locality sensitive hash is. A long short-term memory network
[11], a popular RNN architecture, was tested early on but did not yield any better
results than the deep feedforward network seen in figure 4.2 but instead took a lot
longer time to train.

A one-dimensional convolutional neural network (CNN) was also considered but
never tested, due to the high performance of the feedforward network and a lack of
time.

We also considered and tested deeper feedforward networks but did not see any
improvements compared to the final network depth.
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4.4 SDHASH count vectorization

As was mentioned in section 2.4.4, the hashes generated from SDHASH has no
maximum length, which is a drawback as our neural network model assumes a fixed
input size. As a workaround, the input layer was changed from taking in sequences
of tokens representing the hash to utilizing the bag of words method which identifies
all tokens and counts them. This was done using the Scikit-Learn CountVectorizer
pre-processor. A diagram illustrating this process can be seen in figure 4.5.

This means that the input is changed from a variable length sequence with no max-
imum size into a fixed array of size vocabularySizen where n is the type of n-gram
used. Bigrams were used in this experiment and SDHASH is represented as hex-
adecimal strings, meaning the input array has size 162 = 256, which is comparable
to the input sizes of the other hashes.

Figure 4.5: Count Vectorization example

Count vectorizing the input data results in loss of information as the ordering of
tokens gets lost in the process, which might negatively affect the neural network
model performance. Even though the occurrences are not explicitly counted in
the non count vectorized models described in the subsections above, instead the
occurrences become a property of the input implicitly.

4.5 Data selection

The data used in this thesis was provided by Cyren; they gave access to their
pipeline of incoming files. The sources of these files are various, e.g. from web
scrapers, customers specifically sending in files for analysis, e-mail attachments,
incoming files from VirusTotal and more. Each of these files then goes through
Cyren’s malware scanners and the system applies a label to the sample indicating
whether it is clean or malicious. These labels provided by Cyren will be the ground
truth of the dataset and is generated from dynamic analysis.
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During a period of four months (January-April 2019), this pipeline was monitored,
and every time a JavaScript file went through the system, the file was fetched and
hashed using ssdeep, Nilsimsa, TLSH, and SDHASH, along with the sample’s detec-
tion name, and classification label. For replicability purposes a SHA256 fingerprint
was taken of each sample to serve as a unique identifier for each sample, SHA256
was chosen as it is a common identifier used in the anti-malware industry.

As the neural network model uses binary cross-entropy as the error function, it is
important to try to have a dataset that is as evenly distributed as possible in its
class labels to prevent the model from getting a bias. If the dataset is uneven, there
is a chance that the model prioritizes the majority class over the other as it results
in a lower overall error during training, which results in the model having a bias
towards the majority label.

Thus to ensure similar distribution of clean and malicious files the distribution
was closely monitored, if the distribution became skewed towards one label, it was
possible to correct the distribution by focusing the pipeline listener to the minority
label until the distribution became roughly equal again. This approach yielded a
dataset size of 1.527.177 samples, where the distribution between malicious and
benign files is 53.6% malicious and 46.4% benign.

4.6 Experiment setup

The experimental setup consists of the following: At first, data was retrieved from
Cyren as described in section 4.5. These hashes are stored within a CSV document
together with corresponding labels. Via sampling, we derive seven subsets of the
following sizes: 5k, 10k, 50k, 100k, 500k, 1M, 1.5M. These splits are to ensure that
all of the experiments will be conducted on the same subsets of data.

For each subset and each LSH method, we run a 5-fold cross-validation experiment,
where the performance indicators described in section 4.7 are recorded and then
averaged over the five folds. Along with the performance metrics the false positives
and false negatives were stored, for false positives, the LSH method, the SHA256
fingerprint and the subset it belonged to were recorded, for false negatives, the same
properties were recorded along with the sample’s detection name, as false negative
samples are malware.
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4.7 Metrics

In order to compare the different prediction models, we rely on three performance
indicators: accuracy (ACC), false positive rate (FPR), and false negative rate
(FNR).

The false positive rate is of particular importance since it will demonstrate the
methods of actual usability in a malware identification environment, where it is
important not to classify clean files as malware.

To calculate the false positive rate, we use the following formula based on the count
of false positives (FP ) and the count of true negatives (TN):

FPR = FP

FP + TN

To calculate false negatives rate, we use the following formula based on the count
of false negatives (FN) and count of true positives (TP ):

FNR = FN

FN + TP

Along with this, we also calculate the accuracy (ACC) this is calculated by dividing
the number of the correctly predicted values with the total:

ACC = TP + TN

TP + TN + FP + FN

Classification metrics are not the only things considered. Practical metrics like
measuring how large of a dataset is needed to train an acceptable classifier is also
taken into consideration.
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Results

This chapter will present the results of our cross-validation experiments. The results
gained from this experiment can be found in table 5.1 in addition to figure 5.1,

5.1 Detection rates

Table 5.1 shows the results from our cross-validation experiment according to the
experiment setup mentioned in 4.6.

Observing the results stated in figure 5.1 and table 5.1 it is possible to see that
from the smallest dataset of 5000 is that the neural network model is highly capable
of finding patterns in the hashes as it yields more than 90% mean accuracy for
Nilsimsa, ssdeep, and TLSH. SDHASH has a higher dataset requirement producing
stable comparable models around the 50k dataset size. The trend continues through
all the dataset sizes, and it shows that false positive rates and false negative rates
decrease as the dataset increases, although with diminishing returns as can be seen
in the difference between the 1M and 1.5M datasets.

Interestingly the SDHASH model which used a count-vectorized style of network
input seems also to produce good results, though falling short against the other
LSH methods.

The results show that the neural network model is more prone to making false
negative predictions rather than false positives, which is a positive trait in the world
of malware detection.

It is also possible to detect a pattern of Nilsimsa having a slight advantage in terms of
mean accuracy compared to the other methods. The difference between the different
LSH-methods’ false positive and false negative rates decreases as the dataset grows.
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Table 5.1: Results from 5-fold cross-validation experiment

LSH TYPE ACC (%) FPR (%) FNR (%) Num Samples
TLSH 93.12 3.53 9.73 5k
Nilsimsa 93.72 3.64 8.56
ssdeep 91.52 3.44 12.75
SDHASH 69.52 60.18 3.68
TLSH 93.15 3.48 9.77 10k
Nilsimsa 94.03 3.36 8.25
ssdeep 91.37 2.15 14.28
SDHASH 78.77 36.12 7.69
TLSH 95.42 2.01 6.1 50k
Nilsimsa 95.95 1.45 6.30
ssdeep 94.62 1.67 8.59
SDHASH 93.12 3.88 9.51
TLSH 96.18 1.42 5.88 100k
Nilsimsa 96.49 1.14 5.55
ssdeep 95.65 0.60 7.56
SDHASH 93.31 4.28 8.78
TLSH 96.80 1.26 4.87 250k
Nilsimsa 97.09 1.09 4.46
ssdeep 96.59 0.63 5.79
SDHASH 94.11 2.65 8.69
TLSH 97.14 1.19 4.30 500k
Nilsimsa 97.41 1.04 3.93
ssdeep 97.21 1.00 4.34
SDHASH 94.52 2.07 8.44
TLSH 97.52 1.03 3.74 1M
Nilsimsa 97.78 1.09 3.17
ssdeep 97.71 1.22 3.21
SDHASH 95.17 2.16 7.14
TLSH 97.79 1.01 3.25 1.5M
Nilsimsa 98.05 1.09 2.69
ssdeep 97.97 0.94 2.98
SDHASH 95.06 1.83 7.63
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Figure 5.1: Results in relation to dataset size
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5.2 Causes of misclassifications

During the experiment, all false negatives and false positives were stored. For false
positives, only the sample’s SHA256 was stored, but for false negatives, the SHA256
and detection names were stored. This section will focus on the models trained on
the entire 1.5M sample dataset, as these are the best performing models and also
the dataset that contains all malware and clean files, giving a better view of the
shortcomings of LSH even under the best circumstances.

5.2.1 False negatives

The results in table 5.2 were retrieved after aggregating the top 10 most common
false negative categories.

Table 5.2: Top 10 most common false negative categories, ordered by percentage
of occurences

TLSH % Nilsimsa % ssdeep % SDHASH %
Unknown 60.09 Unknown 59.55 Unknown 60.13 Unknown 60.54
Redirect 29.15 Redirect 29.86 Redir 29.45 Redir 29.19
Trojan 6.36 Trojan 6.10 Trojan 6.14 Trojan 5.95

CoinHive 1.86 CoinHive 1.95 CoinHive 1.89 CoinHive 1.85
SEOHide 1.22 SEOHide 1.08 SEOHide 1.07 SEOHide 1.12
IFrame 0.46 IFrame 0.49 IFrame 0.47 IFrame 0.43
Faceliker 0.23 Faceliker 0.27 Faceliker 0.22 Faceliker 0.31
Crypted 0.22 FakejQuery 0.29 FakejQuery 0.21 Crypted 0.23

FakejQuery 0.20 Crypted 0.24 Ramnit 0.21 FakejQuery 0.22
Ramnit 0.20 Ramnit 0.19 Crypted 0.20 Ramnit 0.15

The detection names here come from Cyren’s labelling system, the most occurring
false negative category is also the most difficult category to generalise, as according
to Cyren they are no names or unknown, these are files that got flagged for malicious
behaviour but there was not enough information along with the identification to sort
the files into one of the more known malware families.

We can see a general weakness in the LSH approach here as all LSH methods lead
to almost the same false negatives, where the top 7 misclassified categories for all
four LSH methods are the same.

When inspecting these files, it can be seen that they have two common elements,
either they are very similar to clean looking code, like the cases for Redirectors and
FakejQuery, or the actual malicious part of the code is very small, making it easy
to inject into otherwise clean code, like CoinHive.
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The consequences of these factors are that during LSH hashing it might lead to
malicious information getting lost, e.g. if there is a single line of malicious code
in an otherwise clean file it might result in that the hash looks more like a clean
file rather than a malicious file, which is often the case with CoinHive or other
cryptocurrency mining malware. An example of how one can use CoinHive can be
seen in figure 5.2.

var miner = new CoinHive.Anonymous(<wallet_address>); miner.start()

Figure 5.2: CoinHive example

In the case of redirectors, we have malware that is not necessarily doing anything
malicious, as redirecting users on websites is a very common thing, but it is the
destination that is malicious. This is a similar problem with downloader malware
which in figure 5.2 are Trojan, Ramnit, FakejQuery, and Crypted, the act of down-
loading is not malicious, but the file it downloads is malicious which can be hard to
detect. So often in these cases, the destination/download URLs are the malicious
indicators which might get lost during locality sensitive hashing.

So when creating a locality sensitive hash, the hash might end up looking like other
downloader/redirection programs that are benign.

5.2.2 False positives

False positives are a much harder thing to find a pattern in, and since false positives
should be clean files, they do not carry a detection/category name to use as a basis
for generalization. Another issue is that clean files were not explicitly stored during
the data collection process as they are more likely to contain personally identifiable
information; this fact makes looking up false positives for further diagnosis harder.

Thus we had to do the following the false positive analysis. We randomly chose
50 SHA256 signatures from each LSH method’s false positive list, totaling in 200
samples. As the samples were not stored locally, we used VirusTotal as other anti-
malware vendors might have classified the files differently than Cyren. Out of the
200 SHA256 fingerprints, 50 of them were found on VirusTotal. By inspecting said
files, the following can be said on why some false positives happen:

• Due to malware like FakejQuery, there is a chance that other similar benign
code gets detected, e.g., code that is a fork of jQuery or a jQuery plugin.

• Shorter files give hashes that carry less information, leading to higher false
positives. This is the reason for that all four LSH methods has a recommended
minimum file size before hashing.
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• Some obfuscation techniques are less common than others, for example, en-
coding JavaScript statements as a string which the program then interprets
using the eval method is highly suspicious but is not always an indicator of
maliciousness. It is sometimes used to hide sensitive data that should not be
able to get scraped by web crawlers.

5.3 Comparison with existing approaches

When comparing our LSH based models to the competitors, the major differences
are: our classifiers do not rely on any dynamic analysis, which most competitors
use in conjunction with static analysis except for Zozzle, Cujo static, RBF SVM
and ADTree, which are the only fully static competitors. In addition to this, Zozzle
only works on unobfuscated code, if the classifier encounters obfuscated JavaScript
it has to run a companion program called Nozzle which deobfuscates the JavaScript
file before Zozzle can classify it. This is not the case for our LSH based models as
it does not need any extra pre-processing if the file is obfuscated.

In other cases where the classifiers are based on dynamic analysis, they have some
performance limitations where each script has to be run, and then the classifiers
need to wait for certain events to occur before being able to classify the input file.

Making classifiers with small datasets will lead to less generic models. Since there
exists a vast diversity of possible malware and clean files, a small dataset might give
a skewed image of the performances of the methods, due to not being able to verify
whether it works on new never-seen-before malware. This makes it harder for us to
for trust the results stated in table 5.3 of the Zozzle model or the JSAND/Wepawet
model. In our case, we have 1.5M samples with a 54/46 distribution, the only
competitor that had a similar dataset size was Cujo with roughly 201k samples, but
the distribution was 0.3/99.7. This can be further seen in 5.3 as the best performing
classifiers there all have very skewed malware/clean ratios and the classifiers that
do have even distributions tend to perform much worse.

To summarize our models perform better than most competing classifiers and com-
parable with the very best classifier without the drawbacks they have. Another
thing is due to the sheer size of our dataset, we can reliably enforce the validity of
our models and that it should manage a similar performance when used in real life
circumstances.
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Table 5.3: Performance indicators gathered from related works and our best models

Classifier ACC (%) FPR (%) FNR (%) Malware : Clean
Zozzle hand picked 98.2 1.50 1.20 900:8000
Zozzle automatically picked 99.2 0.30 9.20 900:8000
JStill 97.3 17.5 0.53 30k:50k
JSAND/Wepawet 98.3 0.00 0.20 823:11.2k
RBF SVM 86.8 4.92 8.33 14k:12k
ADTree 82.7 2.42 14.92 14k:12k
CUJO static 90.1 0.10 9.80 609:200k
CUJO dynamic 85.9 0.10 14.00 609:200k
CUJO combined 93.8 0.20 6.00 609:200k
Ours - TLSH 97.79 1.01 3.25 818k:709k
Ours - Nilsimsa 98.05 1.09 2.69 818k:709k
Ours - ssdeep 97.97 0.94 2.98 818k:709k
Ours - SDHASH 95.06 1.83 7.63 818k:709k

5.4 Answering the research questions

This thesis has three research questions which can now be answered:

5.4.1 Research question 1

The first question was Do neural network models with locality sensitive hashes as
input features yield high accuracy along with low false positive and false negative
rates when classifying JavaScript malware?

The results in table 5.1 shows that all LSH methods except for SDHASH show high
accuracy and low FPR and FNR. Starting at the smallest dataset of 5000 samples,
whereas SDHASH needs 50k samples to find a learnable pattern.

For TLSH, ssdeep, and Nilsimsa the FPR for all of them is always below 5% starting
immediately at 5000 samples and decreases from there on to a FPR of 0.94%.
Similarly can be said of their FNR capabilities whereas they start at 13% and
decreases to a lowest FNR of 2.69%.

SDHASH perfoms worse than the other LSH methods, with 60.18% FPR when
trained on 5000 samples, but achieves 1.83% when trained on 1.5M samples. How-
ever, coincidental with gaining an above 90% ACC achieves a maximum FNR of
9.51% at 50k samples which then improves along with an increase of the dataset
size yielding a minimum FNR of 7.63% at 1M samples.
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So we are confident in saying that LSH based neural network models do yield high
accuracy along with low false positive and false negative rates when classifying
JavaScript malware.

5.4.2 Research question 2

The second research question was How well do different LSH methods compare with
each other as input into neural networks?

As was discussed in the subsection above, TLSH, Nilsimsa and ssdeep all perform
very similarly. With only SDHASH performing considerably worse than the rest.

The results in table 5.1 show that in general Nilsimsa makes the least tradeoffs
between FPR and FNR, ssdeep has its strengths in a low FPR at the cost of a
higher FNR, TLSH falls somewhere in the middle of ssdeep and Nilsimsa.

So to conclude is that TLSH, Nilsimsa, and ssdeep all perform similarly with SD-
HASH being the clear outlier. One can choose an appropriate LSH method depend-
ing on the situation: ssdeep if the focus is more on having a low FPR, Nilsimsa
if the focus is on low FPR and low FNR or TLSH which performs similarly to
Nilsimsa, but is faster at hashing than Nilsimsa.

Regarding SDHASH, it is not only that the classification performance is not as good,
but with the fact that it has no maximum length of the generated hash, which means
that it is both significantly slower to process the SDHASH hashes and it takes much
much more memory to do so as well. Whereas the 1.5M sample dataset for TLSH,
ssdeep and Nilsimsa all together was roughly 439MB, and the same dataset with
SDHASH hashes was 6.6GB.

5.4.3 Research question 3

The third research question was How well do LSH based neural network models
compare to other techniques for detecting malicious JavaScript files?

Many clear benefits in regards to the proposed method being static are discussed in
previous sections. Given the circumstances of having a vast amount of computing
power and time, a dynamic analysis might still be preferable if the absolute goal is
to have as low of a FPR as possible as can be seen with the JSAND classifier.
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With this in mind, we can see that that the best TLSH, Nilsimsa, and ssdeep models
all perform better than all of the competitors in terms of mean accuracy, except for
the Zozzle ones. The false positive rates of our models are also comparable to the
competitors where the only lower FPRs came from the automatically picked Zozzle
classifier and the CUJO classifiers, though in their cases they traded off low FPR
with a high FNR which our models do not do to the same extents. The three
models all had lower FNR than all competing models except for the hand-picked
Zozzle model at 1.2% FNR and JSAND being a dynamic analysis tool at 0.2%.

Comparing the method to other static analysis methods, our method performs well
being able to produce comparable results while being fully static without some of
the drawbacks of the other competing models, such as working on obfuscated code.

5.5 Threats to validity

Given the results retrieved from this experiment being based on data from a single
origin, the generalisation this method could be questioned. The JavaScript files
processed by Cyren might not be comparable to the data used in other related works.
The classification models proposed in this thesis might thus not be generalisable to
all JavaScript documents but rather only those an anti-malware company might
process.

Since the labels used are a product of Cyren’s internal systems, there is guaranteed to
be some false positives or negatives within the provided dataset. These mislabeled
samples, given a low rate, might add some variance to the final results. Due to
the sheer size of the dataset validating it using manual inspection is not feasible.
This could entail that some false positives and negatives presented in the results
are actually correct classifications. This could also mean that if the mislabeling
of the data were systematic, larger groups of false positives or negatives would go
undetected. Thus in a way, it can be said that our LSH based models might have a
similar bias as Cyren’s internal systems.
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6
Conclusion

6.1 Effectivness of LSH and ML

The results presented in this report strongly suggests that it is possible to find a clear
pattern with malicious script files when compressed into locality sensitive hashes.
All of the different hashing techniques provides a good base for the neural network
to learn and make accurate predictions.

There are many clear benefits with these results in terms of the method being static
and relatively lightweight to run. A personal computer can batch predict thousands
of hashes in just seconds of a measure, making it powerful regarding the real-time
analysis. Since it is static analysis, the system does not have to execute any of the
actual script code, making this method more secure in contrast to dynamic analysis.

Having access to a labelled dataset of the size used in this project is pretty rare
and might result in it being hard to replicate to this scale. As presented in the
results give we learned that this method does not require a staggering amount of
labelled data to be predictive, around 5000 data points for three out of the four
hashing methods. The model performance does increase with more data, however,
with diminishing results.

Another benefit of using locality sensitive hashing with artificial neural networks is
the short training time required to produce a model. Regardless of the LSH method
used, training a model on a consumer grade graphics card (in our case an Nvidia
RTX2080) usually takes less than 10 minutes.
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6. Conclusion

6.2 Practical application

A core benefit of using a model similar to the methods proposed in this thesis is the
speed and performance gains. Because of this method might be beneficial to use
when classifying large amounts of data. The method might also be used in a first
impression system being able to classify new samples in real time.

Since the best models all have low FPR they are also suitable to stacking which
is widely done in the malware industry, which is stacking classifiers on top of each
other, meaning that if the model is not prone to false positives but prone to false
negatives, it can serve as a filter before other classifiers that are prone to false
positives but has better false negatives.

Also, seeing that all LSH methods have similar performances, it is also possible
to create an ensemble classifier that combines different models. In this case, one
could have three classifiers, each one trained on a different LSH method. Then the
predictions are averaged together and a final classification based on said average,
which is called soft voting.

Our dataset comprised of malware that has been trending the last four months,
meaning that if the trend suddenly changes, there is a risk that there is a large
amount of new malware that the classifiers have never seen before. This problem
can be mitigated by regularly retraining the models on datasets representing the
current malware trend.

6.3 Further research

As has been shown, LSH algorithms used in malware identification perform well as
input into neural networks. However, as was discussed in section 4.2, it is necessary
to do some pre-processing on the hashes to make them viable as input in a neural
network model. Creating a locality sensitive hashing algorithm that outputs a fea-
ture vector directly rather than a character string would perhaps yield even better
results as it might be possible to include more information, if not then at least lower
the amount of pre-processing needed to create the input as the LSH method would
output something that could be used directly as input into a neural network model.

We have also shown that the performance indicators of our models all improve with
more data (although with diminishing returns), meaning that there might still be
room for improvement for the models which could be shown with further research,
or perhaps that there is a ceiling on how much our model is able to learn on.
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6. Conclusion

6.4 Closing remarks

In this thesis, we have shown that using locality sensitive hashes as input into neural
networks is a strong and viable option in the world of JavaScript malware identifica-
tion. We evaluated four LSH methods, Nilsimsa, TLSH, ssdeep, and SDHASH and
showed that three of them perform comparably to each other with the exception of
SDHASH being an outlier. We also explored the scalability of this method showing
that the proposed method scales with the dataset size, though with diminishing
returns.

In the end, the results of this thesis spawn a number of areas to explore in the field
of using locality sensitive hashing with machine learning.
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