
Riposte: A Collaborative Cyber Attack
Response Framework for the Automo-
tive Systems

Master’s thesis in Software Engineering and Technology

SAIF ALDAGHISTANI

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Riposte: A Collaborative Cyber Attack Response
Framework for the Automotive Systems

SAIF ALDAGHISTANI

Department of Computer Science and Engineering
Division of Software Engineering and Technology

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2021

Riposte: A Collaborative Cyber Attack Response
Framework for the Automotive Systems

SAIF ALDAGHISTANI

© SAIF ALDAGHISTANI, 2021.

Supervisor: RODI JOLAK, Department of Computer Science and Engineering
Examiner: CHRISTIAN BERGER, Department of Computer Science and Engineer-
ing

Master’s Thesis 2021
Department of Computer Science and Engineering
Division of Software Engineering and Technology
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Image of connected lines and dots representing a car, and digits of zeros and
ones representing binary data [1].

Image Copyright: In terms of reuse of third party images, permission to republish
has been sought.

Gothenburg, Sweden 2021

iv

Riposte: A Collaborative Cyber Attack Response Framework for the Automotive
Systems
Saif Aldaghistani
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Context: Today, sophisticated technologies and brilliant solutions, that were con-
sidered impossible before, are all around us. Many of these advancements in tech-
nologies were possible thanks to the introduction of the Internet. This wide con-
nectivity between different devices and the ability to communicate no matter the
distance have boosted the possibilities to levels unseen before. The automotive
domain has got its own share of advancements from the Internet, providing more
services and functionalities. However, this wide connectivity and openness to the
Internet raise cyber security concerns. These services that depend on online con-
nectivity can serve as entry points for hackers to perform attacks on different assets
of the vehicle. Some of these attacks could be considered minor, but some could be
considered severe and potentially threaten human lives.
Problem: That being said, choosing the right and most suitable response technique
for an ongoing cyber attack could be challenging, especially when there are many
response techniques to choose from.
Objective: Thus, this study aims to provide a solution in order to help identify
and evaluate different cyber attack response techniques for a specific cyber attack
in real-time.
Approach: To achieve this goal, the study will follow the design science research
methodology by performing three iterations. The first iteration would focus on find-
ing out and discussing the available state-of-the-art cyber attack response techniques
from the literature. The second iteration would discuss and propose a solution to
help evaluate suitable response techniques in real-time. Finally, the third iteration
would focus on evaluating the proposed solution from the safety aspect.
Results: The results for this study were a taxonomy of state-of-the-art cyber attack
response techniques regarding the software asset and their descriptions, a collabora-
tive framework that evaluates different suitable response techniques when an attack
is in progress, and an evaluation of safety by conducting a qualitative study with
different experts through a questionnaire.
Conclusion: In conclusion, the proposed framework was deemed slightly unsafe
based on the perception of participants. That being said, the participants provided
some insight on how to improve the overall safety of the framework in order to make
it safer for deployment.

Keywords: connected car, automotive security, response techniques, cyber security,
vehicle collaboration.

v

Acknowledgements
First and foremost, I would like to express my sincere gratitude to my academic
supervisor Rodi Jolak for his constant support and advice throughout the thesis
work. I would also like to thank Christian Sandberg and Thomas Rosenstatter for
sharing their time and invaluable knowledge whenever needed. I would like to thank
my examiner Christian Berger for all the constructive feedback received throughout
the thesis work. Furthermore, I would like to thank my family for their unlimited
support throughout the master’s study journey. Finally, I would like to thank my
fiancé, Maryam, for her patience and all the love and support she provided during
this study.

Saif Aldaghistani, Gothenburg, June 2021

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Statement of the Problem . 2
1.2 Purpose of Study . 2
1.3 Significance of the Study . 3
1.4 Research Questions . 3
1.5 Scope . 4
1.6 Thesis Outline . 4

2 Background 5
2.1 The Connected Car . 5

2.1.1 Electronic Control Units . 6
2.1.2 Inter-Vehicle Communications 7
2.1.3 In-Vehicle Communications 9

2.2 Vehicle Cyber Security Concerns . 11
2.3 Continuous Practices . 14
2.4 Related Work . 15

3 Research Methodology 17
3.1 Design Science Research . 17

3.1.1 Problem Conceptualization . 18
3.1.2 Solution Design . 18
3.1.3 Design Evaluation . 18

3.2 Qualitative Study . 19
3.2.1 Participants . 19

3.3 Simulation . 21
3.4 Thematic Analysis . 21

4 Results and Discussion 23
4.1 Problem Conceptualization . 23

4.1.1 Redundancy and Diversity . 24
4.1.1.1 Software Redundancy 25
4.1.1.2 Agreement/Voting 25
4.1.1.3 N-version Design . 26

ix

Contents

4.1.1.4 Recovery Blocks . 27
4.1.1.5 N self-checking . 27
4.1.1.6 N-variant Systems 28
4.1.1.7 Replacement of Cold/Hot Spares 29

4.1.2 Adaptive Response . 29
4.1.2.1 Retry . 29
4.1.2.2 Model-based Response 30

4.1.3 Runtime Enforcement . 31
4.1.3.1 Safety Guard . 31

4.1.4 Reconfiguration/Re-parameterization 31
4.1.4.1 Reinitialization . 31
4.1.4.2 Reparameterization 32
4.1.4.3 Graceful Degradation/Limp Mode 32
4.1.4.4 Isolation . 33
4.1.4.5 Restructure . 33
4.1.4.6 Dynamic Deployment of Policies 34
4.1.4.7 Rescue Workflow . 34

4.1.5 Migration . 35
4.1.5.1 Relocation/Migration 35
4.1.5.2 Preemptive Migration 35

4.1.6 Checkpointing and Rollback 35
4.1.6.1 Re-instantiation/Restart 35
4.1.6.2 Checkpoint Recovery 36
4.1.6.3 Software Rejuvenation 36

4.1.7 Rollforward Actions . 37
4.1.7.1 Exception Handling 37

4.2 Riposte: Solution Design . 38
4.2.1 Network Architecture of the Framework 38
4.2.2 Continuous Experimentation 39
4.2.3 Framework Structure . 40
4.2.4 Framework Behavior . 42
4.2.5 Implementation and Testing 44

4.2.5.1 Attack Simulation 47
4.2.5.2 Implemented Response Techniques 47

4.3 Riposte: Design Evaluation . 50
4.3.1 Automated experiments without human interaction 52
4.3.2 Qualification of workshop cars 53
4.3.3 Trustworthiness of results . 53
4.3.4 Framework Design . 54

5 Threats to Validity 57
5.1 Internal Validity . 57
5.2 External Validity . 58
5.3 Construct Validity . 58
5.4 Conclusion Validity . 58

6 Conclusion 59

x

Contents

6.1 Future Work . 60

Bibliography 61

A Appendix 1 - Questionnaire I
A.1 Questions about the safety of the framework I

xi

Contents

xii

List of Figures

2.1 Software size difference in different systems [2]. 5
2.2 A few examples on the Electronic Control Unit functionalities that

can be found in a modern vehicle. 6
2.3 A simplified representation of an Electronic Control Unit. Adapted

from [3]. 7
2.4 Different vehicle connectivity forms. 8
2.5 The Central Gateway bridging different functional domains and het-

erogeneous vehicle networks [4]. 11
2.6 Examples of threats and faults in a connected vehicle [5]. 13
2.7 The Continuous Experimentation process. Adapted from [6]. 14

3.1 Research activities when conducting design science research. 18
3.2 Thematic synthesis process [7][8]. 22

4.1 Response techniques for the software asset of a vehicle. 24
4.2 Software Redundancy. 25
4.3 Agreement and Voting. 26
4.4 N-version Design. 26
4.5 Recovery Blocks. 27
4.6 N self-checking using Acceptance Tests. Adapted from [9]. 28
4.7 N self-checking using Comparison. Adapted from [9]. 28
4.8 N-variant Systems. Adapted from [10]. 29
4.9 Retry technique. 30
4.10 Model-based Response general scheme. Adapted from [11]. 30
4.11 Safety Guard. Adapted from [12]. 31
4.12 Reinitialization technique. 32
4.13 Reparameterization technique. 32
4.14 Graceful Degradation/Limp Mode technique. 33
4.15 Isolation technique. 33
4.16 Restructure technique. 34
4.17 Re-instantiation/Restart technique. 36
4.18 Checkpoint Recovery technique. 37
4.19 Software Rejuvenation technique. 37
4.20 The Component Diagram of the "Riposte" framework. 41
4.21 The Deployment Diagram of the "Riposte" framework. 41
4.22 The Sequence Diagram of the "Riposte" framework. 43
4.23 Server: listening state. 45

xiii

List of Figures

4.24 Client(onRoadCar): successfully connected. 45
4.25 Server: several clients connected, listing their technical specifications

and their collaboration status. 45
4.26 Client(onRoadCar): manual execution of the attack script. 45
4.27 Server: listing the results of the evaluation and the best effective

response technique. 46
4.28 Client(onRoadCar): received the update from the server and applying

the suggested response technique. 46
4.29 Client(onRoadCar): checking that the response technique is applied. . 46
4.30 Server: The onRoadCar requests for evaluation, the server acknowl-

edges that the onRoadCar is using the best response technique. . . . 46
4.31 Client(onRoadCar): The onRoadCar uses the already applied re-

sponse technique after receiving an acknowledgement message from
the server. 47

4.32 Thematic model for the safety of the developed framework. 51
4.33 Questionnaire box plot: overall safety of the developed framework. . . 52
4.34 Questionnaire box plot: qualification of workshop cars as a safety

concern. 53
4.35 Questionnaire box plot: trustworthiness of results as a safety concern. 54

xiv

List of Tables

2.1 Automotive Networks Overview [13]. 10

3.1 Participants of the questionnaire. 20

4.1 Key differences between Client-Server and Peer-to-Peer architectures. 38
4.2 Available services on the system. 48
4.3 Services that are disabled in the system. 48

xv

List of Tables

xvi

1
Introduction

With the introduction of 5G cellular technology, the automotive systems will have
an increased level of automation, including tighter integration with other vehicles,
traffic infrastructures, and different cloud services [14]. While this improves the
overall safety of the passengers and opens up the system to new opportunities, it
would also increase the complexity and uncertainty of such systems [14]. The wide
connectivity and high reliability over Internet services raise cyber security concerns,
especially in the automotive domain; being a safety and real-time critical system
that is being operated by millions of individuals [15]. These online services can
provide attackers with entry points that can be used to perform attacks on different
assets of the vehicle. Some of these attacks can be considered minor, but some can
be considered severe and can threaten human lives.

To deal with such vulnerabilities, a great effort has been spent in the past years.
This in order to establish guidelines and standards for the security of the automotive
domain and in identifying security principles [15]. In 2017, the European Union
Agency for Network and Information Security (ENISA) published cyber security
guidelines and recommendations for the automotive domain [16]. Additionally, the
International Organization for Standardization (ISO) has an upcoming ISO/SAE
standard (ISO 21434) for cyber security engineering for road vehicles [17].

To comply with these guidelines and standards, different techniques are proposed for
cyber attack detection, analysis, and response. To explain these terms, Stojanović
et al. [18] define cyber attack detection as the ability for a system to recognize unau-
thorized activity or access that happens in a network-based environment. Moreover,
Ochieng [19] describes cyber attack analysis as “the process of assessing the cyber
activities and capabilities of unknown intelligent entities or criminals”; this is to
measure the impact of a cyber attack and its feasible path within the system. As
for cyber attack response, it is the process of blocking, quarantining, or generally
dealing with a threat that has been identified by the cyber attack detection system,
preferably with a minimum amount of losses caused to the system.

This study aims to explore available cyber attack response techniques for cyber secu-
rity attacks against the automotive systems. It also aims to investigate collaborative
ways for evaluating these cyber attack response techniques and finding which one of
them is the most suitable for a given ongoing attack.

1

1. Introduction

1.1 Statement of the Problem

Vehicles nowadays are not considered as a mere means of transportation any longer.
A vehicle is considered to be a network of nodes that can deliver different driving
needs and services to its user. Being able to share data across surrounding vehicles on
road, the ability to anticipate a sudden stop of other vehicles, and all other real-time
internet services like streaming of high-definition videos and ultimately self-driving
vehicles, are all services that the industry is racing towards. Some services are
already implemented, and some will be with the deployment of 5G cellular networks.
By providing high bandwidth, millisecond latencies, and improved reliability, the
dream of self-driving vehicles is closer to reality than ever before.
However, the automotive domain is a safety and real-time critical field, and millions
of individuals use it every day [15]. This wide connectivity and openness to the inter-
net provide users with uncountable services, but it comes with the risk of increasing
cyber security threats. These services can serve as entry points and allow for cy-
ber attacks against such systems. These cyber attacks can target different assets
and different quality attributes of the system. These assets are hardware, software,
network, and data, while attributes could be vehicle performance, resource usage,
privacy of users, the safety of the passengers as well as the pedestrians around the
vehicle, and more.
The approach to solve such vulnerabilities can be challenging, with many security
standards and protocols being researched and developed continuously. But eventu-
ally, attacks will happen, and as the ex-CEO of Sony ‘Howard Stringer’ once said:”
Nobody’s system is 100 percent secure” [20]. Therefore, an extra effort could be
spent on cyber attack response techniques to reduce the impact of cyber attacks on
a system and/or eliminate them with minimum losses.

1.2 Purpose of Study

The purpose of this study is to explore the available cyber attack response techniques
on the software asset of the vehicle and then design and develop a framework in
which helps evaluate these cyber attack response techniques collaboratively, using
the Continuous Experimentation practice. By contributing a dataset of cyber attack
response techniques for the software asset; a collaborative framework to identify
an effective and most efficient cyber attack response technique against an ongoing
attack; and an evaluation of safety of the proposed framework. The goal of providing
a safer and better cyber attack response technique against such a cyber threat is
abridged.
This study is intended to benefit both the researchers and practitioners; by providing
a dataset of available cyber attack response techniques for the software asset of the
vehicle, and a collaborative framework proposal for evaluating the best cyber attack
response variant for that specific cyber attack for the latter.

2

1. Introduction

1.3 Significance of the Study

Overall, the study aims to explore the state-of-the-art cyber attack response tech-
niques that are available at the current time and to develop a collaborative frame-
work that helps in evaluating these cyber attack response techniques against cyber
attacks.
The concrete contributions of this study are to:

• Provide a dataset of cyber attack response techniques for the software asset of
the vehicle

• Design and implement a collaborative framework to help evaluate and pick an
effective and most efficient cyber attack response technique against an ongoing
cyber attack

• Evaluate this framework in terms of safety

1.4 Research Questions

The design of this thesis is to first conceptualize the problem by learning the domain
and identifying the available state-of-the-art cyber attack response techniques from
literature, then design a solution (artefact) for evaluating these techniques in terms
of effectiveness and efficiency along with its implementation, and finally evaluate
the safety aspect of the proposed artefact. Therefore, this thesis is broken down
into three iterative research questions that will be answered using the design science
research (DSR) methodology.
RQ1: What are the suitable response techniques for cyber attacks against the soft-
ware asset of vehicles?

This research question aims to categorize suitable cyber attack response techniques
for attacks based on the software asset of the vehicle.

RQ2: How to support online collaborative cyber attack response between different
vehicles to select the right cyber attack response technique when an attack is in
progress?

This research question aims to investigate the design of collaboration between dif-
ferent vehicles against a cyber attack by evaluating different suitable cyber attack
response techniques when an attack is in progress. This in order to find out an
effective and most efficient cyber attack response technique for that specific attack
to be shared with the vehicles.

RQ3: What is the perception of experts on the safety of the proposed solution?

This research question aims to look for safety concerns and considerations when
implementing the proposed solution by conducting a qualitative study with security
and/or safety experts.

3

1. Introduction

1.5 Scope
The study will use the taxonomies provided by [15] to elicit the state-of-the-art
response techniques for specific attacks on the different assets of the system, any
additional taxonomies will not be considered. Furthermore, this study will consider
the software asset of the vehicle and not consider any other asset and will focus on the
collaborative response of one attack that is related to that asset. Additionally, the
study will only consider three suitable response techniques based on the considered
attack on the software asset.
That being said, the cyber attack response technique usually sits at the end of the
security chain (Firewall -> Intrusion detection system -> Antivirus -> Response
technique). And since this study’s main consideration is to explore response tech-
niques and propose a solution to evaluate them, it will not focus on implementing a
complex attack scenario nor a sophisticated detection mechanism.

1.6 Thesis Outline
The remaining parts of the thesis will be structured as follows: Chapter 2 provides
background knowledge and related work on fields that are related to this study,
chapter 3 describes the research methodology of the study and the data collection/-
analysis methods used, chapter 4 presents the results and discussion of the study,
chapter 5 describes the threats to validity of this study, and finally the conclusion
of this study is discussed in chapter 6.

4

2
Background

This chapter provides theory and background information that covers the technical
and scientific concepts presented in this thesis. Section 2.1 describes the modern
connected car and the technologies used to make it as such. This is followed by some
background information in automotive cyber security concerns in 2.2. In section 2.3,
the continuous practices are explained. Finally, related work is discussed in 2.4.

2.1 The Connected Car
Up to the 1970s, vehicles were mainly built and operated using purely mechanical
parts. It is during the eighties when the first adoption of electronic components was
introduced. Since then, vehicles were built using a mix of both digital hardware
and software components. Nowadays, software is gaining central importance in the
process of vehicular applications and services development enabling sophisticated
functionalities that cannot be achieved using hardware components alone. Exam-
ples on software applications in a vehicle can range from simple control units to
full autonomous driving. In fact, vehicles nowadays are considered to be the most
software-intensive systems in the universe [21] with millions of lines of code. Fig-
ure 2.1 shows a comparison between the number of lines of code between different
systems.

Figure 2.1: Software size difference in different systems [2].

5

2. Background

The software is distributed and executed on multiple small computers that reside
inside the car, called Electronic Control Units (ECUs). These ECUs are small com-
puters that are interconnected with each other to perform certain functionalities,
depending on their purpose. ECUs with similar tasks and functionalities are con-
nected together in functional domains, and each domain is then connected with
other domains through a central hub, called the Central Gateway (CGW), as shown
in figure 2.5

2.1.1 Electronic Control Units
Today, the internal architecture of vehicles is quite complex and distributed over a
hundred of ECUs. These ECUs are small computers that oversee and regulate cer-
tain functions inside a vehicle by processing information from sensors and actuators
and by communicating with other ECUs through the network. These functionali-
ties can range from simple automated operations to more complicated ones, such
as controlling the windshield wipers when sensing rain, driver alertness monitor-
ing, automatic parking system, and many others. Figure 2.2 shows a few ECU
functionalities that can be found in modern vehicles.
The way that an ECU works is based on electronic signals received from sensors.
Upon receiving a signal, the ECU then (based on how it was programmed) sends
instructions to actuators to perform certain operations. ECUs inside the vehicle can
also communicate with each other to perform collaborative tasks using the in-vehicle
networks (to be discussed in subsection 2.1.3).
There are many architectures used by the industry when it comes to building ECUs,
with each ECU having its protocols of communicating/interacting with the environ-
ment. However, most of them share the technical specifications shown in figure 2.3
to some extent.
These hardware differences between different ECU manufacturers have increased

Figure 2.2: A few examples on the Electronic Control Unit functionalities that
can be found in a modern vehicle.

6

2. Background

Figure 2.3: A simplified representation of an Electronic Control Unit. Adapted
from [3].

the complexity of ECUs, making the process of software development harder. This
led to the development of the Automotive Open System Architecture (AUTOSAR);
an open standardized software architecture for automotive ECUs1 which provides a
standardized software architecture for ECUs that is independent of what hardware
is being used.

2.1.2 Inter-Vehicle Communications

With the expansion of Internet connectivity in general and the implementation of
5G technology specifically, it was only logical that every electronic device could
benefit from services that, before the Internet, were not possible. So is the case for
the automotive domain, the term "Connected car" is used to identify a vehicle that
has connections to the outside external networks, including the Internet and other
networks, in order to improve the driving experience by providing better services
and safety functions to its users.
Through connectivity, users can access features like traffic reports, service infor-
mation regarding their vehicle, and to open up more services in the infotainment
system; a combination of systems that enables the delivery of information and enter-
tainment to the passengers. The infotainment system supports features like enabling
the use of touch screen displays, watching live streaming videos, browsing the web
and social media, the use of voice commands, and many other services.
That being said, modern vehicles can connect not only to the Internet but to their
surroundings as well. Vehicle connectivity is often referred to as Vehicle to Every-
thing Communications (V2X), which is considered to be the parent category. It is
further divided into multiple subcategories, as shown in figure 2.4.

1https://www.fpt-software.com/what-is-autosar-and-why-is-it-important/

7

2. Background

Figure 2.4: Different vehicle connectivity forms.

Vehicle-to-Network (V2N) communication enables the vehicle to use cellular
networks for communicating with the V2X management system. It uses Dedicated
Short-Range Communications (DSRC) standard to interact with other vehicles and
infrastructures around it. This connectivity allows the vehicles to be considered as
normal digital devices, like a smartphone or tablet. It also allows the vehicle to
receive information like traffic alerts, weather information, and congestion status.
By using 5G, LTE, and DSRC technologies, V2N allows the vehicle to interact
reliably with other vehicles, devices, infrastructures, and even pedestrians around
it.
Vehicle-to-Infrastructure (V2I) communication is used to exchange information
bidirectionally between the vehicle and the road infrastructure, which is an integral
part of the Intelligent Transportation Systems (ITS). This information can include
traffic data that has been gathered from other vehicles or sensors on the road infras-
tructure. It could also include other information, such as speed limits, traffic jams,
and weather conditions. V2I and ITS are considered to be the keys for autonomous
vehicles, as they hold valuable information that vehicles could rely on.
Vehicle-to-Vehicle (V2V) communication allows vehicles to exchange informa-
tion in real-time. This is performed wirelessly via DSRC, the same technology that
is used in V2I communications. With V2V, vehicles can share data such as their
speed, destination, location, and any other relevant information. When a vehicle
starts V2V communications, it becomes a node inside a mesh network, in which it
can capture, send, and re-transmit signals to/from vehicles.
Vehicle-to-Cloud (V2C) communication makes use of the access to broadband
cellular mobile networks that are provided by V2N in order to offer data exchange
with the cloud. Some applications that leverage this communication include Over-
the-Air (OTA); a way to update the software of the vehicle remotely, and bidirec-
tional communications with other IoT devices that are also connected to the cloud.

8

2. Background

Vehicle-to-Pedestrian (V2P) communication can help vehicles detect and iden-
tify wheelchairs, strollers, and bicycles when a smart sensor is attached to them.
With that, some level of awareness could be established. Some vehicles can also use
LiDAR technology to detect pedestrians and expect possible collisions.

2.1.3 In-Vehicle Communications
In order to provide various services and functionalities to the driver/passengers, some
collaboration of ECUs is likely to be required. It is also likely that some services
require higher bandwidth than others in order to perform their desired tasks. For
these reasons, different technologies are used within the vehicle in order to provide
different types of connectivity, depending on the needs. Thus, the vehicle is divided
into different functional domains that can perform certain operations, each requiring
different properties depending on its applications.
That being said, it is not possible for different ECUs and functional domains that are
using different communication protocols to properly communicate with each other.
The reason being is that each functional domain has different network technologies
implemented within. For that reason, all functional domains are connected to a
central hub called the Central Gateway (CGW) [4]. The CGW’s main task is to
process data between the heterogeneous vehicle networks by translating the different
protocols and routing data between different functional domains. It also provides an
additional layer of security by physically separating functional domains from each
other, as shown in figure 2.5.
As of today, there are five main types of networking technologies used inside the
vehicle:

• Controller Area Network (CAN): introduced by Bosch in 1986, CAN
is a bus system that is the dominant standard used by the industry for in-
vehicle communications due to it being cost-efficient and more flexible when
compared to other network technologies. In CAN, the data is segmented into
frames that are labeled to determine the priority when being transmitted.
Every segmented frame is then sent sequentially thereafter. The payload of
each frame permits up to 8 bytes of data, with a maximum speed of 1 Mbps.
That being said, there is an alternative to CAN, named CAN with flexible
data-rate (CAN-FD), that supports up to 64 bytes of data and a speed that
reaches 8 Mbps.

• FlexRay: developed by FlexRay Consortium, FlexRay was designed to pro-
vide faster and more reliable communications than what CAN has to offer. It
is a bus system that is resilient to communication channel errors, coding/de-
coding, redundancy checks, and sampling signals. It can include static and dy-
namic segments; the static segment is based on time-division multiple access
(TDMA), which is used in real-time communications, whereas the dynamic
segment is based on an event-driven communication protocol, which is used
in service-based messaging. FlexRay can support data rates of 10 Mbps as
opposed to CAN that supports up to 1 Mbps. However, due to its higher cost
and complex communication protocol, CAN is still the favourable choice in the
industry. That being said, FlexRay is still used in safety-critical applications

9

2. Background

where a strict time frame is required.

• Media Oriented Systems Transport (MOST): the MOST bus was intro-
duced in order to meet the standard of applications that require higher data
rates that other technologies could not offer. By providing low overhead and
low-cost interfaces that can be implemented on speakers and microphones,
making it ideal for multimedia and infotainment purposes.

• Local Interconnect Network (LIN): the first implemented specifications
were released in 2002. LIN uses low-cost, flexible, and basic sensors to establish
small networks. These subsystems can be established over a backbone network,
like CAN. It has a very low speed of around 20 kbps when compared to other
technologies. However, it is widely used in applications that do not require
high data transfer speed, such applications as controlling the side mirrors,
doors, and seats.

• Automotive Ethernet (AE): the AE is a growing technology that is capable
of supporting a high bandwidth of 1 Gbps. It is more secure than CAN and
LIN and implements IP-based routing schemes, which prevent ECUs from
being hacked as well as hindering the attackers from taking full control over
the whole Ethernet [22]. The AE can be easily adopted in the industry due to
the existing common Ethernet standards.

Table 2.1 shows the technical specifications of the different networking technologies
used for in-vehicle communications, followed by figure 2.5 that illustrates how they
are connected through the CGW.

Table 2.1: Automotive Networks Overview [13].

Max Speed Cable Type Cost Applications
CAN 1 Mbps Twisted pair, 5v $$ ABS, Powertrain, Engine

control
LIN 19.2 kbps Single wire, 12v $ Electric Seats, Mirrors,

Tailgate
FlexRay 10 Mbps 2 or 4 wires $$$ Steering, Traction control,

Active suspension
MOST 23 Mbps Fiber optic, Coax $$$$ Media Players, Infotain-

ment
Ethernet 1 Gbps One or more

twisted pairs
$$ IP Cameras, Radar, Info-

tainment

10

2. Background

Figure 2.5: The Central Gateway bridging different functional domains and het-
erogeneous vehicle networks [4].

2.2 Vehicle Cyber Security Concerns
The automotive industry is growing every year through the huge developments of
novel applications and services, with more than 90% of inventions lead to innovations
in the vehicle’s software and hardware [22]. Thanks to the modern advancements
of electrical and electronics, specifically the ECUs, vehicles are now faster, more
sophisticated, and more fuel-efficient.
The advancement in ECUs and the vast communication network that intercon-
nects them enable new features to be achieved; remotely locking/unlocking, brakes,
airbags, automatic parking, driving assistance, GPS, and many more. These achieve-
ments were possible because of the hundreds of megabytes of code written in the
vehicle’s ECUs [22].
However, as the vehicle becomes more advanced, the probability of cyber threats
increases simultaneously. And since the ECUs are interconnected with each other
through the CAN bus, any compromised ECU could potentially make the entire
network in danger.
Today, vehicles can connect using multiple connection points to the outside networks,
one of which is the Internet. This wide connectivity requires the application of cyber
security principles to the various components of the vehicle in order to ensure the
their safety and security from any type of malicious attacks. Rosenstatter et al. [15]

11

2. Background

discuss four types of assets within a vehicle that can be compromised by an attacker;
hardware, software, network/communication, and data storage.

• Hardware: can be divided into ECUs, sensors, and actuators. Each ECU
can have different hardware and software, depending on the task it performs.
An ECU can relate to the processing of one sensor signal, or it can deal with
infotainment tasks that deal with many applications. Sensors can provide
information, such as speed and temperature. Actuators can turn input from
sensors into actions via the ECU, such as braking and steering.
Attack example. Installing malicious hardware or tampering with one inside
the vehicle. This can act as a mediator and enable the possibility to gain
complete control over the vehicle [15].

• Software: can exist in different categories: in-transit, at-rest or running. In-
transit can be related to software provisioning systems, like OTA or workshop
updates. The running and at-rest categories can be related to software instal-
lation processes or software that runs in ECUs [15].
Attack example. Software vulnerabilities could be exploited via a privilege
escalation attack, which enables the ECU to be reprogrammed and include
additional functionalities, such as enabling/adding remote access [15].

• Network/Communication: can be divided into in-vehicle and inter-vehicle
communications. In-vehicle communications can be CAN, FlexRay, MOST,
LIN, AE. Inter-vehicle communications can be Wi-Fi, Bluetooth, LTE, and
V2X.
Attack example. Denial-of-service attack.

• Data Storage: can be sensitive data, such as system information, crypto-
graphic keys, forensics logs, and reports about the driver.
Attack example. Secret keys can be exploited and used for sensitive diagnostics
in order to disable the firewall.

Attackers typically exploit the assets mentioned above in order to achieve their goals
through various vectors. Figure 2.6 shows examples of different faults and threats
that could be performed against a connected vehicle.

12

2. Background

Figure 2.6: Examples of threats and faults in a connected vehicle [5].

When it comes to securing a vehicle, it is definitely not a straight forward task. For
that, Karahasanovic [23] discusses a few main difficulties that should be taken into
account when securing a connected car:

• Over-the-Air updates (OTA): being referred to as "Computer on wheels"
[24], the connected car has a very complex software architecture in order to
support new enhanced features. For such systems, software updates are nec-
essary to keep the products bug-free and continuously apply security patches.
Some of these updates could have quite the challenge when applied, as they
could be critical for the safety of the driver and passengers. Therefore, OTA
ensures a connection between the vehicle and its manufacturer in order to ap-
ply software updates. However, this connectivity could potentially be abused
by attackers in order to gain access to the vehicle.

• Old vehicles technology: because of the vehicle’s long life-cycle, the decades
years old vehicles would still be functional in the streets running old technolo-
gies. This could provide an advantage to attackers by overpowering the old
vehicle through modern and more advanced computational power, making the
process of exploiting the car easier.

• Monitoring difficulty: it is not easy to monitor the status of a vehicle by a
certified authority because the vehicle might not always be connected to the
Internet [23], [25].

• Cost: one of the major difficulties is to make all components of the vehicle
secured. This requires the employment of more people as well as changing the
entire development process to incorporate security [23].

• No Safety without Security: it requires only one malicious vehicle on the
road to cause a potential hazard for the environment around it, such as other
vehicles, pedestrians, and road infrastructures [23].

13

2. Background

2.3 Continuous Practices

Continuous practices are techniques that are mainly used in the software industry
to enable development, test, and deployment of software in a reliable and consistent
manner. These techniques are Continuous Integration (CI), Continuous Deployment
(CD), and Continuous Experimentation (CE).

Continuous Integration accelerates the development process by allowing immediate
integration of the new software into the code base after being tested. This often
happens in an automated fashion. Continuous Deployment, on the other hand,
ensures that the newly integrated software is ready to be deployed into the final
system. As for Continuous Experimentation, it allows the possibility to deploy and
run different versions of a software alongside the official software in order to evaluate
their respective performances [26].

The Continuous Experimentation was originated from the software-intensive web-
based field. It guides the software evolution process by allowing the collection of
real-world data from running experiments and use that to make informed deci-
sions rather than opinions and past experience, i.e. closing the Open-Loop [27].
And since the automotive domain is growing rapidly and becoming more software-
dependent, Continuous Experimentation might be suitable for implementation [26].
Some automotive domains have mechanisms to push updates into vehicles through
Over-the-Air (OTA) technology. Hence, a link could be established between the
vehicle and its manufacturer, and this is one of the prerequisites for Continuous
Experimentation [26]. Figure 2.7 shows the Continuous Experimentation approach
to the software evolution process.

Figure 2.7: The Continuous Experimentation process. Adapted from [6].

14

2. Background

2.4 Related Work
This section discusses related work with the focus of a few main technologies that
are closely related to this thesis study. This section will dive into work related to re-
sponse techniques, followed by work related to vehicle collaboration in cyber security,
and finally will discuss other work that focuses on the Continuous Experimentation
in the automotive domain.

Response Techniques
For identifying cyber attack response techniques, Rosenstatter et al. [15] present a
systematic literature review that proposes a framework “REMIND” to support the
design of resilient automotive systems. The study provides a taxonomy of state-of-
the-art techniques for cyber attack detection, mitigation, recovery, and endurance.
It also discusses the trade-offs when using certain cyber attack response techniques
and when applying the guidelines provided by the framework. This framework acts
as multi-dimensional decision support that helps designers to make an informed
and optimal selection of techniques when it comes to implementing them in the
automotive systems.
On the other hand, Ratasich et al. [5] provide an overview of the state-of-the-art
mechanisms to resilience for the IoT devices that require monitoring and controlling
from a distance. It summarizes the state-of-the-art techniques on cyber attack
detection, diagnosis, and recovery/mitigation by mainly focusing on non-intrusive
methods, which act in the communication networks and on the face of IoT devices.
This study also states the challenges when applying these techniques in the IoT and
describes a road map on how to achieve resilience for these devices.

Vehicle Collaboration in Cyber Security
While there is almost no literature regarding collaborative cyber attack response of
automotive systems that could be found, there are a few studies that are concerned
with vehicle collaboration in other fields of cyber security.
Mousavinejad et al. [28] proposed a distributed attack detection and recovery mech-
anism to address the problem of detecting cyber attacks that target the vehicle pla-
tooning system through the shared communication network and employed on-board
sensors. The proposed solution is mainly divided into two parts: attack detection and
recovery. The attack detection focuses on attacks that compromise sensor measure-
ments and/or control command data. The core of the distributed attack detection
algorithm is the ellipsoidal filtering that provides state prediction and state estima-
tion sets. The detection of the attack is determined when the two sets intersect
each other. The recovery mechanisms provided by this study depend on reliable
modifications of signals of the vehicle that are attacked.
Other related work regarding this matter is based on collaborative Intrusion Detec-
tion Systems (IDS). With that, Nandy et al. [29] proposed a trust-based collabo-
rative IDS, in which each vehicle keeps a score table of other vehicles in order to
identify their previous patterns of the network behavior. The neighboring vehicles

15

2. Background

would then share their score tables with each other using the Vehicle ad-hoc network
(VANET).
Another work has been conducted regarding collaborative IDS from Raja et al. [30],
in which it proposes the use of distributed machine learning (DML) model that is
based on the alternating direction method of multipliers. This to leverage the V2V
collaboration in the learning processes in order to improve the accuracy, scalability,
and storage efficiency. This work also targets privacy risks associated with the
DML-based collaborative IDS.

Continuous Experimentation in the automotive domain
While Continuous Experimentation is mainly used for software-intensive web-based
applications, it also found its way into the cyber-physical systems, as they grow to
become more software-dependant. A study has been conducted by Giaimo et al.
[31] in order to introduce continuous experimentation to the field of cyber-physical
systems, on the example of the automotive domain. The study demonstrates and
evaluates a prototype infrastructure that is implemented on a distributed computa-
tional system in a commercial truck that is used daily in public roads. The system
contains units and sensors, and the software deployment and data retrieval processes
are done remotely via a mobile data connection. The study showed that the devel-
opment team was able to apply software deployments based on real-world data that
is collected during the experiment. Hence, proving the applicability of Continuous
Experimentation in the automotive domain.

16

3
Research Methodology

This chapter describes the research methods used for conducting this study. It begins
with describing the design science research methodology that this study follows in
3.1, followed by a qualitative study in 3.2 and simulation in 3.3. Finally, a description
of the thematic analysis used to analyze the qualitative data in 3.4.

3.1 Design Science Research
The design science research (DSR) methodology is used to produce interesting and
true knowledge as it aims to further understand and improve human-made designs
[32]. According to [33], DSR is “A research paradigm in which a designer an-
swers questions relevant to human problems via the creation of innovative artifacts,
thereby contributing new knowledge to the body of scientific evidence. The designed
artifacts are both useful and fundamental in understanding that problem”.
The design science research methodology consists of multiple cycles, with each cycle
having the same iterations repeated in order to further develop the solution design.
That said, the practice of design science research is not similar to all types of re-
search, and the potential improvements are not the same for all practices. Therefore,
it addresses general problems through studying specific problem instances in prac-
tice, which establishes the research context, and this is where the research activities
of problem conceptualization, solution design, and validation take place [32], which
can be instantiated in different ways [32]. These activities are necessary to provide
a rigorous solution to the problem in question, especially validation, which should
be done in a real-world context or an artificial one that resembles aspects of it [32].
And since iterations may include different stages that vary across literature [34],
research questions for this study are designed to fit into the stages of DSR, which
are answered subsequently through gaining knowledge and progressing into further
iterations by performing one cycle. The problem conceptualization iteration would
be conducted by performing a literature review that would provide knowledge in
the automotive domain, specifically in the cyber security field, and to explore the
available state-of-the-art response techniques for the software asset of the vehicle
(RQ1), which is further discussed in 4.1. Completing the first iteration would pave
the way for the second iteration, in which the knowledge gained is put to use into
designing the solution for collaboratively evaluating different response techniques,
followed by a simulation experiment to test the implementability of such solution
(RQ2), which is discussed in detail in 4.2. Finally, an evaluation of safety of the
designed solution is performed through a qualitative study with domain experts

17

3. Research Methodology

(RQ3).
Figure 3.1 shows the research activities for this study when conducting DSR.

3.1.1 Problem Conceptualization
Problem conceptualization iteration seeks to understand the domain and problem
using data collection methods. For this study, a full systematic literature review was
not considered. However, the main taxonomies of cyber attack response techniques
are elicited from the ‘REMIND’ research paper [15], as it is the most recent system-
atic literature review available in the literature regarding this matter. That being
said, each cyber attack response technique regarding the software asset mentioned
in that paper is further explored and discussed through snowballing.

3.1.2 Solution Design
Solution design iteration is the creative step that aims to create a potential solution
for the problem using the knowledge gained from the previous iteration. Here,
brainstorming and an investigation of a few technical topics were conducted in order
to support the decisions of designing the proposed solution. Relevant keywords
included: peer-to-peer architecture, client-server architecture, vehicle collaboration,
connected vehicle, cyber response technique, V2V collaboration, automotive cyber
response.

3.1.3 Design Evaluation
The main goal of design evaluation iteration is to evaluate the proposed solution.
For this study, the proposed solution was continuously evaluated with the academic
supervisor and domain experts through regular discussions. That being said, an
evaluation of safety was performed through a questionnaire with security and/or
safety experts.

Figure 3.1: Research activities when conducting design science research.

18

3. Research Methodology

3.2 Qualitative Study
A qualitative study has been conducted through the use of a questionnaire to collect
viewpoints of domain experts in a structured way [35]. It included a combination
of both closed and open-ended questions in order to gather qualitative data and
a feel of intensity of the answers. The questionnaire was performed with security
and/or safety experts from different organizations and occupations with the main
purpose of evaluating the safety of the proposed solution based on the participants’
perception.
In order to answer the questionnaire, emails were sent to all of the participants
including the following:

• Video demonstration: an 8 - 9 minutes long video demonstration providing
background information about the problem and what is the proposed solution
for that problem1

• Slides: the slides used with the video demonstration is attached to the email
for reference2

• Questionnaire: at the end of the email, a link to the questionnaire was
placed. The questions are listed in A.1

Additionally, the phone number of the author was left on the slides, email, and
the video demonstration to clarify any missing information or vague explanations.
Furthermore, all the materials mentioned above were discussed and evaluated with
the academic supervisor beforehand in order to determine whether some questions
need modifications, missing or not to be included at all.
When constructing the questionnaire, the decision was to go with a few closed
questions defined using the Likert scale [36] to measure the intensity of the answers
for specific statements and a few open questions as well to further learn about the
participants’ personal experience. That being said, open questions usually require
more effort to be analyzed. However, this was deemed acceptable due to the limited
number of participants who participated in the questionnaire.
Furthermore, the response rate for this questionnaire was high because the par-
ticipants were captive [35], as they have been personally requested to answer the
questionnaire.

3.2.1 Participants
The participants of this study were selected following convenience sampling, which
is a non-probabilistic type of sampling where the target population meets certain
practical criteria [37]. The participants were chosen through the following criteria:
knowledge, experience in the domain, and their willingness to participate. Table 3.1
lists the details of participants who answered the questionnaire.

1https://youtu.be/gGe9GLsfMtw
2https://www.slideshare.net/secret/5P1sngWFEiJnN2

19

3.
R
esearch

M
ethodology

Table 3.1: Participants of the questionnaire.

Participant Highest
Educa-
tional
Degree

Domain of the
Highest Educa-
tional Degree

Occupation Organization Experience in
Systems Secu-
rity and Safety

Rate your
Expertise
in Systems
Security
and Safety

Participant A B.Sc. Computer Science
and Engineering

Principal engineer in cybersecurity Volvo Group 84 months Very High

Participant B M.Sc. Computer Science
and Engineering

PhD student in networks and sys-
tems

Chalmers University
of Technology

45 months High

Participant C P.hD. Computer Science
and Engineering

Researcher - verification and vali-
dation of systems with respect to
safety and security requirements

RISE Research Insti-
tutes of Sweden

100 month: includ-
ing the period of my
Ph.D. education

High

Participant D P.hD. Vehicular Commu-
nication Security

Technical Specialist Automotive
Cybersecurity

Volvo Cars Group 8 years in automo-
tive cybersecurity,
none in safety

High

20

3. Research Methodology

3.3 Simulation

In order to evaluate the proposed solution, [38] suggests that the evaluation of the
artefact (proposed solution) can be performed either before (ex-ante) the construc-
tion of the artefact, or after (ex-post). The paper also notes that the design science
research is an iterative process, so the definition of the ex-post here refers to the
artefact and not the final developed system [38].

Other considerations were on which method to use when evaluating the artefact.
Veanble et al. [39] propose two methods, naturalistic (such as observation) and
artificial (such as simulation and experiment). Naturalistic can be complex due to
the nature of reality and the number of variables included. Thus, it can include the
risk of misinterpretation. Artificial evaluation, on the other hand, can limit the risk
of misinterpretation, but on the cost of applicability in a real scenario.

After designing the artefact, a simulation was conducted to test the final artefact.
The choice of an artificial evaluation was made instead of naturalistic due to the
limited resources available when conducting the study.

The simulation process started by implementing the framework on three Raspberry
Pi 4 Model B3 devices with identical specifications and a computer4. These Rasp-
berry Pi’s have the same hardware specifications in order to make sure that the
process of evaluating different response techniques is performed in an optimal way.
Furthermore, all Raspberry Pi’s had Raspberry Pi OS installed and Raspberry Pi
Desktop was installed on the computer. Then all the devices were connected to a
local network through Ethernet cables into a switch, in which the Raspberry Pi’s
acted as clients (cars) that connect to the server (computer) to request/provide
services.

3.4 Thematic Analysis

Thematic analysis is used in order to analyze qualitative data elicited from the
questionnaire. Thematic analysis is a method that is used to identify, analyze, and
report patterns (themes) within the data [7]. Many aspects of Thematic analysis
are not unique, sharing many commonalities with other analysis methods used for
qualitative data [40].

Figure 3.2 shows the process followed when conducting the thematic analysis.

3https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-4-Product-Brief.pdf, 4GB
version.

4Laptop: PS63 MODERN 8SC-036NE

21

3. Research Methodology

Figure 3.2: Thematic synthesis process [7][8].

With the help of the open-ended questions generated in the questionnaire, a few
higher-order themes were placed before the beginning of the process. Afterward,
the participants’ responses to the questionnaire have been well-read in order to get
familiarized with the data. Then the coding process of the data has been performed
by manually assigning sticky notes to the data and then assigning them to themes
as seen fit. Finally, these themes were linked to a higher-order theme that is either
already existed or a newly formed one without forcing any of them to fit in a non-
relevant higher-order theme.

22

4
Results and Discussion

This chapter discusses the results and discussion of the thesis study. It starts with
problem conceptualization in 4.1, followed by the solution design in 4.2, and finally
the design evaluation in 4.3.

4.1 Problem Conceptualization
The automotive domain is rapidly growing, and the main force that is driving this
growth is the increased use of electronics and software inside the vehicle [24]. This
dependability on software increases the number of services provided to the customer
but increases the complexity of the system at the same time. Such complexity could
open up ways for attackers to conduct malicious activities against the customer and
manufacturer of the vehicle alike.
There are many assets that could be targeted in a vehicle, such as hardware, soft-
ware, network/communication, and data storage [15]. Therefore, different response
techniques can be applied to eliminate these attacks or try to mitigate their effects.
However, many of these techniques are adopted from different fields of IT, such as
cloud computing and real-time systems. For that, evaluating these techniques in
terms of effectiveness and efficiency is necessary.
As mentioned, many assets could be the target of an attack. However, this thesis will
focus on the software asset alone. To further discuss that, this section will examine
the state-of-the-art response techniques for threats against the software asset of the
connected vehicle.

Software Asset
Software in automotive systems can exist in several categories: in-transit, at-rest,
or running. In-transit may refer to software delivery systems, such as OTA or shop
updates. The categories "running" and "at-rest" can refer to software installation
processes or software running in ECUs [15].

In order to understand the different state-of-the-art cyber attack response techniques
that are available at this time, [15] is a recent study that proposes a framework for
cyber resilience in the automotive domain by providing strategies for attack detec-
tion, mitigation, recovery, and endurance. It describes different techniques regard-
ing each strategy as well as the asset that can make use of these techniques. Each
strategy then is broken down into different patterns and each pattern into different
techniques. Some techniques and patterns can overlap with different strategies.

23

4. Results and Discussion

This thesis mainly aims at cyber attack response techniques. Thus, it will mainly
make use of two strategies that are proposed in [15]; the Mitigation and Recovery
strategies. The detection strategy will be partly considered as well; as it shares the
redundancy pattern with the mitigation strategy.
The mitigation strategy aims at triggering mitigation techniques when an anomaly is
detected and located. These techniques will keep the system operational, but could
also result in a non-optimal system state. There are different patterns for the mit-
igation strategy: Redundancy, Diversity,Adaptive Response, Runtime Enforcement,
and Reconfiguration/Re-parameterization. Moreover, the last pattern can overlap
with the recovery strategy.
On the other hand, the recovery strategy’s main goal is to use recovery techniques
in order to transition back to the optimal state. It is also broken down into differ-
ent patterns: Reconfiguration/Re-parameterization (can overlap with the mitigation
strategy), Migration, Checkpointing and Rollback, and Rollforward Actions.
Some of these strategies could include techniques that are not concerned with the
software asset. Therefore, they will be ignored for this thesis. The techniques that
will be discussed are shown in figure 4.1.

4.1.1 Redundancy and Diversity

Redundancy’s approach is mainly the use of information from multiple sources in
order to detect faults and verify the output through plausibility check or majority
voting [5], [41]. Redundancy is typically the last resort in providing dependability,
because it is considered costly when added explicitly [5].
Purely redundant systems can also suffer from the same design vulnerabilities and
faults. Therefore, diversity is combined with redundancy to overcome this issue [15].
There are several techniques that fall under these two patterns [15]: Software Re-
dundancy, Agreement/Voting, N-version Design, Recovery Blocks, N self-checking,
N-variant Systems, and Replacement of Cold/Hot Spares.

Figure 4.1: Response techniques for the software asset of a vehicle.

24

4. Results and Discussion

4.1.1.1 Software Redundancy

The approach of redundancy is the use of information from multiple sources to mask
system failures [15]. This is performed by the voter through comparing different
results of several independent executed software modules and, for example, selecting
the majority vote [15], [42].
Software Redundancy can help contain and exclude malicious behavior, i.e. reduce
the likelihood of harm. It can also overcome disruption by enabling restoration and
enhances the availability in critical operations [15]. However, the main drawback
of it being resource-demanding; as it mainly depends on multiple sources for infor-
mation. Additionally, it suffers from the possibility of degrading; as configurations
get updated or connectivity changes. Furthermore, it is often applied with other
diversity techniques, which increases complexity and affects scalability [15]. Figure
4.2 shows a simple representation of software redundancy.

4.1.1.2 Agreement/Voting

The agreement/voting technique concerns with byzantine failures (inconsistent fail-
ures to different observers) that are typically caused by malicious attacks [5]. This
can be detected and tolerated through using replicas or redundant sources by reach-
ing an agreement on the outputs [5], [43]. The output of all the redundant compo-
nents can then be combined or fused [5], or can be used for finding the average or
median value of the results from these redundant sources [15], as demonstrated in
figure 4.3.
That being said, the attention to ensure authentication and integrity of data is now
shifting toward the use of blockchains [5], [44], [45], [46], [41]. However, blockchains
suffer from complexity, latency, and energy consumption. Therefore, it is limited in
functionality and cannot be applied on systems with low computational power [5],
[41]. Additionally, attackers can exploit the voting process and force the system into
a degraded mode [15], which can cause loss of performance.

Figure 4.2: Software Redundancy.

25

4. Results and Discussion

Figure 4.3: Agreement and Voting.

4.1.1.3 N-version Design

With this approach, several versions of software that satisfy the same requirements
would be developed by different independent teams. This results in a diverse set of
software components that have equal functionalities and fulfill the same specifica-
tions. These versions are executed concurrently, and a voter then decides the results
based on the majority or some type of calculation, for instance, the average value
[15], [47], as shown in figure 4.4.
While this design can help mitigate the impact of failures when the system configu-
ration or design is introduced to risk, it requires much more effort and cost when it
comes to design, implementation, test, and validation of the number of independent
versions [15]. Additionally, some researchers argued that using different program-
ming teams can make similar mistakes [48], but that is unlikely when the software
gets more complex.

Figure 4.4: N-version Design.

26

4. Results and Discussion

4.1.1.4 Recovery Blocks

This approach is similar to the N-Version Design that is discussed in 4.1.1.3, where
there are several versions of a software component that exist. However, only one of
these versions is executed at a time. After the execution of that version, a common
acceptance test will be performed and decides whether the results are accepted or
not. In case of rejection, the subsequent version is then executed and evaluated as
performed for the first version [15], [47], [49], as shown in figure 4.5
While the recovery blocks approach does not require all the versions of the software
component to be executing at the same time, these versions still require extra val-
idation and verification efforts. Therefore, it would still consume more resources
[15].

4.1.1.5 N self-checking

This technique is a combination of the previously discussed techniques (N-Version
Design in 4.1.1.3 and Recovery Blocks in 4.1.1.4). This technique requires at least
two different versions of the software component with their own acceptance test.
When the active version fails its acceptance test, the subsequent version would take
over [15], [49].
The purpose of the N self-checking technique is to provide mitigation by creating
several versions of the same software component, but each with its own acceptance
test. All versions that pass their acceptance test would then be selected through an
acceptance voting system [15], [9], or it can compare the outputs in order to detect
errors [9], as shown in figure 4.6 and figure 4.7, respectively .
However, this technique causes an increase in required resources and time for exe-
cution [15].

Figure 4.5: Recovery Blocks.

27

4. Results and Discussion

Figure 4.6: N self-checking using Acceptance Tests. Adapted from [9].

Figure 4.7: N self-checking using Comparison. Adapted from [9].

4.1.1.6 N-variant Systems

A multi-variant execution will automatically diversify the software and monitors
the output of at least two variants in order to detect and mitigate attacks [15], [10].
Here, the client’s input is put into whats called a Polygrapher, and then gets copied
to all the variants inside the system [10]. These different variants are artificially
diversified in a way that makes them behave in a different way when abnormal
inputs are received [10]. The Monitor observes these behaviors in order to detect
divergences, which could reveal attacks. When the monitor detects a divergence, it
would restart the variants to known uncompromised states [10]. This is illustrated
in figure 4.8.
While this approach can help mitigate attacks and detect them, it would require
resources for all the different running variants as well as the monitor.

28

4. Results and Discussion

Figure 4.8: N-variant Systems. Adapted from [10].

4.1.1.7 Replacement of Cold/Hot Spares

Hot and cold spares strategy is used to recover from failed components [50] by having
a redundant component taking over in case the main component fails.
The term hot spare means that the redundant component is running in the system
at all times, and is automatically ready to take over if the main component fails
[50]. On the other hand, a cold spare is also a redundant component that can be
used to automatically replace the main component when a failure has occurred, but
it might require some configuration before doing so, e.g. a reboot [50], which might
cause loss of availability.
In the automotive domain, the concurrent or sequential execution of redundant soft-
ware components is costly in both energy consumption and computational resources.
Therefore, the introduction of cold/hot spares, such as N self-checking in 4.1.1.5, is
found to be a viable alternative [15], [5].

4.1.2 Adaptive Response
The focus here is on techniques that adapt the response of a sub-system or a function
to maintain its intended functionality [15]. The adaptive response pattern has two
techniques: Retry and Model-based Response.

4.1.2.1 Retry

The Retry technique is used to deal with transient type of faults [51] that results
in an error. This is done by performing the same computation that has already
been done after a certain period of time [51]. The waiting period here is to give the
transient fault a chance to disappear in order for the system to perform the same
computation again and recover from that error state, as shown in figure 4.9.
Furthermore, it is important to make the waiting period long enough for the tran-
sient fault to disappear and, at the same time, short enough to avoid faults from
overlapping [51], [52]. Additionally, this technique can mitigate the risk of replay
attacks [15].

29

4. Results and Discussion

Figure 4.9: Retry technique.

4.1.2.2 Model-based Response

This technique uses a model to generate an approximation of the normal behavior
of the system without introducing it to attacks [11]. It is mainly based on param-
eter estimation techniques, such as regression analysis [15]. With this technique, a
comparison would be performed between the measurements and the estimations pro-
vided by the system model, and based on that comparison, a decision of an existing
anomaly is taken [11].

The Model-based Response technique can be used not only as a temporary solution
to mitigate attacks, such as masquerading and replay attacks, but also to alert the
system and to log information that can be later used for forensics [15], [53].

Figure 4.10 shows the general scheme of the model-based response technique, where
Yk represents the true output value of the system, Y a

k represents the value of results
after a sensor attack, Ŷk represents an estimation of Yk that is based on a model of
the plant (a model that describes the dynamic behavior of a physical process [11]),
and the Anomaly Detection Module (ADM). The ADM takes two inputs (Ŷk and
Y a

k), comparing the estimation provided by the system model and the measured
signal to take a decision. Then the ADM sends a safe signal (Y s

k) to the controller
to perform the adequate control action (Uk) [11].

Figure 4.10: Model-based Response general scheme. Adapted from [11].

30

4. Results and Discussion

4.1.3 Runtime Enforcement
With the pattern, the system is observed by a monitor at runtime to verify the
correctness of the execution and react to violations [15], [54]. An example on such
techniques is Safety Guard [15].

4.1.3.1 Safety Guard

The Safety guard is a reactive component that can be attached to the system in
order to protect it against catastrophic failures [12]. This is done by ensuring the
satisfaction of a set of predefined safety-critical properties that are defined by the
system even in the presence of an attack or unknown failures [12]. By treating the
system as a black box, the guard monitors the input and output of that black box
and corrects any property violations instantaneously, and minimizes the deviation
from the original system [12]. Figure 4.11 illustrates Safety Guard.
The main advantage of a safety guard is that it can be suited for a wide variety of
cyber-physical applications; because it does not require knowledge of the implemen-
tation details of the system [12].

4.1.4 Reconfiguration/Re-parameterization
The system adapts parameters to protect itself when an attack is detected. Recon-
figuration and Migration patterns can be similar. However, the main distinction
between them is that migration focuses on the relocation of functionality, whereas
reconfiguration focuses on changing the parameters of the system [15].
This pattern is broken down into the following techniques: Reinitialization, Repa-
rameterization, Graceful Degradation/Limp Mode, Isolation, Restructure, Dynamic
Deployment of Policies, and Rescue Workflow.

4.1.4.1 Reinitialization

This approach aims to address transient faults and temporary attacks [15] by restor-
ing the system to its initial state, which implicitly cleans up the system from effects
caused by a fault, error or a failure [55], as illustrated in figure 4.12. However, this
technique does not mitigate permanent faults and reoccurring attacks by restoring
the system to its initial state [15].

Figure 4.11: Safety Guard. Adapted from [12].

31

4. Results and Discussion

This technique is applied in conditions in which the mitigation or recovery operations
deems to be impossible, or excessively expensive in terms of performance [55].
Though this technique can cause loss of work and disturbance to other components
that rely on the affected component, it guarantees that the impact of the error is
completely removed before the resumption of service [55].
Furthermore, this technique can be seen as Checkpoint Recovery (discussed in
4.1.6.2); the checkpoint being the initial state of the system or function [15].

4.1.4.2 Reparameterization

This technique is similar to Reinitialization, that was discussed previously in 4.1.4.1.
However, the main distinction between them is that reparameterization dynamically
adjusts the system configuration based on the situation [15]. This adaptation of
parameters requires knowledge about the algorithm of the erroneous component [5].
Therefore, this technique is typically applied to the component itself or within a
subsystem [5]. Additionally, this technique can result in a non-optimal state and
leads to Graceful Degradation [5].
Figure 4.13 illustrates the basic functionality of the reparameterization technique.

4.1.4.3 Graceful Degradation/Limp Mode

Graceful degradation enables the ability of a system to continue functioning even
when parts of the systems are damaged or compromised [56]. When this technique
is applied, the system usually performs slower than the regular performance it is
intended to function at and can decrease further as the number of failing components
grows [56] or by shutting down non-critical functions in order to save resources for

Figure 4.12: Reinitialization technique.

Figure 4.13: Reparameterization technique.

32

4. Results and Discussion

more critical ones [15], as shown in figure 4.14.
The main use of this technique is to prevent catastrophic failures of the system
[56], especially when considering the safety of the driver and passengers when key
components of the vehicle fail [15]. Modern vehicles have already introduced such
functionality, called "Limp mode", which is triggered when major technical problems
are detected by the vehicle [57].

4.1.4.4 Isolation

This technique is used to restrict access or completely isolate erroneous system
components in order to limit the impact on the performance of the entire system
[15].
While this approach enables the system to continue functioning by offsetting the
effect of an attack and prevents the loss of functionality, it introduces extra resources
by using replica modules in order to compensate for the affected component within
the system [15], as shown in figure 4.15.

4.1.4.5 Restructure

This technique aims to address faults, errors, or failures that could affect the cor-
rectness of the interactions between subsystems [55]. The Restructure technique
modifies the configuration between the interconnected subsystems in order to iso-
late the erroneous part [55]. Figure 4.16 illustrates the basic functionality of the

Figure 4.14: Graceful Degradation/Limp Mode technique.

Figure 4.15: Isolation technique.

33

4. Results and Discussion

Restructure technique.
The reconfiguration technique changes the organization of the system by working
around the erroneous subsystem or by excluding it from interacting with other sub-
systems [55]. This is done in order to maintain (sub-)system functionality that is
equivalent to the original [55]. However, this technique may also result in a degraded
condition and incurs additional time overhead to the system [15], [55].

4.1.4.6 Dynamic Deployment of Policies

This approach addresses the security or other policies to be applied dynamically
based on the type of attack that is introduced, such as Denial of Service or mas-
querading attacks that are detected [15]. This technique takes dynamicity and the
changing nature of attacks into account by deploying different defense policies based
on the attack [15]. For example, this technique can modify the executed actions un-
der an ongoing attack [15].
However, this approach leads to performance overhead and requires runtime per-
missions, which may not be present when running normally, leading to an increase
in complexity [15].

4.1.4.7 Rescue Workflow

The Workflow technique uses a workflow to describe tasks with their dependencies
to each other [15]. This allows the system to continue functioning even when some
tasks fail because of an error or an intrusion until it becomes impossible to continue
without this failed task [58]. This is done by dynamically adjusting the structure of
the workflow [15].
That being said, tasks that are already executed do not require to be re-executed;
which saves time and resources [15]. However, this technique can also lead to a
decrease in the quality of service [15]. Additionally, it can cause a time penalty
because of the re-computing and migration of the tasks that caused the problem
[15].

Figure 4.16: Restructure technique.

34

4. Results and Discussion

4.1.5 Migration
These techniques are similar to the Reconfiguration techniques (as discussed earlier
in 4.1.4), but focuses on the relocation of the functionality instead of changing the
parameters.
Migration techniques mainly originate from high-performance computing and cloud
systems. And because the future of the automotive systems is moving toward a
more centralized architecture, virtualization and service-oriented architectures can
be more relevant in the coming years [15].
The Migration pattern is broken down into two techniques; Relocation/Migration
and Preemptive Migration.

4.1.5.1 Relocation/Migration

This approach aims to prevent failing system components from affecting the perfor-
mance of the system in a virtualized environments, such as hypervisor and container-
based solutions [15], [58]. It provides mechanisms for migrating the execution of the
programs from one component to another [58]. This is done by moving components
away from failing nodes to more stable nodes in the vehicular network [15].
This technique helps in maintaining system functionality in an operational state as
it was originally designed for before the fault or attack [15]. However, it might still
cause the system to function in a degraded condition and decrease the performance
of the system [15].

4.1.5.2 Preemptive Migration

This approach functions like the previously explained Relocation/Migration tech-
nique in 4.1.5.1. However, this technique continuously monitors and analyzes the
system for failing components and relocates software and services to other more
stable nodes in real-time [15], [58].

4.1.6 Checkpointing and Rollback
A checkpoint describes the system state at a specific point in time. And by design,
recovery does not prevent the same attack from happening again [15].
This pattern is further subdivided into three techniques: Re-instantiation/Restart,
Checkpoint Recovery, and Software Rejuvenation.

4.1.6.1 Re-instantiation/Restart

This technique aims to re-instantiate or restart the component that was affected by
an intrusion in order to recover into a known, erroneous free state [15].
This technique helps in restoring the system to its initial state when the error or
attack could not be dealt with in another manner [15]. It also guarantees the com-
plete removal of that error effect or to completely remove the attack [15]. However,
it may also cause loss of private data (such as location, speed, and driving behavior),
and workshop data (such as vehicle health, engine data, and emissions) [15]. The
impact of the lost data varies based on the type of data and the current need for it

35

4. Results and Discussion

[15]. Additionally, the re-instantiation of safety-critical functions could require the
vehicle to be in standstill [15].
Since the re-instantiating technique does not prevent the same attack from happen-
ing, it can still be combined with Reparameterization (discussed in 4.1.4.2) to avoid
the anomaly from happening again [15].

4.1.6.2 Checkpoint Recovery

This technique works by continuously saving the system state [58] by taking snap-
shots, which are either based on checkpoints or logs [15]. In the event of failure, the
system then returns to the most recent state by using the checkpoint [58]. Figure
4.18 shows the basic implementation of this technique.
This technique helps to overcome intermittent faults that can be avoided when the
system goes forward from the checkpointed state [59]. Furthermore, it is especially
useful when the operation of starting from scratch wastes a lot of time and re-
sources [59], such as when using the Re-instantiation/Restart technique (discussed
in 4.1.6.1).
When dealing with a single-node system, checkpointing is relatively straightforward.
However, when dealing with distributed systems, it is harder to keep the checkpoints
consistent [59] due to the variation of the logical clock, parallel computations, and
possibly different system status [15].
This technique can help the system in resuming its operation in a clean state; free
from the effects of an attack or fault [15]. Additionally, frequent checkpointing can
reduce the amount of lost work [15].
However, creating each checkpoint may require the interruption of the normal op-
erations in order to save the current state of the system [15]. Furthermore, the
creation of a checkpoint requires storage resources and can still contain an error or
intrusion that has not been detected yet [15].

4.1.6.3 Software Rejuvenation

This technique carries out periodic graceful termination of the system and starting it
again by using, for example, Re-instantiation/Restart or Reinitialization techniques
(discussed in 4.1.6.1 and 4.1.4.1, respectively), in order to maintain a known, error-
free state of the system [15], [58]. Figure 4.19 shows an illustration of the basic
functionality of this technique.
This technique helps in avoiding the costs of failures that happen from software

Figure 4.17: Re-instantiation/Restart technique.

36

4. Results and Discussion

Figure 4.18: Checkpoint Recovery technique.

degradation by allowing the release and re-allocation of memory used by that soft-
ware component and, thus, allowing it to operate in a clean state [15]. However,
the main issue of this technique is the periodic shutting down of the system and
starting it again, causing unavailability for the software during that duration [15].
Additionally, it is often a slow process that requires an extra overhead [15].

4.1.7 Rollforward Actions
This pattern aims to bring the system into a stable state immediately before an error
or attack is detected. As in rollback, the system recovers by using checkpoint-based
or log-based recovery [15], [55]. A technique for this pattern is Exception Handling.

4.1.7.1 Exception Handling

It is a structuring mechanism that separates normal from exceptional behavior [59].
While in general it can be used to activate the restoration of a checkpoint, it is more
often used in order to roll forward [59].
When an exception is raised by a component after detecting an error, the exception
handler gets activated. From there, it can either make another attempt at the task
that was being performed or can forward the exception to a higher-level exception
handler. This can be useful when the error needs to be dealt with in a broader scope
[59].
The main drawback of roll forward exception handling is that it requires the design-
ers of the system to have already anticipated such an error, and that is by realizing
how to detect the error and how to recover from it [59]. On the other hand, this
means that recovery can be tailored to some very specific error situations [59].

Figure 4.19: Software Rejuvenation technique.

37

4. Results and Discussion

4.2 Riposte: Solution Design
Having that many response techniques available could make the decision of choosing
which technique to apply challenging. The solution proposed for this problem is
Riposte1, a collaborative framework between connected vehicles that helps in making
decisions of what response technique to use against an attack. These decisions are
based on metrics gathered from experiments that are conducted in real-time when
an ongoing attack is happening.
As part of the design process, there were a few critical aspects that needed to be
researched as they can directly affect the design of the solution. These aspects
are the network architecture of the framework and the Continuous Experimentation
implementation, in which both will be discussed in 4.2.1 and 4.2.2, respectively.
Afterwards, the structure is discussed in 4.2.3, followed by a discussion of its behavior
in 4.2.4. Finally, 4.2.5 discusses the implementation and testing of the framework.

4.2.1 Network Architecture of the Framework
Generally, there are two widely used variants of network architectures: Peer-to-
Peer (P2P) architecture and Client-Server architecture [60].
In P2P, the nodes (peers) organize themselves in an overlay network, enabling them
to connect and share information and resources using standard Internet protocols
[61], with each peer having the same privileges and potential as others [62] and does
not require central coordination by a server [63].
That said, the client-server architecture is based on the concept of services provided
to the clients through servers [62]. The server is a host that provides services to
the clients by sharing its resources and management. Additionally, the tasks and
workloads requested by the client can be partitioned between multiple servers [62].
There are several advantages and disadvantages when it comes to choosing an ar-
chitecture for the framework. Table 4.1 lists these differences.

Table 4.1: Key differences between Client-Server and Peer-to-Peer architectures.

Client-Server Peer-to-Peer (P2P)
Dedicated server and specific clients Each peer can act both server and

client
Server provides services Peers can provide/request services
Data stored in a centralized server Each peer has its own data
Single server; more chance to bottle-
neck

Servers are distributed

More expensive to implement Cheaper to implement
More stable Less stable
More secured Less secured

1Riposte is the act of making a quick, clever reply to an insult or criticism.

38

4. Results and Discussion

For the development of this framework, the client-server architecture is more suitable
for different reasons. Since the focus of this thesis study is mainly concerned with
the security aspect of the automotive systems, the client-server architecture is more
secured than P2P, where security is mainly managed by a central authority instead
of each peer individually. Some malicious vehicles could join in the P2P network
and provide false data, hence disrupting the process of the framework. Additionally,
the client-server architecture is more stable when clients join/leave without causing
disruption to the network. On the downside, it is more expensive to implement a
server due to the cost of hardware and management. However, in the case of the
automotive systems, usually the manufacturer has a dedicated server and manage-
ment that delivers OTA (Over-the-Air) updates to the vehicles without the need
for the vehicle to be at a workshop, for example. This framework can be imple-
mented on such a server that already has an established link between the car and
the manufacturer and use it to evaluate cyber attack response techniques.

4.2.2 Continuous Experimentation
It is necessary to consider the experimentation settings when it comes to designing
a framework that uses experimentation at its core. Some techniques may require
different coding implementations, and adapting to such techniques at a later time
could be costly.
There are two main variations when it comes to implementing experimentation,
according to a survey study conducted by [64]: code-level techniques, where multiple
versions of the same code exist within the same code base (known as feature toggles),
and deployment-based techniques, where multiple instances of a service with different
software versions are running in parallel (known as traffic routing). According to
[64], there is no "one size fits all" solution. Instead, there are different pros and
cons when it comes to implementing each of the techniques, and many companies
combine both of the techniques to counterbalance the disadvantages of particular
techniques in order to meet their requirements [64].
Feature toggles are a code-level experimentation technique [64], [65], allowing the
modification of a system behavior without changing code [65]. In the simplest form,
they can be conditional statements that decide which code to execute next [64].
However, the simplicity of it comes with a cost, mainly technical debt caused by
dead code and additional maintenance for the developers [66]. Another challenge
with feature toggles is to synchronize the experimentation state and setup and to
make sure that multiple instances can be toggled to new versions simultaneously
[64].
On the other hand, traffic routing is about the deployment of multiple versions of
an application that run in parallel (e.g. in containers or multiple cloud instances)
[64]. Depending on the filter criteria that are applied to user requests, dynamically
configured components (e.g. network-level proxies) decide which version of the soft-
ware should be forwarded [64]. The main advantage of this technique is that it is
non-intrusive on the code level, avoiding technical debt [64]. However, deploying
multiple instances can be costly (e.g. CPU and bandwidth usage) [64]. Moreover,
the intermediate components that decide the routing path (e.g. proxies) introduce

39

4. Results and Discussion

overhead that needs to be taken into account [64].

When it comes to this thesis study, feature toggles seem more suitable for multiple
reasons. By having all cyber attack response techniques implemented in the codebase
cannot be considered as dead code by any means. Instead, they can be considered
as tools that are ready to be activated when a certain threat occurs. Additionally,
each threat can be best dealt with using a different cyber attack response technique.
Thus, having them available at all times is necessary. For the reasons mentioned,
the downside of technical debt can be avoided.

Furthermore, time is important when it comes to a vehicle’s security, especially when
a vehicle is under attack. The best cyber attack response technique for a specific
cyber attack can be instantly updated in a system (e.g. via a command), while the
traffic routing technique could require the system to be updated, which may take
several minutes of time downloading and installing the concrete version and may
also require a reboot afterward that may not be safe for some applications.

4.2.3 Framework Structure

One way used to describe the structural aspect of the framework is through a Com-
ponent Diagram. This diagram shows the main components of the framework and
describes their relationships, as seen in figure 4.20. The Response Component is
the main component that handles the response system inside the vehicle’s software.
This component handles the application of the response technique after an attack
is detected. The Response Component has a Communication Module that helps it
connect to the Collaboration Management Component in order to ask for services
and receive the most efficient response technique for a specific attack. The Response
Assessment Component handles the assessment of different response techniques by
applying them and logging information, such as CPU utilization and/or memory
usage. These logs will then be sent to the Collaboration Management Component
in order to be saved in the Data Storage and evaluated by the Evaluation Com-
ponent by comparing them in order to find the most efficient response technique.
Finally, the Collaboration Management Component manages all coordination and
collaboration between these components.
Another way to discuss the structural aspect is through a Deployment Diagram. The
diagram in figure 4.21 shows the main components of the framework when installed
on physical devices. The onRoadCar device is the customer car that would ask
for response technique evaluation from the server when it is under attack through
the TCP/IP protocol. The server device then receives this request and looks for
workshopCars to perform experiments on and evaluate response techniques. The
workshopCar device is a testbed that has identical parameters to the onRoadCar
and helps by running experiments to assess different response techniques. The work-
shopCar will generate logs and communicate with the server through the TCP/IP
protocol.

40

4. Results and Discussion

Figure 4.20: The Component Diagram of the "Riposte" framework.

Figure 4.21: The Deployment Diagram of the "Riposte" framework.

41

4. Results and Discussion

4.2.4 Framework Behavior
To describe the behavioral aspect of the framework, figure 4.22 illustrates the behav-
ior in a Sequence Diagram. The Sequence Diagram shows an onRoadCar, a server,
and n workshopCars.
The onRoadCar and workshopCars will first enroll to the server, passing in their
software version, hardware specifications, and the collaboration status. If the car is
collaborative, the car then would act as a testbed and helps in conducting exper-
iments. If the onRoadCar gets attacked after some time, it would send a request
evaluation message to the server letting it know that it is under attack, and the re-
sponse technique it is planning to apply. The server would check its database to look
for previously assessed response techniques that match the software version and the
hardware specifications of the onRoadCar. If it finds that all response techniques
were previously assessed and evaluated, it will see whether the onRoadCar is using
the best response technique (e.g. most efficient technique with least CPU utiliza-
tion). If the car is using the same technique, it would send an acknowledgement
message, letting the onRoadCar know that it is using the best technique. Otherwise,
it will send the best response technique so that the onRoadCar can apply it instead.
However, in the case of unassessed response techniques (e.g. due to added new tech-
niques), the server would start looking for available workshopCars (i.e. testbeds) to
help assess these response techniques. The server would update these workshopCars
with the appropriate response technique and run an attack simulation in order to
activate the newly applied response techniques. After the workshopCar is done ap-
plying the response technique that was assigned to it, it will revert the changes that
happened and go back to its original state (i.e. before the start of the experiment)
and be ready for more experiments. The operation of running experiments (i.e.
finding the workshopCar, updating them, and running attack simulation) is done in
parallel, to ensure less time is being used for each car and a faster response for the
onRoadCar.
When all response techniques were assessed and all the logs were received from the
workshopCars, an evaluation of these logs would start. The server would look for
a specific metric from these logs to find the best response technique. Once found,
it would update its database and then push the update to the onRoadCar. The
onRoadCar would then apply the best response technique received from the server.
If the onRoadCar gets attacked with the same attack later, it would contact the
server for evaluation again. However, this time the onRoadCar is using the best
response technique according to the server, so the server would quickly send an
acknowledgement message letting the onRoadCar know that it is using the best re-
sponse technique that it knows of.
Another behavioral scenario for the framework is that the onRoadCar can first ap-
ply the default response technique it has (such as rebooting) and then requests an
evaluation of the technique it used. This way, the onRoadCar can instantly respond
to an attack without having to wait for the server’s evaluation, and still can get the
best response technique to be used if the attack happens to be performed on it again
at a later time. However, the first time the onRoadCar uses the default response
technique could be not the best response technique to be used, a trade-off between
instant response to an attack and the efficiency of the response.

42

4. Results and Discussion

Figure 4.22: The Sequence Diagram of the "Riposte" framework.

43

4. Results and Discussion

4.2.5 Implementation and Testing

To test the framework, a simulation has been conducted. The simulation process
started by implementing the framework using Python on the Raspberry Pi 4 devices
and the server. One of the Raspberry Pi’s acted as the onRoadCar that requests an
evaluation from the server when it is under attack. The other two Raspberry Pi’s
acted as workshopCars that are ready to perform assessments on different response
techniques that are sent by the server.
In order to test the framework, an implementation of an attack and three different
response techniques were placed. The attack selected was a simple representation
of a Privilege Escalation Attack, which is further discussed in 4.2.5.1.
For defending against the attack, a selection of response techniques was performed.
The selection was based on including response techniques that are suitable to deal
with the privilege escalation attack and to use response techniques from both strate-
gies (mitigation and recovery). Afterward, two of these nominated techniques were
picked based on the lower complexity level of implementation, the Graceful Degra-
dation/Limp Mode and Reparameterization. Finally, that last technique was the
Re-instantiation/Restart response technique, which was picked manually due to it
being an edge case (the car has to disconnect, reboot, and reconnect). These re-
sponse techniques are further discussed in subsection 4.2.5.2.
The process starts by manually attacking the onRoadCar to trigger the framework,
causing the onRoadCar to request an evaluation from the server with its applied
response technique that it’s planning to use. Afterward, the framework would run
and send back the optimal response technique to the onRoadCar. This optimal
technique is based on two main terms: it should be an effective technique (can
prevent the attack from happening again) and is the most efficient technique out of
the other effective techniques.
A response technique can either be effective or not effective. This is measured by
running the attack simulation a second time on the workshopCars after finishing
the execution of the response technique. If the attack did not succeed, then this
technique would be considered effective against that attack. However, if the attack
was successful, then the response technique used is not effective.
As for efficiency, the implementation focused on the time duration when applying
the technique. Each response technique would be timed exactly before the technique
is applied and exactly after it is done applying. Afterward, the framework would
look for all effective techniques it has and evaluate them based on their duration,
and the shortest duration technique would be marked as the most efficient.
The simulation process uses the implementation found on the author’s GitHub repos-
itory2, and this is how it was performed:
Step 1: The server started listening on the interface’s IP address: 192.168.1.253,
with port number: 12321. Figure 4.23 shows the server in the listening state.

2https://github.com/SaifDaghistani/Riposte

44

4. Results and Discussion

Figure 4.23: Server: listening state.

Step 2: Three clients connect to the server by passing in the server’s IP address and
the port number, sending their technical specifications, and will start the monitor-
ing process, as seen in figure 4.24. The server then receives the connection request,
sending an acknowledgment message to the client that the connection was success-
ful. The server also receives the technical specifications sent from the client and
prints them, as seen in figure 4.25. Furthermore, the last figure also shows that
there two collaborative clients that connected to the server (WorkshopCar1 and
WorkshopCar2) and one non-collaborative client (onRoadCar).

Figure 4.24: Client(onRoadCar): successfully connected.

Figure 4.25: Server: several clients connected, listing their technical specifications
and their collaboration status.

Step 3: The attack is manually triggered in the onRoadCar in order to start the
framework, as seen in the figure 4.26.

Figure 4.26: Client(onRoadCar): manual execution of the attack script.

45

4. Results and Discussion

By now, the server would manage the collaboration operation with the available
workshop cars. After the assessment of all available response techniques, the server
lists the results of the evaluation and sends the effective and most efficient response
technique to the onRoadCar, as seen in figure 4.27.

Figure 4.27: Server: listing the results of the evaluation and the best effective
response technique.

The onRoadCar receives the update message and applies the response technique
suggested by the framework which, in this case, reparameterization, as shown in
figure 4.28.

Figure 4.28: Client(onRoadCar): received the update from the server and applying
the suggested response technique.

Step 4: A manual attack is executed again on onRoadCar to check whether the
suggested response technique was applied, as shown in figure 4.29.

Figure 4.29: Client(onRoadCar): checking that the response technique is applied.

Step 5: A manual revert of the reparameterization technique was done (as dis-
cussed in 4.2.5.2), and an execution of the attack is performed again. This returned
a response technique suggestion without the need for evaluation of any response
technique because all response techniques were previously assessed and evaluated,
as shown in figure 4.30.

Figure 4.30: Server: The onRoadCar requests for evaluation, the server acknowl-
edges that the onRoadCar is using the best response technique.

46

4. Results and Discussion

After the client receives the acknowledgement message, it will execute the response
technique it already set up to use, as shown in figure 4.31

Figure 4.31: Client(onRoadCar): The onRoadCar uses the already applied re-
sponse technique after receiving an acknowledgement message from the server.

That being said, WorkshopCar1 has been picked to assess the restart response tech-
nique. After the execution of the technique, a manual running of the client was
initiated in order to connect back to the server. And since the main purpose of
the simulation was to test the framework and not to measure efficiency between
response techniques, the extra time spent to manually connect back WorkshopCar1
to the server was not considered.

4.2.5.1 Attack Simulation

The attack used in the simulation was a simple representation of a privilege escala-
tion attack. The car monitors the shadow file (/etc/shadow) that stores encrypted
passwords of users on the system and can only be read by the root account. Any
modification to the attributes of this file requires root privileges and thus, triggering
the framework.
For the attack to happen, this simple script was used:

#!/bin/bash

sudo chmod +x /etc/shadow

That being said, more sophisticated attacks were planned to be used by using vul-
nerable Raspberry Pi OS’s, such as RasPwn OS3 or DV-PI4. Unfortunately, most
resources were designed for Raspberry Pi 3 and/or earlier versions and were not
compatible with Raspberry Pi 4.

4.2.5.2 Implemented Response Techniques

This subsection describes the selected response techniques and their implementation
when applied in the simulation process.

Graceful Degradation/Limp Mode

As discussed in 4.1.4.3, this response technique allows the system to continue func-
tioning and prevent a catastrophic failure in the case of a compromise. This is
done by lowering the performance of the system or reducing the number of services
provided.

3http://raspwn.org/
4https://whitedome.com.au/re4son/sticky-fingers-dv-pi/

47

4. Results and Discussion

It is important to mention that every system requires different sets of services to
perform its core functionality, and selecting what functionalities/services to dis-
able/enable can widely differ on each system.
For this study, the core functionality considered was to keep the operating system
running with minimum losses of services. Table 4.2 shows the services that were
available on the systems and table 4.3 lists the services that will be disabled in
order to limit the privilege escalation attack.

Table 4.2: Available services on the system.

Available services
alsa-utils cups-browsed lvm2 rpcbind
anacron dbus lvm2-lvmpolld rsync
apparmor dhcpcd mdadm rsyslog
auditd dphys-swapfile mdadm-waitidle saned
avahi-daemon exim4 networking ssh
binfmt-support haveged nfs-common sudo
bluetooth hddtemp ntp triggerhappy
console-setup.sh hwclock.sh plymouth udev
cron keyboard-setup.sh plymouth-log unattended-upgrades
cryptdisks kmod procps uuidd
cryptdisks-early lightdm raspi-config x11-common
cups live-tools rng-tools

Table 4.3: Services that are disabled in the system.

Disabled services
bluetooth
cron
exim4
nfs-common
ssh

The SSH and bluetooth services can allow for remote shell access to the system.
Thus, disabling them limits the possibility for an attacker to have such access.
The cron service allows for scheduled jobs to be executed at a certain time. Keeping
this enabled can let the attacker schedule an execution of a malicious script allowing
him/her to re-enable other services in case they were disabled, and regain access.

48

4. Results and Discussion

The exim4 is a mail transfer agent, and disabling it can limit any private or system
information to be sent to the attacker via mail.
The nfs-common is used to enable the sharing of files between systems that reside
within the same local area network. And since an attack can arrive from compro-
mised local systems, malicious scripts can be transferred to the main system.
The following script was used to implement this technique:

#!/bin/bash

ARG=$1

if [$ARG = "apply"]
then

echo "Stopping and disabling SSH"
sudo systemctl stop ssh && sudo systemctl disable ssh
echo "Stopping and disabling bluetooth"
sudo systemctl stop bluetooth && sudo systemctl disable bluetooth
echo "Stopping and disabling cron"
sudo systemctl stop cron && sudo systemctl disable cron
echo "Stopping and disabling exim4"
sudo systemctl stop exim4 && sudo systemctl disable exim4
echo "Stopping and disabling nfs-common"
sudo systemctl stop nfs-common && sudo systemctl disable nfs-common

elif [$ARG = "revert"]
then

echo "Starting and enabling SSH"
sudo systemctl start ssh && sudo systemctl enable ssh
echo "Starting and enabling bluetooth"
sudo systemctl start bluetooth && sudo systemctl enable bluetooth
echo "Starting and enabling cron"
sudo systemctl start cron && sudo systemctl enable cron
echo "Starting and enabling exim4"
sudo systemctl start exim4 && sudo systemctl enable exim4
echo "Starting and enabling nfs-common"
sudo systemctl start nfs-common && sudo systemctl enable nfs-common

fi

Reparameterization

Reparameterization, as discussed in 4.1.4.2, is used to dynamically adjust the system
based on the situation. The results of applying this technique can lead to a non-
optimal state, which is similar to the Graceful Degradation/Limp mode technique.
Therefore, the implementation of this technique focused on making the shadow file
immutable; preventing any further attribute modifications on this file even by root.
The following script was used to implement this technique:

#!/bin/bash

ARG=$1

if [$ARG = "apply"]
then

49

4. Results and Discussion

sudo chattr +i /etc/shadow
elif [$ARG = "revert"]
then

sudo chattr -i /etc/shadow
fi

Re-instantiation/Restart

This is one of the interesting response techniques that was picked manually to better
evaluate the framework. The framework should handle the effects of rebooting while
successfully assessing the technique. The system first has to save the analysis log
before it reboots, finishes rebooting, reconnects back to the server, and sends the
log file with the analysis data.
This response technique also helped in improving the architecture of the framework.
If a car loses its connection to the server during the evaluation process for some
reason, it can still reconnect and send the analysis log to the server without an
issue.
The following script was used to implement this technique:

#!/bin/bash

ARG=$1

if [$ARG = "apply"]
then

sudo reboot
elif [$ARG = "revert"]
then

echo "revert"
fi

4.3 Riposte: Design Evaluation
Design evaluation is an important step of design science research. With that, further
cycles can be performed in order to enhance the quality of the artefact. These
different quality attributes can be in terms of functionality, completeness, reliability,
usability, and other relevant attributes [67].
For this study, the artefact is evaluated in terms of safety through conducting a
questionnaire with domain experts. The responses of the questionnaire were then
analyzed using thematic analysis following the steps recommended by [7]. Figure
4.32 shows the thematic model created for the analysis.

50

4.
R
esults

and
D
iscussionFigure 4.32: Thematic model for the safety of the developed framework.51

4. Results and Discussion

As seen in the previous figure, the participants have expressed some considerations
and concerns that need to be taken into account for the proposed framework. The
overall safety of the framework was rated by the participants as slightly unsafe
with a score of 2 out of 5 (Scale from 1(Extremely unsafe) to 5(Very
safe); Median = 2.5; Interquartile Range = 3.25), as seen in figure 4.33.
The safety concerns and considerations that are shown in the thematic model are
used to explain the obtained overall safety rate of the developed framework

4.3.1 Automated experiments without human interaction
One of the considerations was about the attack complexity when conducting auto-
mated experiments. Being able to replicate exact attacks from a source can require
human intervention, including consultations with safety and security experts. That
being said, the implementation of response techniques that target complicated at-
tacks can be hard to perform, especially in an automated manner. For that, one of
the participants suggested the use of emulators within simulators in order to over-
come environment replication challenges and get as close as possible to the conditions
that the on road car is in.
Another consideration was the implementation of response techniques. Standards
and certifications should be followed when developing the response techniques. Af-
terward, the response techniques should be tested and evaluated in terms of safety
by running an entire attack scenario along with the environmental input to achieve
optimal results.
Experiment configurations was another consideration. Participants mentioned that
environmental conditions and human interactions should be considered when evalu-
ating response techniques, as the environment for a moving vehicle is quite different
than a stationary vehicle, it can lead to varying results from successful to devastat-
ing. Moreover, the attributes under focus can play an important role when judging
the safety of automated experiments. A participant also mentioned that experi-
ments should be kept inside a variability of ranges of the possible configurations.
This in order to avoid any unconsidered states that might be left unnoticed or not
anticipated in the design analysis. Lastly, a participant mentioned that the selection
process of the workshop cars, when there are multiple workshops available, should
be addressed.

Figure 4.33: Questionnaire box plot: overall safety of the developed framework.

52

4. Results and Discussion

4.3.2 Qualification of workshop cars
The qualification of workshop cars was another safety concern as it was rated severe
with a score of 5 out of 5 (Scale from 1(Insignificant) to 5(Severe); Median
= 5; Interquartile Range = 1.5), as shown in figure 4.34.
The participants focused on how well the workshop car represents the on road car
that is under attack. This included the representation of inputs, environment condi-
tions, and attack vectors. Participants also pointed out that technical specifications
(hardware and software) and component setup should be identical in order to get
optimal evaluation results.
Security strength should also be considered as following the standards and increasing
the security of active safety ECUs could potentially reduce unintended errors during
the attack simulation process.
One of the participants also pointed out that the components state should be seri-
ously considered. As components age, workshop cars can provide wrong data to the
server, making the evaluation process faulty. However, the participant also pointed
out that this can be resolved through using majority voting with many cars running
the experiments simultaneously.

4.3.3 Trustworthiness of results
The trustworthiness of results was addressed by the participants and rated as severe
with a score of 5 out of 5 (Scale from 1(Insignificant) to 5(Severe); Median
= 5; Interquartile Range = 2.25), as shown in figure 4.35.
The security aspect of the workshop cars should be considered by implementing
different security mechanisms, such as mutual authentication and secured commu-
nication channel. Additionally, workshop cars need to be ensured that they are
not compromised through malware, for example. Also, the legitimacy of the source
should be taken into account and to make sure that no tampering was introduced.
One of the participants also pointed out that the administrative authority of the
experiments should be considered, whether it was the trustful OEM or another third
party that could raise concerns. The participant also pointed out that the ownership
of the workshop cars should be taken into account, whether the workshop cars are
owned by the OEM (i.e. testbeds) or individuals who agreed on participating in the

Figure 4.34: Questionnaire box plot: qualification of workshop cars as a safety
concern.

53

4. Results and Discussion

experimentation process.
Privacy was a concern as well when sharing the information of the on road car with
the server and other workshop cars. Lastly, for the on road car to trust the solution
can be a complex process, as it includes many factors that need to be considered
and taken care of.

4.3.4 Framework Design
Lastly, there were some considerations for the framework design that should be con-
sidered. One of the main topics was the cyber issues, where one of the participants
pointed out that besides safety, availability can in some cases become a factor. An
example of that would be when a driver is using a compromised infotainment sys-
tem and gets automatically shut off in response to a cyber attack, the unavailability
could cause the driver to be irritated or nervous, which could lead to an unfortunate
accident. Another cyber issue is spoofing the server’s identity and suggesting ineffi-
cient response techniques to be used by the on road car. Although the participant
points out that this applies to all centralized communications, but it is a concern
that should be taken into account.
Workshop car configurations were also touched by the participants, as one of the
participants mentioning that the variability between vehicles is a major factor that
needs to be considered because it is hard to find two identical cars with the same
parameters and configurations. This participant also pointed out the workshop cars
are likely going to be reprogrammed, which could delay the process of responding
to the on road car and could delay the consultation of other requests as well.
One participant mentioned the strengthening of safety through looking into threats
that could potentially be explored on different assets of the vehicle and perform a
risk assessment on the potential of exploiting these threats and influencing system
safety. The participant also pointed out that, when evaluating different response
techniques, the main parameter should be safety.
Finally, one of the participants pointed out that the framework relies on a set of
assumptions that could be challenging to address, such as attack simulation.

From the analysis of the questionnaire’s data, these are the main takeaways on how
to improve the safety of the framework based on the participants’ perception:

• Complex attacks can be challenging to implement

Figure 4.35: Questionnaire box plot: trustworthiness of results as a safety concern.

54

4. Results and Discussion

• Response techniques should follow standards and certifications
• Response techniques should be tested before implementation
• Selection process of workshop cars from different workshops
• Workshop car should represent the on road car from all aspects
• Components state should be regularly addressed
• Implementation of security mechanisms should be considered
• Administration of experiments should be performed by a trusted party
• Privacy of the on road car should be considered
• Cyber issues should be counted for, such as availability is mitigated by adding

redundant servers

55

4. Results and Discussion

56

5
Threats to Validity

This chapter discusses possible threats to validity for this thesis study. The internal
validity is discussed in 5.1, followed by external validity in 5.2 and construct validity
in 5.3, and finally the conclusion validity in 5.4.

5.1 Internal Validity
Since this thesis work is done individually, the main threat could be the experimenter
bias. However, this can be mitigated using the design science research methodology.
Moreover, since this study aims to perform a qualitative study with domain experts,
a convenience sampling of participants has been done and this could include selec-
tion bias. While this threat can be mitigated through randomizing the selection of
participants, finding participants that are expert on the safety automotive field was
challenging due to the overall pandemic situation and time constraints. For that,
this risk has had to be taken.
Furthermore, a few participants were specialized in the automotive security domain
rather than safety, even though the evaluation was performed on the safety of the
framework. For that, it can be argued that ensuring the functional safety of compo-
nents (the correct functionality of a safety component in a system [68]) is a security
matter as well. Thus, securing safety devices from cyber attacks can in the end
improve safety.
Another possible threat is bias in the coding process of the qualitative data by exist-
ing hypotheses as well as the interpretation process that could be subjective. While
it is true that higher-order themes were already identified based on the questions
provided in the questionnaire, codes and themes were not forcefully assigned to the
already assigned themes. Instead, a new higher-order theme emerged. Moreover, a
discussion of the questions with the supervisor was performed before handing in the
questionnaire in order to minimize this threat.
Additional possible threat is the variation of the experience and expertise of the
participants. While it is beneficial to have varying participants in order to elicit dif-
ferent viewpoints and concerns, this variation could influence the safety assessment
of the framework, as different levels of experience/expertise could play a major role
in the assessment. That being said, due to the limited number of participants, this
threat cannot be easily dealt with and the risk has to be taken.
Finally, the hardware and software used for the experiment could be a possible
threat for this study. Using different hardware or different implementation of the
framework could lead to different results than this study has showed. Therefore,

57

5. Threats to Validity

the hardware specifications used for the experiment are explained in detail and the
software implementation can be found in the report itself and an online repository
mentioned earlier.

5.2 External Validity
This thesis focuses on simulated attacks for experimenting and comparing the dif-
ferent response techniques, some real-life factors are not to be considered within this
study. However, the simulation and experimentation processes, together with the
used resources in this thesis, including the software and hardware, are reported in
detail, and thus enable replication and increases the reliability and generalizability
of this study.
Another possible external threat is the sample size of the questionnaire. It was not
possible to find more participants due to time constraints and the overall pandemic
situation. To partially deal with this risk, the selected participants were diverse in
occupation, education, experience, and work organizations.

5.3 Construct Validity
To prevent the limited scope that the participants could face when answering the
questionnaire, a mix of closed and open-ended questions was provided. This in order
to allow the participants to freely express what they think of the proposed solution
without limiting them to scale answers only.

5.4 Conclusion Validity
As the thesis study relies on subjective measurements in order to answer a few re-
search questions, there could have been occasions where the author has influenced a
participant’s response before answering the questionnaire. During the call/meeting,
the author tried to not affect the participants’ answers. This means that the cal-
l/meeting was not exactly the same for every participant, even if it was planned to
be. However, this threat was taken into account and a video demonstration of the
proposed solution, as well as a thorough explanation of the context, has been pro-
vided to each participant before they answer the questionnaire. Additionally, it can
be argued that curiosity can support the conclusion by providing better feedback
from participants.

58

6
Conclusion

The aim of this thesis was to investigate and find potential solution to the raising
cyber security concerns of the automotive sector due to the wide connectivity of
modern vehicles. The purpose was to design a solution that could help connected
vehicles to collaborate in finding out the most suitable cyber attack response tech-
nique for a particular attack that is taking place in real time.
The contributions of this thesis are the following:

• A dataset of cyber attack response techniques for the software asset
of the vehicle: The study first identified and explored the available state-of-
the-art cyber attack response techniques that target the software asset of the
vehicle through conducting a literature review, resulting in a list of the latest
state-of-the-art cyber attack response techniques for the software asset along
with their description. This rich description of the attack response techniques
helps practitioners to have a better understanding of the functionality of each
response technique. Moreover, it provides a means for supporting the selection
process thereof in order to let practitioners adopt the most suitable response
techniques for the tasks at hand.

• A collaborative framework to evaluate and pick an effective and
most efficient cyber attack response technique against an ongoing
cyber attack: A design of a collaborative framework has been proposed to
help vehicles under attack to collaborate to find out an effective and most
efficient response technique for that on-going attack, described in structural
and behavioral UML designs. Additionally, this design was implemented and
tested by conducting a simulation experiment. Furthermore, the proposed
framework is the first of its kind in the literature that proposes the leverage of
collaboration between vehicles to enhance the efficiency and effectiveness of the
response to cyber security attacks, as previous works focused on collaborative
IDS systems and collaborative attack detection mechanisms. Therefore, this
framework could serve as a stepping stone toward supporting the collaboration
of vehicles in regard to response techniques. Moreover, further studies can be
conducted toward either enhancing the framework itself or adapting as well as
evaluating other collaborative attack response alternatives.

• An evaluation of the framework in terms of safety: An evaluation of
safety was performed through running a qualitative study with experts from
the automotive security and/or safety domain through a questionnaire to know
the perception of these experts on the safety of the proposed solution. The
results of the safety evaluation indicate that there are some safety concerns that
need to be addressed such as the qualification of workshop cars, trustworthiness

59

6. Conclusion

of results, automated experiments without human interaction, and the overall
framework design. Moreover, the safety evaluation shows that the interplay
of safety and security should be one of the top priorities when it comes to
developing a solution in the automotive domain. The evaluation also provided
insight into how the safety concerns could be addressed in the future.

The outcome of this study could benefit the researchers by providing a dataset and
discussion of the available state-of-the-art cyber attack response techniques for the
software asset of the vehicle. It provides a basis for future research whether to
improve the framework itself or learn about the domain area.
Furthermore, this study could benefit the practitioners as well through the use of
the Riposte framework to collaboratively evaluate different response techniques for
an ongoing cyber attack. This could enhance the cyber security of on road vehicles
by increasing the efficiency and effectiveness of cyber response techniques against
cyber attacks.

6.1 Future Work
Due to the lack of related work regarding the collaboration of vehicles in evaluating
different response techniques in real time, this proposed solution can serve as a
starting point in this direction. Therefore, different implementation alternatives
could be sought.
That being said, further design science research cycles should be conducted to im-
prove the proposed solution. This to provide a safer and more efficient solution than
the current one.
In addition, further modifications and improvements could be added, such as the
process of replicating the environmental inputs from the on-road car to the workshop
cars, as pointed out by experts, in order to make better decisions when evaluating
the response techniques. Another suggestion is to add more security mechanisms
such as encryption and mutual authentication to minimize spoofing threats and
man-in-the-middle attacks.

60

Bibliography

[1] “Security threat: About 63% vehicle makers don’t test half of hardware and
software technologies: Report, Auto News, ET Auto.” Available at: https:
//tinyurl.com/benppzju (Accessed: 2021-02-11).

[2] “QNX Auto Blog: Holistic Security for the Software-Defined Car.” Available
at: https://tinyurl.com/m47afnxf (Accessed: 2021-04-04).

[3] A. Lautenbach, “On Cyber-Security for In-Vehicle Software,” tech. rep.,
Chalmers University of Technology, Göteborg, 2017.

[4] NXP, “Automotive Gateway: A Key Component to Securing the Connected
Car,” tech. rep.

[5] D. Ratasich, F. Khalid, F. Geissler, R. Grosu, M. Shafique, and E. Bartocci, “A
Roadmap Toward the Resilient Internet of Things for Cyber-Physical Systems,”
IEEE Access, vol. 7, pp. 13260–13283, 2019.

[6] F. Giaimo, H. Andrade, and C. Berger, “Continuous experimentation and the
cyber–physical systems challenge: An overview of the literature and the in-
dustrial perspective,” Journal of Systems and Software, vol. 170, p. 110781, 12
2020.

[7] D. S. Cruzes and T. Dyba, “Recommended Steps for Thematic Synthesis in
Software Engineering,” in 2011 International Symposium on Empirical Software
Engineering and Measurement, no. 7491, pp. 275–284, IEEE, 9 2011.

[8] J. W. Creswell, Educational research: Planning, conducting, and evaluating
quantitative. 2002.

[9] M. N. Adnan, A. Kabir, L. Karim, and N. Khan, “Performance Comparison of
Different Software Fault Tolerance Methods,” tech. rep., 2011.

[10] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems a secretless framework for
security through diversity,” 15th USENIX Security Symposium, no. August,
pp. 105–120, 2006.

[11] L. F. Combita, J. Giraldo, A. A. Cardenas, and N. Quijano, “Response and
reconfiguration of cyber-physical control systems: A survey,” in 2015 IEEE
2nd Colombian Conference on Automatic Control (CCAC), pp. 1–6, IEEE, 10
2015.

[12] M. Wu, H. Zeng, C. Wang, and H. Yu, “Safety Guard,” in Proceedings of the
54th Annual Design Automation Conference 2017, vol. Part 12828, (New York,
NY, USA), pp. 1–6, ACM, 6 2017.

[13] “PROTOCOLS – AUTOMOTIVE BASICS.” Available at: https://
automotivetechis.wordpress.com/protocols/ (Accessed: 2021-02-09).

61

https://tinyurl.com/benppzju
https://tinyurl.com/benppzju
https://tinyurl.com/m47afnxf
https://automotivetechis.wordpress.com/protocols/
https://automotivetechis.wordpress.com/protocols/

Bibliography

[14] H. Martin, Z. Ma, C. Schmittner, B. Winkler, M. Krammer, D. Schneider,
T. Amorim, G. Macher, and C. Kreiner, “Combined automotive safety and se-
curity pattern engineering approach,” Reliability Engineering & System Safety,
vol. 198, p. 106773, 6 2020.

[15] T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, and T. Olovsson,
“REMIND: A Framework for the Resilient Design of Automotive Systems,” in
2020 IEEE Secure Development (SecDev), pp. 81–95, IEEE, 9 2020.

[16] European Union Agency for Network and Information Security (ENISA), Cy-
ber security and resilience of smart cars. Good practices and recommendations.
No. December, 2017.

[17] “ISO - ISO/SAE DIS 21434 - Road vehicles — Cybersecurity engineering.”
Available at: https://www.iso.org/standard/70918.html (Accessed: 2020-
11-03).

[18] M. D. Stojanović and S. V. Boštjančič Rakas, eds., Cyber Security of Industrial
Control Systems in the Future Internet Environment. Advances in Information
Security, Privacy, and Ethics, IGI Global, 2020.

[19] “Cyber Threat Analysis - Cyber Experts.” Available at: https:
//cyberexperts.com/cyber-threat-analysis-a-complete-overview/
(Accessed: 2020-11-09).

[20] “Sony’s CEO Stringer: No Network ’100% Secure’ | Newsmax.com.” Available
at: https://tinyurl.com/45j7a6b9 (Accessed: 2020-11-27).

[21] “Highly dependable automotive software.” Available at: https://tinyurl.
com/45frpzct (Accessed: 2021-04-04).

[22] S. Kim and R. Shrestha, “Introduction to Automotive Cybersecurity,” in Au-
tomotive Cyber Security, pp. 1–13, Singapore: Springer Singapore, 2020.

[23] A. Karahasanovic, “Automotive Cyber Security Threat modeling of the AU-
TOSAR standard,” Master’s thesis, Chalmers University of Technology, 2017.
Available at: https://hdl.handle.net/20.500.12380/247979.

[24] “The car will become a computer on wheels | Roland Berger.”
Available at: https://www.rolandberger.com/en/Insights/Publications/
The-car-will-become-a-computer-on-wheels.html (Accessed: 2021-02-
09).

[25] C. Czosseck, R. Ottis, and K. Ziolkowski, 2012 4th International Conference
on Cyber Conflict (CyCon 2012). Tallinn, Estonia: NATO CCD COE, 2012.

[26] F. Giaimo, Bridging the Experimental Gap: Applying Continuous Experimenta-
tion to the Field of Cyber-Physical Systems, in the Example of the Automotive
Domain. PhD thesis, Chalmers University of Technology and Gothenburg Uni-
versity, 2020.

[27] F. Auer and M. Felderer, “Current State of Research on Continuous Experimen-
tation: A Systematic Mapping Study,” in 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), pp. 335–344, IEEE,
8 2018.

[28] E. Mousavinejad, F. Yang, Q.-L. Han, X. Ge, and L. Vlacic, “Distributed Cyber
Attacks Detection and Recovery Mechanism for Vehicle Platooning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, pp. 3821–3834, 9
2020.

62

https://www.iso.org/standard/70918.html
https://cyberexperts.com/cyber-threat-analysis-a-complete-overview/
https://cyberexperts.com/cyber-threat-analysis-a-complete-overview/
https://tinyurl.com/45j7a6b9
https://tinyurl.com/45frpzct
https://tinyurl.com/45frpzct
https://hdl.handle.net/20.500.12380/247979
https://www.rolandberger.com/en/Insights/Publications/The-car-will-become-a-computer-on-wheels.html
https://www.rolandberger.com/en/Insights/Publications/The-car-will-become-a-computer-on-wheels.html

Bibliography

[29] T. Nandy, R. M. Noor, M. Yamani Idna Bin Idris, and S. Bhattacharyya, “T-
BCIDS: Trust-Based Collaborative Intrusion Detection System for VANET,”
in 2020 National Conference on Emerging Trends on Sustainable Technology
and Engineering Applications (NCETSTEA), pp. 1–5, IEEE, 2 2020.

[30] G. Raja, S. Anbalagan, G. Vijayaraghavan, S. Theerthagiri, S. V. Suryanarayan,
and X.-W. Wu, “SP-CIDS: Secure and Private Collaborative IDS for VANETs,”
IEEE Transactions on Intelligent Transportation Systems, pp. 1–9, 2020.

[31] F. Giaimo and C. Berger, “Continuous Experimentation for Automotive Soft-
ware on the Example of a Heavy Commercial Vehicle in Daily Operation,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics), vol. 12292 LNCS,
pp. 73–88, 3 2020.

[32] P. Runeson, E. Engström, and M.-A. Storey, “The Design Science Paradigm
as a Frame for Empirical Software Engineering,” in Contemporary Empirical
Methods in Software Engineering, pp. 127–147, Cham: Springer International
Publishing, 2020.

[33] A. Hevner and S. Chatterjee, Design Research in Information Systems, vol. 22
of Integrated Series in Information Systems. Boston, MA: Springer US, 2010.

[34] A. Dresch, D. P. Lacerda, and J. A. V. Antunes, Design science research: A
method for science and technology advancement. Springer International Pub-
lishing, 1 2015.

[35] B. Gillham, Developing a Questionnaire. Bloomsbury Publishing Plc, 2008.
[36] N. Salkind, “A Technique for the Measurement of Attitudes,” in Encyclopedia

of Research Design, 2455 Teller Road, Thousand Oaks California 91320 United
States: SAGE Publications, Inc., 2012.

[37] I. Etikan, “Comparison of Convenience Sampling and Purposive Sampling,”
American Journal of Theoretical and Applied Statistics, vol. 5, no. 1, p. 1,
2016.

[38] J. Pries-Heje, R. Baskerville, and J. Venable, “Strategies for design science
research evaluation,” 16th European Conference on Information Systems, ECIS
2008, 2008.

[39] J. R. Venable, J. Pries-heje, and R. Baskerville, “Design Science Research in
Information Systems. Advances in Theory and Practice,” vol. 7286, 2012.

[40] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative
Research in Psychology, vol. 3, pp. 77–101, 1 2006.

[41] W. Meng, E. W. Tischhauser, Q. Wang, Y. Wang, and J. Han, “When Intru-
sion Detection Meets Blockchain Technology: A Review,” IEEE Access, vol. 6,
pp. 10179–10188, 1 2018.

[42] H. Kopetz, Real-time systems: design principles for distributed embedded appli-
cations. Real-Time Systems Series, Boston, MA: Springer Science & Business
Media, 2011.

[43] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive
recovery,” ACM Transactions on Computer Systems, vol. 20, pp. 398–461, 11
2002.

[44] M. Conoscenti, A. Vetro, and J. C. De Martin, “Blockchain for the Internet of
Things: A systematic literature review,” in 2016 IEEE/ACS 13th International

63

Bibliography

Conference of Computer Systems and Applications (AICCSA), pp. 1–6, IEEE,
11 2016.

[45] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, “On blockchain and its
integration with IoT. Challenges and opportunities,” Future Generation Com-
puter Systems, vol. 88, pp. 173–190, 11 2018.

[46] M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions, and
open challenges,” Future Generation Computer Systems, vol. 82, pp. 395–411,
5 2018.

[47] L. Chen and A. Avizienis, “N-version programming : a fault-tolerance approach
to reliability,” vol. 1, pp. 3–9, 1996.

[48] L. Nagy, R. Ford, and W. Allen, “FIT Computer Science Technical Report:
CS-2006-04 N-Version Programming for the Detection of Zero-day Exploits N-
Version Programming for the Detection of Zero-day Exploits,” tech. rep., 2006.

[49] J. C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, “Definition and Analysis
of Hardware- and Software-Fault-Tolerant Architectures,” Computer, vol. 23,
no. 7, pp. 39–51, 1990.

[50] “Hot and Cold Spares : Networking.” Available at: https://www.brainbell.
com/tutorials/Networking/Hot_Spare_And_Hot_Swapping.html (Accessed:
2021-02-18).

[51] A. Kumar and D. Malhotra, “Study of Various Proactive Fault Tolerance Tech-
niques in Cloud Computing,” International Journal of Computer Sciences and
Engineering, vol. 06, pp. 81–87, 4 2018.

[52] A. Saleh and J. Patel, “Transient-fault analysis for retry techniques,” IEEE
Transactions on Reliability, vol. 37, no. 3, pp. 323–330, 1988.

[53] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant
control systems,” Annual Reviews in Control, vol. 32, no. 2, pp. 229–252, 2008.

[54] E. Bartocci, J. Deshmukh, and A. Donz, Lectures on Runtime Verification,
vol. 10457 of Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2018.

[55] S. Hukerikar and C. Engelmann, “Resilience Design Patterns: A Structured
Approach to Resilience at Extreme Scale,” Supercomputing Frontiers and In-
novations, vol. 4, pp. 4–42, 8 2017.

[56] M. Segovia, A. R. Cavalli, N. Cuppens, and J. Garcia-Alfaro, “A Study on
Mitigation Techniques for SCADA-Driven Cyber-Physical Systems (Position
Paper),” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11358
LNCS, pp. 257–264, 2019.

[57] “Limp Mode: Causes and what to do about it.” Available at: https:
//tinyurl.com/3pjbfh44 (Accessed: 2021-02-06).

[58] M. A. Mukwevho and T. Celik, “Toward a Smart Cloud: A Review of Fault-
tolerance Methods in Cloud Systems,” IEEE Transactions on Services Com-
puting, pp. 1–1, 3 2018.

[59] V. Slåtten, P. Herrmann, and F. A. Kraemer, “Model-Driven Engineering of
Reliable Fault-Tolerant Systems—A State-of-the-Art Survey,” in Advances in
Computers, vol. 91, pp. 119–205, 2013.

64

https://www.brainbell.com/tutorials/Networking/Hot_Spare_And_Hot_Swapping.html
https://www.brainbell.com/tutorials/Networking/Hot_Spare_And_Hot_Swapping.html
https://tinyurl.com/3pjbfh44
https://tinyurl.com/3pjbfh44

Bibliography

[60] “Computer Network Architecture - javatpoint.” Available at: https://www.
javatpoint.com/computer-network-architecture (Accessed: 2021-05-26).

[61] P. Kisembe and W. Jeberson, “Future of Peer-To-Peer Technology with the
Rise of Cloud Computing,” International Journal of Peer to Peer Networks,
vol. 8, pp. 45–54, 8 2017.

[62] “Difference between client server and peer to peer - propatel.” Available
at: https://www.propatel.com/peer-to-peer-and-client-server/ (Ac-
cessed: 2021-03-17).

[63] “Understanding the differences between client/server and peer-to-peer networks
- TechRepublic.” Available at: https://tinyurl.com/65puxdyh (Accessed:
2021-03-17).

[64] G. Schermann, J. Cito, and P. Leitner, “Continuous experimentation: Chal-
lenges, implementation techniques, and current research,” IEEE Software,
vol. 35, pp. 26–31, 3 2018.

[65] “Feature toggles (aka feature flags).” Available at: https://martinfowler.
com/articles/feature-toggles.html (Accessed: 2021-03-17).

[66] M. T. Rahman, L. P. Querel, P. C. Rigby, and B. Adams, “Feature toggles:
Practitioner practices and a case study,” Proceedings - 13th Working Conference
on Mining Software Repositories, MSR 2016, pp. 201–211, 2016.

[67] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Quarterly: Management Information Systems, vol. 28,
no. 1, pp. 75–105, 2004.

[68] “Functional safety | RISE.” Available at: https://www.ri.se/en/
what-we-do/expertises/functional-safety (Accessed: 2021-05-17).

65

https://www.javatpoint.com/computer-network-architecture
https://www.javatpoint.com/computer-network-architecture
https://www.propatel.com/peer-to-peer-and-client-server/
https://tinyurl.com/65puxdyh
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://www.ri.se/en/what-we-do/expertises/functional-safety
https://www.ri.se/en/what-we-do/expertises/functional-safety

Bibliography

66

A
Appendix 1 - Questionnaire

A.1 Questions about the safety of the framework
1. What are your first and last names?
2. What is your highest educational degree?

(a) B.Sc.
(b) M.Sc.
(c) P.hD.
(d) Other (insert text)

3. What is the domain of your highest educational degree?
(a) Computer Science and Engineering
(b) Software Engineering
(c) Networks and Systems
(d) Other (insert text)

4. What is the name of the organization where you currently study or work in?
5. What is your current occupation?

Description: e.g., security expert, system architect, researcher in security, PhD
student in computer science.

6. How many months of working experience do you have in systems security and
safety?

7. How do you rate your expertise in systems security and safety?
(a) 1 very low
(b) 2 low
(c) 3 average
(d) 4 high
(e) 5 very high

8. How do you rate the safety of the developed collaborative attack response
system?
(a) 1 extremely unsafe
(b) 2 slightly unsafe
(c) 3 neither unsafe or safe
(d) 4 slightly safe
(e) 5 very safe

9. How safe is it to make decisions based on automated experiments with almost
no human interactions? Please elaborate.
Description: automated experiments are performed to evaluate the response
techniques using the workshop cars.

I

A. Appendix 1 - Questionnaire

10. How do you rate the severity of "trustworthiness" of the collaborating vehicles
as a safety concern when using the developed collaborative attack response
system in practice?
Description: trustworthiness: how much can the on-road car (the car that re-
quests the evaluation) trust the results of experiments conducted on the work-
shop cars (the cars being experimented on).
(a) 1 insignificant
(b) 2 minor
(c) 3 moderate
(d) 4 major
(e) 5 severe

11. In your opinion, how can the safety concern related to "trustworthiness" be
addressed?

12. How do you rate the severity of "qualification" of the collaborating vehicles
as a safety concern when using the developed collaborative attack response
system in practice?
Description: qualification: how qualified are the workshop cars to be experi-
mented on.
(a) 1 insignificant
(b) 2 minor
(c) 3 moderate
(d) 4 major
(e) 5 severe

13. In your opinion, how can the safety concern related to "qualification" be ad-
dressed?

14. In your opinion, what other aspects can be considered as safety concerns when
using the developed collaborative attack response system in practice?
Description: Please mention the concern, rate its severity (1 to 5), and elab-
orate (if possible) on how to address it.

15. Any other comments that you would like to mention?

II

	List of Figures
	List of Tables
	Introduction
	Statement of the Problem
	Purpose of Study
	Significance of the Study
	Research Questions
	Scope
	Thesis Outline

	Background
	The Connected Car
	Electronic Control Units
	Inter-Vehicle Communications
	In-Vehicle Communications

	Vehicle Cyber Security Concerns
	Continuous Practices
	Related Work

	Research Methodology
	Design Science Research
	Problem Conceptualization
	Solution Design
	Design Evaluation

	Qualitative Study
	Participants

	Simulation
	Thematic Analysis

	Results and Discussion
	Problem Conceptualization
	Redundancy and Diversity
	Software Redundancy
	Agreement/Voting
	N-version Design
	Recovery Blocks
	N self-checking
	N-variant Systems
	Replacement of Cold/Hot Spares

	Adaptive Response
	Retry
	Model-based Response

	Runtime Enforcement
	Safety Guard

	Reconfiguration/Re-parameterization
	Reinitialization
	Reparameterization
	Graceful Degradation/Limp Mode
	Isolation
	Restructure
	Dynamic Deployment of Policies
	Rescue Workflow

	Migration
	Relocation/Migration
	Preemptive Migration

	Checkpointing and Rollback
	Re-instantiation/Restart
	Checkpoint Recovery
	Software Rejuvenation

	Rollforward Actions
	Exception Handling

	Riposte: Solution Design
	Network Architecture of the Framework
	Continuous Experimentation
	Framework Structure
	Framework Behavior
	Implementation and Testing
	Attack Simulation
	Implemented Response Techniques

	Riposte: Design Evaluation
	Automated experiments without human interaction
	Qualification of workshop cars
	Trustworthiness of results
	Framework Design

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusion
	Future Work

	Bibliography
	Appendix 1 - Questionnaire
	Questions about the safety of the framework

