
Thesis for the degree of Master of Science in Complex Adaptive Systems

Modeling and optimization of response

surfaces using an Arti�cial Neural

Networks

Axel Jarenfors

Department of Applied Physics

Chalmers University of Technology

Göteborg, Sweden, 2011

Modeling and optimization of response surfaces

using an Arti�cial Neural Networks

Axel Jarenfors

© Axel Jarenfors, 2011.

Department of Applied Physics
Chalmers University of Technology
412 96 Göteborg, Sweden
Telephone: +46 (0)31 772 1000

This report has been produced with support from Volvo 3P, and Jönköping University,
School of Engineering

Cover:
Final response surface of an arti�cial neural network trained of the Rosenbrock func-

tion. The �nal error is evaluated at ≈ 10−3. The points indicate the original data set.
For more details see 4.1.2.1 on page 23

Chalmers Reproservice
Göteborg, Sweden, 2011

ii

Modeling and optimization of response surfaces

using an Arti�cial Neural Networks

Axel Jarenfors

Department of Applied Physics
Chalmers University of Technology

Abstract

In a world where new products are developed using computer simulations, and where
every aspect can be measured, and re�ned with extreme precision, most optimisation
algorithms still rely on the existence of a clearly de�ned function to optimize. In reality
however this function is often de�ned through a FEM-calculation, which may require
hours to evaluate each individual point. In order to save time, only a small discrete set
of points can be evaluated and are then used to construct a mathematical model, or
response surface, of the data. Actual optimisation of the problem can then be done on
this model instead.
This project focuses on using an arti�cial neural network (ANN) to construct such a

model. The objective is to build a generalised software tool that can take a set of data,
construct a response surface, and �nd the optimal point on it. The tool must also be
able to do this with high accuracy and within reasonable time.
Because the method requires many mathematical formulations, the tool was written

in MATLAB. The structure of the ANN used is limited to feed-forward networks with
two hidden layers, where the number of hidden neurons ischosen such that over�tting is
avoided. The training of the ANN uses backpropagation and the results are evaluated
using the response surface of a quadratic regression model (QRM) for comparison.
Testing of the �nal product shows that the ANN is in most cases able to outperform

the QRM, and sometimes with several orders of magnitude. It is also clear that the ANN
is more versatile than the QRM when it comes to modelling non-symmetric functions.
When the number of input parameters increases, the di�erence becomes less distinct.
However the ANN has the advantage that its adaptability can be easily improved upon
if the data set is increased.
The applicability of the tool developed in this project is immediate. It can be used as

it is to help R&D-sta� with their work. The tool does require some experience to be used
�uently, and it still has potential for further improvements. It does however illustrate
once again that advanced mathematical concepts can be translated into industry-useful
aids.

Keywords: optimization, response surface, error function, arti�cial neural networks,
backpropagation, Levenberg-Marquart

iv

Contents

1. Introduction 1

1.1. Problem . 1
1.2. Background . 1
1.3. Objectives . 2
1.4. Outline . 2

2. Theory 3

2.1. Arti�cial Neural Networks . 3
2.1.1. Basic aspects of training . 3
2.1.2. The Single Neuron . 3
2.1.3. The Transfer Function . 5
2.1.4. The Network Topology . 5
2.1.5. Error function . 6
2.1.6. Determinacy of a system . 7

2.2. Training with Backpropagation . 7
2.2.1. Steepest decent . 8
2.2.2. Newton's method . 10
2.2.3. Approximation of the Hessian matrix 11
2.2.4. Levenberg-Marquart method . 12

2.3. Training without Backpropagation . 12
2.3.1. Particle Swarm Optimization . 13

3. Implementation 14

3.1. Basic structure . 14
3.2. Initiation of variables . 15

3.2.1. Topology settings . 15
3.2.2. Reformatting of data . 16

3.3. Training loop . 17
3.3.1. Initiating the weight vector . 17
3.3.2. Over�tting . 17

3.4. Display of results . 18
3.4.1. Finding the minimum . 18
3.4.2. Quadratic Regression Model . 19

4. Testing 20

4.1. Benchmarks functions . 20
4.1.1. 1-dimensional . 20

v

Contents

4.1.2. 2-dimensional . 23
4.2. Ideal truss . 26

4.2.1. Description . 26
4.2.2. Using di�erent topologies . 27

5. Conclusions 32

5.1. Discussion . 32
5.2. Suggested improvements . 32
5.3. Recommendation . 33

A. Appendix 35

A.1. Full analytical Hessian . 35

vi

1. Introduction

1.1. Problem

The central part of design optimization revolves around the problem of locating the
minimum of a given parameter, such as tension or weight, within speci�ed boundaries,
such as as size or strength. In order to approach this problem it is necessary to determine
the exact way that changes in the design will e�ect the the �nal value of whatever is being
optimized, i.e. what the mathematical function between them is. The two most common
ways of obtaining data about this function is by physical measurements, or by computer
simulation.
Unfortunately, these two methods can only provide discrete data about speci�cally

tested points, and it is usually a very time consuming process. In order to perform
accurate optimization it is necessary to be able to evaluate new points very rapidly. The
solution is to use the available discrete data, and construct a continuous approximation of
the function, known as the response surface. The idea of this is that if the approximation
is accurate, the minimum of the real function will coincide with the minimum of the
response surface. Since the function describing the response surface will be well known,
its minimum can can be obtained using a number of well established techniques. The
focus of this thesis however, lies in the construction of an accurate approximation.

1.2. Background

When constructing an approximation of a function, the starting point is always a general
function with a number of coe�cients that need to be �ne-tuned in order to �t the given
data. A greater number of coe�cients usually means the function can be more accurate,
however it also means it will be more di�cult to �ne-tune.
In its simplest version the response surface is taken to be a linear plane. A plane would

of course not have a minimum without the boundaries that limit the design variables,
and as such the minimum will always lie in a corner. After locating it, the boundaries
are moved closed towards it and a new set of points with greater resolution around this
corner is tested. Using the new data the process is repeated until convergence at a
function minimum is reached. The trouble with this method is that the linear plane is
rarely, if ever, an accurate approximation. Therefore this method may end up requiring
a large number of points to be tested before any results can be found. It also means that
the �nal response surface cannot be used to determine the function's behavior around the
minimum, which may be very important if more than one parameter is to be optimized.

1

1. INTRODUCTION

1.3. Objectives

The purpose of this thesis is to test a di�erent way of utilizing the available data to
construct a more accurate response surface. Speci�cally, a program employing an Arti�-
cial Neural Network (ANN) will be written, and �ne-tuned. This should be able to take
more of the non-linear aspects of the real function into consideration. Once completed
the program will be tested using known benchmark functions to determine its accuracy
and robustness.

1.4. Outline

The thesis is divided into several parts. The �rst is a theoretical description of the
mathematical concepts employed when designing the ANN. The second depicts the im-
plementation of the concepts as a MATLAB program. The �nal section covers the testing
that was employed during the development.

2

2. Theory

2.1. Arti�cial Neural Networks

An ANN is a method of performing calculations in a way that attempts to mimic the
processes of the biological brain. In order to understand how this is accomplished, it is
necessary to understand how how an ANN is setup. [1]

2.1.1. Basic aspects of training

The most signi�cant aspect of an ANN is its ability to learn. Just like the brain it
attempts to simulate, it is often terrible at its task when it �rst starts out. In order for
it to improve it requires training, which consists of carefully adjusting the coe�cients of
the network. Training may be either supervised or unsupervised depending of the task
at hand. For the purposed of this project, supervised learning is the way to proceed.
Supervised learning is used when the operator already possesses a number of input

points, xq, as well as their corresponding function value, yq. This is referred to as an
input/output-pair (I/O-pair). During training the inputs are fed into the network and by
comparing the network's outputs to the known function values, appropriate adjustments
can be made.

2.1.2. The Single Neuron

The �rst step when constructing an ANN is to understand the basic building block,
i.e. the neuron. The arti�cial neuron is modeled after the biological neuron, which is
illustrated in �gure 2.1. Via the dendrites, the neuron receives a number of input signals,
the strength of which is determined by the strength of the connections, also known as
synapses. The combination of signals is then processed by the cell body, and the resulting
output signal is sent along the axon to be received by other neurons.

3

2. THEORY

Figure 2.1.: Schematic drawing of a biological neuron

In the case of the arti�cial neuron, the dendrites are replaced by a number of slots
through which a set of numerical inputs, aj , can be introduced to the neuron. Each
input is multiplied by a weight coe�cient, wj , depending on which dendrite it arrives in.
These weight are as such equivalent to the di�erent synaptic strengths. The weighted
inputs are summed and an o�set coe�cient, c, is added to give the net input, n.

n =

m∑
j=1

wj · aj + c (2.1)

This notation is often simpli�ed by considering the o�set as an additional weight for
an input slot that always receives a one, i.e. w0 = c and a0 = 1.

n =
m∑
j=0

wj · aj = W · a (2.2)

where W =
[
w0 · · · wm

]
and a =

[
a0 · · · am

]T
=

 a0
...
am


are written in matrix notations.
The net input is passed through a transfer function, f(x), in order to arrive at the

neuron output, b.

b = f (n) = f (W · a) (2.3)

This is the value that the neuron transmits to other neurons in the network, equivalent
to the signal sent along the axon.

4

2. THEORY

2.1.3. The Transfer Function

The transfer function of the neuron is of particular interest as it determines both the
range and the distribution of the neuron's output. One widespread transfer function is
the binary classi�er:

fbin (n) =

{
0 n < 0

1 n ≥ 0
(2.4)

In fact, a neuron using this even has its own name, perceptron.

The simplest transfer function may be the linear function:

flin (n) = n (2.5)

Compare (2.5) to the equally common log-sigmoid:

fsig (n) =
1

1 + e−n
(2.6)

In some cases the transfer function can include stochastic properties. For example, a
function of the net input may be used to set the probabilities of a randomly generated
output. This however lies outside the scope of this project.

The transfer function may be selected individually for each neuron, however it is com-
mon practice that groups of similar neurons uses the same function. Di�erent transfer
function are useful for di�erent purposes.

2.1.4. The Network Topology

As implied, a network usually consists of more than one neuron. Each neuron can have
any number of inputs, and it can transmit its result to any number of receiving neurons,
including itself. It is therefore critical to consider the structure or topology of a neural
network in order to understand it.
There are several categories of topologies but this thesis considers only one, the feed-

forward neural network (FFNN). The main feature of a FFNN is that it is set up in
distinct layers. While each layer may have any number of neurons in it, each neuron may
only receive input from neurons in the previous layer, and can similarly only transmit
its output to neurons in the upcoming layer, see �gure 2.2. As such a FFNN contains no
loops, and the output of a neuron cannot in�uence the input the neuron might receive
at a later time. This makes a FFNN time-consistent in that a given set of network input
signals fed to the �rst layer of the network it will always produce the same network
outputs.
De�ning the topology of a FFNN comes down to two parameters. The �rst is the

number of layers, K, to be used. The second is the number of neurons in each layer,
mk. The last layer, known as the output layer, must have the same number of neurons as
the number of desired outputs for the entire network. The other layers, known as hidden
layers, may have any number of neurons and they do not have to equal the number of
network inputs, the number of network outputs, or the be the same in all hidden layers.

5

2. THEORY

Inputs First Layer Second Layer Outputs

a10
(=1) •

×w1
1,0

&&
×w1

m1,0

��

a20
(=1) •

×w2
1,0

&&
×w2

m2,0

��

x1 // �
a11 • ×w1

1,1
//

×w1
m1,1

��

∑ n1
1 // f1

b11 // �
a21 • ×w2

1,1
//

×w2
m2,1

��

∑ n2
1 // f2

b21 // � y1 //

...
...

...
...

...
...

...
...

...

xm0 // �
a1m0 •

×w1
1,m0

CC

×w1
m1,m0

//
∑ n1

m1 // f1
b1m1 // �

a2m1 •

×w2
1,m1

CC

×w2
m2,m1

//
∑ n2

m2 // f2
b2m2 // �

ym2 //

where wki,j is the the weight of the jth input to the ith neuron of the kth layer.

Figure 2.2.: A two-layered arti�cial neural network

2.1.5. Error function

One important aspect training is to determine whether of not a change made to the
weights was an improvement or not. This is achieved by considering the error function,
E, and attempting to minimize it. For most training algorithms it is a requirement that
the error function must be scalar, i.e. there may only be one neuron in the output layer.
A commonly used error function is the summed squared error between the network's �nal
output , bK1,q, and the known corresponding function value, yq.

E =

Q∑
q=1

(
bK1,q − yq

)2
(2.7)

The idea is to consider all Q of the I/O-pairs as constants for the duration of the training,
and instead attempt to express the error as a function of the network's weights.

E = F (w) (2.8)

where w =
[
w1

1,0 · · · w1
1,m0

w1
2,0 · · · w1

m1 ,m0
w2

1,0 · · · wKm
K
,m

K−1

]T
Another useful way of writing the error function is:

E = e(w)T · e(w) (2.9)

with the error vector, e(w) =
[
e1(w) · · · eQ(w)

]T
and eq(w) = bK1,q(w)− yq.

The summed square error, E, while being very useful for actual training, is not very
suitable for comparison between di�erent topologies, di�erent sets of I/O-pairs or di�er-
ent functions. The problem is that as Q increases, the error will increase for the simple

6

2. THEORY

reason that there are more error components to sum. This in spite of the fact that more
I/O-pairs will lead to a generally more accurate response surface. The solution is to
instead use the root-mean-square error for comparison:

ERMS =
√

1
Q · E (2.10)

This error measure will decrease (or increase) with E, it is more independent of the
number of I/O-pairs, and the square root gives it a real interpretation as a measure of
the average distance between the network's response surface and the real function.

2.1.6. Determinacy of a system

The training of neural network, regardless of what method is used, is a matter of adjusting
a number of coe�cients, wki,j , to �t a number of I/O-pairs, (xq, yq). In order to say
something about the determinacy of the system, it is necessary to known the number of
weights in the entire network.
For each layer, k, there aremk−1+1 input signals to each one of the layer'smk neurons.

Therefore the total number of weights can be calculated as:

P =

K∑
k=1

mk · (mk−1 + 1) (2.11)

There are now three possibilities

� P > Q which is referred to as an underdetermined system. For a system like this
there is not enough information in the I/O-pairs to uniquely determine the optimal
values of the weights. As a result there may be several solutions that are equally
accurate for the given points, but at the same time very di�erent between these
points.

� P = Q which is referred to as a determined system. A system like can have exactly
one solution that is accurate for all given I/O-pairs. The chance of this situation
occurring in a real scenario however, is minuscule.

� P < Q which is referred to as an overdetermined system. This system has more
information than coe�cients to set. As a result there will most likely be no perfect
solution. There will however be a solution that optimizes whatever error function
has been selected. This solution will also be more robust against changes in the
I/O-pairs, which means it is usually better at generalizing to the function as a
whole.

2.2. Training with Backpropagation

Backpropagation (BP) is a precise method of calculating favorable weight adjustments
for a FFNN in training. It does so �rst and foremost by considering the derivatives of the

7

2. THEORY

error function with regards to the network's weights. Unfortunately, the error function
of equation (2.7) is too complex to minimize analytically. It is instead necessary to use
an iterative approach. This consists of calculating the error for a �xed set of weights, w̃,
and determining an update vector, u, such that the new set of weights, w̃t+1 = w̃t + ut,
has a lower error. This process can be repeated until the error is su�ciently small.

2.2.1. Steepest decent

The steepest decent method is the most straight forward of the iterative methods. The
�rst step is to make a �rst order approximation of F in the vicinity of w̃.

F̃ (w) = F (w̃) + g (w̃)T · (w − w̃) (2.12)

where g (w) = ∇F (w) is the gradient of the original error function.

∇ =
[

∂
∂w̄1

· · · ∂
∂w̄P

]T
is the column derivative operator, where w̄p is the p

th ele-

ment of the weight vector w.
This approximated function is linear and as such, it does not have a minimum. However

the direction in which the error will most rapidly vary is the gradient. As such the update
is set according to u = λ·g (w̃), where λ is a scalar factor. Since the real error function
is most likely not linear, a line search must be performed to determine the optimal value
of λ. In order to avoid excessive computation, λ is often kept �xed or varied according
to set rules, rather than optimized for every step. This can often lead to the �nal result
oscillating around a minimum.

2.2.1.1. Calculation of the gradient vector

In order to determine the numerical value of the gradient vector, it helps to consider the
error function in the form of equation (2.9).

g (w) = ∇
(
e(w)T · e(w)

)
= ∇

 Q∑
q=1

(eq (w))2


= 2 ·

Q∑
q=1

(∇eq (w)) · eq (w)

= 2 ·
[
∇e1(w) · · · ∇eQ(w)

]
· e (w)

= 2 · J (w)T · e (w) (2.13)

where J (w) is the Jacobian matrix of e (w).
The numerical value of e (w)is easily obtained from the results of running the network.

The di�culty lies in evaluation the Jacobian matrix.

8

2. THEORY

2.2.1.2. Calculation of the Jacobian matrix

In order to determine the numerical value of the Jacobian matrix, it helps to consider
the generalized element of this matrix,

deq
dwki,j

.

The chain rule splits this expression as follows:

∂eq

∂wki,j
=
∂nki,q

∂wki,j
·
∂nK1,q

∂nki,q
· ∂eq
∂nK1,q

(2.14)

The third term is simply the derivative of the output layer's transfer function:

∂eq

∂nK1,q
=

∂

∂nK1,q

(
b
K,(0)
1,q − yq

)
= b

K,(1)
1,q (2.15)

where b
k,(ν)
i,q ≡ ∂ν

∂(nki,q)
ν fk

(
nki,q

)
.

If fk is the linear function then,

b
k,(1)
i,q =

∂

∂nki,q

(
nki,q

)
= 1

while if fk is the log-sigmoid function,

b
k,(1)
i,q =

∂

∂nki,q

(
1

1 + e−n
k
i,q

)
= e−n

k
i,q ·

(
1 + e−n

k
i,q

)−2

= b
k,(0)
i,q ·

(
1 + e−n

k
i,q − 1

)
·
(

1 + e−n
k
i,q

)−1

= b
k,(0)
i,q ·

(
1− bk,(0)

i,q

)
The �rst term is evaluated in accordance with equation (2.2).

∂nki,q

∂wki,j
=

∂

∂wki,j

(mk−1∑
l=0

wki,l · akl,q

)
= b

k−1,(0)
j,q (2.16)

The numerical values of both these terms are easily obtained from the results of running
the network.

9

2. THEORY

The second term of equation (2.14) is referred to as the sensitivity :

ski,q =
∂nK1,q

∂nki,q
(2.17)

.
The sensitivity for the output layer (k = K) is obviously equal to 1.
For earlier layers (k < K) the chain rule is applied.

ski,q =

mk+1∑
l=1

(
∂nk+1

l,q

∂nki,q
·
∂nK1,q

∂nk+1
l,q

)

=

m
k+1∑
l=1

 ∂

∂nki,q

m
k∑

j=0

wk+1
l,j · a

k+1
j,q

 · sk+1
l,q


=

m
k+1∑
l=1

 ∂

∂nki,q

m
k∑

j=1

wk+1
l,j · b

k,(0)
j,q + wk+1

l,0

 · sk+1
l,q


=

m
k+1∑
l=1

(
∂

∂nki,q

(
b
k,(0)
i,q

)
· wk+1

l,i · s
k+1
l,q

)

= b
k,(1)
i,q ·

m
k+1∑
l=1

(
wk+1
l,i · s

k+1
l,q

)
(2.18)

Using this and working recursively, all sensitivities can be expressed in terms of the
�rst order derivatives of the layers' transfer functions. For this method to be viable it is
therefore necessary that each transfer function has a �rst order derivative. Discontinuous
function such as the binary classi�er may not be used.

2.2.2. Newton's method

The Newton method is based on a second order approximation of F in the vicinity of w̃.

F̃ (w) = F (w̃) + g (w̃)T · (w − w̃) +
1

2
(w − w̃)T ·H (w̃) · (w − w̃) (2.19)

where H (w) = ∇ · ∇TF (w) is the Hessian matrix of the original error function.
This approximated function is quadratic and as such, it does have a minimum. After

considering the derivative of equation (2.19), the update is set to solve:

H (w̃) · u = −λ · g (w̃) (2.20)

Unfortunately the update vector given by the equation does not always constitute
an reduction for the error function, E. As a result a line search is often performed to
determine the optimal value of its magnitude.

10

2. THEORY

2.2.2.1. Calculation of the Hessian matrix

In order to determine the numerical value of the Hessian matrix, it helps to consider it
as the gradient of the transposed gradient vector:

H (w) = ∇ ·
(
g(w)T

)
= ∇ ·

2 ·
Q∑
q=1

(
∇Teq (w)

)
· eq (w)


= 2 ·

Q∑
q=1

(∇ · ∇Teq (w)
)
· eq (w) + (∇eq (w)) ·

(
∇Teq (w)

)
= 2 ·

(
G (w) + J (w)T · J (w)

)
(2.21)

As such the Hessian can be split into two terms. The second consists solely of the
Jacobian matrix, which has already been calculated during the evaluation of the gradient.
The �rst term on the other hand, contains the second derivatives and does therefore

present a signi�cant di�culty. For a full evaluation see appendixA.1.

2.2.3. Approximation of the Hessian matrix

Due to the complexity of the full analytical solution, the amount of computations needed
to give the exact Hessian matrix is substantial. It therefore becomes a necessity to reduce
said amount, by constructing an approximate Hessian.

2.2.3.1. Gauss-Newton

The Gauss-Newton algorithm (GN) is very straight forward. It is based on the approxi-
mation that:

∣∣∣∣ (∇ · ∇Teq (w)
)
· eq (w)

∣∣∣∣ � ∣∣∣∣ (∇eq (w)) ·
(
∇Teq (w)

)∣∣∣∣ (2.22)

This is valid as long as the values of the error, eq, are close to zero. Since the minimum
of the error is zero (or almost zero), this can be assumed to be the true in the vicinity of
the minimum. The approximation leads to the expression:

H (w) = 2 · J (w)T · J (w) (2.23)

In order for equation (2.20) to have a unique solution it is required that the Hessian
is of full rank. With this approximation, that translates to the necessity of the number
of I/O-pairs, Q, being greater than the network's total number of weights, P .

11

2. THEORY

2.2.3.2. Broyden-Fletcher-Goldfarb-Shanno

The Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) is a di�erent way of obtaining
the Hessian matrix needed for Newton's method. The idea being that by continuously
adjusting the Hessian at each iteration, a close approximation can be made.[2]
Before the BFGS can begin, the matrix Ht must be initialized. The simplest place to

start is the identity matrix, i.e. H0 = I. Each iteration now consists of three steps:

1. Calculating of the current update vector, ut, in accordance with equation (2.20).

2. Using the updated weight vector to calculate the new gradient, and storing the
di�erence as ht = gt+1 − gt.

3. Updating the Hessian according to the formula:

Ht+1 = Ht +
ht · hT

t

hT
t · ut

− (Ht · ut) · (Ht · ut)T

uT
t ·Ht · ut

(2.24)

2.2.4. Levenberg-Marquart method

The Levenberg-Marquart method (LM) is based on a variation of Newton's method. The
LM, also known as the trust region method, is an alternative for the basic linear search,
which has been shown to be far more robust, when �nding an optimal update vector.[3]
Instead of only searching along the direction of the update vector, an adjustment is

made to rotate the update vector back towards the direction of steepest decent. The
modi�cation lies in changing equation (2.20) to:

(H (w̃) + λ · I) · u = −g (w̃) (2.25)

where I is the identity matrix. This is equivalent to the Newton method for λ = 0, and
the steepest decent method as λ→∞.
Finding the optimal λ starts with a small value. During each iteration, if the update

vector, u, does not results in a reduction of the error function then it is not accepted.
Instead λ is increased and an new u is generated. This is repeated until a satisfactory u
has bee found. When the update vector does result in a reduction of the error function,
it is applied to give the w̃ for the next iteration. The λ is also reduced somewhat in
preparation for the next iteration.

2.3. Training without Backpropagation

The greatest problem with any BP algorithm is the need to calculate the derivatives of
the error function. This tends to be a very time consuming process. One way to avoid
this is to use a zeroth order algorithm such as Particle Swarm Optimization (PSO),
Evolutionary Algorithms (EA), etc. These consider only the value of the target function
or �tness, (such as the reciprocal of the error function) for a given point in its input
space. The idea behind all zeroth order algorithms is to improved the convergence of the

12

2. THEORY

random search. This is done by employing a population of points, as opposed to a single
staring point. At every iteration the �tness of each point in the population is evaluated
and a new population is generated based on that information.[4]

2.3.1. Particle Swarm Optimization

PSO is based on the idea of a �ock of birds. Each particle (bird) has two aspects
associated with it, a position in the input space, xq, and a velocity through it, vq. The
velocity of each particle is what determines its position during the next iteration. The
velocity in itself is a�ected by three factors.

1. The particle's inertia, i.e. the velocity that the particle still has since the previous
iteration.

2. The particle's self-con�dence, i.e. the degree to which the particle trusts that the
optimal point lies close to �ttest point it has itself visited, xpb

q .

3. The particle's social trust i.e. the degree to which the particle trusts that optimal
point lies close to the �ttest point visited by any particle in the swarm, xsb.

Both the last two terms determine how strongly the particle will try to steer towards
those points. Furthermore, in order to prevent divergence, there is an imposed speed
limit on the particle's velocities.

The algorithms begins with the random initialization of the vectors xq and vq.
At the start of each new iteration, the �tness of each particle's position is evaluated

and stored as eq,t.

If eq,t > epb
q then xpb

q = xq,t.
If eq,t > esb then xsb = xq,t.
The velocity vectors are updated according to:

vp,q,t = ωt · vp,q,t−1 + 2 · ϕ ·
(
xpb
p,q − xp,q,t

)
+ 2 · % ·

(
xsb
p − xp,q,t

)
(2.26)

where vp,q,t is the p
thcomponent of vq,t, ωt is the inertia weight that may vary over

time, andϕ and %are uniform random numbers in [0, 1].
Once the update is completed, it is veri�ed that no velocities violate the speed limit.
The �nal step for each iteration is to update the position vectors, i.e. xq,t+1 = xq,t+vq,t

13

3. Implementation

3.1. Basic structure

From the very start of the project the basic structure of the programs has remained the
same. It is best described divided into three parts:

1. The initiation of all necessary variables. This �rstly includes the setting of impor-
tant topological and computational parameters. Since these are often modi�ed by
the operator they are accessibly located at the top. Next comes the introduction
of all the training data. Lastly the data is reformatted in order to make the later
training process more e�cient.

2. The training loop. Before the loop can being the weights as well as a few needed
parameters must be initialized. Since nothing is known about what would be
suitable weights, they are randomly generated. The �rst step of each iteration
begins with the calculation of the network's outputs and the comparison of them
with the known function values to �nd the current error vector. The error vector
is then used to determine the sensitivities and with the addition of a simple line
search, a suitable update vector is calculated. Finally the necessary information
about the current iteration is saved in �tting parameters.

3. The displaying of the results. One of the most important pieces of information is
the evolution of the network's total error, which is both highly signi�cant as well as
easily plotted. (For examples see chapter 4) Another important piece of information
is the minimum point of the trained network's response surface. For comparison,
the minimum point of a di�erently calculated response surface is also presented.
As a �nishing treat, if the dimensionality of the test allows it, the response surface
itself is plotted with the I/O-pairs juxtaposed.

One thing that quickly became apparent is that there is much �exibility to be gained
by keeping commonly used functions as separate �les. The bene�t of course is that the
central program becomes less cluttered. It also makes it possible to make adjustments to
the functions that immediately apply everywhere. For that reason, all the code for the
data initiation has been placed in its own subroutine. The same thing goes for the code
regarding most of what is to be displayed as results.

14

3. IMPLEMENTATION

3.2. Initiation of variables

3.2.1. Topology settings

From the start of the project it had been decided that any ANN under investigation
would have a �xed number of two hidden layers. The neurons in these layers will all
employ a log-sigmoid transfer function and the output layer will use a simple linear
transfer function. However the number of neurons in each hidden layer, m1 and m2,
remains to be determined.
One option is to leave this setting to the judgment of the operator. This however

requires that the operator has a lot of experience or else a lot of time will be wasted
using basic trial and error. It would be far more preferable if a mathematically robust
method of calculating a suitable number of hidden neurons could be found.

3.2.1.1. Optimal over iterations

The purpose of the ANN is to �nd a response surface with as low an error as possible.
For that reason the �rst attempt at determining a suitable topology was set up to loop
through a number of di�erent topologies. For each it would train a network using the
same I/O-pairs, and then compare the networks' errors after a given number of iterations.
While this did produce clear results, it became obvious that something was wrong with

the way the task had been formulated. As had been expected, the larger networks were
able to produce much smaller total errors, but the time it took them to do so however,
was staggering. Several attempts to create a weighted error index, where the networks
would be punished for holding more neurons, proved futile. Most of all the approach
could not be generalized to work well across di�erent functions.

3.2.1.2. Optimal over time

The failure of the previous attempt led to some consideration. The conclusion was that
what would actually be optimal was the ability to achieve a low error in a set amount
of time. For that reason a timer was introduced into the program, and it was instructed
to run training iterations on each topology until a set amount of time had passed. This
meant that the smaller networks, for which each iteration took less time, was able to
perform a greater number of iterations compares to the larger networks.
Using this approach provided a clear optimal structure each time it was performed.

Unfortunately, that structure was not necessarily consistent over consecutive runs. The
apparent reason for this is that basing the optimization on the timer means that the
results are a�ected by what other processes are being run simultaneously on the computer.
It would also give very di�erent results on computers with di�erent processing speeds.
While this method had its merits it is not robust enough for the current application.

15

3. IMPLEMENTATION

3.2.1.3. Optimal in determinacy

In the end, the approach of evaluating several topologies every time the program was run
was deemed too time consuming. It was not until the issues of determinacy of the system
was considered, that a solution was found. Because one way to safeguard against the
ambiguities of an underdetermined system is to set a topology making that impossible.
Firstly the decision was made to always set m2 = m1. The inverse of equation (2.11)

then gives that:

m1 =

√
P − 1 +

1

4
(m0 + 3)2 − 1

2
(m0 + 3) (3.1)

In order to have a de�nitely overdetermined system P < Q. Since it is also a require-
ment that m1is and integer, the �nal formula used becomes:

m1 =

⌊√
3

4
Q− 1 +

1

4
(m0 + 3)2 − 1

2
(m0 + 3)

⌋
(3.2)

Since both Q and m0 are properties of the input data, this formula can be quickly
applied to calculate the largest still overdetermined topology.
In some of the test cases the situation may be reversed. That is that the operator

speci�es the topology before the program generates the I/O-pairs. Then a modi�ed
equation (2.11) can be used to calculate the lowest needed value of Q.

Q =

⌈
4

3

(
m2

1 + (m0 + 3) ·m1 + 1
) ⌉

(3.3)

3.2.2. Reformatting of data

Within the initiation subroutine, all the data is saved as a single matrix. Each I/O-pair
is stored as a row with in this matrix, where the input variable each have their own
column and the last column contains the function values. This matrix never modi�ed
during the remainder of the run. Instead a copy, X, is taken that can be modi�ed freely.
One challenge that arose was the limited sensitivity of the transfer functions. The

log-sigmoid functions used in the hidden layers is almost �at some distance away from
the origin. Since training a network consist of amplifying or dampening the randomly
initiated aspect of the network, it is important that the data points lie close to where
these disturbances �rst appear, i.e. the origin.
The simplest way of circumventing this problem is to translate and rescale the data.

For each column in X, the statistical mean, µj and standard deviation, σj , is computed.
The columns are then transformed according to:

xj =
xj − µj
σj

(3.4)

16

3. IMPLEMENTATION

The network is then trained on this data instead. Important to remember is of course
that the �nal output of the network need to be reversely transformed in order to �nd the
correct result. However, this transformation will in no way e�ect the accuracy of �nding
the minimum.
In some cases further transformations may be needed. The case of the 5-member truss,

(see section4.2) for example provided very inconsistent result in early trials. This was
resolved by applying the transformation:

xj = log10 (xj) (3.5)

as well, before applying the transformation of (3.4).

3.3. Training loop

3.3.1. Initiating the weight vector

The �rst step of the training loop is to determine a suitable staring point for the weight
vector. This is a di�cult task, since the vector space may include many local minima,
and there is no clear way of knowing where they are or how to avoid them. Only after
training has been carried out can the results be used to determine whether or not the
run was successful.
To combat this a loop has been set up around the actual training loop. The weights

are randomly initiated within this loop. Training is performed and the lowest comparable
error achieved is computed. If this is lower than the previously lowest comparable error
the the current weight vector is saved. By performing many such independent training
runs, the chance that one of them will �nd the global minimum increases.

3.3.2. Over�tting

As the dimensionality of the inputs grows larger, it becomes necessary to increase the
number of neurons in each hidden layer. More neurons does mean more �exibility for the
response surface, but it also means that the total number of adjustable weights grows
rapidly. This can lead to one of the most troublesome challenges of constructing any
function estimator, namely over�tting.
Over�tting is the process where the training is so focused on reduced the error for

the I/O-pairs given, that it sacri�ces the general shape of the response surface. This
is especially dangerous if data from real measurements are used. Since such data will
always contain measurement errors, even the true response surface will not be error free.
Due to the risk of over�tting is it vital to monitor not only the progress of the error of
the I/O-points used for training, but also how well the network performs in other points.
The simplest way to monitor for over�tting is to split the available data into two sets,

the learning set and the test set. A reasonable ratio is to use 80% of the data for learning
and 20% for testing. This of course has the downside that even less data is available
for training the network. In this program the split is performed by sorting the rows of

17

3. IMPLEMENTATION

X according to their function values. Starting with the third row, every �fth row is
extracted and placed in a separate matrix, X0.
The training of the network it carried out using the data still remaining in X. At the

end of each iteration however, the comparable error is computed for both sets combined.
The result of this will be an initial decrease in the comparable error as the network
correctly adapts to the data. After a certain point however, if and when over�tting
occurs, the comparable error will begin to increase again as the contributions of the test
set starts to grow. By recording the network's weight vector at the minimum of this
process a reasonably accurate response surface devoid of over�tting can be determined.

3.4. Display of results

3.4.1. Finding the minimum

While it is not the main focus of this thesis, a signi�cant part of the task is to locate the
minimum point of the estimated function. There are many ways of �nding a minimum,
and most of them are quite complicated. If any method involving the function's deriva-
tives is to be used, then those derivatives must �rst be calculated. Since such methods
tend to be iterative, this would have to be done repeatedly, a task in and of itself. There
is also the risk of getting stuck in local minima.
A 0th-order method, such as PSO, does not require derivatives and during the devel-

opment of this program it was for a while used to great success. The time-consumption
of an iterative process still remain however.

The �nal version of the program makes use of MATLAB pro�ciency in handling large
matrices. Due to the nature of the neural network, the �nal output can be written as:

b3 = flin

(
W3 · fsig

(
W2 · fsig

(
W1 · a1

)))
(3.6)

where Wk =

 wk1,0 · · · wk1,mk−1

...
. . .

...
wkmk,0 · · · wkmk,mk−1


Let a1instead of representing a single input point as a column vector, be a matrix

where each column speci�ed a di�erent input point. The �nal output of the network
could then be calculated for all these points simultaneously, and with great speed. This
allows for the possibility of placing a tight grid of the domain of interest, evaluating the
function at all these points, and thereby �nding the minimum by a method similar to an
exhaustive search. While this method will not be the most precise, the inaccuracy of the
response surface itself makes the pursuit of much further precision redundant.
An added bonus of this method is that the same function values found in the exhaustive

search can be reused for the purpose of plotting the response surface itself.

18

3. IMPLEMENTATION

3.4.2. Quadratic Regression Model

The quadratic regression model (QRM) is an alternative way of constructing a response
surface to estimate a function. The reason it is included here is to serve as a reference
for the network's response surface to be evaluated against. The basis of the QRM is to
consider the function to be estimated as a multivariate, second order polynomial:

y (x) =

m0∑
i=1

 i∑
j=1

(αi,j · xi · xj)

+

m0∑
i=1

(βi · xi) + γ (3.7)

Such a function has PQRM = 1
2 (m0 + 2) (m0 + 1) variable coe�cients. As a result the

QRM will tend to remain overdetermined longer for cases where less data is available.
As long as it is overdetermined, all the coe�cients can be optimized in one step using
the least square method.
Once the parameters have been set, is it a simple matter to calculates the QRM's value

at any point within the domain. When comparing the two response surfaces at the end of
the program's run, the parameters of the QRM are recomputed before the I/O-pairs are
used to calculate the models comparable error. The same method as for the network's
response surface is then used to determine the minimum point of the QRM. In most
cases where larger amounts of data are available, the superiority of the neural network
is expected to be evident.

19

4. Testing

The results displayed in this chapter are all gathered using the �nal version of the pro-
gram. In this version, 50 randomly initiated networks are each trained over 500 itera-
tions. The single network with the lowest comparable error is taken as the �nal result,
and compared to the response surface of a quadratic regression model 3.4.2.

4.1. Benchmarks functions

The �rst tests were carried out using basic benchmark functions. The purpose of this
is to determine that the method of training an ANN can be a signi�cant improvement
compared to the QRM.
In order to generate the I/O-pairs, a simple square grid is placed over the domain of

interest. The number of hidden neurons is speci�ed by the operator, and the program
then calculates how many I/O-pairs are necessary to prevent the system from being
underdetermined. In the 2D cases, the number I/O-pairs deemed necessary have been
rounded upward to the nearest square number.

4.1.1. 1-dimensional

4.1.1.1. y (x) = sin (x1)

This network uses 22 I/O-pairs, since it requires the use of 2 neurons in each hidden
layer.

50 100 150 200 250 300 350 400 450
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Error evolution

t

E RM
S

Figure 4.1.: Evolution of the comparable error over 500 iterations. The blue is for the
learning set only, and the red for the learning and test sets combined.

20

4. TESTING

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5
1−dimensional benchmark function

x

y(
x)

input data
neural network
quadratic regression

Figure 4.2.: Final response surface of the trained ANN, as well as of the QRM. The
I/O-pairs used have also been included.

Table 4.1.: Final comparable error of the trained ANN, as well as of the QRM. The
minimum point of each function have also been included.

f (x) ANN QRM

ERMS / 3.10× 10−4 0.217

x∗1 −π
2 ≈ −1.57 −1.56 −2

y∗ −1 −1.00 −1.24

The comparable errors between the two models di�er with a factor of ≈ 103.
This function involves a sign shift in the curvature as the function passes through zero.

The quadratic regression is unable to cope with this shift, and it's limitations can be
easily seen. The network's response surface on the other hand, is able to account for the
data much more accurately.

4.1.1.2. y (x) = ex1

This network uses10 I/O-pairs, since it requires the use of only a single neuron in each
hidden layer.

21

4. TESTING

50 100 150 200 250 300 350 400 450
10

−3

10
−2

10
−1

10
0

Error evolution

t

E RM
S

Figure 4.3.: Evolution of the comparable error over 500 iterations. The blue is for the
learning set only, and the red for the learning and test sets combined.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8
1−dimensional benchmark function

x

y(
x)

input data
neural network
quadratic regression

Figure 4.4.: Final response surface of the trained ANN, as well as of the QRM. The
I/O-pairs used have also been included.

Table 4.2.: Final comparable error of the trained ANN, as well as of the QRM. The
minimum point of each function have also been included.

f (x) ANN QRM

ERMS / 1.35× 10−3 0.106

x∗1 min(x) = −2 −2 −1.16

y∗ 0.135 0.132 0.199

The comparable errors between the two models di�er with a factor of ≈ 102.

22

4. TESTING

This function is monotonically increasing and as such it's minima will always be the
lowest end of the speci�ed domain. The network was able to capture this behavior, while
the the quadratic regression was not.
This test also illustrates the fact that, depending on the situation, the number of

hidden neurons needed to build an accurate response surface can be lowered. Since this
lowering leads to less data being needed to build an accurate model, this is an important
result.

4.1.2. 2-dimensional

4.1.2.1. Rosenbrock function

The function is formulated as:

y (x) =
n−1∑
i=1

(
100

(
x2
i − xi+1

)2
+ (xi − 1)2

)
(4.1)

Since this network requires the use of 2 neurons in each hidden layer, it necessitates
25 I/O-pairs.

50 100 150 200 250 300 350 400 450
10

−3

10
−2

10
−1

10
0

10
1

Error evolution

t

E RM
S

Figure 4.5.: Evolution of the comparable error over 500 iterations. The blue is for the
learning set only, and the red for the learning and test sets combined.

23

4. TESTING

Figure 4.6.: Final response surface of the trained ANN. The I/O-pairs used have also
been included.

Table 4.3.: Final comparable error of the trained ANN, as well as of the QRM. The
minimum point of each function have also been included.

f (x) ANN QRM

ERMS / 2.73× 10−3 0.439

x∗1 1 1.4 0.08

x∗2 1 2 1.52

y∗ 0 5.61.× 10−3 −3.50

The comparable errors between the two models di�er with a factor of ≈ 102.
This function is tricky because it involves a curved trench within which the gradient

is comparably slight. This makes the exact location of the minimum within the trench
di�cult to determine. The network's response surface did in fact indicate a point within
the trench as the minimum. The real function value at this point is y (x∗neur) = 0.32.
Considering that the range of the data reaches values > 104, this must be considered
reasonably accurate. For comparison, the minimum of the quadratic regression has a real

function value of y
(
x∗quad

)
= 230.

4.1.2.2. Sine square function

The function is formulated as:

24

4. TESTING

y (x) =
1

2
+

(
sin |x|

)2
− 1

2(
1 + |x|2

1000

)2 (4.2)

Since this network requires the use of 4 neurons in each hidden layer, it necessitates
64 I/O-pairs.

50 100 150 200 250 300 350 400 450
10

−3

10
−2

10
−1

10
0

10
1

Error evolution

t

E RM
S

Figure 4.7.: Evolution of the comparable error over 500 iterations. The blue is for the
learning set only, and the red for the learning and test sets combined.

Figure 4.8.: Final response surface of the trained ANN. The I/O-pairs used have also
been included.

25

4. TESTING

Table 4.4.: Final comparable error of the trained ANN, as well as of the QRM. The
minimum point of each function have also been included.

f (x) ANN QRM

ERMS / 2.13× 10−3 0.983

x∗1 0 0 −1.84

x∗2 0 0 −2

y∗ 0 4.54.× 10−4 0.706

The comparable errors between the two models di�er with a factor of ≈ 102.
This function is complicated by it's many ridges and valleys. As the domain increases

and more of these are exposed, the number of neurons needed increase rapidly. Without
them the network will in some cases include distortions near the domain's edge. If these
happen to include a sharp drop then the network will be unable to correctly locate the
minimum.

4.2. Ideal truss

4.2.1. Description

This is a test to illustrate how the comparable error can vary when the number of hidden
neurons are increased. The object of study is a 5-member truss that can be seen in �gure
4.9.

◦ x1

x2

◦

x5

◦ x4

x3

◦_
y

��F

��

Figure 4.9.: Diagram of the 5-member truss that is to be used for the following test cases.

26

4. TESTING

The input variables in this case, are the widths of the members. Each width can
be varied individually, however the total area must remain �xed. The output value is
the vertical displacement of bottom right node when a downward force is applied. The
process for calculating this using matrix multiplication is well known,[5] albeit not short
when written out.
In order to generate the I/O-pairs, a 3 × 3 × . . . grid containing 243 points is placed

over the domain of interest. Due to the area constraint, 32 of these are duplicates and
are therefore removed, giving a total of 211 points. For each test on the truss, the
program calculates how many I/O-pairs are necessary to prevent the system from being
underdetermined, and randomly picks that amount from the 211. The function value for
these points are evaluated and combined to produce the I/O-pairs.

4.2.2. Using di�erent topologies

4.2.2.1. m1 = 3

Table 4.5.: Final comparable error of the trained ANN, as well as of the QRM. The
minimum point of each function have also been included.

f (x) ANN QRM

ERMS / 0.231 0.228

x∗1 0 1.01× 10−2 4.14× 10−5

x∗2 0.414 0.403 0.414

x∗3 0 4.03× 10−3 4.14× 10−5

x∗4 0.414 0.403 0.414

x∗5 0 1.01× 10−2 4.14× 10−5

y∗ 9.24 8.63 8.64× 10−2

As these results show, the network is not able to achieve the same low error as it did
in previous tests. The most noticeable aspect of this is that it was not able to fully
disregard the 1st and 5thmember, as can be seen in �gure 4.11 below.
In this particular scenario the network is not able to outperform the quadratic re-

gression, which may be an indication that the QRM is better suited for this particular
problem. It is however likely that the QRM bene�ted from the fact that the minimum
lies in a corner of the domain. One feature that stills hints at the ANN being the better
model, is the fact that its minimum value lies signi�cantly closer to the true minimum
value.

27

4. TESTING

50 100 150 200 250 300 350 400 450

10
−0.8

10
−0.6

10
−0.4

10
−0.2

Error evolution

t

E RM
S

Figure 4.10.: Evolution of the comparable error over 500 iterations. The blue is for the
learning set only, and the red for the learning and test sets combined.

0 1

0

1

5−member truss

Figure 4.11.: Schematic drawing of the �nal minimum of the trained ANN's response
surface.

28

4. TESTING

4.2.2.2. m1 = 5

Table 4.6.: Final comparable error of the trained ANN, as well as of the QRM. The
minimum point of each function have also been included.

f (x) ANN QRM

ERMS / 0.143 0.239

x∗1 0 4.08× 10−5 4.14× 10−5

x∗2 0.414 0.408 0.414

x∗3 0 1.03× 10−2 4.14× 10−5

x∗4 0.414 0.408 0.414

x∗5 0 4.08× 10−5 4.14× 10−5

y∗ 9.24 7.26 0.636

As these results show, with more hidden neurons to work with the network is able reduce
it's error below that of the quadratic regression. Once again the network is not able to
disregard all of the unneeded members, (see �gure 4.13) in this case member 3 .
Important to note is that it required several attempts before the program was able

to �nd this solution. Since the solution depends on the random initiation of the weight
vector, this indicates that there are many local minima in the vector space and that the
attraction area of the global minimum is smaller than in previous tests.

50 100 150 200 250 300 350 400 450
10

−2

10
−1

10
0

Error evolution

t

E RM
S

Figure 4.12.: Evolution of the comparable error over 500 iterations. The blue is for the
learning set only, and the red for the learning and test sets combined.

29

4. TESTING

0 1

0

1

5−member truss

Figure 4.13.: Schematic drawing of the �nal minimum of the trained ANN's response
surface.

4.2.2.3. m1 = 7

Table 4.7.: Final comparable error of the trained ANN, as well as of the QRM. The
minimum point of each function have also been included.

f (x) ANN QRM

ERMS / 0.190 0.249

x∗1 0 6.45× 10−4 4.14× 10−5

x∗2 0.414 0.407 0.414

x∗3 0 1.02× 10−2 4.14× 10−5

x∗4 0.414 0.407 0.414

x∗5 0 1.62× 10−3 4.14× 10−5

y∗ 9.24 9.27 0.661

As these results show, there has not been much improvement compared to the previous
test. There does come a point when a continued increase in the number of hidden neurons
is no longer bene�cial. As �gure 4.15 illustrates the point of over�tting has been reached.
The only true way of avoiding this without altering the topology, is to further increase
the number of I/O-pairs. Since this test already uses 57 I/O-pairs, a must larger number
is not feasible in a practical application.

30

4. TESTING

50 100 150 200 250 300 350 400 450

10
−0.9

10
−0.6

10
−0.3

10
0

10
0.3

Error evolution

t

E RM
S

Figure 4.14.: Evolution of the comparable error over 500 iterations. The blue is for the
learning set only, and the red for the learning and test sets combined.

0 1

0

1

5−member truss

Figure 4.15.: Schematic drawing of the �nal minimum of the trained ANN's response
surface.

31

5. Conclusions

5.1. Discussion

In this thesis the concept of the arti�cial neural network has been explored and imple-
mented. The focus has been on the collection of training methods known as backpropa-
gation. It has been demonstrated that the variant known as the Newton-Gauss method
with the Levenberg-Marquart variation can be highly successful at training networks to
a low comparable error, within short time spans. At the same time the there were several
challenges encountered along the way. A signi�cant one was the setting of the networks
topology. Throughout most of the testing period this was done by manual input, which
placed high demands on the operator's experience and aptitude. The automation of this
process can be considered a major breakthrough.
Further challenges includes the high level of dependency that the �nal solution of

each training cycle has on its initial weight vector. The method of training a number
of independently initiated networks before selecting the most accurate one has been
e�ective. It is however not an ideal way to proceed and it greatly increases the time-
consumption of the program as whole. Time that can be much better spent.
Another major problem, that is still largely unsolved, is that of over�tting. As soon

the complexity of the network increases, so does its propensity to include patches of
turbulence in the �nal response surface. The only real cure for this is a proper balance
between the number of neurons and the number of I/O-pairs. As it happens the afore-
mentioned computerized process of determining a suitable topology is based on the idea
of reducing over�tting. Despite this however, over�tting can still often be found in error
evaluation plots, especially when running tests of the 5-member truss. Not surprisingly,
more input dimensions appear to aggravate the condition.
On the positive side, the program in its current state was su�ciently equipped to per-

form a comparison with the alternate method of quadratic regression. In most scenarios
where there is a su�cient number of I/O-pairs, the network method stands out as far
more accurate. In remaining cases the comparisons are inconclusive. The method has
also shown promise both at locating minimum points, and at closely approximating the
minimum function values.

5.2. Suggested improvements

There are several ways to improve the �nal program. Many of which include �nding
better solutions for the challenges mentioned in the previous section. Particularly the
question of �nding suitable initial weight vectors should be addressed. The reason for its

32

5. CONCLUSIONS

high priority is the possibly huge bene�t of signi�cantly reduced time-consumption if the
issue was resolved. This thesis has not focused on the problem and there could therefore
exist a simple solution ready for implementation. For starters the implementation of
some kind of evolutionary algorithm.
Further improvement could be made if a time-e�cient implementation of the full ana-

lytical solution, (see appendix A.1) was achieved. A comprehensive comparison between
it and other method of backpropagation has not been carried out. It is possible that the
rate of convergence during training could be greatly improved. It might also have an
impact on the issue of over�tting.
A di�erent method of training that was implemented but not fully evaluated was the

BFGS method. An idea that was never fully realized was to construct a hybrid of this
method together with the GN. It stems from the fact that the di�erent algorithms are
better suited for di�erent situations. Testing has shown that the BFGS method is more
robust for handling situations where the error is large, and is less likely to get stuck in
local minima. At the same time the GN has a faster convergence rate, but is more prone
to over�tting. A good strategy could therefore be to begin training the network with the
BFGS-method, and once a decent results has been achieved switch for �nal re�nement.

5.3. Recommendation

The method of using arti�cial neural networks for the purpose of aiding in design opti-
mization has shown great promise. It is especially useful in cases where a lot of data,
either from calculations or actual measurements are available. The program described
above and the algorithms it contains are able to take the data with minimal formatting,
and quickly propose a solution. Since the judgment of the operator remains important
it would be bene�cial to develop a graphic user interface. This would allow operators
unfamiliar with the details of the algorithms to still use the program to great e�ect. The
program has so far only been trained on one real data set, but there is not reason why
it should apply itself equally well to others. Building a base of experience in using the
application is necessary to determine precisely what improvements need to be address,
and in what order.
The investigations of this thesis has shown that the generation of accurate response

surfaces is possible. The method of using response surfaces for optimization is a necessity
whenever only limited data is available. Rather then using up the time of designers, an
application is set to train a network to generalize the data. It should be possible for it to
return within minutes with a clear and mathematically accurate description of the case
at hand.

33

Bibliography

[1] Martin T. Hagan, Howard B. Demuth & Mark Beale. Neural Network Design. PWS
Publishing Company, 1996.

[2] Niclas Andéasson, Anton Evgrafov & Michael Patriksson. An Introduction to Con-
tinuous Optimization. Lund; Studentlitteratur, 2005.

[3] Jorge Nocedal, Stephen J. Wright. Numerical Optimization. Springer Science + Busi-
ness Media LLC, 2000.

[4] Mattias Wahde. Biologically Inspired Optimization Methods. Southampton; WIT
Press, 2008

[5] Peter W. Christensen, Anders Klarbring. An Introduction to Structural Optimization.
Springer Science + Business Media B.V., 2009.

34

A. Appendix

A.1. Full analytical Hessian

This is a continuation of the evaluation of the analytical Hessian. In accordance with
section 2.2.2.1, it has been shown that the Hessian can be written as:

H (w) = 2 ·
(
G (w) + J (w)T · J (w)

)
(A.1)

The analytical value of the Jacobian is known so what remains is to evaluate the
matrix:

G (w) =

Q∑
q=1

(
∇ · ∇Teq (w)

)
· eq (w) (A.2)

The di�cult part of this formula is the double derivative. Note that in the following
equations, the q-index has been dropped. However the �nal results need to be applied
on all Q errors to �nd the full Hessian. The best way to proceed is now to apply the
chain rule to each double derivative:

∂2e

∂wθζ,η∂w
k
i,j

=
∂

∂wθζ,η

(
∂e

∂wki,j

)

=
∂nθζ

∂wθζ,η
· ∂

∂nθζ

(
b
k−1,(0)
j · ski · b

K,(1)
1

)
= bθ−1,(0)

η ·
(

∂
∂nθζ

(
nk−1
j

)
· bk−1,(1)
j · ski · b

K,(1)
1 + b

k−1,(0)
j · ∂

∂nθζ

(
ski

)
· bK,(1)

1

+b
k−1,(0)
j · ski · sθζ · b

K,(2)
1

)
= bθ−1,(0)

η ·
(
σθ,k−1
ζ,j · bk−1,(1)

j · σk,Ki,1 · b
K,(1)
1 + b

k−1,(0)
j · τ θ,k,Kζ,i,1 · b

K,(1)
1

+b
k−1,(0)
j · σθ,Kζ,1 · σ

k,K
i,1 · b

K,(2)
1

)
(A.3)

where σk,Ki,I ≡
∂nKI
∂nki

and τ θ,k,Kζ,i,I ≡
∂2nKI
∂nθζ∂n

k
i

.

Note that the second line of equation (A.3) assumes that θ ≤ k. However, the sym-
metry of the double derivative allows the results to be extended to �ll the entire Hessian

35

A. APPENDIX

matrix. The exact values for the quantities σk,Ki,I and τ θ,k,Kζ,i,I can be be evaluated using
recursive relations similar to those described for the sensitivity.

for K < k

σk,Ki,I = 0 (A.4)

for K = k

σk,Ki,I = δi,I (A.5)

for K = k + 1

σk,Ki,I = b
k,(1)
i · wKI,i (A.6)

for K > k + 1

σk,Ki,I =

m
k+1∑
l=1

(
σk,k+1
i,l · σk+1,K

l,I

)
(A.7)

τ θ,k,Kζ,i,I = τk,θ,Ki,ζ,I i.e. this quantity is inherently symmetric. Therefore all the following
assumes θ ≤ k.

36

A. APPENDIX

for K < k

τ θ,k,Kζ,i,I = 0 (A.8)

for K = k

τ θ,k,Kζ,i,I =
∂

∂nθζ
(δi,I)

= 0 (A.9)

for K = k + 1

τ θ,k,Kζ,i,I =
∂

∂nθζ

(
b
k,(1)
i · wKI,i

)
= σθ,kζ,i · b

k,(2)
i · wKI,i (A.10)

for K > k + 1

τ θ,k,Kζ,i,I =
∂

∂nθζ

m
k+1∑
l=1

(
σk,k+1
i,l · σk+1,K

l,I

)
=

m
k+1∑
l=1

(
τ θ,k,k+1
ζ,i,l · σk+1,K

l,I + σk,k+1
i,l · τ θ,k+1,K

ζ,l,I

)
(A.11)

37

